
More on the Impossibility of
Virtual-Black-Box Obfuscation with Auxiliary Input

Nir Bitansky∗ Ran Canetti† Omer Paneth‡ Alon Rosen§

October 28, 2013

Abstract

We show that if there exist indistinguishability obfuscators for a certain class C of circuits then there
do not exist independent-auxiliary-input virtual-black-box (VBB) obfuscators for any family of circuits
that compute a pseudo-entropic function. A function fk is pseudo-entropic if it is hard, given oracle
access to fk but without asking explicitly on a value x, to distinguish fk(x) from a random variable with
some real entropy.

This strengthens the bound of Goldwasser and Kalai [FOCS ‘05, ePrint ‘13] that rules out dependent-
auxiliary-input VBB obfuscation for the same set of circuit families, assuming inditinguishability obfus-
cators for another class, C ′, of circuits. That is, while they only rule out the case where the adversary
and the simulator obtain auxiliary information that depends on the actual (secret) obfuscated function,
we rule out even the case where the auxiliary input depends only on the (public) family of programs.

1 Introduction

The rigorous treatment of program obfuscation was initiated by Barak et al. [BGI+01], who formulated
a number of security notions for the task. The strongest and most applicable of these notions is virtual
black-box obfuscation (VBB), requiring that any adversary trying to learn information from the obfuscated
program, cannot do better than a simulator that is given only black-box access to the program. Barak et
al. demonstrated a (contrived) class of programs that cannot be VBB obfuscated, but left open the pos-
sibility that natural and possibly expressive classes of programs may still be obfuscated. Subsequently,
VBB obfuscators were shown only for a number of restricted (and mostly simple) classes of programs
[Can97, CD08, CRV10, BR13]. To date, the classification of which programs can or cannot be VBB obfus-
cated is still not well understood.

In contrast, for other, more relaxed notions of obfuscation, recent progress suggests a much clearer and
positive picture: Garg et al. [GGH+13] propose a candidate construction for indistinguishability obfuscation
for all circuits. This notion (referred to as iO, from hereon) only requires that it is hard to distinguish an
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obfuscation of C0 from an obfuscation of C1, for any two circuits C0 and C1 of the same size that compute
the same function [BGI+01, GR07]. Indeed, unlike the case of VBB obfuscation, for iO there are no known
impossibilities. Furthermore, the Garg et al. construction, and variants thereof, were shown to satisfy the
VBB guarantee in ideal algebraic oracle models [CV13, BR13, BGTK+13]. So far, however, none of the
above results proved useful in achieving VBB obfuscation in the plain model.

A main step towards understanding which programs can or cannot be VBB obfuscated was made by
Goldwasser and Kalai [GK05], who gave evidence that circuits that compute pseudo-entropic functions
cannot be obfuscated under a strong definition of VBB with respect to auxiliary input. Pseudo-entropic
functions can be seen as a generalization of pseudo-random functions where there exists a set of inputs I
such that, for a random function f in the class, the output of f on I appears to have high entropy, even given
black-box access to f outside of I . As shown there, various basic cryptographic primitives, indeed, fall into
the class of pseudo-entropic functions, and are thus susceptible to the impossibility results.

Dependent vs. independent auxiliary input. Goldwasser and Kalai consider two variants of auxiliary-
input obfuscation: VBB with dependent auxiliary input and VBB with independent auxiliary input. In the
case of dependent auxiliary input, the VBB property is required to hold even when the auxiliary input given
to the adversary and simulator depends on the actual (secret) obfuscated circuit. In the case of independent
auxiliary input, the requirement is weakened: The auxiliary input may depend only on the family of circuits
(which is public). The actual circuit to be obfuscated is chosen randomly from the class, independently of
the auxiliary input given to the adversary and simulator.

For the case of dependent auxiliary input, Goldwasser and Kalai show that pseudo-entropic functions
cannot be VBB obfuscated, assuming that a different class of point filter functions can be VBB obfuscated
In a recent note, they show that the assumption can be relaxed to iO of point filter functions [GK13]. For
the weaker notion of VBB with independent auxiliary input, they only show a more restricted impossibility
result for a subclass of pseudo-entropic functions called filter functions.

We stress that, in both cases of independent and dependent auxiliary input, the same joint auxiliary input
is given to both the adversary and the simulator. We also allow the adversary and simulator to each have
additional individual auxiliary input. The simulator’s individual auxiliary input is fixed after the adversary’s
individual auxiliary input, but before the joint auxiliary input.

We next briefly motivate the need of auxiliary input when using VBB obfuscation in applications. As
usual in cryptography, security with respect to auxiliary input is needed when obfuscation is used together
with other components in a larger scheme or protocol. Consider, for example, a zero-knowledge protocol
where one of the prover messages to the verifier contains an obfuscated program O(C). To prove that the
protocol is zero-knowledge, we would like to show that any verifier V has a zero-knowledge simulator Szk
that can simulate V’s view in the protocol. Intuitively, Szk would rely on the security ofO by thinking of V as
an “obfuscation adversary”, trying to learn information from O(C). Such an adversary has an “obfuscation
simulator” SO that can learn the same information given only black-box access to C, and Szk can try and
use SO. The problem is that the view of V does not depend only on the code of V , but also on auxiliary input
z to V , such as other prover messages and the statement being proven. Here, an obfuscation definition that
only supports individual auxiliary input is insufficient. Indeed, such a definition guarantees that for every z,
there exists an obfuscation simulator SO with an individual auxiliary input z′; however, the zero-knowledge
simulator Szk may not be able to efficiently compute z′ from z.

The problem is avoided by considering a definition that guarantees the existence of a single obfuscation
simulator that can simulate the view of V given any auxiliary input. Here, if the obfuscated program C
depends on other prover message or on the statement, the obfuscation should be be secure with dependent
auxiliary input. Else, obfuscation with independent auxiliary input suffices.
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1.1 Our Result

We show that, assuming iO, VBB obfuscation is impossible for any class of pseudo-entropic functions even
in the case of independent auxiliary input:

Theorem 1.1 (informal). Assuming indistinguishability obfuscation for a certain class of circuits, there
exist no independent-auxiliary-input virtual-black-box obfuscators for any circuit family that computes a
pseudo-entropic function.

Comparison to [GK05]. Our result can be seen as an extension of the negative results of Goldwasswer
and Kalai [GK05] who rule out all pseudo-entropic functions but only with respect to dependent auxiliary
input, and rule out the restricted class of filter functions with respect to independent auxiliary input. In
terms of assumptions, the independent auxiliary-input result of [GK05] is unconditional and the dependent
auxiliary-input result can be based on iO for point filter functions [GK13]. The result in this work relies
on iO for a different class of functions, related to puncturable pseudo-random functions [BGI13, BW13,
KPTZ13, SW13].

1.2 Proof Idea

To understand the main ideas behind our result, we first recall in somewhat more detail the concept of
pseudo-entropic functions. A class of circuits C = {Cn} is pseudo entropic (or “has superpolynomial
pseudo entropy”) if for every polynomial p(n) and for every n ∈ N there exists a set of inputs I = In
such that for a random circuit C ∈ Cn the set of outputs C(I) has pseudo-entropy at least p(n). That is,
C(I) is computationally indistinguishable from a random variable with statistical min-entropy p(n)), even
given oracle access to the value of C on all inputs outside I . At high-level, we rely on one central feature
of pseudo-entropic functions: given oracle access to a random circuit C ∈ Cn it is hard to compress the set
C(I). In other words, it is infeasible to find a circuit C̃ such that |C̃| � p(n) and C̃ agrees with C on all
inputs in I . In fact, there is an indistinguishable oracle whose output on I has true min-entropy p(n), in
which case such a circuit C̃ is unlikely to exist.

To establish that C cannot be VBB obfuscated with independent auxiliary input, we follow the same
high-level approach as [GK05]. We show a distribution Z of auxiliary inputs, such that for a random circuit
C ∈ Cn, and independent auxiliary input Z drawn from Z , it is possible to learn a predicate π(C,Z) from
Z and an obfuscation O(C). But a simulator S, given Z and oracle access to C, cannot do so.

Specifically, let m be the length of the obfuscation O(C) for circuits C ∈ Cn. The pseudo-entropy of
C implies that there exists a set of inputs I , such that, given an oracle to a random C ← Cn, it is hard to
come up with a circuit of size at most m that agrees with C on the set I . In contrast, an obfuscation O(C)
is exactly such a circuit! We take advantage of this asymmetry using the auxiliary input.

Intuitively, our goal is to devise as auxiliary input a circuit that allows learning a secret predicate of
C only when provided a small circuit that agrees with C on I . Concretely, the auxiliary-input Z would
describe a circuit that takes as input a circuit C̃ of size m; the circuit Z would first evaluate C̃ on all points
in I , and derive the vector of outputs C̃(I). Then, it would apply a (one-bit) pseudo-random function Gs to
C̃(I), and output the resulting bit Gs(C̃(I)).

The adversary, given input O(C), will run Z(O(C)) and will obtain Gs(C̃(I)). It now remains to argue
that the simulator cannot predict Gs(C̃(I)) even given Z and an oracle access to C. For this purpose we
apply an iO to the circuit in Z and use the puncturing technique of Sahai and Waters [SW13]. In more
detail, we consider an alternative auxiliary input Z∗C(I) that is defined like Z, except that it has a punctured
key s∗. This punctured key allows evaluating Gs on all inputs except for the special input x∗ = C(I), while
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the value of Gs(C(I)) remains pseudo-random. We define the output of Z∗C(I) on x∗ = C(I) to be arbitrary
(e.g., 0). Now, given Z∗C(I), the simulator clearly cannot learn the bit Gs(C(I)). It thus remains to show that
Z and Z∗C(I) are indistinguishable.1

As described the circuits Z and Z∗C(I) may disagree on the input x∗ = C(I), and therefore their indis-
tinguishability does not follow directly from the iO property. Instead, we consider an experiment where S
has access to an indistinguishable oracle whose output outside the set I is the same as C but on I , instead of
answering according to C(I) it answers according to a random variable Y that has min-entropy much higher
than m. The simulator S would be given accordingly an auxiliary input Z∗Y where Gs is punctured on the
point x∗ = Y , instead of on the point C(I). By the pseudo-randomness guarantee at the punctured point, in
this experiment, the simulator S cannot learn the bit Gs(Y ). Furthermore, Since Y has high pseudo-entropy,
a circuit C̃ of size m such that C̃(I) = Y is unlikely to exist, and therefore the circuits Z and Z∗Y compute
the same function, and we can invoke the iO security guarantee to deduce that the simulator cannot learn
the bit Gs(Y ), even when given the original Z, rather than Z∗Y . Switching back to the indistinguishable
experiment where S gets oracle access to C, we conclude that SC(Z) is not able to learn the bit Gs(C(I)).

Comparison to the technique of [GK05, GK13]. In both works the impossibility for pseudo-entropic
functions is obtained by having the auxiliary input describe an obfuscated circuit Z that outputs a secret
bit b when given a small circuit that agrees with the obfuscated circuit O(C) on a set of inputs I . In
[GK05, GK13], this idea is implemented by hardcoding the set of outputs C(I) and the secret bit b directly
in the auxiliary input circuit Z; specifically their circuit Z outputs b when given as input a circuit C̃ such
that C̃(I) = C(I). Consequently in their case the circuit Z depends on C.

To make Z independent of C, we avoid hardcoding the set C(I) into Z. Instead, our circuit Z has
a hardcoded pseudo-random function Gs, independent of C, and the output bit b is defined as Gs(C(I)) .
When given an input circuit C̃ that doesn’t agree with C on I , Z outputs the bit Gs(C̃(I)) which is (pseudo)
independent of b. This means that b is not part of the description of Z, which means that Z does not depend
on C. However, this also makes the proof more delicate: In the proof of [GK05, GK13], the bit b (that is
hardcoded to Z) can be hidden from the simulator using VBB obfuscation or even iO. In our case, to prove
that iO of Z hides the bit b, we use the fact that the pseudo-random function Gs is puncturable.

Finally we remark that the approach taken in this work can also be seen as a simplified version of the
approach taken by Goldwasser and Kalai to prove impossibility for independent auxiliary input for filter
functions.

2 Definitions

We define unpredictable functions, virtual-black-box obfuscation with independent auxiliary input, indistin-
guishability obfuscation, and puncturable pseudo-random functions.

2.1 Circuits with Super-Polynomial Pseudo-Entropy

We recall the definition of pseudo-entropy of circuits from [GK05]. Roughly, a class of circuits C =
{Cn}n∈N is said to have pseudo-entropy p if there exists polysize sets of inputs {In}n∈N, such that for a
random C ← Cn, the set of outputs C(In) appears to have min-entropy p, even given an oracle that com-
putes C on all inputs outside In.

1 For this to go through, we assume that the pseudo-random function Gs is puncturable. Notice that this is not and additional
assumption since the existence of pseudo-entropic functions implies one-way functions, which in turn are sufficient for constructing
puncturable PRFs.
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Definition 2.1 (Pseudo-entropy of circuits [GK05]). A class of circuits C = {Cn}n∈N is said to have pseudo-
entorpy p if there exist sets {In}n∈N of polynomial size t(n), and for every C ∈ Cn, there is a random
variable Y C = (Y1, . . . , Yt(n)), such that

1. Y C has min-entropy at least p(n).

2. For any polysize distinguisher D, and all large enough n:∣∣∣Pr [DC◦Y C
(1n) = 1

]
− Pr

[
DC(1n) = 1

]∣∣∣ ≤ negl(n) ,

where the probability is over a randomC from Cn, and over Y C , andC◦Y C is an oracle that answers
according to C, except on inputs from In, for which it answers according to Y C .

We say that C has super-polynomial pseudo-entropy if it has pseudo-entropy p for any polynomial p.

2.2 Virtual-Black-Box Obfuscation With Independent Auxiliary Input

We recall the definition of VBB obfuscation with independent auxiliary input from [GK05].

Definition 2.2. A PPT algorithm O is an auxiliary-input obfuscator for a circuit family C if it satisfies:

1. Functionality: For any C ∈ C,

Pr
O

[∀x : O(C)(x) = C(x)] = 1 .

2. Virtual black-box: For any PPT adversary A, there is a simulator S, such that for every n ∈ N,
auxiliary input z ∈ {0, 1}poly(n) and every predicate π:∣∣∣Pr[A(O(C), z) = π(C, z)]− Pr[SC(1|C|, z) = π(C, z)]

∣∣∣ ≤ negl(|C|) ,

where the probability is over C ← Cn, and the randomness of the algorithms O,A and S .

Remark 2.1 (On the auxiliary input). For our results, it is critical that the simulator S receives the same
joint auxiliary input z, as A does, and has to operate efficiently with respect to this auxiliary input. This
flavor of definition is standard in defining auxiliary-input security, e.g., auxiliary-input zero-knowledge, and
auxiliary-input extractable functions [BCPR13]. Our result still hold if the adversary and simulator are
allowed additional individual auxiliary input, where the simulator’s individual auxiliary input is fixed after
the adversary’s individual auxiliary input, but before the joint auxiliary input (equivalently, in the above
definition both A and S are modeled as non-uniform families of circuits.)

2.3 Indistinguishability Obfuscation

Indistinguishability obfuscation was introduced in [BGI+01] and given a candidate construction in [GGH+13],
and subsequently in [BR13, BGTK+13, CV13].

Definition 2.3 (Indistinguishability obfuscation [BGI+01]). A PPT algorithm iO is said to be an indistin-
guishability obfuscator (INDO) for C, if it satisfies:

1. Functionality: As in Definition 2.2.

2. Indistinguishability: For any class of circuit pairs {(C(1)
n , C

(2)
n ) ∈ C×C}n∈N, where the two circuits

in each pair are of the same size and functionality, it holds that:{
iO(C(1)

n )
}
n∈N
≈c

{
iO(C(2)

n )
}
n∈N

.
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2.4 Puncturable PRFs

We next define puncturable PRFs. We consider a simple case of the puncturable PRFs where any PRF might
be punctured at a single point. The definition is formulated as in [SW13].

Definition 2.4 (Puncturable PRFs). Let `,m be polynomially bounded length functions. An efficiently com-
putable family of functions

G =
{
Gs : {0, 1}m(n) → {0, 1}`(n)

∣∣∣ s ∈ {0, 1}n, n ∈ N
}

,

associated with an efficient (probabilistic) key sampler GenG , is a puncturable PRF if there exists a punc-
turing algorithm Punc that takes as input a key s ∈ {0, 1}n, and a point x∗, and outputs a punctured key
sx∗ , so that the following conditions are satisfied:

1. Functionality is preserved under puncturing: For every x∗ ∈ {0, 1}`(n),

Pr
s←GenG(1n)

[
∀x 6= x∗ : Gs(x) = Gsx∗ (x)

∣∣ sx∗ = Punc(s, x∗)
]
= 1 .

2. Indistinguishability at punctured points: The following ensembles are computationally indistin-
guishable:

• {x∗, sx∗ ,Gs(x
∗) | s← GenG(1

n), sx∗ = Punc(s, x∗)}x∗∈{0,1}m(n),n∈N

•
{
x∗, sx∗ , u

∣∣ s← GenG(1
n), sx∗ = Punc(s, x∗), u← {0, 1}`(n)

}
x∗∈{0,1}m(n),n∈N .

To be explicit, we include x∗ in the distribution; throughout, we shall assume for simplicity that a
punctured key sx∗ includes x∗ in the clear. As shown in [BGI13, BW13, KPTZ13], the GGM [GGM86]
PRF yield puncturable PRFs as defined above.

3 The Impossibility Result

In this section, we show that no class C of circuits with super-polynomial pseudo-entropy can be VBB
obfuscated with respect to independent auxiliary input, assuming iO for (a related) class of circuits. We first
describe, for any class C as above, an auxiliary-input distribution ensemble Z and a PPT adversary A, such
that, given an obfuscation of C ← C and z ← Z , A always learns some predicate π(C, z). Then, we show
that any PPT simulator that is only given oracle access to C fails to learn the predicate. See the Introduction
for a high-level overview of the proof.

Let C = {Cn}n∈N , be a class of circuits with super-polynomial pseudo-entropy such that each C ∈ Cn maps
{0, 1}`(n) to {0, 1}`′(n). Let O be any candidate obfuscator for C, and let m(n) be a polynomial such that
for every C ∈ Cn, |O(C)| ≤ m(n).

The auxiliary input distribution Z . By assumption, C has pseudo-entropy at least m(n)+n. Let {In}n∈N
be the sets guaranteed by Definition 2.1, where In is of polynomial size t(n). Let G a puncturable one-bit
PRF family:

G =
{
Gs : {0, 1}`

′(n)·t(n) → {0, 1}
∣∣∣ s ∈ {0, 1}n, n ∈ N

}
.
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We define two circuit families

K =
{
Ks : {0, 1}m(n) → {0, 1}

∣∣∣ s ∈ {0, 1}n, n ∈ N
}

,

K∗ =
{
Ksx∗ : {0, 1}

m(n) → {0, 1}
∣∣∣ s ∈ {0, 1}n, x∗ ∈ {0, 1}`′(n)·t(n), n ∈ N

}
.

The circuit Ks, given a circuit C̃ : {0, 1}` → {0, 1}`′ of size m, computes x := C̃(In) := (C̃(i))i∈In ,
and outputs Gs(x).

Hardwired: a PRF key s ∈ {0, 1}n, and the set In.

Input: a circuit C̃ : {0, 1}` → {0, 1}`′ , where |C̃| = m(n).

1. Compute x = C̃(In).

2. Return Gs(x).

Figure 1: The circuit Ks.

The circuit Ksx∗ , has a hardwired PRF key sx∗ that was derived from s by puncturing it at the point x∗.
It operates the same as Ks, only that when if x = x∗, it outputs an arbitrary bit, say, 0. In particular, if for
all circuits C̃ ∈ {0, 1}m(n), it holds that x∗ 6= C̃(In), then Ksx∗ and Ks compute the exact same function.

Hardwired: a punctured PRF key sx∗ = Punc(s, x∗) , the set In.

Input: a circuit C̃ : {0, 1}` → {0, 1}`′ , where |C̃| = m(n).

1. Compute x = C̃(In).

2. If x 6= x∗, return Gsx∗ (x).

3. If x = x∗, return 0.

Figure 2: The circuit Ksx∗ .

We are now ready to define our auxiliary-input distributionZ = {Zn}n∈N. Let d = d(n) be the maximal
size of circuits in eitherK orK∗, corresponding to security parameter n. Denote by [K]d a circuitK padded
with zeros to size d, and by [K]d the class of circuits where every circuit K ∈ K is replaced with [K]d. Let
iO be an indistinguishability obfuscator for the class [K ∪ K∗]d.

The distribution Zn simply consists of an obfuscated (padded) circuit Ks for a randomly generated s

The adversary A and predicate π. The adversary A, given auxiliary input z = [iO(Ks)]d(n) and an
obfuscation O(C), where C ∈ Cn, outputs

z(O(C)) = Ks(O(C)) = Gs(O(C)(In)) = Gs(C(In)) ,
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1. Sample s← GenG(1
n).

2. Sample an obfuscation z ← iO([Ks]d(n)).

3. Output z.

Figure 3: The auxiliary input distribution Zn.

where the above follows by the definition of Ks and the functionality of iO and O.
Thus, A always successfully outputs the predicate

π(C,Ks) = Ks(C) = Gs(C(In)) .

AdversaryA cannot be simulated. We prove the following proposition implying that the candidate obfus-

cator O, for the class C, fails to meet the VBB requirement (Definition 2.2)

Proposition 3.1. For any PPT simulator S, and all large enough n ∈ N:

Pr
C←Cn
z←Zn

[
SC(z) = π(C, z)

]
≤ 1

2
+ negl(n) .

Proof. Assume towards contradiction that there exists a PPT S that learns π(C, z) with probability 1
2+ε(n),

for some noticeable ε (and infinitely many n ∈ N). We show how to use S to break either the pseudo-entropy
of C, or the pseudo-randomness at punctured points of G.

According to the definition of Zn, it holds that

Pr
[
SC(iO([Ks]d) = Gs(C(In))

]
≥ 1

2
+ ε(n) ,

where the probability is over C ← Cn, s← GenG(1
n), and the coins of S .

Now, for everyC ∈ Cn, let Y C = (Y1, . . . , Yt) be the random variable guaranteed by the pseudo-entropy
of values in In (Definition 2.1). We first consider an alternative experiment where the oracle C is replaced
with an oracle C ◦ Y C that behaves like C on all points outside In, and on points in In answers according
to Y C . We claim that

Pr
[
SC◦Y C

(iO([Ks]d) = Gs(Y
C)
]
≥ 1

2
+ ε(n)− negl(n) ,

where the probability is over C ← Cn, Y C , s ← GenG(1
n), and the coins of S. Indeed, this follows

directly from the pseudo-entropy guarantee (Definition 2.1), and the fact that a distinguisher can sample s,
and compute iO([Ks]d) on its own.

Next, we change the above experiment so that, instead of an iO of Ks, the simulator gets an iO of the
circuit Ks∗x , where s is punctured at the point x∗ = Y C . We claim that

Pr
[
SC◦Y C

(iO([Ksx∗ ]d) = Gs(Y
C)
]
≥ 1

2
+ ε(n)− negl(n) ,
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where the probability is over C ← Cn,Y C , s ← GenG(1
n), and the coins of S , x∗ = Y C , and sx∗ =

Punc(s, x∗). Indeed, recalling that, for any C ∈ Cn, Y C has min-entropy m(n) + n, there does not exist a
circuit C̃ such that x∗ := Y C = C̃(In), except with negligible probability 2−n. However, recall that in this
case Ks and Ksx∗ have the exact same functionality, and thus the above follows by the iO guarantee.

It is now left to note that S predicts with noticeable advantage the value of Gs at the punctured point x∗,
and thus violates the pseudo-randomness at punctured points requirement (Definition 2.4).
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