
Adaptive Witness Encryption and

Asymmetric Password-based Cryptography

Mihir Bellare1 Viet Tung Hoang2

October 17, 2013

Abstract

This paper defines adaptive soundness (AS) security for witness encryption and applies it to provide
the first non-invasive schemes for asymmetric password-based encryption (A-PBE). A-PBE offers sig-
nificant gains over classical, symmetric password-based encryption (S-PBE) in the face of attacks that
compromise servers to recover hashed passwords. We also show by counter-example that the original
soundness security (SS) requirement of GGSW does not suffice for the security of their own applications,
and show that AS fills the gap.

1 Department of Computer Science & Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla,
California 92093, USA. Email: mihir@eng.ucsd.edu. URL: http://cseweb.ucsd.edu/~mihir/. Supported in part by NSF
grants CNS-0904380, CCF-0915675, CNS-1116800 and CNS-1228890.

2 Department of Computer Science & Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla,
California 92093, USA. Email: vth005@eng.ucsd.edu. URL: http://csiflabs.cs.ucdavis.edu/~tvhoang/. Supported in
part by NSF grants CNS-0904380, CCF-0915675, CNS-1116800 and CNS-1228890.

1

Contents

1 Introduction 3

2 Preliminaries 6

3 Adaptive Witness Encryption 7

4 Insufficiency of Soundness Security 10

5 Asymmetric Password-based Encryption 12

6 A-PBE from Extractable Witness Encryption 15

A Relaxation of correctness 20

B Extending counter-examples for GGSW’s PKE scheme 21

2

1 Introduction

This paper introduces (1) witness encryption with adaptive soundness and (2) asymmetric password-based
cryptography. We show how to use (1) to achieve (2) as well as other goals.

The problem. Today secure Internet communication remains ubiquitously based on client passwords.
Standards such as the widely implemented PKCS#5 (equivalently, RFC 2898) [18] specify password-based
encryption (PBE). From the client password pw , one derives a hashed password hpw = KD(sa, pw), where
sa is a random, user-specific public salt, and KD, the deterministic key-derivation function, is usually an
iterated hash, KD(sa, pw) = Ht(sa|pw) for some iteration count t and cryptographic hash function H.
The server holds hpw while the client holds (sa, pw). Now the server will encrypt under hpw using any
symmetric encryption scheme, for example CBC-AES. The client can recompute hpw from (sa, pw) and
decrypt using this key.

This classical form of PBE is symmetric: encryption and decryption are both done under the same key
hpw . But this means that anyone who knows hpw can decrypt. This is a serious vulnerability in practice
because of server compromise leading to exposure of hashed passwords. We have seen a series of high-
profile attacks of this type, including Adobe (October 2013), Linkedln (June 2012), RSA (March 2011),
Sony (2011) and TJ Maxx (2007). We emphasize that the problem here is not the possibility of password-
recovery via a dictionary attack based on the hashed password. The problem is that with symmetric
PBE (S-PBE), possession of the hashed password is already enough to decrypt any prior communications,
meaning even well-chosen passwords, not subject to dictionary attack, do not provide security in the face
of server compromise.

APBE. We propose asymmetric password-based cryptography, and in particular asymmetric password-
based encryption (A-PBE). Here, encryption is done under hpw , decryption is done under pw , and posses-
sion of hpw does not allow decryption. We suggest that this offers significantly higher security in the face
of the most important attack, namely server compromise exposing hpw .

A-PBE is trivial to achieve if we have the luxury of designing our own KD. Namely, let KD, given sa, pw ,
deterministically derive from pw a string r of coin tosses for a key-generation algorithm PKE.Kg of some
standard PKE scheme. It then runs PKE.Kg on r to get (pk, sk) and outputs hpw = pk. Encryption is under
the encryption algorithm PKE.Enc of the PKE scheme keyed with hpw = pk. Since KD is deterministic,
decryption under (sa, pw) can re-execute KD to get (sk, pk) and then use sk to decrypt under PKE.1

From a practical perspective, however, the above is a non-solution. The reason is that it is invasive,
prescribing a particular and very special way to design KD. Right now, in practice, the key-derivation
functions in use do nothing like the KD sketched above. Instead, they are iterated hash functions following
standards like PKCS#5 [18]. Millions of passwords are today in use with this particular KD, and we do
not have the luxury of changing the password hashes or the KD. In the face of this legacy constraint,
the practical problem is to implement APBE in a non-invasive way, meaning without changing the key-
derivation function KD. In particular, for a A-PBE solution to be useful, it should be able to use as public
key a hashed password obtained with KD being an iterated hash function.

Achieving A-PBE non-invasively is much more challenging, and indeed looks almost impossible. In all
known PKE scheme, the secret and public keys have very specific structure and are related in very particular
ways. How can we encrypt asymmetrically with the public key being just an arbitrary hash of the secret
key? The answer is the new witness encryption (WE) primitive introduced by Garg, Gentry, Sahai and
Waters (GGSW) [12, 13]. We will use WE to achieve non-invasive A-PBE. For this purpose, however,
we will need WE schemes satisfying an extension of the soundness security notion of GGSW [12, 13] that
we call adaptive soundness security. We define and achieve WE with adaptive soundness and apply it to
achieve non-invasive A-PBE and other goals as we now discuss.

Witness encryption. In a WE scheme [12, 13] for a language L ∈ NP, the encryption function WE.Enc
takes a unary representation 1λ of the security parameter λ ∈ N, a string x ∈ {0, 1}∗ and a message m
to return a ciphertext c. If x ∈ L then decryption is possible given a witness w for the membership of

1 One might ask how KD can deterministically derive a random-looking r from sa, pw . The simplest way is to apply to
sa‖pw a cryptographic hash function modeled as a random oracle [5].

3

x in L. If x 6∈ L then the message remains private given the ciphertext. The soundness security (SS)
requirement of GGSW [12, 13] formalizes the latter by asking that for any PT adversary A, any x 6∈ L
and any equal-length messages m0,m1 in the message space, there is a negligible function ν such that
Pr[A(WE.Enc(1λ, x,m1)) = 1]− Pr[A(WE.Enc(1λ, x,m0)) = 1] ≤ ν(λ) for all λ ∈ N. GGSW [12, 13] give a
construction of SS-secure WE for the NP-complete Exact-Cover language based on multi-linear maps [10].
Another construction of SS-secure WE from indistinguishability obfuscation (iO) is given in GGHRSW [11].

Adaptive soundness. We introduce adaptive soundness (AS) security of WE. In our formalization, the
adversary A, on input 1λ, returns x,m0,m1 to the game. The latter picks a random challenge bit b and
returns ciphertext WE.Enc(1λ, x,mb) to A, who now responds with a guess b′ as to the value of b. The
as-advantage of A is defined as the probability that (b = b′) and x 6∈ L. We require that any PT A have
negligible advantage. We note that due to the check that x 6∈ L, our game may not be polynomial time but
this does not hinder our applications.

It may at first seem that adaptivity does not add strength, since soundness security already quantifies
over all x,m0,m1. But in fact we show that AS is strictly stronger than SS. Namely we show in Proposi-
tion 3.2 that AS always implies SS but SS does not necessarily imply AS. That is, any WE scheme that is
AS secure is SS secure, but there exist WE schemes that are SS secure and not AS secure. Intuitively, the
reason AS is strictly stronger is that SS does not allow x,m0,m1 to depend on λ. Our separation result
modifies a SS-secure WE scheme to misbehave when |x| ≥ f(λ) for a certain poly-logarithmic function
f of the security parameter. SS is preserved because for each x only finitely many values of λ trigger
the anomaly. The proof that AS is violated uses the fact that NP ⊆ EXP, the constructed adversary
nonetheless being polynomial time.

Towards providing candidate AS-secure WE schemes, we return to the (two) known constructions of SS-
secure ones. We show that the iO-based WE scheme of GGHRSW [11] is AS-secure, so that we can achieve
AS security with no extra assumptions compared with SS security in this case. To show SS security of their
Exact-Cover WE scheme, GGSW [12, 13] assume hardness of a new problem they call Decision Multi-linear
No-exact-cover. We can obtain AS security of the same scheme assuming hardness of an adaptive version
of this problem.

Defining and achieving A-PBE. We provide a definition of the A-PBE goal by extending the S-PBE
framework of [4]. Our model involves multiple passwords. They are assumed to individually have high min-
entropy, since otherwise security is moot, but they may be arbitrarily related to each other. This reflects
the reality that we, as users, pick related passwords, for example varying a base password by appending
the name of the website. Our A-PBE scheme lets L be the NP language of pairs (sa,KD(sa, pw)) over the
choices of sa, pw , the witness being pw . A-PBE encryption of m using the hashed password as the public
key will be witness encryption of m under x = hpw . Decryption will use the witness pw .

The key feature of our solution that distinguishes it from the trivial A-PBE solution outlined above is
that ours is non-invasive. It does not prescribe or require any particular design for KD. Rather, it takes
KD as given, and shows how to encrypt with public key the hashed password obtained from KD. In this
way, KD can in particular be the iterated hash design of the PKCS#5 standard [18] that already underlies
millions of usages of passwords, or any other practical, legacy design. Of course, for security, we will need
to make an assumption about the security of KD, but that is very different from prescribing its design.
Our assumption, which we formalize as KDF-pseudorandomness in Section 5, asks that outputs of KD on
unpredictable passwords are pseudorandom. We note that this assumption is already, even if implicitly,
made in practice for the security of in-use S-PBE, where the hashed passwords are the keys, and is shown
by [4] to hold for PKCS#5 in the ROM, so it is a natural and reasonable assumption. Note that we do
need a standard-model assumption on KD, for if we model it as a RO then the language L we define is not
in NP.

Due to the inefficiency of existing WE schemes, our A-PBE scheme is not efficient. Our result should be
viewed as an indication that non-intrusive A-PBE is achievable in principle. We believe this is significant
because of the practical value of the goal and because it is extremely unclear that the goal was achievable,
even in principle, prior to WE and our work.

SS revisited. GGSW [12, 13] present constructions of PKE, IBE and ABE schemes from witness encryp-

4

tion, claiming that these constructions are secure assuming soundness security of the WE scheme. The
need for adaptive security of our A-PBE scheme leads to the natural question of why we need a stronger
condition than GGSW [12, 13]. The answer is that they need it too. We point out that the theorems
of GGSW [12, 13] claiming security of their applications under SS are incorrect, and that SS does not in
fact suffice for the security of their schemes. We do this by presenting counter-examples. Taking their
PRG-based PKE construction as a representative example, we provide a WE scheme which satisfies SS yet,
if used in their construction, the resulting PKE scheme will provide no security at all. We then show that
the gap can be filled by using AS. Namely, we show that their PKE scheme is secure if the underlying WE
scheme is AS secure and the PRG is secure. Analogous results hold for GGSW’s applications to IBE and
ABE.

Intuitively, the weakness of SS that compromises the applications of GGSW [12, 13] is that a WE scheme
may satisfy SS yet behave totally insecurely, for example returning the message in the clear, when |x| = λ.
But in applications, x will have length related to λ, so SS is not enough. AS does not have this weakness
because x can depend on λ. We do not see the gap in GGSW [12, 13] as serious, since it is easily fixed by
moving to AS, but we think the issue is subtle and interesting and accordingly provide the counter-examples
in Section 4.

Extractability. Goldwasser, Kalai, Popa, Vaikuntanathan and Zeldovich (GKPVZ) [15, 14] define
extractable witness encryption, which says that given an adversary violating the security of the encryption
under x ∈ {0, 1}∗, one can extract a witness w for the membership of x ∈ L. We build on this to provide
a definition of adaptive extraction security for WE that we call XS. We show XS implies AS, giving a
hierarchy XS ⇒ AS ⇒ SS. We show that XS allows somewhat stronger results for non-invasive A-PBE
than we obtained under AS, namely that the assumptions needed on KD decrease, down to just requiring
KD to be one-way. Our XS definition does not allow the adversary and extractor any common auxiliary
inputs, which avoids the iO-based attacks of BCPR [7]. Towards achieving XS, we present a construction
of an XS-secure WE scheme based on the extractability obfuscation (xO) primitive of BCP [9].

Relaxing perfect correctness in WE. The correctness requirement of WE is that if x ∈ L then
possession of a witness w enables decryption. The simplest formalization is perfect correctness, requiring
this to be true with probability one across all choices of inputs involved. GGSW [12, 13] however give a
weaker requirement which allows decryption to fail with negligible probability. The motivation appears to
be that in the graded encoding rendering of multi-linear maps [10], as opposed to the “dream” version,
there are errors that lead to decryption errors in the WE scheme that GGSW build.

We point out that relaxing the correctness requirement is more subtle than it may seem in that the
details of how it is done significantly impact the applications of WE. We show that under the most natural
interpretation of the GGSW [12, 13] requirement, their PRG-based PKE scheme will fail to provide any
correctness at all, meaning decryption will never reverse encryption. Other interpretations of their require-
ment are possible, but it is currently ambiguously written and it is not clear how to interpret it. We provide
our own definition of a relaxation of perfect completeness that suffices for applications. See Appendix A.

Password-based signatures. We have shown how to accomplish (non-invasive) A-PBE. A natural
question is whether it is possible to do password-based signatures, meaning we have to sign using pw as the
secret key and verify with hpw = KD(sa, pw) as the public key. Again, this is trivial if we allow an invasive
solution, meaning we get to define KD, and the problem of practical interest is non-invasive password-based
signatures, meaning we view KD as given rather than as something we construct. We can show how to
achieve non-invasive password-based signatures by using key-versatile signatures [3]. The assumption on
KD would be an appropriate form of one-wayness.

Summary. The contributions of this work are the notion of adaptive soundness (AS) for witness encryption
(WE) and its application to achieve non-invasive, asymmetric password-based encryption (A-PBE). A-PBE
offers protection in the face of the swathe of attacks that compromise servers and recover hashed passwords.
We have shown that AS-secure WE is strictly stronger than its precursor, SS-secure WE, and that it allows
proofs of prior WE-based constructions not possible under SS.

5

Main INDCPAA
PKE(λ)

(pk, sk)←$ PKE.Kg(1λ) ; b←$ {0, 1}

(m0,m1, St)←$ A(1λ, pk)

c←$ PKE.Enc(pk,mb)

b′←$ A(1λ, St, c) ; Return (b = b′)

Main PRGA
G(λ)

s←$ {0, 1}λ ; x1 ← G(s)

x0←$ {0, 1}ℓ(λ) ; b←$ {0, 1}

b′←$ A(1λ, xb) ; Return (b = b′)

Main IOA
F (λ)

(C0, C1, St)←$ A(1λ) ; b←$ {0, 1}

c←$ F.Ob(1λ, Cb) ; b
′←$ A(St, c)

Return (b = b′) ∧ (C0 ≡ C1)

Figure 1: Left: Game INDCPA defining INDCPA security of a PKE scheme PKE. The messages
m0,m1 ∈ PKE.Msg must have the same length. Middle: Game PRG defining security of a pseudo-
random generator G. Here ℓ : N → N is the expansion factor of G. Right: Game IO defining security of
an indistinguishability obfuscator F.

2 Preliminaries

Notation. We denote the size of a finite set X by |X|, the number of coordinates of a vector x by |x|,
and the length of a string x ∈ {0, 1}∗ by |x|. We let ε denote the empty string. By x‖y we denote the
concatenation of strings x, y. If X is a finite set, we let x←$ X denote picking an element of X uniformly
at random and assigning it to x. Algorithms may be randomized unless otherwise indicated. Running time
is worst case. “PT” stands for “polynomial-time,” whether for randomized algorithms or deterministic
ones. If A is an algorithm, we let y ← A(x1, . . . ; r) denote running A with random coins r on inputs x1, . . .
and assigning the output to y. We let y←$ A(x1, . . .) be the resulting of picking r at random and letting
y ← A(x1, . . . ; r). We say that f : N → R is negligible if for every polynomial p, there exists np ∈ N such
that f(n) < 1/p(n) for all n > np. An adversary is an algorithm or a tuple of algorithms.

Games. We use the code based game playing framework of [6] augmented with explicit Main procedures
as in [19]. By GA(λ) ⇒ y we denote the event that the execution of game G with adversary A and
security parameter λ results in output y, the game output being what is returned by Main. We abbreviate
GA(λ)⇒ true by GA(λ), the occurrence of this event meaning that A wins the game.

Public-key encryption. A public-key encryption (PKE) scheme PKE defines PT algorithms PKE.Kg,
PKE.Enc,PKE.Dec, the last deterministic, and an associated message space PKE.Msg ⊆ {0, 1}∗. Algorithm
PKE.Kg takes as input a unary representation 1λ of a security parameter λ, and outputs a public key pk

and a secret key sk. Algorithm PKE.Enc takes as input pk and a message m ∈ PKE.Msg, and outputs a
ciphertext c. Algorithm PKE.Dec(sk, c) outputsm ∈ PKE.Msg∪{⊥}. Scheme PKE is INDCPA-secure [16, 2]

if Advind-cpaPKE,A (λ) = 2[INDCPAA
PKE(λ)] − 1 is negligible for every PT adversary A, where game INDCPA is

defined in the left panel of Fig. 1.

Pseudorandom generators. A pseudorandom generator (PRG) [8, 21] is a PT deterministic algorithmG
that takes any string s ∈ {0, 1}∗ as input and return a string G(s) of length ℓ(|s|), where the function
ℓ : N → N is call the expansion factor of G. We say that G is secure if AdvprgA,G(λ) = 2Pr[PRGG

A(λ)] − 1 is
negligible, for every PT adversary A, where game PRG is defined in the middle panel of Fig. 1.

Indistinguishability obfuscation. We say that two circuits C0 and C1 are functionally equivalent,
denoted C0 ≡ C1, if they have the same size, the same number n of inputs, and C0(x) = C1(x) for
every input x ∈ {0, 1}n. An obfuscator F defines PT algorithms F.Ob,F.Ev. Algorithm F.Ob takes as
input the unary representation 1λ of a security parameter λ and a circuit C, and outputs a string c.
Algorithm F.Ev takes as input strings c, x and returns y ∈ {0, 1}∗ ∪ {⊥}. We require that for any circuit
C, any input x, and any λ ∈ N, it holds that F.Ev(F.Ob(1λ, C), x) = C(x). We say that F is iO-secure if
AdvioF,A(λ) = 2Pr[IOA

F (λ)]− 1 is negligible for every PT adversary A, where game IO is defined at the right
panel of Fig. 1. This definition is slightly different from the notion in [1, 11]—the adversary is non-uniform
and must produce functionally equivalent circuits C0 and C1—but the former definition is implied by the
latter.

Levin reductions. Let R1,R2 be NP-relations. A Levin reduction from R1 to R2 is a triple of PT-
computable functions (g, µ, ν) such that (i) g(x) ∈ L(R2) if and only if x ∈ L(R1), (ii) If x ∈ L(R1) and
w ∈ R1(x) then µ(x,w) ∈ R2(g(x)), and (iii) If x ∈ L(R1) and z ∈ R2(g(x)) then ν(g(x), z) ∈ R1(x).

6

Main ASAWE,L(λ)

(x,m0,m1, St)←$ A(1λ) ; b←$ {0, 1} ; c←$ WE(1λ, x,mb) ; b
′←$ A(St, c)

Return ((b = b′) ∧ (x 6∈ L))

Figure 2: Game AS defining adaptive soundness of witness encryption scheme WE.

3 Adaptive Witness Encryption

We begin by recalling the notion of witness encryption of GGSW [12, 13] and its soundness security
requirement. We then present our adaptive definition and show that it is a strictly stronger requirement.

NP relations. For R: {0, 1}∗ × {0, 1}∗ → {true, false}, we let R(x) = { w : R(x,w) } be the witness set
of x ∈ {0, 1}∗. We say R is an NP-relation if it is PT and there is a polynomial R.wl: N → N, called the
witness length of R, such that R(x) ⊆ {0, 1}R.wl(|x|) for all x ∈ {0, 1}∗. We let L(R) = {x : R(x) 6= ∅} ∈ NP

be the language defined by R.

WE syntax and correctness. A witness encryption (WE) scheme WE for L = L(R) defines a pair of
PT algorithms WE.Enc,WE.Dec and an associated message space WE.Msg ⊆ {0, 1}∗. Algorithm WE.Enc
takes as input the unary representation 1λ of a security parameter λ ∈ N, a string x ∈ {0, 1}∗, and a
message m ∈ WE.Msg, and outputs a ciphertext c. Algorithm WE.Dec takes as input a ciphertext c and
a string w, and outputs m ∈ WE.Msg ∪ {⊥}. Correctness requires that WE.Dec(WE.Enc(1λ, x,m), w) = m
for all λ ∈ N, all x ∈ L, all w ∈ R(x) and all m ∈WE.Msg.2

Soundness security. The soundness security (SS) condition of GGSW [12, 13] says that for any PT
adversary A, any x ∈ {0, 1}∗ \ L and any equal-length m0,m1 ∈ WE.Msg, there is a negligible function ν
such that for all λ ∈ N we have

Pr[A(WE.Enc(1λ, x,m1)) = 1]− Pr[A(WE.Enc(1λ, x,m0)) = 1] < ν(λ) . (1)

In the following, it is useful to let AdvssWE,L,x,m0,m1,A(λ) denote the probability difference in Equation (1).
Then the soundness condition can be succinctly and equivalently stated as follows: WE is SS[L]-secure
if for any PT adversary A, any x ∈ {0, 1}∗ \ L and any equal-length m0,m1 ∈ WE.Msg, the function
AdvssWE,L,x,m0,m1,A(·) is negligible. It is convenient, in order to succinctly and precisely express relations
between notions, to let SS[L] denote the set of all correct witness encryption schemes that are SS[L]-secure.

Adaptive soundness. Our definition associates to witness encryption scheme WE, language L ∈ NP,
adversary A and λ ∈ N the game ASAWE,L(λ) of Fig. 2. Here the adversary, on input 1λ, produces instance
x, messages m0,m1, and state information St. It is required that |m0| = |m1|. The game picks a random
challenge bit b and computes a ciphertext c via WE.Enc(1λ, x,mb). The adversary is now given c, along
with its state information St, and outputs a prediction b′ for b. The game returns true if the prediction is
correct, meaning b = b′, and also if x 6∈ L. We let AdvasWE,L,A(λ) = 2Pr[ASAWE,L(λ)] − 1. We say that WE

has adaptive soundness security for L, or is AS[L]-secure, if for every PT A the function AdvasWE,L,A(·) is
negligible. We let AS[L] denote the set of all correct witness encryption schemes that are AS[L]-secure.

Due to the check that x 6∈ L, our game does not necessarily run in PT. This, however, will not preclude
applicability. The difference between AS and SS is that in the former, x,m0,m1 can depend on the security
parameter and on each other. Given that SS quantifies over all x,m0,m1, this may not at first appear to
make any difference. But we will see that it does and that AS is strictly stronger than SS.

A useful transform. In several proofs, we’ll employ the following transform. Given a WE scheme
WE ∈ SS[L] and a PT function f : N→ N, our transform returns another WE schemeWEf . The constructed
scheme, formally specified in Fig. 3, misbehaves, returning the message in the clear, when |x| ≥ f(λ), and

2 This is perfect correctness. GGSW [12] give a weaker correctness condition in which decryption can sometimes fail. We
revisit correctness in Appendix A and show that if one relaxes perfect correctness, one has to be careful, for seemingly minor
details of how it is done are crucial for the correctness of applications. For simplicity, we restrict attention to perfect correctness
for now.

7

WEf .Enc(1
λ, x,m)

If |x| ≥ f(λ) then return (0,m)

Else return (1,WE.Enc(1λ, x,m))

WEf .Dec(c, w)

(b, t)← c

If b = 0 then return t else return WE.Dec(t, w)

Figure 3: Witness encryption scheme WEf for L ∈ NP, derived from WE ∈ SS[L] and a PT-computable
function f : N→ N. We let WEf .Msg = WE.Msg.

otherwise behaves like WE. The following says that if f is chosen to satisfy certain conditions then SS[L]-
security is preserved, meaning WEf ∈ SS[L]. In our uses of the transform we will exploit the fact that WEf

will fail to have other security properties or lead to failure of applications that use it.

Lemma 3.1 Let L ∈ NP and WE ∈ SS[L]. Let f : N → N be a non-decreasing, PT-computable function
such that limλ→∞ f(λ) = ∞. Consider witness encryption scheme WEf derived from WE and f as shown
in Fig. 3. Then WEf ∈ SS[L].

Proof: Let A be a PT adversary. Let x ∈ {0, 1}∗ \L and let m0,m1 ∈WE.Msg have equal length. Let PT
adversary B, on input ciphertext c, return b′ ← A((1, c)). Let S(x) = { λ ∈ N : f(λ) ≤ |x| }. Then for
all λ ∈ N \ S(x) we have AdvssWE,L,x,m0,m1,B(λ) = AdvssWEf ,L,x,m0,m1,A(λ). The assumption that WE ∈ SS[L]

means that AdvssWE,L,x,m0,m1,B(·) is negligible. But the assumptions on f mean that the set S(x) is finite.
Consequently, the function AdvssWEf ,L,x,m0,m1,A(·) is negligible as well.

Relations. We show that adaptive soundness implies soundness but not vice versa, meaning adaptive
soundness is a strictly stronger requirement.

Proposition 3.2 Let L ∈ NP. Then: (1) AS[L] ⊆ SS[L], and (2) If {0, 1}∗ \ L is infinite and SS[L] 6= ∅
then SS[L] 6⊆ AS[L].

Claim (1) above says that any witness encryption scheme WE that is AS[L]-secure is also SS[L]-secure.
Claim (2) says that the converse is not true. Namely, there is a witness encryption scheme WE such that
WE is SS[L]-secure but not AS[L]-secure. This separation assumes some SS[L]-secure witness encryption
scheme exists, for otherwise the claim is moot. It also assumes that the complement of L is not trivial,
meaning is infinite, which is true if L is NP-complete and P 6= NP, hence is not a strong assumption.

Proof of Proposition 3.2: For part (1), assume we are given WE that is AS[L]-secure. We want to
show that WE is SS[L]-secure. Referring to the definition of soundness security, let A be a PT adversary,
let x ∈ {0, 1}∗ \ L and let m0,m1 ∈ WE.Msg have equal length. We want to show that the function
AdvssWE,R,x,m0,m1,A(·) is negligible. We define the adversary Bx,m0,m1

as follows: Let Bx,m0,m1
(1λ) return

(x,m0,m1, ε) and let Bx,m0,m1
(t, c) return b′←$ A(c). Here, Bx,m0,m1

has x,m0,m1 hardwired in its code,
and, in its first stage, it returns them, along with St = ε as state information. In its second stage, it simply
runs A. Note that even though Bx,m0,m1

has hardwired information, this information is finite and not
dependent on the security parameter, so the hardwiring does not require non-uniformity. Now it is easy
to see that for all λ ∈ N we have AdvasWE,L,Bx,m0,m1

(λ) = AdvssWE,L,x,m0,m1,A(λ). The assumption that WE is

AS[L]-secure means that AdvasWE,L,Bx,m0,m1
(·) is negligible, hence so is AdvssWE,L,x,m0,m1,A(·), as desired.

For part (2), the assumption SS[L] 6= ∅ means there is some WE ∈ SS[L]. By way of Lemma 3.1, we can
modify it to WEf ∈ SS[L] as specified in Fig. 3, where f : N → N is some non-decreasing, PT-computable
function such that limλ→∞ f(λ) = ∞. Now we want to present an attacker A violating AS[L]-security
of WEf . The difficulty is that A needs to find x 6∈ L of length f(λ), but L ∈ NP and A must be PT. We
will exploit the fact thatNP ⊆ EXP and pick f to be a poly-logarithmic function related to the exponential
time to decide L, so that if there exists an x 6∈ L of length f(λ) then A can find it by exhaustive search in
PT. Our assumption that the complement of L is infinite means that A succeeds on infinitely many values
of λ.

8

Proceeding to the details, since L ∈ NP ⊆ EXP, there is a constant d ≥ 1 and a deterministic algorithm M
such that for every x ∈ {0, 1}∗, we have M(x) = 1 if and only if x ∈ L, and M ’s running time is O(2|x|

d
).

Define f by f(λ) = ⌊lg1/d(λ)⌋ for all λ ∈ N. Let WE ∈ SS[L] and let WEf be the witness encryption
scheme derived from WE and f as specified in Fig. 3. By Lemma 3.1, WEf ∈ SS[L]. Now we show that
WEf 6∈ AS[L]. Let m0,m1 ∈ WE.Msg be arbitrary, distinct, equal-length messages. Consider the following
adversary A:

A(1λ)

k ← f(λ) ; x← 0k

For all s ∈ {0, 1}k do
If (M(s) 6= 1) then x← s

Return (x,m0,m1, ε)

A(t, c)

(b,m)← c
If ((b = 0) ∧ (m = m1)) then return 1
Return 0

Each execution of M takes time O(2k
d
) = O(λ). The For loop goes through all s ∈ {0, 1}k in lexicographic

order and thus M is executed at most 2k ≤ λ times. So A is PT. For any λ ∈ N such that {0, 1}λ \ L 6= ∅
we will have AdvasWEf ,L,A

(λ) = 1. Since {0, 1}∗ \ L is infinite, there are infinitely many values λ such that

AdvasWEf ,L,A
(λ) = 1, and thus WEf 6∈ AS[L], as claimed.

Achieving AS-security. Our preferred construction uses indistinguishability obfuscation (iO) [1, 11].
GGHRSW [11] present an iO-based SS[L]-secure WE scheme for any L ∈ NP. We show that their scheme
achieves our stronger AS[L]-security notion under the same assumption. Proceeding to the details, let
R be an NP-relation. For each x,m ∈ {0, 1}∗, let Rx,m be a circuit that, on input w ∈ {0, 1}R.wl(|x|),
returns m if R(x,w) and returns 0|m| otherwise. Let F be an indistinguishability obfuscator, defining a
PT obfuscation algorithm F.Ob and a PT evaluation algorithm F.Ev. We define WE scheme WER[F] as
follows: WER[F].Enc(1

λ, x,m) returns c←$ F.Ob(1λ, Rx,m); WER[F].Dec(c, w) returns m←$ F.Ev(c, w); and
WER[F].Msg = {0, 1}.

Theorem 3.3 Let R be an NP-relation and let L = L(R). Let F be an indistinguishability obfuscator.
Construct WER[F] as above. If F is iO-secure then WER[F] ∈ AS[L].

Proof: Let A be a PT adversary attacking the AS[L]-security of WER[F]. Note that if x 6∈ L then
Rx,m ≡ Rx,0 for any m ∈ {0, 1}, meaning these two circuits are functionally equivalent. Consider the
following PT adversary B attacking F:

B(1λ)

(x,m0,m1, St)←$ A(1λ) ; b←$ {0, 1}
t← (St, b) ; Return (Rx,0, Rx,mb

, t)

B(t, c)

(St, b)← t ; b′←$ A(St, c)
If (b = b′) then return 1 else return 0

Then

Pr[ASBWER[F],L
(·)⇒ true | a = 1] = Pr[IOA

F (·)] and Pr[ASBWER[F],L
(·)⇒ false | a = 0] =

1

2
,

where a is the challenge bit of game ASBWER[F]
. Subtracting, we get AdvasWER[F],L,B

(·) = 1
2Adv

io
F,A(·).

GGSW [12, 13] propose a WE scheme for L = LExactCover, one of Karp’s originalNP-complete problems [17],
based on multilinear maps [10]. Its SS[LExactCover]-security is simply assumed. (It is based on the assumed
hardness of a new problem they call Decision Multi-linear No-exact-cover, but this problem is effectively
just stating that the WE scheme is SS[LExactCover]-secure.) We can correspondingly assume their scheme
is AS[LExactCover]-secure, stating a corresponding extension of their assumption.

Below, we’ll show that if we are given WE1 ∈ AS[L1] for some NP-complete language L1, then we can
transform WE1 to WE2 ∈ AS[L2], for any L2 ∈ NP. This was implicit in GGSW for SS. Therefore, it
suffices to pick an NP-complete language L1 (as above) and construct a witness encryption for L1.

The iO-based construction has perfect correctness. The GGSW construction has perfect correctness
under the “dream” version of multi-linear maps, but it is not clear it does if one instantiates the multilinear

9

WE2.Enc(1
λ, x,m)

x′ ← g(x) ; c′←$ WE1.Enc(1
λ, x′,m)

Return (x, c′)

WE2.Dec(c, w)

(x, c′)← c ; w′ ← µ(x,w)

m←$ WE1.Dec(c
′, w′) ; Return m

Figure 4: Witness encryption scheme WE2 = Transg,µ(WE1) for L(R2), with WE2.Msg = WE1.Msg, where
R1,R2 are NP-relations, WE1 is a witness encryption scheme for L(R1), and (g, µ, ν) is a Levin reduction
from R2 to R1.

map with GGH’s candidate [10]. See Appendix A for discussion of why relaxing perfect correctness is subtle
and needs to be done carefully.

WE for any NP language from WE for an NPC language. Let R1,R2 be NP-relations such
that there is a Levin reduction (see Section 2) (g, µ, ν) from L(R2) to L(R1). The transform Transg,µ in
Fig. 4 describes how to transform a witness encryption scheme for L(R1) to a witness encryption scheme
for L(R2). Claim (1) of Proposition 3.4 below is implicit in [12].

Proposition 3.4 Let R1,R2 be NP-relations such that there is a Levin reduction (g, µ, ν) from R2 to R1.
Let Transg,µ be the transform specified in Fig. 4 and WE1 be a witness encryption scheme for L(R1). Let
WE2 = Transg,µ(WE1). (1) If WE1 ∈ SS[L(R1)] then WE2 ∈ SS[L(R2)], and (2) If WE1 ∈ AS[L(R1)] then
WE2 ∈ AS[L(R2)].

Proof: For part (1), let A be a PT adversary. Consider arbitrary x ∈ {0, 1}∗\L(R2) and m0,m1 ∈
WE.Msg such that |m0| = |m1|. Note that g(x) ∈ {0, 1}∗\L(R1). Then AdvssWE2,L(R2),x,m0,m1,A

(λ) =
AdvssWE1,L(R1),g(x),m0,m1,A

(λ) for every λ ∈ N, and thus WE2 ∈ SS[L(R2)].

For part (2), let A be a PT adversary attacking WE2. Consider the following adversary B attacking WE1.

B(1λ)

(x,m0,m1, St)←$ A(1λ) ; x′ ← g(x)
Return (x′,m0,m1, St)

B(St, c)

(x, c′)← c ; b′←$ A(St, c′)
Return b′

Then AdvasWE1,L(R1),B
(λ) = AdvasWE2,L(R2),A

(λ) for every λ ∈ N, and thus WE2 ∈ AS[L(R2)].

4 Insufficiency of Soundness Security

GGSW [12, 13] present constructions of several primitives from witness encryption, including PKE, IBE
and ABE for all circuits. They claim security of these constructions assuming soundness security of the
underlying witness-encryption scheme. We observe here that these claims are wrong. Taking their PRG-
based PKE scheme as a representative example, we present a counter-example, namely a witness-encryption
scheme satisfying soundness security such that the PKE scheme built from it is insecure. Similar counter-
examples can be built for the other applications in GGSW [12, 13]. Briefly, the problem is that a witness
encryption scheme could fail to provide any security when |x| is equal to, or related in some specific way to,
the security parameter, yet satisfy SS security because the latter requirement holds x fixed and lets λ go
to ∞. We show that the gap can be filled, and all the applications of GGSW recovered, by using adaptive
soundness in place of soundness security.

SS does not suffice for GGSW’s PKE scheme. Let G be a PRG that is length doubling, meaning
|G(s)| = 2|s| for every s ∈ {0, 1}∗. Let LG = { G(s) : s ∈ {0, 1}∗ }. This language is in NP. Let
WE ∈ SS[LG] be a SS[LG]-secure WE scheme. The PKE scheme PKE[G,WE] of GGSW is shown in Fig. 5.
We claim that SS[LG]-security ofWE is insufficient for PKE to be INDCPA-secure. We show this by counter-
example, meaning we give an example of a particular WE scheme WE ∈ SS[LG] such that PKE[G,WE] is
not INDCPA. We assume there exists some WE ∈ SS[LG], else the question is moot. Let f(λ) = 2λ for

10

PKE.Kg(1λ)

sk←$ {0, 1}λ ; x← G(sk)

pk ← (λ, x) ; Return (pk, sk)

PKE.Enc(pk,m)

(λ, x)← pk

Return WE.Enc(1λ, x,m)

PKE.Dec(sk, c)

Return WE.Dec(c, sk)

Figure 5: GGSW’s PKE scheme PKE[G,WE], where G is a length-doubling PRG and WE is a witness
encryption scheme for LG = {G(s) : s ∈ {0, 1}∗ }.

every λ ∈ N. Now let WE = WEf be the WE scheme of Fig. 3 obtained from WE and f . Lemma 3.1
tells us that WEf ∈ SS[LG]. Now we claim that PKE[G,WEf] is not INDCPA. The reason is that when
PKE.Enc(pk,m) runs WEf .Enc(1

λ, x,m), we have |x| = 2λ = f(λ). By definition of WEf .Enc, the latter
returns (0,m) as the ciphertext, effectively sending the message in the clear.

AS security suffices for GGSW’s PKE. We now show that the gap can be filled using AS. That is,
we prove that if G is a secure PRG and WE is AS[LG]-secure, then PKE[G,WE] is INDCPA-secure:

Theorem 4.1 Let G : {0, 1}∗ → {0, 1}∗ be a length-doubling PRG. Let LG = {G(s) : s ∈ {0, 1}∗ }. If G
is a secure PRG and WE ∈ AS[LG] then PKE[G,WE] is INDCPA-secure.

The proof follows the template of the proof of GGSW [12, 13]. First one uses the PRG security of G to
move to a game where x is random. Since G is length doubling, such an x is not in LG with high probability.
At this point GGSW [12, 13] (incorrectly) claim that the result follows from the SS[LG]-security of WE.
We instead use the AS[LG]-security of WE, providing a reduction with an explicit construction of an AS
adversary.

Proof: Let A be a PT attacking PKE[G,WE]. Consider the following adversaries B and D:

B(1λ, x)

pk ← (λ, x) ; b←$ {0, 1}
(m0,m1, St)←$ A(1λ, pk)
c←$ WE.Enc(1λ, x,mb) ; b

′←$ A(1λ, St, c)
If b = b′ then return 1 else return 0

D(1λ)

x←$ {0, 1}2λ ; pk ← (λ, x)
(m0,m1, St)←$ A(1λ, pk) ; t← (λ, St)
Return (x,m0,m1, t)

D(t, c)

(λ, St)← t ; b′←$ A(1λ, St, c) ; Return b′

Consider games H1–H3 below, in which game H3 includes the boxed statement but game H2 does not.

Main HA
1 (λ)

s←$ {0, 1}λ ; x← G(s) ; b←$ {0, 1} ; passed← true

pk ← (λ, x) ; (m0,m1, St)←$ A(1λ, pk)
c←$ WE.Enc(1λ, x,mb) ; b

′←$ A(1λ, St, c)
Return (b = b′) ∧ passed

Main HA
2 (λ), H

A
3 (λ)

x←$ {0, 1}2λ ; b←$ {0, 1} ; passed← true

If x ∈ LG then bad← true ; passed← false

pk ← (λ, x) ; (m0,m1, St)←$ A(1λ, pk)
c←$ WE.Enc(1λ, x,mb) ; b

′←$ A(1λ, St, c)
Return (b = b′) ∧ passed

On the one hand,

Pr[PRGB
G(λ)⇒ true | a = 1] = Pr[HA

1 (λ)] and Pr[PRGB
G(λ)⇒ false | a = 0] = Pr[HA

2 (λ)]

for every λ ∈ N, where a is the challenge bit of game PRGB
G. On the other hand, games H2 and H3 are

identical-until-bad, and from the fundamental lemma of game-playing [6],

Pr[HA
2 (λ)]− Pr[HA

3 (λ)] ≤ Pr[HA
3 (λ) sets bad] ≤ 2−λ

for every λ ∈ N; the last inequality is due to the fact that LG ∩ {0, 1}
2λ = {G(s) : s ∈ {0, 1}λ } contains

at most 2λ elements. Moreover,

Pr[INDCPAA
PKE[G,WE](λ)] = Pr[HA

1 (λ)] and Pr[ASDWE,LG
(λ)] = Pr[HA

3 (λ)]

11

for every λ ∈ N. Summing up, Advind-cpa
PKE[G,WE],A(λ) ≤ 2AdvprgG,B(λ) + AdvasWE,LG,D(λ) + 21−λ for every λ ∈ N,

and thus PKE[G,WE] is INDCPA-secure.

Discussion. Actually, GGSW don’t use a generic scheme WE ∈ SS[LG] for their PKE scheme. They start
with a scheme WE ∈ SS[L] for an NP-complete language L, transform it to WE ∈ SS[LG] via a Levin
reduction of LG to L, and then define their scheme as PKE[G,WE]. Their proof, however, does not attempt
to rely on anything more than the fact that WE ∈ SS[LG]. For clarity and simplicity we have accordingly
looked at the PKE scheme obtained directly from an arbitrary WE ∈ SS[LG]. However, one might ask
whether the specific way in which GGSW obtain WE could result in PKE[G,WE] being secure assuming
WE ∈ SS[L]. The answer is no. In Appendix B, we show how to extend our counter-example to the actual
scheme, meaning that we provide WE ∈ SS[LG], obtained from WE ∈ SS[L] for an NP-complete language
L via a Levin reduction of LG to L, such that PKE[G,WE] fails to be INDCPA-secure.

To obtain similar counter-examples showing the inadequacy of SS for the other applications of GGSW
(namely IBE and ABE for all circuits), one can follow the template of our PKE attack, by choosing a
lower bound f(λ) for the length of the string x = X(λ) given to the witness encryption. Since X(λ) is
generated from some cryptographic primitive π (for example, in IBE, π is a unique signature scheme), the
security of π requires that X(λ) have super-logarithmic length. Hence there is a constant C > 0 such that
|X(λ)| ≥ C lg(λ) for all λ ∈ N, and therefore we can let f(λ) = ⌊C lg(λ)⌋.

5 Asymmetric Password-based Encryption

We define asymmetric password-based encryption (A-PBE) and then present a non-intrusive solution based
on AS-secure WE.

A-PBE syntax. An asymmetric password-based encryption (A-PBE) scheme P specifies PT algorithms
P.Kd,P.Enc,P.Dec, the first and the last deterministic. It also specifies a message space P.Msg ⊆ {0, 1}∗,
a password-length function P.pl : N → N, a salt-length function P.sl : N → N, and a hash-length func-
tion P.hl : N → N. Algorithm P.Kd takes as input the unary representation 1λ of security parameter
λ, a salt sa ∈ {0, 1}P.sl(λ), and a password pw ∈ {0, 1}P.pl(λ), and returns a hashed password hpw =
P.Kd(1λ, sa, pw) ∈ {0, 1}P.hl(λ). Algorithm P.Enc takes as input 1λ, hpw , sa and a message m ∈ P.Msg,
and outputs a ciphertext c. Finally, given (c, pw), algorithm P.Dec returns m ∈ P.Msg ∪ {⊥}. We require
that P.Dec

(

P.Enc(1λ,P.Kd(1λ, sa, pw), sa,m), pw
)

= m for every m ∈ P.Msg, λ ∈ N, sa ∈ {0, 1}P.sl(λ), and

pw ∈ {0, 1}P.pl(λ).

A-PBE security. We view an adversary A as a pair of PT algorithms (A1, A2). Adversary A1(1
λ)

generates a vector of passwords pw, each entry a P.pl(λ)-bit string. Let GuessA(λ) denote the maximum,
over all i, pw of Pr[pw[i] = pw], the probability over pw←$ A1(λ). We say that A has high min-entropy if
GuessA(·) is a negligible function. Note that passwords may be correlated, even though each individually
is unpredictable, to capture the fact that individual users often pick related passwords for their different
accounts. We say that scheme P is secure if AdvapbeP,A (λ) = 2Pr[APBEA

P (λ)] − 1 is negligible for every PT

adversary A of high min-entropy, where game APBEA
P (λ) is defined in Fig. 6. In this game, A1(1

λ) generates
a vector of passwords pw, and the game picks a challenge bit b←$ {0, 1}, and a vector of random salts sa.
Adversary A2 is given sa and the vector hpw of hashed passwords. It then makes several oracle queries
of the form (m0,m1, i) to get P.Enc(pw[i], sa[i],mb), where m0,m1 are equal-length, distinct messages.
Finally it outputs a prediction b′ for b. The game returns true if the prediction is correct, meaning b = b′.

Invasive A-PBE. Let PKE be a PKE scheme and define A-PBE scheme P as follows. P.Kd(1λ, sa, pw)
applies a random oracle RO to 1λ‖sa‖pw to get a string r which it uses as coins to compute (pk, sk) ←
PKE.Kg(1λ; r). It then returns hpw = pk as the “hashed password.” P.Enc(1λ, pk, sa,m) returns (1λ,
sa,PKE.Enc(pk,m)). P.Dec((1λ, sa, y), pw) re-applies RO to 1λ‖sa‖pw to get r, re-computes (pk, sk) ←
PKE.Kg(1λ; r) and returns m ← PKE.Dec(y, sk). This A-PBE scheme can be shown to meet our notion
of security defined above in the ROM assuming PKE is IND-CPA secure. However, this trivial solution is
“invasive” because it prescribes a very particular and non-standard P.Kd. From a practical perspective,

12

Main APBEA
P (λ)

pw←$ A1(1
λ) ; b←$ {0, 1}

For i = 1 to |pw| do

sa[i]←$ {0, 1}P.sl(λ) ; hpw[i]← P.Kd(1λ, sa[i],pw[i])

b′←$ ALR
2 (1λ, sa,hpw) ; Return (b = b′)

LR(m0,m1, i)

c←$ P.Enc(1λ,hpw[i], sa[i],mb) ; Return c

Main KDFRA
H (λ)

pw←$ A1(1
λ) ; b←$ {0, 1}

For i = 1 to |pw| do

sa[i]←$ {0, 1}H.kl(λ) ; hpw[i]← H(1λ, sa[i],pw[i])

b′←$ A2(1
λ, sa,hpw) ; Return (b = b′)

Figure 6: Left: Game APBE defining security of an A-PBE scheme P. Right: Game KDFR defining
KDF-pseudorandomness for a hash family H.

P[H,WE].Kd(1λ, sa, pw)

hpw ← H(1λ, sa, pw)

Return hpw

P[H,WE].Enc(1λ, hpw , sa,m)

x← (1λ, sa, hpw) ; c←$ WE(1λ, x,m)

Return c

P[H,WE].Dec(c, pw)

m←WE.Dec(c, pw)

Return m

Figure 7: A-PBE scheme P[H,WE] associated to hash family H and witness encryption scheme WE for LH.

as we noted in Section 1, this is a non-solution, because in-use password hashes are not obtained in this
way and the invasive solution will not enable us to provide security with existing, legacy passwords. The
real (and technically more interesting) problem is non-invasive A-PBE, where we take P.Kd as given and
aim to achieve security by making reasonable assumptions about its security without prescribing its design,
assumptions that in particular are met by the P.Kd function of PKCS#5 or other standards.

Non-invasive A-PBE. We aim to design a non-invasive A-PKE scheme P such that P.Kd follows existing
standards like PKCS#5 [18]. So we demand that P.Kd be a keyed hash function family H. Here H(1λ, ·, ·) :
{0, 1}H.kl(λ) × {0, 1}H.il(λ) → {0, 1}H.ol(λ) for every λ ∈ N, where H.kl,H.il,H.ol : N → N are the key-length
function, input-length function, and output-length function of H respectively. Let

LH = { (1λ, sa,H(1λ, sa, pw)) : λ ∈ N, sa ∈ {0, 1}H.kl(λ), pw ∈ {0, 1}H.il(λ) } .

This language is in NP. Let WE be a witness encryption scheme for LH. We associate to H and WE

the A-PBE scheme P[H,WE] specified in Fig. 7. We let P[H,WE].Msg = WE.Msg,P[H,WE].pl = H.il,
P[H,WE].sl = H.kl and P[H,WE].hl = H.ol. The construction lets the salt play the role of the key for H, the
password being the input and the hashed password the output.

KDF pseudorandomness. We now formalize a hardness assumption on the family H. We say that H is
KDF-pseudorandom if AdvkdfrH,A(λ) = 2[KDFRA

H(λ)] − 1 is negligible for any PT adversary A = (A1, A2) of

high min-entropy, where game KDFRA
H is shown at the right panel of Fig. 6. Informally, this means that

the hashed passwords should be indistinguishable from random strings, even in the presence of the salts.
We note that this is exactly the property needed for classical S-PBE (symmetric PBE) to be secure, for it
uses the hashed password as the symmetric key. Thus, the assumption can be viewed as already made and
existing, even if implicitly, in current usage of passwords for S-PBE.

Results. The following says that if H is KDF-pseudorandom and WE is AS[LH]-secure then P[H,WE] is a
secure A-PBE scheme.

Theorem 5.1 Let H be a hash function family such that 2H.il(·)−H.ol(·) is a negligible function. If H is
KDF-pseudorandom and WE ∈ AS[LH] then P[H,WE] is a secure A-PBE scheme.

The key feature of this result is that it is non-invasive, meaning it puts conditions on the hash family
H that suffice for security rather than mandating any particular design of H. Practical and standardized
key-derivation functions may be assumed to satisfy concrete versions of these asymptotic conditions.

Proof of Theorem 5.1: Let A = (A1, A2) be a PT adversary of high min-entropy attacking P[H,WE]. Let
B = (B1, B2) be an adversary attacking H as follows. Since B1 is exactly A1, and A is of high min-entropy, B
also has high min-entropy.

13

B1(1
λ)

pw←$ A1(1
λ) ; Return pw

B2(1
λ, sa,hpw)

b←$ {0, 1} ; b′←$ ALRSim
2 (1λ, sa,hpw)

If (b = b′) then return 1 else return 0

LRSim(m0,m1, i)

x← (1λ, sa[i],hpw[i]) ; c←$ WE.Enc(1λ, x,mb)
Return c

Next, we’ll describe an adversary D attacking WE. Let ρ and q be polynomials that bound the number of
coins and the number of oracle queries used by A2. Adversary D(1λ) runs A1(1

λ) to generate pw. Instead of
hashing passwords, adversary D will generate a vector hpw of uniformly random strings. The assumption
that 2H.il(·)−H.ol(·) is negligible means it’s likely that (1λ, sa[i],hpw[i]) 6∈ LH for every i ≤ |hpw|. Recall
that A may make several oracle queries but D is allowed only a single query (x,m0,m1, St). To resolve this,
we use the following hybrid argument. Let D pick a random index s←$ {1, . . . , q(λ)}. For the j-th query
(m0,m1, i) of A, if j = s then A produces its own query (x,m0,m1, St), with x = (1λ, sa[i],hpw[i]), and
then later returns its given ciphertext to A. Otherwise, D returns WE.Enc(1λ, (1λ, sa[i],hpw[i]),m), with
m = m0 if j < s, and m = m1 if j > s. Finally, it outputs A’s guess b′. The code of D is specified below.

D(1λ)

pw←$ A1(1
λ) ; r←$ {0, 1}ρ(λ)

For i = 1 to |pw| do

sa[i]←$ {0, 1}H.kl(λ) ; hpw[i]←$ {0, 1}H.ol(λ)

j ← 1 ; s←$ {1, . . . , q(λ)} ; ALRSim
2 (1λ, sa,hpw; r)

St← (1λ, c, s, r, sa,hpw)
(x,m0,m1)← p ; Return (x,m0,m1, St)

D(St, c)

(1λ, c, s, r, sa,hpw)← St
c[s]← c ; b′ ← ALRSim

2 (1λ, sa,hpw; r) ; Return b′

LRSim(m0,m1, i)

x← (1λ, sa[i],hpw[i])
If j = s then
p← (x,m0,m1) ; j ← j + 1 ; Return c[s]

If j < s then m← m0 else m← m1

c←$ WE.Enc(1λ, x,m)
If j < s then
If St = ⊥ then c[j]← c else c← c[j]

j ← j + 1 ; Return c

Consider games H1 and H2 below, in which game H2 includes the boxed statement but game H1 does not.

Main HA
1 (λ), H

A
2 (λ)

pw←$ A1(1
λ) ; b←$ {0, 1}

For i = 1 to |pw| do

sa[i]←$ {0, 1}H.kl(λ)

hpw[i]← H(1λ, sa[i],pw[i]) ; hpw[i]←$ {0, 1}H.ol(λ)

b′←$ ALR
2 (1λ, sa,hpw)

Return (b = b′)

LR(m0,m1, i)

x← (1λ, sa[i],hpw[i])
Return WE.Enc(1λ, x,mb)

On the one hand,

Pr[KDFRB
H (λ)⇒ true | a = 1] = Pr[HA

1 (λ)] = Pr[APBEA
P[H,WE](λ)], and

Pr[KDFRB
H (λ)⇒ false | a = 0] = Pr[HA

2 (λ)]

for every λ ∈ N, where a is the challenge bit of game KDFRB
H . On the other hand, we claim that

2Pr[ASDWE,LH
(λ)]− 1 ≥

1

q(λ)
(Pr[HA

2 (λ)⇒ true | d = 1]− Pr[HA
2 (λ)⇒ false | d = 0])− 2H.il(λ)−H.ol(λ)+1,

for every λ ∈ N, where d is the challenge bit b that game HA
2 samples. Summing up, Advapbe

P[H,WE],A(λ) ≤

2AdvkdfrH,B(λ) + q(λ) · AdvasWE,LH,D
(λ) + q(λ) · 2H.il(λ)−H.ol(λ)+1, for every λ ∈ N, and thus P[H,WE] is a secure

A-PBE scheme. To justify the claim above, consider the following games Gs, Ps, for s ∈ {1, . . . , q(λ)}, in
which each game Ps contains the corresponding boxed statement, but game Gs does not.

14

Main GA
s (λ), P

A
s (λ)

pw←$ A1(1
λ) ; b←$ {0, 1} ; passed← true

For i = 1 to |pw| do

sa[i]←$ {0, 1}H.kl(λ) ; hpw[i]←$ {0, 1}H.ol(λ)

j ← 1 ; b′←$ ALR
2 (1λ, sa,hpw)

Return (b = b′) ∧ passed

LR(m0,m1, i)

x← (1λ, sa[i],hpw[i]) ; m← mb

If j = s then
If x ∈ LH then bad← true ; passed← false

If j < s then m← m0 elsif j > s then m← m1

j ← j + 1 ; Return WE.Enc(1λ, x,m)

For each s ∈ {1, . . . , q(λ)}, games GA
s and PA

s are identical-until-bad, and from the fundamental lemma of
game-playing [6],

Pr[GA
s (λ)]− Pr[PA

s (λ)] ≤ Pr[GA
s (λ) sets bad] ≤ 2H.il(λ)−H.ol(λ)

for every λ ∈ N; the last inequality is due the fact that, for each fixed λ ∈ N and sa ∈ {0, 1}H.kl(λ), the
set { (1λ, sa,H(1λ, sa, pw)) : pw ∈ {0, 1}H.il(λ) } contains at most 2H.il(λ) elements. Let bs be the challenge
bit b that game GA

s samples. Then Pr[GA
s (λ) ⇒ true | bs = 1] = Pr[GA

s−1(λ) ⇒ false | bs−1 = 0] for every
s ∈ {2, 3, . . . , q(λ)} and every λ ∈ N, and thus

q(λ)
∑

s=1

(

2Pr[GA
s (λ)]− 1

)

=

q(λ)
∑

s=1

(

Pr[GA
s (λ)⇒ true | bs = 1]− Pr[GA

s (λ)⇒ false | bs = 0]
)

= Pr[GA
1 (λ)⇒ true | b1 = 1]− Pr[GA

q(λ)(λ)⇒ false | bq(λ) = 0]

= Pr[HA
2 (λ)⇒ true | d = 1]− Pr[HA

2 (λ)⇒ false | d = 0] (2)

for every λ ∈ N. Moreover,

− 1 + 2 · Pr[ASDWE,LH
(λ)] = −1 +

2

q(λ)

q(λ)
∑

s=1

Pr[PA
s (λ)]

≥ −1 +
2

q(λ)

q(λ)
∑

s=1

(

Pr[GA
s (λ)]− 2H.il(λ)−H.ol(λ)

)

= −2H.il(λ)−H.ol(λ)+1 +
1

q(λ)

q(λ)
∑

s=1

(

2Pr[GA
s (λ)]− 1

)

(3)

for every λ ∈ N. From Equations (2) and (3), the claim follows.

Discussion. In the result above, we require that 2H.il(·)−H.ol(·) be a negligible function, that is, the output
length of the hash must be somewhat longer than the input length. This captures situations in which
passwords are, say 12-character ASCII strings (input length is 78-bit) and H is iterated SHA-1 (output
length is 160-bit). However, when passwords are longer, say 24-character, then Theorem 5.1 doesn’t apply.
This is unsatisfying, because password length is a measure of password strength, so intuitively, longer
passwords should offer better security. In Section 6, we formalize a stronger security requirement for
witness encryption that allows us to remove the assumption on the input/output length of H.

6 A-PBE from Extractable Witness Encryption

The security requirements for SS and AS are for x 6∈ L, no security requirement being made if x ∈ L.
Extractable witness encryption [15, 14] is a requirement for all x ∈ {0, 1}∗, asking that if the adversary
violates privacy of encryption under x then one can extract a witness for the membership of x ∈ L.
Intuitively, the only way to violate privacy is to know a witness. We provide a formalization of extraction
security that we call XS. It strengthens the formalization of GKPVZ [15, 14] in being adaptive in the vein
of AS, but weakens it by not involving auxiliary inputs. The formalizations also differ in other details.

15

Main XSA,E
WE,R(λ)

(x,m0,m1, St)←$ A(1λ) ; b←$ {0, 1}

c←$ WE.Enc(1λ, x,mb) ; b
′←$ A(St, c)

w←$ E(1λ, x,m0,m1, St, c)

Return ((b = b′) ∧ ¬R(x,w))

Main KDFOA
H (λ)

pw←$ A1(1
λ)

For i = 1 to |pw| do

sa[i]←$ {0, 1}H.kl(λ) ; hpw[i]← H(1λ, sa[i],pw[i])

(w, i)←$ A2(1
λ, sa,hpw)

Return (hpw[i] = H(1λ, sa[i], w))

Figure 8: Left: Game XS defining extractable security of witness encryption scheme WE. Right: Game
KDFO defining KDF one-wayness of H.

XS-secure witness encryption. Let R be an NP-relation and let L = L(R). Let WE be a witness
encryption scheme for L. We say that WE is XS[L]-secure if for any PT adversary A there is a corresponding
PT algorithm E such that AdvxsWE,R,A,E(λ) = 2Pr[XSA,E

WE,R(λ)]−1 is negligible, where game XSA,E
WE,R is defined

at the left panel of Fig. 8. Let XS[L] denote the set of correct, XS[L]-secure witness encryption schemes
for L.

Relation with AS security. Intuitively, XS[L] security implies AS[L] security for any L ∈ NP, because
in the former notion, if the adversary produces x 6∈ L then no witness exists, so no extractor E (even a
computationally unbounded one) can find one. Proposition 6.1 below formally confirms this.

Proposition 6.1 For any NP-relation R, it holds that XS[L(R)] ⊆ AS[L(R)].

Proof: Assume we are given WE ∈ XS[L(R)]. We want to show that WE is AS[L(R)]-secure. Let A be a PT
adversary. Then, there is a PT extractor E such that AdvxsWE,R,A,E(·) is negligible. Consider the following
games H1 and H2; the latter includes the boxed statement but the former does not.

Main HA,E
1 (λ), HA,E

2 (λ)

(x,m0,m1, St)←$ A(1λ) ; b←$ {0, 1}
c←$ WE.Enc(1λ, x,mb) ; b

′←$ A(St, c)
w←$ E(1λ, x,m0,m1, St, c)

If (x ∈ L(R)) ∧ ¬R(x,w) then return false

Return (b = b′) ∧ ¬R(x,w)

On the one hand, Pr[HA,E
1 (·)] = Pr[XSA,E

WE,R(·)] and Pr[HA,E
2 (·)] = Pr[ASAWE,L(R)(·)]. On the other hand,

Pr[HA,E
1 (·)] ≥ Pr[HA,E

2 (·)]. Hence AdvasWE,L(R),A(·) ≤ AdvxsWE,R,A,E(·), and thus WE ∈ AS[L(R)].

Achieving XS security. Boyle, Chung, and Pass [9] introduce the notion of extractability obfuscation
(xO), and show that it implies extractable witness encryption meeting GKPVZ’s definition [15]. We now
give an alternative definition of xO and show that it implies XS[L(R)]-secure witness encryption, for anyNP

relation R. Let F be an obfuscator, defining a PT obfuscation algorithm F.Ob and a PT evaluation algorithm
F.Ev. We say that F is xO-secure if for every PT adversary A, there is a PT algorithm (extractor) E such
that AdvxoF,A,E(λ) = 2Pr[XOA,E

F (λ)]− 1 is negligible, where game XO is defined at as follows:

Main XOA,E
F (λ)

(C0, C1, St)←$ A(1λ) ; b←$ {0, 1} ; c←$ F.Ob(1λ, Cb)
b′←$ A(St, c) ; w←$ E(1λ, C0, C1, St, c)
Return (b = b′) ∧ (C0(w) = C1(w))

In the game above, circuits C0, C1 must have the same size. Recall that in Section 3, we have the construction
WER[F] of witness encryption for language L(R) ∈ NP from obfuscator F. The following says that if F is
assumed to be xO-secure then WER[F] is XS[L(R)]-secure.

16

Theorem 6.2 Let R be an NP relation, and let F be an obfuscator. Construct WER[F] as in Section 3. If
F is xO-secure then WER[F] ∈ XS[L(R)].

Proof: For each x,m ∈ {0, 1}∗, let Rx,m be a circuit that outputs on input w ∈ {0, 1}R.wl(|x|), returns m if
R(x,w) and returns 0|m| otherwise. Let A be a PT adversary attacking WER[F]. Since A needs to produce
distinct messages m0,m1, and WER[F].Msg = {0, 1}, wlog, assume that m0 = 0 and m1 = 1. Consider the
following adversary B attacking F.

B(1λ)

(x,m0,m1, St)←$ A(1λ) ; Return (Rx,0, Rx,1, St)

B(St, c)

b′←$ A(St, c) ; Return b′

Since B is PT and F is xO-secure, there is a PT extractor E such that AdvxoF,B,E(·) is negligible. Consider

the following extractor E for A:

E(1λ, x,m0,m1, St, c)

w←$ E(1λ, Rx,0, Rx,1, St, c) ; Return w

This extractor E is PT. Note that for any x ∈ {0, 1}∗, we haveRx,0(w) 6= Rx,1(w) if and only if R(x,w). Then

Pr[XSA,E
WER[F],R

(·)] = Pr[XOB,E
F (·)], and thus Advxs

WER[F],R,A,E
(·) = AdvxoF,B,E(·). Hence WER[F] is XS[L(R)]-

secure.

KDF one-wayness. We now formalize another hardness assumption, KDF one-wayness, on hash function
family H. Informally we demand that if the adversary is given the hashed passwords and the salts, it
can’t compute a preimage of any hashed password. This is exactly the intuitive requirement for key-
derivation functions: if passwords are well-chosen to resist dictionary attacks, then no adversary should
be able to recover some password from the derived keys. Formally, we say that H is KDF one-way if
AdvkdfoH,A(λ) = Pr[KDFOA

H(λ] is negligible for all PT adversary A = (A1, A2) of high min-entropy, where

game KDFOA
H is shown at the right panel of Fig. 8 and high min-entropy of A was defined in Section 5.

Results. The following establishes the security of P[H,WE], making no assumption on the input/output
length of H.

Theorem 6.3 If H is KDF one-way and WE ∈ XS[LH] then P[H,WE] is a secure A-PBE scheme.

Proof: Let A = (A1, A2) be a PT adversary of high min-entropy attacking P[H,WE]. Let ρ and q be
polynomials that bound the number of coins and the number of oracle queries used by A2. We’ll con-
struct an adversary D attacking WE. Adversary D(1λ) runs A1(1

λ) to generate pw, and hashes these
passwords to produce hpw. Recall that A may make several oracle queries but D is allowed only a sin-
gle query (x,m0,m1, St). To resolve this, we use the following hybrid argument. Let D pick a random
index s←$ {1, . . . , q(λ)}. For the j-th query (m0,m1, i) of A, if j = s then A produces its own query
(x,m0,m1, St), with x = (1λ, sa[i],hpw[i]), and then later returns its given ciphertext to A. Otherwise, D
returns WE.Enc(1λ, (1λ, sa[i],hpw[i]),m), with m = m0 if j < s, and m = m1 if j > s. Finally, it outputs
A’s guess b′. The code of D is shown below.

17

D(1λ)

pw←$ A1(1
λ) ; r←$ {0, 1}ρ(λ)

For i = 1 to |pw| do

sa[i]←$ {0, 1}H.kl(λ) ; hpw[i]← H(1λ, sa[i],pw[i])
j ← 1 ; s←$ {1, . . . , q(λ)} ; ALRSim

2 (1λ, sa,hpw; r)
St← (1λ, c, s, r, sa,hpw)
(x,m0,m1)← p ; Return (x,m0,m1, St)

D(St, c)

(1λ, c, s, r, sa,hpw)← St
c[s]← c ; b′ ← ALRSim

2 (1λ, sa,hpw; r) ; Return b′

LRSim(m0,m1, i)

x← (1λ, sa[i],hpw[i])
If j = s then
p← (x,m0,m1) ; j ← j + 1 ; Return c[s]

If j < s then m← m0 else m← m1

c←$ WE.Enc(1λ, x,m)
If j < s then
If St = ⊥ then c[j]← c else c← c[j]

j ← j + 1 ; Return c

Let RH be the NP-relation of LH, that is, RH

(

(1λ, sa, hpw), pw
)

returns (H(1λ, sa, pw) = hpw). Since D
is PT and WE is XS[RH]-secure, there exists a PT extractor E such that AdvxsWE,RH,D,E(·) is negligible.
Construct B = (B1, B2) attacking H as follows. Since B1 is exactly A1, and A is of high min-entropy, B
also has high min-entropy.

B1(1
λ)

pw←$ A1(1
λ) ; Return pw

B2(1
λ, sa,hpw)

b←$ {0, 1} ; j ← 1 ; r←$ {0, 1}ρ(λ)

s←$ {1, . . . , q(λ)} ; ALRSim
2 (1λ, sa,hpw; r)

(w, i)← p ; Return (w, i)

LRSim(m0,m1, i)

x← (1λ, sa[i],hpw[i]) ; m← mb

If j < s then m← m0 elsif j > s then m← m1

c←$ WE.Enc(1λ, x,m)
If j = s then
St← (1λ, c, s, r, sa,hpw)
w←$ E(1λ, x,m0,m1, St, c) ; p← (w, i)

c[j]← c ; j ← j + 1 ; Return c

Consider the following games Gs, for s ∈ {1, . . . , q(λ)}.

Main GA,E
s (λ)

pw←$ A1(1
λ) ; b←$ {0, 1} ; passed← false

For i = 1 to |pw| do

sa[i]←$ {0, 1}H.kl(λ)

hpw[i]← H(1λ, sa[i],pw[i])

j ← 1 ; r←$ {0, 1}ρ(λ)

b′ ← ALR
2 (1λ, sa,hpw; r)

Return (b = b′)

LR(m0,m1, i)

x← (1λ, sa[i],hpw[i]) ; m← mb

If j < s then m← m0 elsif j > s then m← m1

c←$ WE.Enc(1λ, x,m)
If j = s then
St← (1λ, c, s, r, sa,hpw)
w←$ E(1λ, x,m0,m1, St, c)
If (H(1λ, sa[i], w) = hpw[i]) then passed← true

c[j]← c ; j ← j + 1 ; Return c

Let PA
s and HA

s be identical to GA
s , with the following difference: game PA

s returns passed and game HA
s

returns (b = b′) ∧ ¬passed. Let bs be the challenge bit b that game GA,E
s samples. Then

Pr[GA,E
s (·)⇒ true | bs = 1] = Pr[GA,E

s−1(·)⇒ false | bs−1 = 0]

for every s ∈ {2, 3, . . . , q}, and thus

q
∑

s=1

(

2Pr[GA,E
s (·)]− 1

)

=

q
∑

s=1

(

Pr[GA,E
s (·)⇒ true | bs = 1]− Pr[GA,E

s (·)⇒ false | bs = 0]
)

= Pr[GA,E
1 (·)⇒ true | b1 = 1]− Pr[GA,E

q (·)⇒ false | bq = 0]

= Pr[APBEA
P[H,WE](·)⇒ true | d = 1]− Pr[APBEA

P[H,WE](·)⇒ false | d = 0]

= Adv
apbe

P[H,WE],A(·),

18

where d is the challenge bit of game APBEP[H,WE]. On the other hand,

−1 + 2Pr[XSA,E
WE,RH

(·)] = −1 +
2

q

q
∑

s=1

Pr[HA,E
s (·)]

≥ −1 +
2

q

q
∑

s=1

(

Pr[GA,E
s (·)]− Pr[PA,E

s (·)]
)

= −
2

q

q
∑

s=1

Pr[PA,E
s (·)] +

1

q

q
∑

s=1

(

2Pr[GA,E
s (·)]− 1

)

= −2Pr[KDFOB
H (·)] +

1

q

q
∑

s=1

(

2Pr[GA,E
s (·)]− 1

)

= −2AdvkdfoH,B(·) +
1

q
Adv

apbe

P[H,WE],A(·) .

Hence, summing up, Advapbe
P[H,WE],A(·) ≤ 2q · AdvkdfoH,B(·) + q · AdvxsWE,RH,D,E(·), and thus P[H,WE] is a secure

A-PBE scheme.

Acknowledgments

We thank Krysztof Pietrzak and Georg Fuchsbauer for discussions about witness encryption.

References

[1] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vadhan, and K. Yang. On the (im)possibility
of obfuscating programs. In J. Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 1–18. Springer, Aug.
2001. 6, 9

[2] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among notions of security for public-key
encryption schemes. In H. Krawczyk, editor, CRYPTO’98, volume 1462 of LNCS, pages 26–45. Springer, Aug.
1998. 6

[3] M. Bellare, S. Meiklejohn, and S. Thomson. Key-versatile signatures and applications: Rka, kdm and joint
enc/sig. Cryptology ePrint Archive, Report 2013/326, 2013. 5

[4] M. Bellare, T. Ristenpart, and S. Tessaro. Multi-instance security and its application to password-based cryp-
tography. In R. Safavi-Naini and R. Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 312–329.
Springer, Aug. 2012. 4

[5] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient protocols. In
V. Ashby, editor, ACM CCS 93, pages 62–73. ACM Press, Nov. 1993. 3

[6] M. Bellare and P. Rogaway. The security of triple encryption and a framework for code-based game-playing
proofs. In S. Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 409–426. Springer, May / June
2006. 6, 11, 15

[7] N. Bitansky, R. Canetti, O. Paneth, and A. Rosen. Indistinguishability obfuscation vs. auxiliary-input extractable
functions: One must fall. Cryptology ePrint Archive, Report 2013/641, 2013. 5

[8] M. Blum and S. Micali. How to generate cryptographically strong sequences of pseudorandom bits. SIAM
Journal on Computing, 13(4):850–864, 1984. 6

[9] E. Boyle, K.-M. Chung, and R. Pass. On extractability obfuscation. Cryptology ePrint Archive, Report 2013/650,
2013. 5, 16

[10] S. Garg, C. Gentry, and S. Halevi. Candidate multilinear maps from ideal lattices. In Advances in Cryptology–
EUROCRYPT 2013, pages 1–17, 2013. 4, 5, 9, 10, 21

19

[11] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters. Candidate indistinguishability obfuscation
and functional encryption for all circuits. Foundations of Computer Science (FOCS), 2013. 4, 6, 9

[12] S. Garg, C. Gentry, A. Sahai, and B. Waters. Witness encryption and its applications. In Proceedings of the
45th annual ACM symposium on Symposium on theory of computing, pages 467–476. ACM, 2013. 3, 4, 5, 7, 9,
10, 11, 20

[13] S. Garg, C. Gentry, A. Sahai, and B. Waters. Witness encryption and its applications. Cryptology ePrint
Archive, Report 2013/258, version 20130508:202916, 2013. 3, 4, 5, 7, 9, 10, 11, 20

[14] S. Goldwasser, Y. Kalai, R. A. Popa, V. Vaikuntanathan, , and N. Zeldovich. How to run turing machines on
encrypted data. Cryptology ePrint Archive, Report 2013/229, 2013. 5, 15

[15] S. Goldwasser, Y. Kalai, R. A. Popa, V. Vaikuntanathan, and N. Zeldovich. How to run turing machines on
encrypted data. In Advances in Cryptology - CRYPTO 2013, pages 536–553, 2013. 5, 15, 16

[16] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System Sciences, 28(2):270–299,
1984. 6

[17] R. Karp. Reducibility among combinatorial problems. In Complexity of Computer Computations, pages 85–103,
1972. 9

[18] PKCS #5: Password-based cryptography standard (rfc 2898). RSA Data Security, Inc., Sept. 2000. Version 2.0.
3, 4, 13

[19] T. Ristenpart, H. Shacham, and T. Shrimpton. Careful with composition: Limitations of the indifferentiability
framework. In K. G. Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 487–506. Springer, May
2011. 6

[20] A. Sahai. Personal Communication, October 2013. 20, 21

[21] A. C. Yao. Theory and applications of trapdoor functions. In 23rd FOCS, pages 80–91. IEEE Computer Society
Press, Nov. 1982. 6

A Relaxation of correctness

Let R be an NP relation and let WE be a witness encryption for L = L(R). GGSW [12, 13] define a
relaxed notion of correctness so that WE.Dec may sometimes fail. Their definition is quoted below, with
the notation adjusted:

For any security parameter λ, for any m ∈WE.Msg, and for any x ∈ L such that R(x,w) holds,
we have that Pr[WE.Dec(WE.Enc(1λ, x,m), w) = m] = 1− negl(λ).

This definition is ambiguous, because the implicit negligible function in the notation negl(·) is not quantified,
and thus it is unclear if it depends on x,w, and m or not. There are several ways to interpret the definition,
of which two natural ones are the following:

• Weak correctness: For every x ∈ L(R), every w ∈ R(x) and every m ∈WE.Msg there is a negligible
function ν such that for all λ ∈ N we have that Pr[WE.Dec(WE.Enc(1λ, x,m), w) = m] ≥ 1− ν(λ).

• Uniform correctness: There is a negligible function ν such that, for every λ ∈ N, every x ∈ L(R),
every w ∈ R(x) and everym ∈WE.Msg, we have that Pr[WE.Dec(WE.Enc(1λ, x,m), w) = m] ≥ 1−ν(λ).

We stress that in uniform correctness, function ν is independent of x,w, and m. Weak correctness seems
to be a more plausible interpretation of what GGSW meant, as it mimics the quantification used in SS
security. We communicated this issue to GGSW, saying we felt their definition was ambiguous, giving our
candidate interpretations, and asking them which, if any, was what they meant. In response, Sahai [20]
remarked that (i) weak correctness may affect usability of witness encryption, as users might not know
how to choose the value for λ for a specific x, and (ii) it’s unclear if there is a witness encryption scheme
that doesn’t achieve perfect correctness but still satisfies strong correctness, because the scheme needs to
be sensitive to |x|.

What we note here is that weak correctness has more serious defects than GGSW appear to be aware
of. Let WAS[L] be the set of all weakly correct and adaptively secure witness encryption schemes for a

20

language L ∈ NP. We argue that there are WAS-secure witness encryption schemes that make GGSW’s
applications (PKE, IBE, and ABE for circuits) fail to guarantee any correctness, regardless of how one
chooses λ. Consider, for example, the PKE scheme PKE[G,WE] specified in Fig. 5, where G is a length-
doubling secure PRG, and WE is a witness encryption scheme for LG = { G(s) : s ∈ {0, 1}∗ }. We claim
that weak correctness of WE is insufficient for PKE, meaning we give an example of a particular witness
encryption scheme WE ∈ WAS[LG] such that the ciphertext produced by PKE[G,WE] is always (0, 0), for
any messages and any λ ∈ N. Starting from an arbitrary WE ∈ WAS[L], we can modify it to WE that
misbehaves, sending (0, 0) for all messages if |x| ≥ 2λ, and otherwise behaves like WE. Scheme WE is
formally specified below; we let WE.Msg = WE.Msg.

WE.Enc(1λ, x,m)

If |x| ≥ 2λ then return (0, 0)
Else return (1,WE.Enc(1λ, x,m))

WE.Dec(c, w)

(b, t)← c
If b = 0 then return ⊥ else return WE.Dec(t, w)

We claim that WE ∈ WAS[LG]. Then, for any message m, scheme PKE[G,WE] always sends a string x of
length 2λ to WE.Enc(1λ, ·,m), and thus the ciphertext will be (0, 0). To justify the claim above, note that
the adaptive soundness of scheme WE follows from that of scheme WE. For weak correctness, fix x ∈ L(R),
w ∈ R(x), and m ∈WE.Msg. Let ν be the negligible function such that

Pr[WE.Dec(WE.Enc(1λ, x,m), w) = m] ≥ 1− ν(λ);

this function exists because WE ∈ WAS[LG]. Let ν : N→ N be the function that ν(λ) = ν(λ) if λ > |x|/2,
and ν(λ) = 1 otherwise. Function ν is also negligible, and

Pr[WE.Dec(WE.Enc(1λ, x,m), w) = m] ≥ 1− ν(λ)

for every λ ∈ N, justifying the weak correctness of WE. Hence WE ∈ WAS[LG], as claimed. One can also
build similar counter-examples for other applications of GGSW.

We now formalize a notion of correctness that can be used for the applications above; this definition is
also independently suggested by Sahai [20].

• Strong correctness: For every polynomial p there is a negligible function ν such that for every λ ∈ N,
every x ∈ L(R), every w ∈ R(x) and every m ∈WE.Msg, if |x|, |m| ≤ p(λ) then

Pr[WE.Dec(WE.Enc(1λ, x,m), w) = m] ≥ 1− ν(λ) .

We stress that the function ν is independent of the choice of x,w, and m. When one instantiates GGSW’s
witness encryption scheme from GGH’s candidate for multilinear maps [10], if one sets appropriately large
values for the parameters of the lattices in GGH’s construction then the corresponding witness encryption
scheme will satisfy strong correctness.

B Extending counter-examples for GGSW’s PKE scheme

Recall that in Section 4, we have built a counter-example for scheme PKE[G,WE] (specified in Fig. 5) where
G is a length-doubling PRG and WE is a generic SS-secure witness encryption scheme for LG = { G(s) :
s ∈ {0, 1}∗ }. However, GGSW start with a scheme WE ∈ SS[L] for an NP-complete language L = L(R),
transform it to WE ∈ SS[LG] via the transform in Fig. 4 and then define their scheme as PKE[G,WE]. We
now extend our counter-example to the actual scheme.

Let RG be the NP-relation of LG, namely RG(x,w) returns (x = G(w)). Let (g, µ, ν) be a Levin
reduction from LG to L. In the actual scheme, one obtains WE ∈ SS[LG] via Transg,µ(WE), where WE

is a SS[L]-secure witness encryption scheme, and Transg,µ is specified in Fig. 4. Since function ν is PT-
computable, there are constants C, d ≥ 1 such that RG.wl(u) ≤ C · |g(u)|d, for every u ∈ LG. Consider

arbitrary WE ∈ SS[L] and let f(λ) = ⌊λ
1/d

C ⌋ for every λ ∈ N. By way of Lemma 3.1, we can modify WE to
WEf ∈ SS[L] (as specified in Fig. 3) that misbehaves, returning the message in the clear when |x| ≥ f(λ).
When we run scheme PKE[G,Transg,µ(WEf)], we always give WEf (1

λ, ·,m) the string x = g(u) for some

21

u ∈ LG∩{0, 1}
2λ, and thus |x| ≥ f(RG.wl(u)) = f(λ). Hence PKE[G,Transg,µ(WEf)] always sends messages

in the clear.

22

	Introduction
	Preliminaries
	Adaptive Witness Encryption
	Insufficiency of Soundness Security
	Asymmetric Password-based Encryption
	A-PBE from Extractable Witness Encryption
	Relaxation of correctness
	Extending counter-examples for GGSW's PKE scheme

