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Abstract

We construct statistical zero-knowledge authentication protocols for smart cards
based on general assumptions. The main protocol is only secure against active at-
tacks, but we present a modification based on trapdoor commitments that can resist
concurrent attacks as well. Both protocols are instantiated using lattice-based prim-
itives, which are secure against quantum attacks. To the best of our knowledge, this
is the first construction of trapdoor commitments based on lattices. We illustrate the
practicality of our main protocol on smart cards in terms of storage, computation,
communication, and round complexities, and compare it to other lattice-based au-
thentication protocols, which are either zero-knowledge or have a similar structure.
The comparison shows that our protocol improves the best previous protocol in terms
of communication and computation by a factor of 5 and 30, respectively. It requires
half the storage, and has essentially the same round complexity as the best previous
protocol. We introduce the concept of practical round complexity, and show that our
protocol is superior to others in this aspect.

Keywords. Statistical Zero Knowledge, Authentication, Smart Cards, Post-Quantum
Cryptography, Lattice Cryptography.

1 Introduction

Authentication protocols are ubiquitous in everyday computing. They are present when
checking email, making monetary transactions, connecting to a mobile/wireless network,
and so on. From one point of view, the authentication protocols can be divided into
two broad categories. In one category, the protocol is executed over an untrusted infras-
tructure, and the parties carrying the authentication need not be physically present in
a specific location. Authentication over the Internet (or other public networks) is the
best example of this type. In the other category, the party to be authenticated must be
present in a pre-specified location, and it is assumed that the infrastructure connecting
it to an honest verifier is trusted (i.e., no eavesdropping on or tampering with the data
in transit is possible). Authentication via smart cards, security tokens, badges, magnet
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stripes, and biometrics fall into the second category, though in this paper we only focus
on authentication protocols that can be carried out by a processor (such as a smart card).
For this reason, we pick smart cards as the representatives of this category.

There are a number of features unique to smart-card authentication protocols:

• There is usually a single session between the smart card and the reader.

• The authentication protocol does not need a notion of key exchange, as the infras-
tructure is trusted.

• The smart card has limited resources regarding the storage, computation, and com-
munication.

• Once inserted into the reader, the smart card cannot communicate with the outside
world.

A security concern regarding the authentication protocols is that of the malicious
verifiers. A malicious verifier poses herself as an honest verifier, engages in the protocol,
deviates from the protocol, and tries to gain knowledge about the secret stored on the
smart card. While bilateral authentication protocols may help by aborting the protocol in
case one of the parties fails to authenticate herself to another, it does not prevent partial
leakage of information. The leakage might be undesirable for systems which require a
high level of security.

The best workaround is to use zero-knowledge authentication protocols, which guar-
antee that the verifier learn nothing about the secret. However, this high level of security
comes at a price: Zero-knowledge authentication protocols are often too resource intensive
to be used in practice. On the contrary, this paper aims to demonstrate a zero-knowledge
authentication protocol for smart cards, with many attractive properties:

• The round complexity of the protocol is near optimal. More specifically, the mini-
mum number of passes for a zero-knowledge proof with negligible soundness error is
shown to be 4 [GK96], while our protocol has only 5 passes. Most zero-knowledge
authentication protocols in the literature do not even have a constant number of
rounds.

• As we will see, our protocol has a significantly lower communication complexity than
similar protocols. In practice, the communication complexity determines the round
complexity as well: For instance, ISO/IEC 7816-4 defines the Application Protocol
Data Unit (APDU), which is the communication unit between a smart card and
the reader. An APDU can carry up to 255 bytes of data. Therefore, a smart-card
protocol which communicates 2,000 bytes of data cannot have fewer than d2,000

255 c = 8
passes. The bottom line is that our protocol will have a significantly lower practical
round complexity than similar protocols, even if their theoretical round complexity
is lower. See Section 4.3 for more information.

• The protocol is provably secure. Furthermore, we provide an exact security [BR96]
analysis, which reveals the minimum level of security achievable with any choice of
parameters.

• The protocol is based on general assumptions, such as the existence of commitment
schemes and trapdoor one-way permutations. Therefore, it can be instantiated
based on the specific needs of each environment.
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• The protocol is statistically zero knowledge, meaning that it does not leak any
knowledge about the secret, even to an infinitely powerful malicious verifier.

• We show how to instantiate the protocol constructs (commitment and trapdoor
one-way permutation) based on lattice problems, to avoid quantum attacks.

• The lattice-based instantiation uses very simple operations, such as multiplying a
matrix by a vector (while protocols based on the RSA or discrete logarithm require
the costly modular exponentiation operations). Therefore, the computational cost
of the protocol is very low.

• We will show how to modify our general protocol, as well as its lattice-based instan-
tiation, to resist concurrent attacks. While smart cards are not usually used in the
concurrent setting, it is theoretically instrumental to consider this setting as well.

We stress that the proposed authentication protocol is a tradeoff between the security
and efficiency. In particular, there exist more efficient authentication protocols for smart
cards which are not zero knowledge. However, it is both theoretically and practically
appealing to construct zero-knowledge authentication protocols for smart cards. From
the theoretical point of view, we will compare our protocol to other lattice-based zero-
knowledge authentication protocols for smart cards, and show that the proposed protocol
is superior in terms of computation and communication complexities, while essentially
achieving the same round and storage complexities (see Section 4.3). From a practical
standpoint, zero-knowledge protocols are recommended for environments with tight secu-
rity requirements, such as the data centers or military bases. In this paper, we provide
evidence that our zero-knowledge authentication protocol can be implemented on smart
cards, thereby satisfying the needs of security-critical (and perhaps other) environments.
In a later paper, we will present the actual implementation on the smart cards, and will
compare its storage, communication, and computation time to other real-world protocols.

1.1 Why Lattices?

In this paper, we picked a particular instantiation of our general protocol based on
lattices. For us, the most appealing feature of lattices is that no quantum attacks are
known against lattice problems, and research offers evidence that both quantum and ordi-
nary attacks will require exponential time to break lattice-based constructs (for instance,
see [LMvdP13] and the references thereof). This stands in sharp contrast to factoriza-
tion or discrete logarithm problems, for which polynomial-time quantum algorithms exist
[Sho97]. Therefore, on the advent of quantum computers, many authentication protocols
for smart cards are rendered insecure, while our lattice-based protocol will not be affected.

Other major attractions of lattice-based cryptography are worst-case to average-case
reductions, asymptotic efficiency, and simple matrix operations.

1.2 Contributions

The main contribution of this paper, as descried above, is to offer a general zero-
knowledge protocol for smart-card authentication, and prove its exact security. We also
provide a specific lattice-based instantiation, which resists quantum attacks.

Other contributions of this paper are as follows.

• We provide a formal model and a formal definition for smart-card authentication.
The details of our model and definition are taken from several references, but we
compare and consolidate them into a single definition (Definition 1).
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• Using trapdoor commitments, we show how our general protocol can be modified
to resist attacks in a more hostile environment.

• We construct the first lattice-based trapdoor commitment, as described in Sec-
tion 5.1. This construction exploits the achievements in lattice cryptography in the
past few years.

• We prove a series of useful lemmas in the appendix, which might be of independent
interest.

1.3 Organization

The rest of this paper is organized as follows: Section 2 introduces the preliminar-
ies needed for the rest of the paper, and surveys the related work. Section 3 presents
the statistical zero-knowledge authentication protocol, and proves its exact security. Sec-
tion 4 instantiates the general constructs of the protocol with lattice-based primitives,
and analyzes the practical efficiency of the instantiated protocol. Section 5 discusses how
trapdoor commitments can be used to modify the general protocol, so that it remains
secure when the adversary can mount concurrent attacks on the protocol. It also instan-
tiates the trapdoor commitments using lattice-based constructs. Section 6 concludes the
paper, and provides future directions to improve the work.

This paper has an appendix as well, which is separated from the main text to improve
the clarity, and so that the reader can focus on the main ideas of the paper. It defines the
standard notions in cryptography, such as trapdoor one-way permutations, commitments,
statistical distance, zero-knowledge protocols, and lattice-based problems. It also provides
some useful lemmas which might be of independent interest.

2 Preliminaries and Related Work

In this section, we first define the main abbreviations and notations used throughout the
paper, and then present a formal model and definition for smart-card authentication.
Finally, we survey the papers in the area of lattice-based authentication.

Fairly standard definitions are omitted from this section, but are mentioned in Ap-
pendix A for self containment. The reader familiar with cryptography can safely skip this
appendix, but we recommend to at least skim over Appendix A to get familiarized with
the names and conventions we used for various cryptographic constructs.

2.1 Abbreviations and Notation

We use the following general abbreviations: PPT for probabilistic polynomial time,
ZK for zero knowledge, and SZK for statistical zero knowledge.

A function is called negligible, if it vanishes faster than the reciprocal of any positive
polynomial. A function is overwhelming, if it is at most negligibly less than 1. The
notation e←R S corresponds to selecting e uniformly at random from the (finite) set S.
For a random variable X, let [X] denote the support of X. That is, [X] = {x | Pr[X =
x] > 0}.

The function lg(·) indicates the logarithm to the base 2. The concatenation and XOR
operators are denoted by “comma” and ⊕, respectively. For a string x, we use |x| to
indicate its length. Similarly, if S is a set, |S| indicates its cardinality.

We denote by 〈A,B〉 a protocol between A and B. Moreover, 〈A,B〉(x) denotes the
same protocol when the common input of A and B is x. If either of the parties have
a private input, that input is written in parenthesis next to its name. For instance,
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〈A(y), B〉(x) is the protocol where A has private input y. Finally, subscripting r to the
name of a party means that we fixed the randomness of that party to r.

We typeset matrices (resp. vectors) by bold-face uppercase (resp. lowercase) Latin

letters. For p ≥ 1, the p-norm of a vector v = (v1, . . . , vn) is denoted by ‖v‖p
def
=

(
∑n

i=1 |vi|p)
1/p. Notice that ‖v‖∞ = maxi |vi|. In the special case of Euclidean (or `2)

norm, we may simply use ‖v‖ instead of ‖v‖2.

2.2 Authentication: Model and Definition

In order to prove the security properties of cryptographic constructs, we need a se-
curity model and a security definition. The security model defines aspects such as the
computational restrictions on the parties and the adversary, as well as how they communi-
cate during the execution of the cryptographic construct. The model can be very general,
and may be shared by several functionalities (see [Can05] as an example). The security
definition, however, is specific to the functionality under investigation. It defines what it
means for the functionality to be secure within a particular model. In many occasions, the
security definition first defines a “winning condition” for the adversary, and then defines
the cryptographic construct to be secure if the advantage of the adversary in winning is
only negligible.

If the cryptographic construct is rather simple, the model and the definition may be
unified together [Rog04]. However, for complex constructs, there must be a separate model
and a separate definition. This is especially the case for the authentication protocols,
where the complexity of modeling/definition is so high that there is no general consensus
among the cryptography society. To date, several authentication models and definitions
were proposed. To name just a few, see [BR93, BR95, BCK98, Sho99a, BPR00, CK01,
CK02, Kra05, LLM07, SEVB10]. See also [CBH05, Cre09, BM10, Cre11] for a comparison
of these works.

Since the focus of this paper is on efficient zero-knowledge authentication protocols, we
have to choose a proper model which allows the authentication protocol to satisfy both
efficiency and zero-knowledge properties. The aforementioned papers try to model an
environment similar to the Internet, where the adversary is free to concurrently execute
many versions of the authentication protocol. The zero-knowledge property is not neces-
sarily preserved under the concurrent executions [GK96]. Moreover, it is known that only
round-inefficient zero-knowledge protocols are concurrently secure. More precisely, only
protocols with round complexity Ω̃(log n) can be (black-box) zero knowledge [CKPR01].

Several works try to augment the standard model, and offer constant-round zero-
knowledge protocols. This includes the timing model [DNS98], the bare public-key model
[CGGM00], and the non–black-box zero knowledge [Bar01]. However, to the best of our
knowledge, no efficient zero-knowledge authentication protocols were designed and im-
plemented in these models. Moreover, they have no formal definition for authentication
protocols.

Another approach, and the one we will take in this paper, is to model the adversary
in a physically restricted way. In this approach, the adversary cannot simultaneously
communicate with the honest prover and the honest verifier [FFS88]. (We assume that
the prover is the entity trying to authenticate himself to the verifier.) The model is known
as the smart-card authentication model, since it was first developed with the resource
restrictions of smart cards in mind. Moreover, it has no notion of key exchange, which
is fitted to the case of smart cards, where it is physically guaranteed that the adversary
cannot “hijack” the session after an honest party is authenticated. Finally, the model
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Figure 1: The smart-card authentication model.

only supports unilateral authentication, where only the first party proves his identity to
second one, but not vice versa.

The smart-card model was once the prevalent model for authentication protocols
[FFS88, GQ88, Bet88, OO90, MS90, Sch89, Ste89, Gün89, Sha90, BM91, Gir91, BBD+91,
Oka92, CD92, BDB92, Ste94, Sho99b, BP02]. With the recent advent of lattice-based au-
thentication protocols, it has gained momentum again [Lyu08, KTX08, Lyu09, XT09,
CLRS10, CV10, SCL11].

Let us briefly describe the smart-card authentication model first. All parties in the
model are probabilistic polynomial-time (PPT) interactive Turing machines. The honest
prover and the honest verifier are denoted by P and V , respectively. The adversary A
is composed of a pair of colluding machines (V ∗, P ∗), where P ∗ and V ∗ play the roles of
the cheating prover and the cheating verifier, respectively. The communication model is
illustrated in Figure 1. As shown in the figure, the adversary attacks the protocol in three
stages: information gathering, information transition, and impersonation. In the
information gathering stage, the adversary plays the role of a cheating verifier V ∗, and
interacts with the honest prover P for some polynomial number of times. In this stage,
V ∗ tries to gather from P as much information as she can. Let us denote the state of V ∗

after it halts by st. In the information transition stage, st is given to the cheating prover
P ∗. Finally, in the impersonation stage, P ∗(st) tries to misrepresent herself (as P ) to the
honest verifier V . It is very important to note that the smart-card authentication model
does not allow P ∗ to communicate with P . In other words, V ∗ halts before the stage two
(and therefore, the stage three) starts. This modeling effectively prevents attacks such as
the Mafia Fraud [DGB88] or the Chess Grandmaster Problem [BD91], since both attacks
require the cheating prover to be “wired” to the honest prover.

The attack A mounts on 〈P, V 〉 is categorized based on the type of interaction between
V ∗ and P in the information gathering stage. The categories, in increasing order of
strength, are as follows:

• One-shot: P ∗ attempts to impersonate to V , given only the common input. In
other words, P ∗ does not receive any information from V ∗.

• Passive: V ∗ does not actually interact with P , and merely eavesdrops on honest
protocol executions.

• Honest verifier: V ∗ follows the prescribed program of V while interacting with
P .

• Active: V ∗ interacts with P sequentially. In other words, V ∗ does not start inter-
acting with a new copy of P if it is already in the middle of interaction with another

6



copy of P . See [Sho99b, BP02, Lyu08] for example uses of this terminology.

• Concurrent: V ∗ is free to concurrently interact with a polynomial number of P ’s.

• Resetting: V ∗ has oracle access to each copy of P . In particular, not only can
V ∗ run them concurrently, but also it can reset (or rewind) each copy to a previous
state. This attack was first defined in [CGGM00] for zero-knowledge protocols.
[BFGM01] applies the attack to authentication protocols.

As pointed out in the beginning of this section, the zero-knowledge property is not nec-
essarily preserved under concurrent attacks. However, (auxiliary-input) zero-knowledge is
preserved under active (i.e., sequential) attacks [Ore87]. Therefore, an (auxiliary-input)
zero-knowledge protocol 〈V, P 〉 is as secure under active attacks as it is under one-shot
attacks.1

Now that we described the model, let us define the syntax and semantics of authen-
tication protocols in this model. Syntactically, an authentication protocol consists of a
triple (G,P, V ), where G is a PPT algorithm, and P and V are PPT interactive Turing
machines. On input 1n, the algorithm G generates a pair (x, y). Then, y is handed over
to P as the private input, x is set as the common input, and the protocol 〈V, P (y)〉(x)
is executed. After the exchange of at most a polynomial (in n) number of messages, V
always halts, and outputs either 1 (“accept”) or 0 (“reject”). Let us denote the verifier’s
output by J〈V, P (y)〉(x)K, which might be different from a single bit in case we are dealing
with a malicious verifier. Next, we define what it means for a protocol to be a secure
authentication protocol.

Definition 1 (Secure Authentication Protocol). A triple (G,P, V ) is called a secure
authentication protocol in the smart-card model if the following holds:

1. Completeness: For all n and for any pair (x, y) ∈ [G(1n)], the verifier V of the
honest interaction 〈V, P (y)〉(x), accepts with overwhelming probability (in n).

2. Soundness: For all c > 0, and for any PPT adversarial coalition A = (V ∗, P ∗),
and for large enough n,

AdvAttack
A,(G,P,V )(n)

def
=

Pr
[
J〈V, P ∗(st)〉(x)K = 1

∣∣∣(x, y)← G(1n), st← J〈V ∗, Q(y)〉(x)K
]
< n−c , (1)

where the probability is taken over the coin tosses of G, Q, V , and A = (V ∗, P ∗).
The behavior of V ∗ and the interactive function Q(x, y) varies depending on the
Attack type:

• One-shot: V ∗ simply outputs the empty string as her state.

• Passive: Upon each invocation, Q(x, y) outputs a transcript of the honest
execution 〈V, P (y)〉(x) with fresh randomness.

• Honest-verifier: V ∗ and Q(x, y) behave as V and P (x, y), respectively.

• Active: Q(x, y) keeps a flag F , indicating whether an instance of P (x, y) is
currently running (initially, F = 0). Q accepts the special message “New”.

1Usage note. In the cryptography community, the term “zero knowledge” implies “auxiliary-input
zero knowledge.” Consequently, we drop the “auxiliary-input” qualifier, and only speak of zero-knowledge
protocols.
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Upon receiving this message, Q replies with ⊥ if F = 1. Otherwise, F is set to
1, and Q(x, y) will behave like P (x, y) with fresh randomness. If P (x, y) halts,
the flag F will be set to 0 again.

• Concurrent: Q(x, y) keeps a set ID (initially empty), and accepts the special
message New(id). Upon receiving this message, Q checks whether id ∈ ID,
and replies with ⊥ if this is the case. Otherwise, Q sets ID ← ID ∪ {id}, and
spawns a new instance of P (x, y) with fresh randomness and id as identifier—
denoted Pid(x, y). V ∗ can communicate with Pid(x, y) by prefixing each mes-
sage with id.

• Resetting: This attack is similar to the previous one, but in addition Q(x, y)
accepts the message Reset(id). Upon receiving this message, Q checks whether
id ∈ ID, and replies with ⊥ if this is not the case. If id ∈ ID, Q resets Pid(x, y)
to its initial state, without refreshing Pid’s randomness. ©

Remark 1. The term “soundness” in the definition of an authentication protocol should
not be confused with the same term used in the definition of zero-knowledge proofs (or,
cryptographic proofs, in general). Note that the soundness in Definition 1 is with respect
to the smart-card authentication model, where the interactions involves the four parties
P , V , P ∗, and V ∗. On the other hand, the soundness in the definition of cryptographic
proofs merely involves P ∗ and V . Moreover, the soundness in Definition 1 is with respect
to some input distribution G(1n), while the soundness in cryptographic proofs is with
respect to all admissible inputs.

We remark that the meaning of the term “completeness” remains the same in both
authentication protocols and cryptographic proofs. C

2.3 Lattice-Based ZK Proofs & Authentication: Related Work

In this section, we briefly survey zero-knowledge proofs and authentication protocols
based on lattices. Appendix A.5 studies the necessary terminology to understand lattice
problems.

The first lattice-based ZK proof was proposed by Micciancio and Vadhan [MV03],
whose security was based on the hardness of GapCVP. In their protocol, the prover and
the verifier share a lattice generated by long, highly non-orthogonal basis vectors, and
the prover’s public key is a fixed point Y outside the lattice. The prover then tries to
convince the verifier that he knows a lattice point X “near” Y .

Micciancio–Vadhan’s protocol is statistical zero knowledge (SZK), so even an infinitely
powerful malicious verifier cannot gain any knowledge from the prover, except with neg-
ligible probability. Moreover, their protocol does not need a short-and-nearly-orthogonal
basis, because the prover is not going to solve CVP. He merely knows one problem-solution
pair (Y,X), generated by himself. Because the soundness error of the base protocol is
1
2 , it must be repeated super-logarithmically in order to obtain a protocol with negligible
soundness error. This repetition cannot be performed in parallel, since otherwise the
zero-knowledge property would collapse.

Lyubashevsky [Lyu08] presented a 3-pass authentication protocol based on the hard-
ness of the SVP in all lattices, and a more efficient protocol based on the hardness of
SVP in ideal lattices. Both protocols do not feature perfect completeness, and neither
one is zero knowledge.

Kawachi et al. [KTX08] introduced another authentication protocol based on the
worst-case hardness of GapSVP. This protocol is a version of Stern’s authentication pro-
tocol [Ste96]. It assumes the availability of a random matrix A ∈ Zn×mq generated by a
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trustee (here, n, m, and q are properly chosen integers). The prover of the authentication
protocol has a public key y ∈ Zn, and proves that he knows a secret x ∈ {0, 1}m, such
that y = Ax (mod q). The approximation factor used in their work was smaller than
those of Micciancio–Vadhan [MV03] and Lyubashevsky [Lyu08], so the security is based
on a weaker assumption. The base protocol of [KTX08] is statistical zero knowledge.
It requires super-logarithmic repetitions to make the soundness error negligible. To re-
duce the round complexity, the authors suggest to run the base protocol in parallel. The
parallel version is no longer ZK. Nonetheless, Kawachi et al. prove that it is a secure
authentication protocol.

In another attempt, Lyubashevsky [Lyu09] presented an authentication protocol based
on the worst-case hardness of SVP and using lattice-based hash functions. He argues that,
while the proposed lattice-based authentication protocols are asymptotically as efficient as
number-theoretic ones, their concrete performance is not much good, due to the fact that
the former treats “challenge bits” individually, while the latter treats them as a whole.
He then tries to improve some of the previous lattice-based authentication protocols by
exploiting the limited algebraic structure of the underlying lattice. The base protocol
of [Lyu09] has a completeness error of 1 − e−1 ≈ 0.63, and therefore some parts of it
are repeated (in parallel) to achieve almost perfect completeness. The protocol is not
zero-knowledge, but is proved to be secure under active attacks. It has a communication
cost significantly lower than Micciancio–Vadhan and Kawachi et al. protocols.

Xagawa and Tanaka [XT09] proposed two statistical zero-knowledge proofs of knowl-
edge for NTRU encryption [HPS98], based on a variant of Stern’s authentication protocol
[Ste96, KTX08]. The first protocol is for the “knowledge of secret key,” while the other
is for “the knowledge of plaintext.” The former protocol can be used directly for au-
thentication. The base protocol has a soundness error of 2

3 , and should be repeated
super-logarithmically.

Cayrel et al. [CLRS10] introduced another authentication protocol, based on the
code-based authentication protocol of Cayrel and Véron [CV10], which in turn is based
on Stern’s protocol [Ste96]. The assumption used here is the hardness of the SIS problem
(as in [KTX08]), which is milder than the assumption of Lyubashevsky [Lyu09]. However,
since the soundness error of this protocol is smaller than both [KTX08] and [Lyu09], it
achieves the same level of security in fewer rounds.

Silva et al. [SCL11] followed [CLRS10], and built a similar authentication protocol
based on the hardness of the SIS problem. The authentication protocol consists of the
repetition of a 5-pass base zero-knowledge protocol with soundness error close to 1

2 .
Finally, Silva et al. [SCD11] presented two zero-knowledge authentication protocols

based on the hardness of LWE. The first protocol has a soundness error of 2
3 , while this

error is 1
2 for the second protocol. Therefore, neither protocol can achieve zero-knowledge

property and negligible soundness error with sub-logarithmic repetitions.

3 A Statistical Zero-Knowledge Authentication Protocol Se-
cure Against Active Attacks

Goldreich and Krawczyk [GK90] proved that three-pass black-box zero-knowledge proofs
(with negligible soundness error) exist only for BPP languages. Itoh and Sakurai [IS91]
generalized this result to the case of proofs of knowledge. Katz [Kat08] demonstrated
further restrictions on the class of languages having four-pass, black-box zero-knowledge
proofs.
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Public parameter: Description of a non-interactive statistically-hiding commitment
scheme, denoted Comn, chosen according to GenC(1n).

Prover’s public key: Description of a TDP, denoted πn, chosen according to
GenP(1n).

Prover’s private key: The trapdoor tn associated with πn.

Protocol Description

1. P picks an n-bit random string un, chooses ρn ← Rnd`(n), and sends V a
commitment to un by computing cn ← Comn(un ; ρn).

2. V picks a random element xn in dom(πn) ⊆ {0, 1}n using the domain sampling
algorithm: xn ← Samp(desc(πn)).

She then evaluates πn on xn by yn ← Eval(desc(πn), xn), and sends yn to P .

3. If yn /∈ {0, 1}n, P outputs a special symbol ⊥ and aborts.

P inverts yn using the trapdoor: wn ← InvP(desc(πn), tn, yn).

P sends V the value un of step 1 if wn = ⊥, and the value σn ← un⊕wn otherwise.

4. V sends P a value zn equal to xn.

5. If zn = wn 6= ⊥, then P will send V the value ρn. Otherwise, P outputs a special
symbol ⊥ and aborts.

Verification Step: V computes vn ← σn ⊕ xn, and accepts iff cn = Com(vn ; ρn).

Protocol 1: A statistical zero-knowledge authentication protocol based on any TDP and
any non-interactive statistically-hiding commitment scheme. Notice that if P and V act
honestly, then zn = wn = xn and vn = un; otherwise, they might be different.

In this section, we exhibit a five-pass statistical zero-knowledge (SZK) authentication
protocol. Given the above results, the number of passes is almost optimal. The protocol is
inspired by the “proof of computational power” of Okamoto et al. [OCO91], but it is far
more efficient. One reason is that their protocol uses bit commitments, which are much
slower than ordinary commitments, and have a high communication complexity. A close
inspection of the proof in [OCO91] shows that the bit commitments cannot be simply
replaced with ordinary ones, without modifying the protocol.

We also prove that the protocol can be used for authentication, and is secure against
active attacks. Later, in Section 5, we further extend the protocol to remain secure against
concurrent attacks.

3.1 Protocol Description

Our protocol is listed in Protocol 1. Any trapdoor permutation (TDP) and any non-
interactive statistically-hiding commitment can be used to instantiate the protocol. Please
note that the corresponding definitions and notation are provided in Appendices A.1 and
A.3, respectively.

The description of the commitment scheme desc(Comn) is included as the “public
parameter.” This means that the prover P and the verifier V both have access to it, and
know that it is selected honestly. There are many approaches to this end, several of which
are as follows:
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1. P and V have already agreed upon desc(Comn) through an out-of-band mechanism.
The most common way is to consider V as a server, and P as a client: The server
chooses the public parameter as well as the credentials of each client, and delivers
them to each client via an out-of-band mechanism (such as a token or a smart card).

2. The public parameter is selected via the so-called common reference string (CRS)
[Dam00].

3. A trusted third party (TTP) selects the public parameter. For instance, in the public
key infrastructure (PKI) model, the TTP is a certificate authority (CA). Each CA
can embed the public parameter in the public key of its clients, or more efficiently,
in its own public key.

The prover P has the description of a TDP in his public key, and the associated
trapdoor in its private key. The notions of public and private keys are not to be confused
with the public key encryption schemes. Moreover, although the most common way to
securely distribute public keys is via PKI, they can be securely distributed via out-of-band
mechanisms in small- or medium-sized environments. Let us denote the public parameter
and the prover’s public key collectively by in.

The prover P of Protocol 1 can always prove his ability to invert the TDP, using
the associated trapdoor. Therefore, the protocol has perfect completeness. On the other
hand, we will prove that no adversary can impersonate the prover, except with negligible
probability (assuming the security of the TDP and the commitment). Therefore, the
protocol has negligible soundness error.

Let us now describe each step of Protocol 1 in detail:

• In step 1, the prover commits to some random value un, which is later used in step
3 as a one-time pad key. This step is not necessary to prove the zero-knowledge
property (Section 3.2). However, without this step, the proof of the security of
authentication does not go through (Section 3.3).

• In step 2, the verifier sends the prover a challenge yn in the range of πn, whose
pre-image xn is known to him.

• In step 3, the prover makes the syntactic check yn ∈ {0, 1}n, and aborts otherwise.

If the check succeeds, he computes wn, the inverse of yn under πn. The inversion
algorithm may or may not succeed. In the latter case, it returns a special symbol
⊥. This is the case if (an adversarially-chosen) yn is not in the range of πn. Since
deciding whether an element belongs to the range of a function is not necessarily
efficient, the prover cannot simply abort the protocol; otherwise, some knowledge
might leak to the malicious verifier. Let us illustrate this point with an example.

Assume that πn : QRm → QRm is a the Rabin’s TDP (see the end of Appendix
A.1 for the notation and definition of Rabin’s TDP). It is well known that deciding
whether a given number is a quadratic residue is a hard problem [GM82]. Therefore,
there is no efficient algorithm to decide whether yn belongs to range(πn). Now,
consider a prover that aborts the protocol if he receives a quadratic non-residue,
and continues otherwise. Such prover will leak knowledge about whether yn belongs
to QRm, and therefore the protocol will not be zero knowledge.

To foil this attack, the prover will simply continue the protocol if the inversion of
yn under πn fails: If wn = ⊥, the prover sends un to V ; otherwise, he sends un⊕wn
to V .

11



Remark 2. If πn is such that it is efficiently decidable whether a given value belongs
to range(πn), we can modify the protocol so that P immediately rejects if yn /∈
range(πn). This change will result in a more efficient protocol, and simplifies proofs
of security. C

• In step 4, the verifier sends the value zn, supposed to be equal to the value xn =
π−1
n (yn) he picked at step 2 (however, a cheating verifier may opt to send a value
zn 6= xn). Note that if the value yn sent at step 2 was not in the range of πn, the
(cheating) verifier would not be able to find a proper zn. In this case, for whatever
value she sends at this step, the prover will abort the protocol in the next step.

• In step 5, the prover first checks whether the value received from the verifier is
valid, and if so, decommits cn. Otherwise, the prover will output ⊥ and abort the
protocol.

In the verification step, the verifier checks whether the prover has acted honestly.
This is done by finding the randomness in the one-time pad, and verifying whether cn is
properly opened.

3.2 Zero-Knowledge Property

Let (desc(πn), tn) ∈ [GenP(1n)], and desc(Comn) ∈ [GenC(1n)]. Define Rn
def
=

{(in, tn) | in = (desc(πn), desc(Comn))}, and let R
def
=
⋃
n∈NRn. In this section, we

prove the following theorem through a series of lemmas (see Appendix A.4 for related
definitions):

Theorem 1. Protocol 1 is statistical zero-knowledge (SZK) for P on R. Moreover, the
zero-knowledge simulator rewinds V ∗ at most once, and the statistical distance between
the simulated and real views is at most the hiding gap of the commitment scheme (as
defined by Equation 17 in Appendix A.3).

Notice that since the definition of zero knowledge (Definition 5) quantifies over all inputs
in R, this property must hold regardless of the distribution used to choose the input.
More specifically, Theorem 1 holds regardless of the randomness used by GenC(1n) and
GenP(1n) to generate Comn and πn, respectively. Put differently, the theorem holds for
any statistically-hiding commitment and any TDP.

Proof. Let S be SZK simulator described by Algorithm 1. Notice that we used “primes”
to connect the variables in the simulation to those in the real execution. For instance, the
variable u′n corresponds to un. Moreover, note that the simulator runs in probabilistic
polynomial time, and it rewinds the verifier at most once: If the simulation does not halt
after step 5, S will rewind the verifier exactly once. Otherwise, no rewinding takes place.

To prove that the output of S is statistically close to the view of V ∗ in the real
execution, we will proceed in stages. That is, we prove that the verifier’s real and simulated
views are statistically close upon receiving each message. Let P1, P2, and P3 be the random
variables describing the verifier’s view upon receiving the first, second, and third prover’s
message, respectively. Similarly let S1, S2, and S3 be the random variables describing the
verifier’s view upon receiving the first, second, and third simulated message, respectively.
Below, we will prove that ∆(Pi ;Si) is exponentially small for i ∈ {1, 2, 3}.

To simplify the proof, we will use “helper” random variables as well. These random
variables are implicitly defined by the protocol and the simulation. For instance, picking a
random n-bit string un corresponds to sampling from the uniform distribution Un on n-bit
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Input (in): Public parameter desc(Comn), and prover’s public key desc(πn).

1. Commit to a random n-bit value u′n by choosing ρ′n ← Rnd`(n), and computing
c′n ← Comn(u′n ; ρ′n).

2. Run V ∗r′ as a black box, to get the challenge: y′n ← V ∗r′(in, c
′
n).

3. If y′n /∈ {0, 1}n, OUTPUT (in, r
′, c′n,⊥) and halt.

Let σ′n be a random n-bit value.

4. Let z′n ← V ∗r′(in, c
′
n, σ

′
n).

5. If y′n 6= Eval(desc(πn), z′n), then OUTPUT (in, r
′, c′n, σ

′
n,⊥) and halt.

I Otherwise, let w′ ← z′n, which in turn equals π−1
n (y′n). Rewind V ∗r′ as follows:

5.1 Let σ′′n ← u′n ⊕ w′n and z′′n ← V ∗r′(in, c
′
n, σ

′′
n).

5.2 If z′′n 6= w′n, then OUTPUT (in, r
′, c′n, σ

′′
n,⊥) and halt.

5.3 OUTPUT (in, r
′, c′n, σ

′′
n, ρ
′
n).

Algorithm 1: The algorithm for the SZK simulator S of Protocol 1.

strings. Continuing in this manner, we denote by X the random variable corresponding to
the variable x. As an example, consider the random variable Y ′n, which corresponds to y′n
defined in step 2 of the simulation. We stress that Un, U ′n, U ′′n , and U ′′′n are independent
uniform distributions on n-bit strings, and R and R′ are random variables whose support is
infinitely long bit strings, where each bit is chosen uniformly and independently. Moreover,
notice that in is a fixed string, and not a random variable.

Stage 1. The prover computes Cn = Comn(Un), and the simulator computes C ′n =
Comn(U ′n). Since ∆(Un ;U ′n) = 0, An application of Fact 2 of Appendix A.2 shows that
∆(Cn ;C ′n) = 0. Furthermore, because R and Cn are independent, and R′ and C ′n are
independent, we apply Fact 3 of Appendix A.2 to show that:

∆(P1 ;S1)
def
= ∆

(
(in, R, Cn) ; (in, R

′, C ′n)
)

= ∆(R ;R′) + ∆(Cn ;C ′n) = 0 .

Stage 2. Let V2 = (in, R̂, Ĉn, Σ̂n) represent the verifier’s current view, which might
be either the real view P2 = (in, R, Cn,Σn) or the simulated view S2 = (in, R

′, C ′n,Σ
′
n).

Let f be the function that the verifier applies to its view to compute the challenge; i.e.,
Ŷn ← f(in, R̂, Ĉn). If Ŷn /∈ {0, 1}n, then Σ̂n = ⊥. Since R ∼ R′ and Cn ∼ C ′n, Corollary 1
of Appendix A.2 shows that Yn ∼ Y ′n. Therefore, the probability that Σn = ⊥ equals the
probability that Σ′n = ⊥. This shows that if Ŷn /∈ {0, 1}n, the random variables P2 and
S2 are identically distributed.

In the rest, we implicitly assume that Ŷn ∈ {0, 1}n. Define Ŵn ← π−1
n (Ŷn). Let E be

the event that Wn = ⊥ in the real execution. The random variable V2 takes either of the
following forms:

• S2 = (in, R
′, C ′n, U

′′
n)

• P2|E = (in, R, Cn, Un)

• P2|E = (in, R, Cn, Un ⊕Wn)
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Define the permutation g on V2 as follows: g is the identity permutation if E. Otherwise,
it permutes V2 as follows: (in, R̂, Ĉn, Σ̂n)

g−→ (in, R̂, Ĉn, Σ̂n ⊕ Ŵn). Notice that g satisfies
the following properties:

• It maps S2 to a random variable with identical distribution. More precisely, since
U ′′n is independent from Wn, we have U ′′n ⊕Wn ∼ U ′′′n . Hence,

S2 = (in, R
′, C ′n, U

′′
n)

g−→ (in, R
′, C ′n, U

′′′
n ) ∼ S2 .

• It maps P2|E to itself (because g is the identity permutation if E).

• It maps P2|E to a random variable identically distributed with P2|E.

According to Lemma 4 of Appendix A.2, ∆(P2 ;S2) = ∆(g(P2) ; g(S2)) = ∆(P2|E ;S2).
Furthermore, since R is independent from (Cn, Un) and R′ is independent from (C ′n, U

′
n),

we can apply Fact 3 of Appendix A.2:

∆(P2|E ;S2) = ∆
(

(R,Cn, Un) ; (R′, C ′n, U
′′
n)
)

= ∆(R ;R′) + ∆
(

(Cn, Un) ; (C ′n, U
′′
n)
)
,

where ∆(R ;R′) = 0 as R ∼ R′. Consequently,

∆(P2 ;S2) = ∆
(

(Cn, Un) ; (C ′n, U
′′
n)
)

=
1

2

∑
c,u

∣∣∣Pr[Un = u,Cn = c]− Pr[U ′′n = u,C ′n = c]
∣∣∣

(2)

=
1

2

∑
c,u

∣∣∣Pr[Cn = c | Un = u] Pr[Un = u]− Pr[C ′n = c] Pr[U ′′n = u]
∣∣∣ (3)

= 2−n−1
∑
c,u

∣∣∣Pr[Comn(Un) = c | Un = u]− Pr[Comn(U ′n) = c]
∣∣∣ (4)

= 2−n−1
∑
c,u

∣∣∣Pr[Comn(u) = c]−
∑
u′

(
Pr[Comn(U ′n) = c | U ′n = u′] Pr[U ′n = u′]

)∣∣∣
(5)

= 2−n−1
∑
c,u

∣∣∣Pr[Comn(u) = c]− 2−n
∑
u′

Pr[Comn(u′) = c]
∣∣∣ (6)

= 2−n−1
∑
c,u

∣∣∣2−n∑
u′

(
Pr[Comn(u) = c]− Pr[Comn(u′) = c]

)∣∣∣ (7)

≤ 2−2n−1
∑
u,u′

∑
c

∣∣∣Pr[Comn(u) = c]− Pr[Comn(u′) = c]
∣∣∣ (8)

= 2−2n
∑
u,u′

∆(Comn(u) ;Comn(u′)) ≤ 2−2n
∑
u,u′

(2−δn) = 2−δn . (9)

Let us briefly discuss the (in)equalities above. Equation 2 follows from the definition of
the statistical distance. In Equation 3, we used the definition of conditional probability,
and the independence of U ′′n and C ′n. Equation 4 uses the definitions Cn = Comn(Un) and
C ′n = Comn(U ′n), as well as the fact that Pr[Un = u] = Pr[U ′n = u] = 2−n. In Equation 5,
two identities are used: First, Pr[Comn(Un) = c | Un = u] equals Pr[Comn(u) = c].
Second, we used the law of total probability to condition Pr[Comn(U ′n) = c] on different
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values that U ′n may take. Equation 6 exploits the facts that Pr[Comn(U ′n) = c | U ′n = u′]
equals Pr[Comn(u′) = c], and Pr[U ′n = u′] = 2−n. In Equation 7, a simple identity is used:
Let a be an invariable quantity in x. Then,

∑
x∈X a = |X| a. Incorporating this identity

into our case, we have: Pr[Comn(u) = c] = 2−n
∑

u′ Pr[Comn(u) = c]. Inequality 8 is
obtained by applying the triangle inequality. Equation 9 uses the definition of statistical
distance, as well as the fact that ∆(Comn(u) ;Comn(u′)) = 2−δn, as required by the
statistical hiding of the commitment (cf. Equation 17 in Appendix A.3).

Stage 3. If Σ̂n 6= ⊥, the protocol continues. Let h be the function that the verifier
applies to its view to compute zn. In other words, let Ẑn ← h(V2), where V2 is either P2

or S2. Since ∆(P2 ;S2) ≤ 2−δn, we can apply Fact 2 of Appendix A.2 to conclude that
∆(Zn ;Z ′n) ≤ 2−δn.

Let F be the event that Zn = π−1
n (Yn), and F ′ be the event that Z ′n = π−1

n (Y ′n).
Because Yn ∼ Y ′n and ∆(Zn ;Z ′n) ≤ 2−δn, it holds that |Pr[F ]− Pr[F ′]| ≤ 2−δn. Now
consider the following two cases:

1. If neither F nor F ′ happens: Both the simulator and the prover output ⊥ and halt.

2. If both F and F ′ happen: The prover decommits by outputting ρn. The simula-
tor has the preimage of y′n, and therefore constructs the rest of the verifier’s view
identical to what the prover would do.

Notice that in both cases, the outputs of S and P are identical. Applying Lemma 5 of
Appendix A.2, we get ∆(P3 ;S3) ≤ 2−δn, which concludes the proof. �

3.3 Secure Authentication

In this section, we prove that Protocol 1 is a secure authentication protocol against
active attacks in the smart-card model defined in Section 2.2. Contrary to the proof of
zero-knowledge property given in the previous section, we have to assume that the input
to the parties is chosen according by a PPT algorithm G(1n), as defined below:

Let (desc(πn), tn)← GenP(1n), desc(Comn)← GenC(1n)

Define in
def
= (desc(πn), desc(Comn))

OUTPUT (in, tn)

Theorem 2. Let G be the algorithm defined above, and 〈P, V 〉 be Protocol 1. Then, the
triple (G,P, V ) is a secure authentication protocol against active attacks in the smart-
card model, assuming that GenP is a TDP generator, and GenC is a generator for
statistically-hiding and computationally-binding commitments.

It is straightforward to see that upon interacting with an honest prover P , the honest
verifier V always accepts. Therefore, Protocol 1 has perfect completeness. It remains to
prove that the soundness condition of Definition 1 holds as well. First recall the following
notations2:

• εn: the hiding gap of the commitment scheme, which as defined by Equation 17,
equals 2−δn .

2To prevent notational confusion, we chose the Greek letter corresponding to the first letter of the
English name: α, β, and ι are mnemonics for authentication, binding, and inverting, respectively. Notice
the difference between ι (Greek letter “iota”) and i.
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• αn
def
= AdvActive

A,(G,P,V )(n): The advantage of A in mounting an active attack against
the triple (G,P, V ), as defined in Definition 1.

• βn
def
= AdvBinding

P ∗,GenC(n): Probability that P ∗ can break the binding property of a
commitment generated by GenC, as defined in Definition 4.

• ιn
def
= AdvInvert

MA,Gen4: The advantage of MA in inverting an element in the range of
some TDP, as defined by Equation 12 in Appendix A.1. (The machines M and A
will be defined below.)

Let TGenC(n) be an upper bound on the running time of GenC(1n). Moreover, for
any oracle machine M , let TMA(n) be an upper bound on the running time of MA on
security parameter 1n, including the total computation time of A. Similarly, let T〈V ∗,Q〉(n)
and T〈V,P ∗〉(n) be upper bounds on the total running time of the parties in the protocols
〈V ∗, Q〉 and 〈V, P ∗〉, respectively, when the security parameter is 1n. The following lemma
gives a direct relationship, in terms of the exact security [BR96], between the time and
success probability of an active adversary against the authentication protocol, and the
time and success probability of a TDP invertor.

Lemma 1. There exists a PPT oracle machine M , such that for all n ∈ N and for any
active PPT adversary A = (V ∗, P ∗) against the triple (G,P, V ), where V ∗ interacts with
P at most τn times, the following holds. If αn > βn + τnεn and βn 6= 1, then:

ιn ≥
(
αn − βn − τnεn

1− βn

)2

. (10)

Furthermore, TMA(n) ≤ 2
(
T〈V ∗,Q〉(n) + T〈V,P ∗〉(n)

)
+ TGenC(n).

Proof. Let M be the oracle Turing machine described in Algorithm 2. On a high level, M
first tries to simulate a sequential prover for V ∗, and then interacts with P ∗. Consequently,
if the adversarial coalition A = (V ∗, P ∗) succeeds in misrepresenting herself as the honest
prover, M will invert the trapdoor permutation with probability related to the success
probability of A. Details follow.

Initially, M generates the description of a statistically-hiding commitment. It then
simulates the execution of Protocol 1: First as an honest sequential prover denoted Q
(see Definition 1), and next as an honest verifier. Finally, M tries to invert ŷn.

To simulate Q for V ∗, algorithm M uses the SZK simulator S. As stated in Theorem 1,
the statistical distance between the output of S and the real-world view of V ∗ is at most
εn, in a single execution. A hybrid argument shows that this distance will increase to at
most τnεn in τn executions.

Consider stages 1 and 2 of Algorithm 2. Let st be the output generated by V ∗ before
it halts, assuming V ∗ interacts with the real prover instead of the simulator. As stated
above, the statistical distance between the random variables corresponding to st and st′

is at most τnεn. Let α′n be the success probability of P ∗ in breaking the authentication
protocol, when its input is st′ instead of st. An application of Fact 2 of Appendix A.2
shows that the output distribution of P ∗ on inputs st and st′ are at most τnεn far apart.
We therefore get |α′n − αn| ≤ τnεn, which guarantees α′n ≥ αn − τnεn.

Let E1 be the event that V ∗ succeeds in the impersonation attack, E2 be the event that
V ∗ successfully breaks the binding of the commitment scheme, and E3 be the event that
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Input: A pair (desc(πn), ŷn) selected from the quadruple (desc(πn), tn, x̂n, ŷn) ←
Gen4(1n).

0. Initialization: Let desc(Comn)← GenC(1n), and in ← (desc(πn), desc(Comn)).

1. Simulate Q for V ∗: The algorithm M has black-box access to V ∗, while it inter-
nally runs the SZK simulator S(in). The goal is to simulate a sequential Q(in, tn) for
V ∗, such that the simulated output of V ∗ is indistinguishable from its real output
(Q is defined by Definition 1).

M keeps a flag F , indicating whether an instance of S(in) is currently running
(initially, F = 0). M also accepts the special message “New”. Upon receiving this
message, M replies with ⊥ if F = 1. Otherwise, F is set to 1, and M will behave
like S(in) with fresh randomness. If S requires a message from V ∗, M will obtain
it from V ∗. If S outputs any string, M will forward its most recent suffix to V ∗. If
S asks to rewind the verifier, M will rewind V ∗ to the state before S was spawned.
If S halts, the flag F will be set to 0 again.

As soon as V ∗ halts, M gets its output st′, and proceeds to the next stage.

2. Simulate V for P ∗: The algorithm M simulates V for P ∗ twice: (1) for some yn
whose corresponding xn is chosen by M . This step is to obtain the value un; (2) for
the specific ŷn, where M exploits the value un obtained in previous step.

(a) Let cn ← P ∗r (in, st
′).

(b) Let xn ← Samp(desc(πn)) and yn ← πn(xn).

(c) Let σn ← P ∗r (in, st
′, yn) and un ← σn ⊕ xn.

(d) Let ρn ← P ∗r (in, st
′, yn, xn).

(e) If cn 6= Comn(un ; ρn), OUTPUT ⊥ and halt.

3. Invert ŷn: If M did not halt, use un to invert ŷn:

(a) Rewind P ∗r to step (c) and run it on ŷn. That is, let σ∗n ← P ∗r (in, st
′, ŷn).

(b) Let x∗n ← σ∗n ⊕ un. If ŷn = πn(x∗n) then OUTPUT x∗n; else OUTPUT ⊥.

Algorithm 2: Description of algorithm M , which inverts ŷn under πn using black-box
access to an active adversary A = (V ∗, P ∗) against Protocol 1.

MA does not output ⊥ in step 2(e). By definition, Pr[E1] = α′n and Pr[E2] = βn. Since
βn 6= 1 by the premise, we can condition E1 on E2. Using the law of total probability:

α′n = Pr[E1] = Pr[E1 ∩ E2] + Pr[E1|E2] Pr[E2] ≤ βn + Pr[E1|E2](1− βn) .

Now notice that Pr[E3] = Pr[E1|E2], since MA will not halt in step 2(e) if and only if V ∗

succeeds in impersonation without breaking the binding of the commitment. Therefore,

Pr[E3] ≥ α′n − βn
1− βn

≥ αn − βn − τnεn
1− βn

.

By the premise, we know that the lower bound for Pr[E3] is positive. Now notice that
stage 3 of Algorithm 2 executes P ∗ on an independent input (ŷn) chosen according to the
same distribution as yn. Therefore, the probability that M does not output ⊥ in step
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3(b) equals Pr[E3]. Consequently,

ιn = (Pr[E3])2 ≥
(
αn − βn − τnεn

1− βn

)2

.

Finally, let us compute the running time of M . The running time of the initialization stage
is at most TGenC(n). By Theorem 1, the simulator rewinds V ∗ at most once. Therefore,
the running time of stage 1 is at most 2T〈V ∗,Q〉(n). Lastly, notice that each of the stages
2 and 3 simulates a single execution of 〈V, P ∗〉, and hence can be executed in at most
T〈V,P ∗〉(n). Consequently, TMA(n) ≤ 2

(
T〈V ∗,Q〉(n) +T〈V,P ∗〉(n)

)
+TGenC(n), as required.�

Proof of Theorem 2 is a straightforward consequence of Lemma 1:

Proof (Theorem 2). By assumption, GenP is a TDP generator, and GenP is a gen-
erator for a statistically-hiding and computationally-binding commitment. Therefore, for
large enough n, the quantities ιn, βn, and εn are negligible in n. Furthermore, τn is always
a polynomial in n, since V ∗ is a PPT algorithm.

Consequently, Equation 10 mandates that αn be a negligible quantity in n, which
implies that Protocol 1 is a secure authentication protocol against active attacks. �

3.3.1 How to Interpret Lemma 1 for Practical Purposes

In practice, it is desirable to achieve a certain level of security, say 128-bit security. Below,
we will interpret the meaning of a level of security, as well as how to achieve it based on
the results of Lemma 1.

Let us first examine a simple case. Consider an algorithm which outputs the correct
answer with probability p. If this algorithm is executed 1/p times, the probability that
it outputs the correct answer is 1 − (1 − p)1/p > 1 − e−1 ≈ 0.63. Therefore, the success
probability of such an algorithm is at least a constant (i.e., 63%) if it is executed 1/p
times.

In cryptography, it is customary to compare the running times of algorithms with
constant success probabilities. For instance, 128 bits of security means that no algorithm
can break the scheme with constant success probability in less than 2128 steps.

Let us go back to the main question: How to interpret the results of Lemma 1? The
crucial point is to differentiate between online and offline attacks. For instance, the ad-
versary can try to invert the TDP offline, but to try her chance against the authentication
scheme, she must be online. For this reason, αn is sometimes called an “absolute con-
stant,” which means it can be set regardless of the computational power of the adversary.
This fact is best explained in [FS87, p. 190]:

The [. . .] probability of forgery is an absolute constant, and thus there is no
need to pick [. . . a very small αn, to] safeguard against future technological
developments. In most applications, a security level of 2−20 suffices to deter
cheaters. No one will present a forged passport at an airport, give a forged
driver’s license to a policeman, use a forged ill badge to enter a restricted
area, or use a forged credit card at a department store, if he knows that
his probability of success is only one in a million. [. . .] For national security
applications, we can change the security level to 2−30.

For a security level of 2−30, the adversary has to present the forged smart card 230

times to the verifier, to have a constant probability of masquerading. Assuming each
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authentication attempt takes only one second,3 a success will be attainable (with constant
probability) just once in 230 seconds ≈ 34 years, regardless of the computational power
of the adversary. By then, the adversary will probably be arrested due to fraud.

Similar to αn, the advantage εn of the adversary in breaking the hiding property of
the commitment is an absolute value. The reason is that the statistical hiding of the
commitment holds regardless of the computational power of the adversary. Assume that
the adversary is given the ability to verify the identity of a given smart card (that is,
the adversary plays the role of V ∗). Depending on the situation, the number of times
the adversary may maliciously verify the smart card (i.e., the quantity τn) varies. A
conservative choice is 230; that is, the adversary can pose itself as the real verifier for over
a billion times. It seems that no real-life malicious verifier can reach this number, even if
the smart card is stolen, and the adversary can verify the protocol for as many times as
she wants. Now let εn ≤ 2−61. For small enough values of βn, this satisfies the premise of
Lemma 1 that αn > βn + τnεn.

Finally, we get to choose the values ιn and βn. Momentarily assume that βn is negligi-
ble relative to αn− τnεn ≥ 2−31. Therefore, Lemma 1 presents an inverter with execution
time TMA(n) and success probability ιn ' (αn − τnεn)2 ≥ 2−62. The lemma bounds
TMA(n) by twice the time A can interact online with the honest provers and verifier.
A real-world assumption is TMA(n) ≤ 225 bit operations. If the best known algorithm
to invert the TDP has a complexity more than 225/2−62 = 287, we can assume that the
authentication protocol is secure. This is because the existence of an adversary against
the authentication protocol is translated (via Lemma 1) to the existence of an inverter
against the TDP with success probability better than the best known algorithm, which is
deemed impossible. In this paper, we assume 128-bit security; therefore, ιn, βn ≤ 2−128.

Remark 3. The astute reader might ask why βn is taken to be so small, while Lemma 1
does not seem to require such a small success probability. The reason is that βn is an
offline parameter. That is, the adversary may break the binding property offline (via
preprocessing), and then attempt to attack the authentication protocol. The same holds
for ιn: The adversary can find the trapdoor offline, and then attack the authentication
protocol. Therefore, the protocol designer must choose the parameters to foil offline
attacks as well. It seems that a security level of 2100 or more is the recommended choice
for the near future. We therefore picked the conservative 128-bit security. C

4 An Efficient Instantiation Secure Against Quantum At-
tacks

In this section, we implement the commitment and the TDP used in Protocol 1, in such
a way that the protocol remains secure against quantum attacks. Notice that the zero-
knowledge property is already guaranteed to hold against infinitely powerful adversaries,
and therefore we only focus on the security of the authentication protocol. At the end of
this section, we give an overall estimate of the efficiency of our protocol, and compare it
to other protocols in the literature. Definitions related to lattice problems are given in
Appendix A.5.

3Fiat and Shamir [FS87] suggest that the attacker can make at most 1000 forgery attempts per day.
Thus, with a security level of 2−30, she will succeed (with constant probability) in masquerading once in
every 3000 years. Therefore, our assumption that the adversary can make a forgery attempt once per
second is very conservative, but it shows that even with such power, she cannot succeed in a reasonable
amount of time.
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4.1 Constructing the Commitment

Kawachi et al. [KTX08, Xag10] suggest a lattice-based commitment. The computational-
binding property of their scheme is based on the hardness of the SIS problem, while its
statistical-hiding property holds unconditionally.

Given an integer n, let m = m(n), and q = q(n) be integers bounded by a polynomial
in n. The generator GenC of Kawachi et al.’s commitment scheme works as follows: On
input 1n, it outputs a matrix A, chosen uniformly from Zn×mq . In this scheme, `(n) = m/2,
and the distribution Rnd`(n) from which the commitment randomness is sampled is the

uniform distribution over {0, 1}m/2.
To commit to a string x ∈ {0, 1}m/2, we first pick r ← Rndm/2. Let x and r denote

the column vectors corresponding to x and r, respectively. Moreover, let x || r denote the
column vector obtained from appending r to x. The commitment is then defined by:

Comn(x)
def
= A(x || r) mod q . (11)

The following lemma is proven in [Xag10, Lemma 5.3.2]:

Lemma 2. The commitment defined above is:

• statistically hiding with statistical gap 2q−dn/4 if m > 2n(1+d) lg q for some positive
constant d;

• computationally binding if collision-finding SIS∞q,m,n,1 is hard.4 In other words,
collision-finding SIS∞q,m,n,1 reduces to breaking the computational-binding property
of the commitment.

The second condition can be interpreted both theoretically and practically. In theory,
the SIS problem is proven hard via an efficient reduction from worst-case SIVP to the
average-case SIS. The most recent result is [MP13, Theorem 4], which gives the best
current reduction. The theorem, cast for the case of SIS∞q,m,n,1, is as follows:

Lemma 3. For q ≥
√
m · nΩ(1), there is an efficient reduction from SIVPω(

√
mn logn ) to

collision-finding SIS∞q,m,n,1 with non-negligible advantage.

The lower bound given for q in Lemma 3 is essentially optimal, as the problem is trivially
easy for q ≤

√
m [MP13]. However, the scope of this reduction is limited to the asymptotic

case. In practice, the SIS problem might be hard, regardless of whether other lattice
problems can be efficiently reduced to it. The following formula, suggested in [MR09],
gives a heuristic for the shortest SIS solution attainable by the best algorithm, assuming
m ≥

√
n lg q/ lg ~ :

min{q, 22
√
n lg q lg ~ } ,

where ~ is the hermit factor of the algorithm. The current best algorithm, BKZ 2.0
[CN11], requires over 2128 steps to achieve ~ = 1.006. Therefore, by setting n = 128,
q = 257 and m ≥

√
n lg q/ lg ~ ≈ 345, we can be sure that it is highly unlikely that

current algorithms can find vectors shorter than 61 in the corresponding SIS problem, in
less than 2128 steps. Consequently, if

√
m < 61, then the security against an adversary

attacking the binding property is at least 128 bits.

4[Xag10] reduces SIS2
q,m,n,

√
m to breaking the computational-binding property of the commitment,

which is a weaker reduction. It also requires that q be a prime, but as we will see in Lemma 3, recent
results relaxed this requirement.
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On the other hand, m should be large enough to satisfy the statistical gap. Setting
m = 2560 (which still satisfies

√
m < 61), we achieve a statistical gap of 2−62, as desired

(see Section 3.3.1).
Given the parameters n = 128, m = 2560, and q = 257, the size of the SIS matrix (i.e.,

the description of the commitment) will be nmdlg qe ≈ 360 KB. However, by defining
the SIS over rings [Mic02, PR06, LM06, LMPR08, LPR10], one can reduce this size by a
factor of n, and thus achieving a SIS matrix as small as 2.8 KB. (The ring setting requires
n to be a power of 2, m to be a multiple of n, and q ≡ 1 (mod 2n) to be a prime. All
requirements are satisfied by our choice of parameters.)

4.2 Constructing the TDP

There are several TDPs with conjectured security against quantum attacks. The oldest
ones are McEliece [McE78] and Niederreiter [Nie86], which are based on the coding theory
(see [OS09] for more information). While McEliece and Niederreiter are sometimes called
“encryption,” they do not satisfy the semantic security property, and are actually TDPs
(McEliece is a probabilistic TDP). McEliece and Niederreiter are dual to each other, in
the sense that an attacker that breaks one can break another [LDW94]. The precise
assumptions underlying the security of the Niederreiter TDP is studied in [FGK+10],
while [BLP08] examines the practical security of both McEliece and Niederreiter: For
80-bit security, the size of desc(πn) is 56 KB. It grows to 188 KB for achieving 128-bit
security.

Another option is to use lattice-based TDPs. Micciancio and Peikert [MP12] examine
how LWE and ring-LWE problems can be used to construct TDPs. However, based on
their results, the size of desc(πn) is prohibitively large for smart cards.

A third option is to incorporate a lattice-based encryption, instead of a TDP. The
protocol and its proof of security should change minimally to reflect this modification.
Recently, a very efficient set of parameters were proposed for the ring-LWE encryption
[LP11, GFS+12]. Specifically, achieving 128-bit security is possible with n = 256, q =
7, 681, and s = 11.31, for which the size of the system parameter and the public key is
n|q| ≈ 416 bytes, and the size of the secret key is n|5s| ≈ 192 bytes. (Notice that n is a
power of 2, and q ≡ 1 (mod 2n) is a prime, which is required for ring operations.)

4.3 Overall Analysis

In this section, we analyze the overall complexity of our protocol, and compare it to
several other lattice-based authentication protocols. We picked protocols which have a
ZK-like structure; that is, they are either ZK or obtained by executing some base ZK
protocol in parallel). The list is not exhaustive; yet protocols not listed here are either
too inefficient (such as [Lyu08]), or are similar to the protocols we mentioned here (e.g.,
[XT09] is similar to [KTX08]).

Remark 4. There might be more efficient lattice-based authentication protocols for
smart cards, such as simple challenge-response protocols which use lattice-based encryp-
tion or signature. However, as described in Section 1, the main idea of this paper is to
propose an efficient zero-knowledge authentication protocol which can be implemented
on smart cards for environments with tight security requirements. Therefore, we did not
compare our protocol with those without a ZK-like structure. C

Table 1 gives an overview of the comparison. Notice that for the sake of readability,
some numbers are denoted in bytes, while others are in Kilobytes (= 1024 bytes). In
protocols like [KTX08], the base protocol is ZK, but the protocol designers use the parallel
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Table 1: Comparison of several lattice-based authentication protocols at 128-bit security.
(We underlined quantities in bytes to distinguish them from those in Kilobytes.)

Protocol
System

Parameter
Size

SK
Size

PK
Size

# of
Passes

Comm.
Complexity

Concurrently
Secure?

ZK?

Protocol 1 3.2 KB 192 B 416 B 5 1.46 KB
No, but see
Section 5

SZK

[KTX08] 32 KB 320 B 144 B 3 281 KB + −

[Lyu09] 8 KB 2 KB 2 KB 3 7 KB + −

[CLRS10] 32 KB 320 B 144 B 5 × 30 144 KB − SZK

[SCL11] 32 KB 9 KB 4 KB 5 × 30 157 KB − SZK

repetition which is not ZK anymore. In such cases, the table does not consider the protocol
as ZK.

Below, we will describe our choice of parameters for each protocol. It is assumed
that the protocols must satisfy 128-bit security, with soundness error at most 2−30, and
completeness error less than 2−20.

• Our protocol (Protocol 1): We described the choice of parameters to get a secure
commitment and a secure TDP in Sections 4.1 and 4.2, respectively. Specifically,
nC = 128, mC = 2560, and qC = 257 for the commitment (SIS) matrix, and
nT = 256, qT = 7, 681, and sT = 11.31 for the TDP (LWE) matrix, with 128-bit
message length. The communication complexity is therefore nC |qC | + 2nT |qT | +
mC + 128 + nT |5sT | ≈ 1.5 KB.

• [KTX08]: We set parameters similar to ours: n = 128, m = 2560, and q = 257. This
protocol requires another commitment matrix, which should be able to commit to
binary strings whose length is M = nd(lgm!)/ne+ n|q| = 26, 496. For this, we pick
a random matrix from Zn×Mq . Since the soundness error of the base protocol is 2

3 , it
is required to be repeated t = 52 times so that its soundness error is at most 2−30.
The communication complexity is t(3n|p|+ 2 + (2dlgm!e+m)/3 +m|p|) ≈ 281 KB.

• [Lyu09]: Fig. 2 of [Lyu09] gives four sets of parameters for 80-bit security. We used
the first set of parameters, but adjusted κ to achieve 128-bit security: n = 512,
m = 4, σ = 127, κ = 44, and p ≈ 232. The completeness error of the protocol is
1 − 1/e. To make the the completeness error less than 2−20, we must repeat the
protocol for t = 31 times. [Lyu09, p. 610] gives a series of tricks to improve the
efficiency, which we will incorporate here. The most important trick is to use a hash
function such as the SHA-256 in the first step of the protocol. Using the notations
of [Lyu09], the communication complexity is 256 · t+ |Gm|+ |Dc| ≈ 7 KB.

• [CLRS10]: The public parameter and the prover’s public and private keys are exactly
like those in [KTX08]; we therefore use the same parameters. The soundness error
of the base protocol is almost 1/2, and hence it must be repeated t = 30 times to
achieve the 2−30 soundness error. The communication complexity of the protocol is
t(2n|q|+ |q|+m|q|+ 1 + n+ (dlgm!e+m)/2) ≈ 144 KB.

• [SCL11]: The public parameter is exactly as in [CLRS10], but the prover’s public
and private keys differ. Again, the soundness error of the base protocol is almost
1/2. The communication complexity of the protocol is t(3n|q|+2|t|+1+m+m|q|+
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(dlgm!e + m)/2) ≈ 157 KB. Interestingly, while this protocol is more efficient for
80-bit security than [CLRS10] (see [SCL11]), it is less efficient at 128-bit security.

As Table 1 shows, the best previous protocol was [Lyu09]. Below, we will compare
our protocol with this protocol.

In terms of communication complexity, Protocol 1 improves [Lyu09] by a factor of 5,
while requiring less than half storage.

Since all protocols mentioned in Table 1 are repeated several times, they need to
perform many lattice-based computations. However, our protocol makes only two lattice
operations: a SIS and an LWE-based encryption. Therefore, our protocol is much more
efficient in terms of computation complexity. In particular, since the base protocol of
[Lyu09] has similar operations to ours, and it is repeated 30 times, Protocol 1 improves
[Lyu09] by a factor of 30.

The theoretical round complexity of Protocol 1 is 5, which is close to the best (i.e., 3).
Let us now consider the practical round complexity : As described in Section 1, smart cards
transmit data in units called the Application Protocol Data Unit (APDU), which can carry
up to 255 bytes of data. Therefore, our protocol requires at least d1.46 KB

255 B e = 6 passes
(rather than 5) to perform the authentication in practice. The round complexity of other
protocols discussed above is much higher due to their high communication complexity.
For instance, [Lyu09] requires at least d 7 KB

255 Be = 29 passes (rather than 3).
The final point is that our protocol is statistical zero knowledge, while [Lyu09] is not.

On the other hand, [Lyu09] is secure against concurrent attacks. While such attacks are
not practical against real-world smart cards (because the smart card does not have enough
resources to take part in multiple sessions simultaneously), it is certainly advantageous
to study these attacks in theory. In the next section, we present a modification to our
protocol to make it resilient to concurrent attacks.

5 Modifying the Authentication Protocol to Thwart Con-
current Attacks

The zero-knowledge simulator of Protocol 1 does not work in the concurrent setting, since
it rewinds the verifier. Diagram 1 of [DNS98, p. 410] illustrates the difficulty that arises
when dealing with rewinding simulators in the concurrent setting. This statement can be
generalized to the extent of denying any black-box simulator for the protocol: [CKPR01]
proves a logarithmic lower bound on the round complexity of black-box CZK protocols,
while Protocol 1 is constant round.

Furthermore, the protocol is not known to remain a secure authentication protocol
against concurrent attacks, since Algorithm 2 makes explicit use of the zero-knowledge
simulator to simulate Q for V ∗, and this simulator does not work in the concurrent setting.

In this section, we modify Protocol 1 in such a way that it remains a secure authen-
tication protocol against concurrent attacks. As an added bonus, the modified protocol
will remain SZK if executed sequentially.

A first idea is to modify the protocol such that the common input includes the descrip-
tions of two TDPs instead of one, and the prover will then prove that he can invert either
of them. This idea is similar to that of OR proofs [CDS94], with one major difference:
The OR proof is a transformation on public-coin ZK proofs, while Protocol 1 uses private
coins. There are two objections against this approach: Firstly, an OR-proof reduces the
efficiency of the protocol, and increases its communication complexity. Secondly, difficul-
ties arise when dealing with private-coin protocols, and they cannot be easily transformed
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to OR proofs without making extra assumptions.5

A better idea is to use the concept of trapdoor commitments [FS89], also known
as chameleon blobs [BCC88] or equivocable commitments [Bea96, DIO98, DO99]. (Al-
though the last reference explains definitional differences between these concepts, we will
use “trapdoor commitment” as an umbrella term to refer to all of them). Informally,
a trapdoor commitment is a commitment that satisfies an extra property: There is an
algorithm which generates a “twisted” description of the commitment, along with a trap-
door. This description must be indistinguishable from an honestly generated description.
Moreover, there exists an algorithm which can output a commitment, and then open it
to any arbitrary string using the trapdoor.

We notice that trapdoor commitments can be constructed from ordinary commitments
without making new assumptions. Section 2 of [Fis01, Chapter 3] describes several such
constructions.

Definition 2 (Non-interactive Statistically-Hiding Trapdoor Commitments). A
pair of PPT algorithms (GenC, Sim) is called a non-interactive statistically-hiding trap-
door commitment, if the following conditions hold:

1. GenC is a generator for some non-interactive statistically-hiding commitment (re-
call Definition 4 in Appendix A.3).

2. For any n ∈ N, and all x ∈ {0, 1}n, the statistical distance between the outputs of
the following experiments:

desc(Comn)← GenC(1n) (desc(C̃omn), t̃n)← Sim(‘Gen’, 1n)

r ← Rnd`(n) c̃← Sim(‘Commit’, desc(C̃omn))

c← Comn(x ; r) r̃ ← Sim(‘Decommit’, desc(C̃omn), t̃n, c̃, x)

OUTPUT (desc(Comn), x, c, r) OUTPUT (desc(C̃omn), x, c̃, r̃)

is at most 2−µn. ©

Remark 5. In our protocol, we do not need to open the commitment to an arbitrary
string x. Rather, we merely need to open it to a randomly chosen string. C

Define “Protocol 2” as the modified version of Protocol 1, which uses trapdoor com-
mitments instead of ordinary ones. However, notice that Sim is not used in the real-life
execution. It is only employed in the proof of security, as detailed later. Therefore, we
continue to assume that in the real-life execution, Comn is generated honestly (i.e., via
GenC). See the beginning of Section 3.1, where three methods for honest generation of
Comn are suggested (out-of-band agreement, CRS, and TTP).

Since substituting an ordinary commitment with a trapdoor commitment does not
change the real-life execution, the security proofs of Protocol 1 carries over to Protocol
2. In other words, Protocol 2 remains SZK when executed sequentially, and it is a secure
authentication protocol against active adversaries. It remains to exploit the properties
of trapdoor commitments to prove that Protocol 2 is a secure authentication protocol
against concurrent adversaries.

5In our setting, we required an assumption like the indistinguishability of the pair (π0
n(Un), π1

n(Un))
from (π0

n(Un), π1
n(U ′n)), where π0

n and π1
n are independently generated TDPs. This assumption is much

stronger that the non-invertibility of a single TDP, and we know few TDPs that satisfy this strong
assumption.
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Input: Same as Algorithm 2.

0. Initialization: Let (desc(C̃omn), t̃n)← Sim(‘Gen’, 1n), and

in ← (desc(πn), desc(C̃omn)).

1. Simulate Q for V ∗: Q keeps a set ID (initially empty), and accepts the special
message New(id). Upon receiving this message, Q checks whether id ∈ ID, and
replies with ⊥ if this is the case. Otherwise, Q sets ID ← ID ∪ {id}, and simulates
a new instance of the prover with fresh randomness and id as identifier, as follows:
Upon receiving a message from V ∗ with id as its prefix, dispatch it to the simulated
prover with identifier id. The simulated prover then makes a computation, and
sends a message. Q then saves the state of this prover for later calls.

The algorithm of the simulated prover with identifier id is described below:

(a) Generate a commitment by computing c′n ← Sim(‘Commit’, desc(C̃omn)).
Send (id, c′n) to V ∗.

(b) Receive the challenge y′n from V ∗.

(c) If y′n /∈ {0, 1}n, send (id,⊥) to V ∗ and halt.

Pick a random n-bit string σ′n, and send (id, σ′n) to V ∗.

(d) Receive z′n from V ∗.

(e) If y′n 6= Eval(desc(πn), z′n), then send (id,⊥) to V ∗ and halt.

Else let u′′n ← z′n ⊕ σ′n, and ρ′′n ← Sim(‘Decommit’, desc(C̃omn), t̃n, c
′
n, u
′′
n).

Send (id, ρ′′n) to V ∗.

As soon as V ∗ halts, M ′ gets its output st′, and then proceeds exactly as steps 2 & 3 of
Algorithm 2.

Algorithm 3: Description of algorithm M ′, which inverts ŷn under πn using black-box
access to a concurrent adversary A = (V ∗, P ∗) against Protocol 2.

Theorem 3. Protocol 2 is a secure authentication protocol against concurrent PPT ad-
versaries.

Proof. Let A = (V ∗, P ∗) be a concurrent adversary. Recall from Definition 1 that in the
concurrent setting, V ∗ can send the special message New(id), to spawn a new instance of
the prover with id as its identifier. Furthermore, to communicate with the prover whose
identifier is id, the cheating verifier must prefix her messages with id.

We now construct an algorithm, similar to M (see Algorithm 2), which inverts its input
under the TDP, given black-box access to A. Let us call this algorithm M ′. Contrary
to M , the inverter M ′ should simulate a concurrent setting for V ∗ in the information
gathering phase. The code for M ′ is given in Algorithm 3. Here is the ideas used by M ′:

• M ′ instantiates a trapdoor commitment instead of an ordinary one. Given the
indistinguishability of the descriptions of C̃omn and Comn, the malicious verifier
will notice the change with probability at most 2−µn.

• M ′ returns a random bit string σ′n instead of σn
def
= un⊕wn. As shown in Stage 2 of

the proof of Theorem 1, the statistical distance between σ′n and σn is at most 2−δn

(even when the rest of the view is given).
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• If V ∗ reveals a correct pre-image z′n of y′n, the algorithm M ′ uses Sim to open the
commitment c′n as z′n ⊕ σ′n, thus pretending to V ∗ that it had correctly sent the
correct pre-image in step (c).

Since M ′ does not rewind V ∗, it does not suffer from the weakness of the ZK simulator,
described at the beginning of this section.

Using the triangle inequality, the statistical distance between the view of V ∗ in the
real and simulated executions is εn ≤ 2−µn + 2−δn in a single execution. We can now
apply Lemma 1, where τn = poly(n) is an upper bound on the number of prover instances
that V ∗ spawns. The rest of the proof is similar to the proof of Theorem 2. �

5.1 Constructing a Lattice-based Trapdoor Commitment

In Section 4.1, we described how lattice-based commitments can be constructed. This
section modifies the construction to achieve lattice-based trapdoor commitments. To the
best of our knowledge, this is the first instantiation of trapdoor commitments based on
lattice. Our main tool is the results of [MP12], which describes how to generate a random
looking matrix A ∈ Zn×mq , in which a trapdoor is embedded. Given this trapdoor, and
a random vector c ∈ Znq , one can efficiently sample a vector z ∈ Zm according to some
narrow Gaussian distribution, such that Az ≡ c (mod q). Let us explain the details.

Generating the description of the commitment. For any n ∈ N, the output of
GenC(1n) is a matrix A, chosen randomly from Zn×2m

q . Here, q and m ≥ 2n lg q are
polynomially bounded in n. The algorithm GenC also defines the distribution of the
randomness to the commitment, which is a discrete Gaussian distribution DZm,s with
parameter s ≥ ω(

√
logm ). Let A = [A1 || A2], where A1 is the first m columns of A,

and A2 constitutes the remaining columns of A.

Committing to a string x ∈ {0, 1}m. Let x be the m-dimensional column vector
(with binary entries) corresponding to x. Pick a random vector r ← DZm,s, and define
the commitment as in Equation 11. It is proven in [GPV08a, Corollary 5.4] that except for
an exponentially small fraction of A2’s, the quantity A2r (mod q) is statistically close to

the uniform distribution over Znq . Therefore, Comn(x)
def
= A(x || r) mod q = A1x + A2r

(mod q) is statistically close to uniform distribution over Znq . Consequently, for any two
m-bit strings x1 and x2, the commitments to x1 and x2 are statistically close, and the
commitment is statistically hiding.

Regarding the binding property, care must be taken as there is no theoretical limit on
the length of r. However, the probability that ‖r‖2 > Ls for any positive L is at most
e−πL

2
. Therefore, the receiver (of the commitment protocol) can safely reject if the length

of the revealed randomness exceeds Ls for some given L. In this approach, the reveal
phase of the commitment may fail with an exponentially small probability (which results
in an exponentially small completeness error in our protocol). Notice that the collision-
finding SIS problem with β = Ls +

√
m = Lω(

√
logm ) +

√
m reduces to breaking the

binding property of this commitment.

The trapdoor commitment. Algorithm Sim(‘Gen’, 1n) generates a special matrix
Ã2 ∈ Zn×mq , with the associated trapdoor t̃n, as described in [MP12]. The parameters q
and m are chosen properly. Micciancio and Peikert [MP12] describe a method in which
Ã2 is statistically indistinguishable from a uniformly chosen matrix. Next, Sim defines
Ã

def
= [Ã1 || Ã2], where Ã1 ←R Zn×mq .
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Sim(‘Commit’, Ã) outputs a uniform element c̃ in Znq . Since Comn(x) is statistically
close to uniform for any x ∈ Zm2 , the random variables c̃ and Comn(x) are statistically
close.

For any x ∈ Zmq independent of c̃, the algorithm Sim(‘Decommit’, Ã, t̃n, c̃,x) works

as follows: It first computes c̃2
def
= c̃ − Ã1x (mod q), which is a uniform element in Znq

since c̃ was picked uniformly. It then uses the trapdoor t̃n and the pre-image sampling
of [MP12] to choose a vector r̃ from the discrete Gaussian distribution DZm,s′ , such that

c̃2 = Ã2r̃ (mod q).
Notice that in order the parameters should be set in such a way that DZm,s and DZm,s′

are statistically close. If possible, the best choice is s = s′.

6 Conclusions and Future Work

In this paper, we presented a general SZK authentication protocol, and proved its exact
security. The protocol was then instantiated using lattice-based constructs, so as to remain
secure against quantum attacks. We next modified the general protocol using trapdoor
commitments, and proved that the modified protocol is secure against concurrent attacks.
Finally, it was shown how the trapdoor commitment can be instantiated using lattice
cryptography.

We are currently in the process of implementing our protocol on a real smart card, and
comparing its practical security with other lattice-based authentication protocols. The
result of our study will be published in a separate paper.

Below, we will try to present the most important direction for future research:

• Improving the security proofs to provide a tighter security reduction.

• Finding the parameters for the lattice-based trapdoor commitment to achieve a
certain level of security.

• Modifying the protocol so that it resists resetting attacks, which are practical against
smart cards.

• Discussing a practical implementation which is secure against side-channel attacks.

• Improving the protocol to support bilateral authentication.

A final direction is to examine whether the security proofs carry over to the case where
the protocol is modified as follows. The prover authenticates himself to the verifier by
proving an OR statement: Either he knows the trapdoor of the TDP, or he knows the
trapdoor of the commitment. In this case, a single matrix A can be used for the con-
struction of both the TDP (based on the LWE problem), and the trapdoor commitment
(based on the SIS problem). The modification reduces the storage requirement for public
and private keys.
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edge. Journal of Computer and System Sciences (JCSS), 37(2):156–189, 1988.

[BCK98] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. A Modular Approach to the Design and
Analysis of Authentication and Key Exchange Protocols (Extended Abstract). In Proceedings
of the 30th Annual ACM Symposium on Theory of Computing (STOC ’98 ), pages 419–428,
Dallas, Texas, USA, 1998. ACM.

[BD91] Thomas Beth and Yvo Desmedt. Identification Tokens — or: Solving The Chess Grand-
master Problem. In Advances in Cryptology—CRYPTO ’90, pages 169–176, Santa Barbara,
California, USA, 1991. Springer-Verlag.

[BDB92] M. Burmester, Y. Desmedt, and T. Beth. Efficient Zero-Knowledge Identification Schemes
for Smart Cards. The Computer Journal, 35(1):21–29, 1992.

[Bea96] Donald Beaver. Adaptive Zero Knowledge and Computational Equivocation. In Proceedings
of the 28th Annual ACM Symposium on Theory of Computing (STOC ’96 ), pages 629–638,
Philadelphia, Pennsylvania, USA, 1996. ACM.

[Bet88] Thomas Beth. Efficient Zero-Knowledge Identification Scheme for Smart Cards. In Advances
in Cryptology—EUROCRYPT ’88, pages 77–84, Davos, Switzerland, 1988. Springer-Verlag.

[BFGM01] Mihir Bellare, Marc Fischlin, Shafi Goldwasser, and Silvio Micali. Identification Protocols
Secure against Reset Attacks. In Advances in Cryptology—EUROCRYPT 2001, pages 495–
511. Springer-Verlag, 2001.

[BG93] Mihir Bellare and Oded Goldreich. On Defining Proofs of Knowledge. In Advances in
Cryptology—CRYPTO ’92, pages 390–420, Santa Barbara, California, USA, 1993. Springer-
Verlag.

[BLP08] Daniel J. Bernstein, Tanja Lange, and Christiane Peters. Attacking and Defending the
McEliece Cryptosystem. In Proceedings of the 2nd International Workshop on Post-Quantum
Cryptography (PQCrypto 2008 ), pages 31–46, Cincinnati, Ohaio, USA, 2008. Springer-Verlag.

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé. Classical
Hardness of Learning with Errors. In Proceedings of the 45th Annual ACM Symposium on
Theory of Computing (STOC ’13 ), pages 575–584, Palo Alto, California, USA, 2013. ACM.
Full version is available at http://arxiv.org/abs/1306.0281.

[BM91] Ernest F. Brickell and Kevin S. McCurley. An Interactive Identification Scheme Based
on Discrete Logarithms and Factoring (Extended Abstract). In Advances in Cryptology—
EUROCRYPT ’90, pages 63–71, Aarhus, Denmark, 1991. Springer-Verlag. See [BM92] for
the journal version.

[BM92] Ernest F. Brickell and Kevin S. McCurley. An Interactive Identification Scheme Based on
Discrete Logarithms and Factoring. Journal of Cryptology, 5(1):29–39, 1992. See [BM91] for
the conference version.

[BM10] Colin Boyd and Anish Mathuria. Protocols for Authentication and Key Establishment.
Springer-Verlag, 2010.

[BMO90] Mihir Bellare, Silvio Micali, and Rafail Ostrovsky. The (True) Complexity of Statistical Zero
Knowledge. In Proceedings of the 22nd Annual ACM Symposium on Theory of Computing
(STOC ’90 ), pages 494–502, Baltimore, Maryland, USA, 1990. ACM.

[BP02] Mihir Bellare and Adriana Palacio. GQ and Schnorr Identification Schemes: Proofs of Security
against Impersonation under Active and Concurrent Attacks. In Advances in Cryptology—
CRYPTO ’02, pages 162–177, Santa Barbara, California, USA, 2002. Springer-Verlag.

[BPR00] Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated Key Exchange Secure
against Dictionary Attacks. In Advances in Cryptology—EUROCRYPT ’00, pages 139–155,
Bruges, Belgium, 2000. Springer-Verlag.

[BR93] Mihir Bellare and Phillip Rogaway. Entity Authentication and Key Distribution. In Ad-
vances in Cryptology—CRYPTO ’93, pages 232–249, Santa Barbara, California, USA, 1993.
Springer-Verlag.

[BR95] Mihir Bellare and Phillip Rogaway. Provably Secure Session Key Distribution: The Three
Party Case. In Proceedings of the 27th Annual ACM Symposium on Theory of Computing
(STOC ’95 ), pages 57–66, Las Vegas, Nevada, USA, 1995. ACM.

[BR96] Mihir Bellare and Phillip Rogaway. The Exact Security of Digital Signatures—How to Sign
with RSA and Rabin. In Advances in Cryptology—EUROCRYPT ’96, volume 1070 of Lecture
Notes in Computer Science, pages 399–416. Springer Berlin / Heidelberg, 1996.

28

http://arxiv.org/abs/1306.0281


[Can01] Ran Canetti. Universally Composable Security: A New Paradigm for Cryptographic Protocols
(Extended Abstract). In Proceedings of the 42nd Annual IEEE Symposium on Foundations
of Computer Science (FOCS ’01 ), page 136, Washington, DC, USA, 2001. IEEE Computer
Society. See [Can05] for the full version.

[Can05] Ran Canetti. Universally Composable Security: A New Paradigm for Cryptographic Pro-
tocols. Cryptology ePrint Archive, Report 2000/067, 2005. Available from http://eprint.

iacr.org/2000/067. See [Can01] for the conference version.

[CBH05] Kim-Kwang Raymond Choo, Colin Boyd, and Yvonne Hitchcock. Examining
Indistinguishability-Based Proof Models for Key Establishment Protocols. In Advances in
Cryptology—ASIACRYPT ’05, pages 585–604, Chennai, India, 2005. Springer-Verlag.

[CD92] Lidong Chen and Ivan Damg̊ard. Security Bounds for Parallel Versions of Identification
Protocols (Extended Abstract). In Advances in Cryptology—EUROCRYPT ’92, pages 461–
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A Omitted Definitions & Lemmas

A.1 Trapdoor One-Way Permutations (TDP)

Informally, a trapdoor one-way permutation is a permutation having three properties:
(1) it is easy to compute, (2) it is hard to invert, and (3) there exists auxiliary information,
such that it is easy to invert the permutation if the auxiliary information is known. A
formal definition follows:

Definition 3 (Collection of Trapdoor One-Way Permutations). Let Πn be a set
of permutations, such that for any permutation πn ∈ Πn, we have dom(πn) ⊆ {0, 1}n.
A family of such sets Π = {Πn}n∈N is called a collection of trapdoor one-way permuta-
tions (TDP) if there exist two PPT algorithms GenP and Samp, and two deterministic
polynomial-time algorithms Eval and InvP, such that the following conditions hold:

1. Easy to generate: On input 1n, algorithm GenP picks a permutation πn ∈
Πn, and outputs the description of πn denoted desc(πn), as well as the associated
trapdoor tn. In order to avoid mentioning 1n explicitly in the input algorithms such
as Samp, Eval, and InvP, we assume that | desc(πn)| ≥ n.

2. Easy to sample the domain: On input desc(πn), algorithm Samp chooses an
element from dom(πn) ⊆ {0, 1}n.

3. Easy to evaluate: On input desc(πn) and x ∈ dom(πn), the output of the algo-
rithm Eval is πn(x). If the input is malformed, Eval returns a special symbol ⊥,
indicating failure.

4. Easy to invert with the trapdoor: On input desc(πn), tn, and y ∈ range(πn), the
algorithm InvP outputs πn

−1(y). Moreover, if y /∈ range(πn), then InvP(desc(πn), tn, y)
outputs a special symbol ⊥, indicating failure.

5. Hard to invert without the trapdoor: For any PPT algorithm A, for every
c ∈ N, and for all sufficiently large n, the advantage of A:

AdvInvert
A,Gen4

def
= Pr

[
A(desc(πn), y) = x

∣∣ (desc(πn), tn, x, y)← Gen4(1n)
]
, (12)

is less than n−c. The probability is taken over the random coins of A and Gen4,
where the latter is defined on 1n by the following experiment:

(desc(πn), tn)← GenP(1n), x← Samp(desc(πn)), y ← Samp(desc(πn), x)

OUTPUT (desc(πn), tn, x, y) . ©
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In this paper, we make use of the Rabin’s trapdoor one-way permutation [Rab81] for
counter-examples: Let m = pq be a secure RSA modulus of size n, and let QRm be the
set of quadratic residues modulo m. The Rabin’s TDP is defined as follows:

πn : QRm → QRm

x 7→ x2 (mod m) .

A.2 Statistical Distance

Let X and Y be two discrete random variables. The statistical distance of X and Y ,
denoted ∆(X ;Y ), is defined as:

∆(X ;Y )
def
=

1

2

∑
s

∣∣Pr[X = s]− Pr[Y = s]
∣∣ .

Like any notion of “distance,” the statistical distance satisfies the triangle inequality:

Fact 1 (Triangle Inequality). ∆(X ;Z) ≤ ∆(X ;Y ) + ∆(Y ;Z) for any three random
variables X, Y , and Z.

Let X = {Xn}n∈N and Y = {Yn}n∈N be two discrete distribution ensembles. We call

X and Y statistically indistinguishable or statistically close, denoted X
S
≈ Y, if there exists

a constant δ > 0, such that for all n ∈ N, we have ∆(Xn;Yn) ≤ 2−δn.
Define the joint support of two random variables as the union of their supports; i.e.,

[X,Y ] = [X] ∪ [Y ].
It is well-known that processing cannot increase the statistical distance. Below, we will

see two versions of this theorem. The first version only considers “bijective” procedures:

Lemma 4. Let X and Y be two random variables with joint support S, and let g : S → S
be a deterministic bijection. Then, ∆(g(X) ; g(Y )) = ∆(X ;Y ).

Proof. Since g is injective, s′ = g−1(s) is defined for any s ∈ S. Moreover, because g is
surjective, g(s′) ∈ S is equivalent to s′ ∈ S. Therefore:

∆(g(X) ; g(Y )) =
1

2

∑
s∈S
|Pr[g(X) = s]− Pr[g(Y ) = s]|

=
1

2

∑
s∈S

∣∣Pr[X = g−1(s)]− Pr[Y = g−1(s)]
∣∣

=
1

2

∑
g(s′)∈S

∣∣Pr[X = s′]− Pr[Y = s′]
∣∣

=
1

2

∑
s′∈S

∣∣Pr[X = s′]− Pr[Y = s′]
∣∣ = ∆(X ;Y ) . �

The following fact is a generalization of Lemma 4, where g is no longer limited to
deterministic bijections. The fact is formally stated and proven in, say [MG02, p. 159]:

Fact 2. Let X and Y be two random variables with joint support S, and let g be a possibly
randomized function defined over S. Then, ∆(g(X) ; g(Y )) ≤ ∆(X ;Y ).

Noting that the statistical distance is zero for identically distributed random variables,
the following corollary is immediate.
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Corollary 1. If X and Y are identically distributed with joint support S, then f(X) and
f(Y ) are identically distributed, for any (possibly randomized) function f defined over S.

Here’s another useful fact, adapted from Fact 3.1.14 in [Vad99, p. 39]. There’s a typo
in the statement of Fact 3.1.14 of [Vad99], but its proof gives the correct version:

Fact 3. Let X0 and X1 be independent, Y0, and Y1 be independent. Then ∆((X0, X1) ; (Y0, Y1)) ≤
∆(X0 ;Y0) + ∆(X1 ;Y1).

Lemma 5. Let X and Y be two discrete random variables, and let E and E′ be events
defined over the probability spaces underlying X and Y , respectively. Assume that we have
|Pr[E]− Pr[E′]| ≤ υ ∈ [0, 1), and the following two conditions hold:

1. X | E ∼ Y | E′ if Pr[E] 6= 0 and Pr[E′] 6= 0; and

2. X | E ∼ Y | E′ if Pr[E] 6= 0 and Pr[E′] 6= 0.

Then ∆(X ;Y ) ≤ υ, irrespective of the values of Pr[E] and Pr[E′].

Proof. Let us first consider the special cases, i.e., Pr[E] ∈ {0, 1} or Pr[E′] ∈ {0, 1}.
Notice that by symmetry, we can examine only the case where Pr[E′] = 0; the lemma for

other cases follow similarly. Let e
def
= Pr[E]. From |Pr[E]− Pr[E′]| ≤ υ ∈ [0, 1), we get

e ≤ υ < 1. Therefore, Pr[E] = 1 − e ≥ 1 − υ > 0 and Pr[E′] = 1, and it follows from
condition 2 that X | E ∼ Y | E′ ≡ Y . Let S be the joint support of X and Y . Applying
the law of total probability, for any s ∈ S we have:

Pr[X = s] = Pr[E] Pr[X = s | E] + Pr[E] Pr[X = s | E]

= ePr[X = s | E] + (1− e) Pr[Y = s | E′]
= Pr[Y = s] + e (Pr[X = s | E]− Pr[Y = s]) .

Therefore, |Pr[X = s]− Pr[Y = s]| = e |Pr[X = s | E]− Pr[Y = s]|, and:

∆(X ;Y ) =
1

2

∑
s∈S
|Pr[X = s]− Pr[Y = s]| = e

2

∑
s∈S

∣∣Pr[X = s | E]− Pr[Y = s]
∣∣

≤ e

2

(∑
s∈S

Pr[X = s | E] +
∑
s∈S

Pr[Y = s]
)

=
e

2
· 2 = e ≤ υ .

We now pertain to the general case, where Pr[E] /∈ {0, 1} and Pr[E′] /∈ {0, 1}. Let

δ
def
= Pr[E] − Pr[E′], and therefore |δ| ≤ υ. Notice that we have Pr[E′] − Pr[E] = δ. By

assumption, for any s ∈ S,

Pr[X = s|E] = Pr[Y = s|E′] , (13)

Pr[X = s|E] = Pr[Y = s|E′] . (14)

Multiplying both sides of Equations (13) and (14) by Pr[E] = Pr[E′] + δ and Pr[E] =
Pr[E′]− δ respectively, we have:

Pr[X = s, E] = Pr[Y = s, E′] + δ · Pr[Y = s|E′] , (15)

Pr[X = s,E] = Pr[Y = s,E′]− δ · Pr[Y = s|E′] . (16)
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Adding both sides of Equations (15) and (16), and using the law of total probability, we
obtain Pr[X = s] = Pr[Y = s] + δ ·

(
Pr[Y = s|E′]− Pr[Y = s|E′]). Therefore,

∆(X ;Y ) =
1

2

∑
s∈S
|Pr[X = s]− Pr[Y = s]| = |δ|

2

∑
s∈S

∣∣Pr[Y = s|E′]− Pr[Y = s|E′]
∣∣

≤ |δ|
2

(∑
s∈S

Pr[Y = s|E′] +
∑
s∈S

Pr[Y = s|E′]
)

=
|δ|
2
· 2 = |δ| ≤ υ . �

A.3 Commitments

A commitment scheme is a protocol between two entities, the sender (S) and the
receiver (R). The protocol consists of two phases: The commitment phase, and the
reveal phase. Informally, it is required that: (1) S and R accept at the end of both
phases; (2) in the commitment phase, R learns nothing about the value S committed to,
and (3) S cannot change this value in the reveal phase.

In this paper, we are only interested in commitments with non-interactive commitment
and reveal phases. That is, S sends a single message in the commitment phase, and a
single message in the reveal phase, but R does not send any messages during the whole
protocol.

For notational simplicity, we assume that the commitment is performed on bit strings.
Let Comn : {0, 1}n × {0, 1}`(n) → {0, 1}m(n) denote an efficient and deterministic algo-
rithm defined, where `(n) and m(n) are polynomial in n.

For any n ∈ N, let the description of Comn be generated by a PPT algorithm GenC.
That is, desc(Comn) ← GenC(1n). In order to avoid mentioning 1n explicitly in the
input other algorithms, we assume that |desc(Comn)| ≥ n. In general, the sender and the
receiver will agree on desc(Comn) prior to the main protocol, perhaps during an initial
phase or via a trusted setup.

We also assume that desc(Comn) includes the description of some random variable
Rnd`(n) over {0, 1}`(n). If we only specify the first input to Comn, the second input will
be chosen according to Rnd`(n). That is, given x ∈ {0, 1}n, we commit to x by first
picking r ← Rnd`(n), and then computing Comn(x ; r). Let Comn(x) denote the random
variable induced by this process.

Definition 4 (Non-interactive Statistically-Hiding Commitments). A PPT al-
gorithm GenC is called a generator for a non-interactive statistically hiding (and compu-
tationally binding) commitment scheme, if the following conditions hold:

1. Computational Binding: No efficient algorithm can decommit to a value it did
not commit to. Specifically, for any PPT algorithm A, any c ∈ N, and all sufficiently
large n:

AdvBinding
A,GenC(n)

def
=

Pr

 Comn(x ; r) = Comn(x′ ; r′) ,
and x 6= x′, and x, x′ ∈ {0, 1}n ,
and r, r′ ∈ {0, 1}`(n)

∣∣∣∣∣∣ desc(Comn)← GenC(1n) ,
(x, x′, r, r′)← A(desc(Comn))

 ,

is less than n−c, where the probability is taken over the coin tosses of A and GenC.

2. Statistical Hiding: Commitments to values of the same length n are statistically
indistinguishable. That is, there exists a constant δ > 0, such that for all n ∈ N,
any desc(Comn) ∈ [GenC(1n)], and all x, x′ ∈ {0, 1}n:

∆
(
Comn(x) ;Comn(x′)

)
≤ 2−δn . (17)
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We call Comn a non-interactive statistically-hiding commitment scheme if desc(Comn) ∈
[GenC(1n)]. ©

Remark 6. Note that both of the binding and hiding properties are defined in a strong
sense. A weaker binding property can be obtained by askingA to output, given desc(Comn)
and some (x, r) ∈ {0, 1}n×{0, 1}`(n), a pair (x′, r′) ∈ {0, 1}n×{0, 1}`(n), such that x′ 6= x,
and Comn(x′, r′) = Comn(x, r). This definition is weaker since A must satisfy a harder
condition: (x, r) is fixed a priori, and A is not free to choose it.

A weaker hiding property can be obtained by requiring that an overwhelming fraction
(rather than all) of the support of GenC(1n) satisfy Equation 17. This is equivalent to
requiring that Equation 17 holds over the random coins of GenC(1n) with overwhelming
probability.

In this paper, we did not adopt the weaker definitions of hiding and binding for
two reasons: (1) The well-known instances of the statistical-hiding commitments, such as
[DPP96, HM96, KTX08], satisfy the strong variation, and (2) proving theorems are easier
with the strong definition. C

A.4 Zero Knowledge

Informally, a protocol 〈V, P 〉 is called zero knowledge (ZK) for P (the prover), if at
the end of the execution, party V (the verifier) does not learn anything about the private
input of P , which she could not learn by herself before the start of the protocol. This is
the case even if the verifier deviates from the protocol arbitrarily. We denote by V ∗ the
party which may or may not follow the verifier’s program.

In this paper, we are only interested in cryptographic protocols, where the strategy
of honest parties can be implemented in probabilistic polynomial time, while possibly
giving the honest parties an extra (secret) input. In the context of ZK protocols, only
the honest prover is given this type of input. This paper uses the statistical variation of
ZK protocols, where the protocol remains ZK even if the cheating party V ∗ is infinitely
powerful. Moreover, we focus on the case where the simulator is black-box. Note, however,
that while V ∗ might be unbounded, we will assume that all prover strategies (even the
cheating ones) are PPT.

Before giving the actual definition of statistical zero-knowledge protocols, let us define
some notation. It is a good idea to review the notation introduced in Section 2.1 as well.
Define the view of a party participating in a protocol as whatever it sees during the
protocol, including its input, randomness, and received messages. For instance, in the
protocol 〈V ∗r , P (y)〉(x), the view of V ∗r is (x, r,m1, . . . ,mk), where (m1, . . . ,mk) is the
sequence of messages V ∗r receives from P . We denote this view by the random variable

View
P (y)
V ∗r

(x). Note that the randomness of V ∗ is fixed here. Let View
P (y)
V ∗ (x) denote the

random variable describing View
P (y)
V ∗r

(x) when r is chosen uniformly at random.
In addition, let S be the simulator, which is a PPT oracle machine; i.e., S can have

black-box access to an oracle, which in this case is the machine V ∗. This is denoted by
SV
∗
(x), and it means that S can freely reset/rewind V ∗, and load any desired randomness

onto V ∗’s random tape. Since V ∗ may need an a priori unbounded number of random
coins, we will assume that S has two separate random tapes, one of which is fed directly
into V ∗, while the other is consumed by S itself (cf. [BMO90, GK96]).

Definition 5 (Statistical Zero Knowledge). The protocol 〈V, P (y)〉(x) is (black-box )
statistical zero-knowledge (SZK) for P on some relation R = {(x, y)} if there exists a PPT
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algorithm S (the simulator) and a constant δ > 0, such that for all pairs (x, y) ∈ R and
any interactive function V ∗, we have

∆
(
View

P (y)
V ∗ (x) ;SV

∗
(x)
)
≤ 2−δ|x| ,

where the probabilities are taken over the internal coin tosses of P , V ∗, and S. ©

Notice that Definition 5 is stronger than usually defined in the literature: (1) It
quantifies over all verifier strategies, rather than merely over PPT verifiers. Therefore,
the verifier may use an infinitely powerful strategy, even an uncomputable one. For this
reason, we used the term “interactive function” instead of “interactive Turing machine”
(see [BG93, Section 2]). (2) It allows the verifier strategy to depend on the common
input x. (3) The definition is not asymptotic: statistical indistinguishability is required
for any x, rather than for “sufficiently large” x. (4) The statistical distance is taken to
be exponentially small in |x|, rather than only negligible in it.

Similar to [GO94, Theorem 3.2], it can be shown that the class of interactive proofs
satisfying our black-box SZK is a subclass of those satisfying SZK with auxiliary input.
The proof uses the analogy between the definition of black-box zero-knowledge in [GO94,
p. 8] and Definition 5, where V ∗ can depend arbitrarily on x, and therefore any auxiliary
input can be incorporated into its code.

A.5 Lattices

Consider n linearly-independent vectors b1, . . . ,bn in Rn. The set of all integral
linear combinations of these vectors, i.e., the set

{∑n
i=1 xibi | xi ∈ Z

}
is called a lattice.

b1, . . . ,bn are the base vectors of the lattice, and the matrix B = [b1 | · · · | bn] is the

lattice basis. The lattice generated by the basis B is noted by Λ
def
= Λ(B)

def
=
{
Bx | x ∈ Zn

}
.

For B ∈ Rn×n and i ∈ {1, . . . , n}, define the ith minima λi
(
Λ(B)

)
as the radius

of the smallest n-dimensional ball including i independent lattice vectors. Note that
0 < λ1 ≤ λ2 ≤ · · · ≤ λn < +∞.

Several problems are conjectured to be hard on lattices, among which we mention a
few. Let B ∈ Rn×n be a basis of rank n:

• Shortest Vector Problem (SVP): Find a non-zero shortest vector in the lattice;
i.e., a vector of length λ1

(
Λ(B)

)
.

The approximation version SVPγ asks for finding a non-zero lattice vector within
the γ factor of the shortest vector; that is, a non-zero vector of Λ whose length is
at most γλ1

(
Λ(B)

)
.

The gap version GapSVPγ is a promise problem [ESY84]: Output “YES” if λ1 ≤ 1,
and output “NO” if λ1 > γ.

• Closest Vector Problem (CVP): Given a target point t ∈ Rn, find a lattice
point u ∈ Λ(B) such that ‖u− t‖ is minimized.

The approximation version CVPγ asks for finding a lattice point u ∈ Λ(B) within
γ distance of the nearest lattice point to t. In other words, find u ∈ Λ(B) such that
for all v ∈ Λ(B) we have ‖u− t‖ ≤ γ‖v − t‖.
The gap version GapCVPγ is a promise problem [ESY84]: Output “YES” if there
exists a lattice point u whose distance to t is at most 1. Output “NO” if the distance
of t to any lattice point is more than γ.
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• Shortest Independent Vector Problem (SIVP): Find n linearly independent
lattice vectors v1, . . . ,vn, such that the quantity maxi ‖vi‖ is minimized.

The approximation version SIVPγ asks for finding a set of n linearly independent
lattice vectors {v1, . . . ,vn}, such that maxi ‖vi‖ ≤ γλn

(
Λ(B)

)
.

The complexity of CVP, SVP, SIVP, and their corresponding approximation and gap
versions are related to each other via reductions. For more information, see [MG02, Mic08]
and [vdP11, Section 3.1].

It is proven that lattice problems such as CVP or SVP, are NP-hard. Therefore, the
best we can hope for is to solve the approximation versions of these problems. However,
even solving these problems with an approximation factor of nO(1/ log logn) is NP-hard.
On the other hand, approximation to within a factor of

√
n/ log n is not NP-hard, unless

the polynomial hierarchy collapses. In general, cryptographic constructs reduce to lattice
problems with a polynomial approximation factor (see [MR09] and the references thereof).

Note that all problems described above are worst-case problems. In cryptography, we
need to rely on the hardness of the average case problems. For instance, a cryptosystem
must be hard to break when the keys are chosen randomly. Below, we will see two such
problems: SIS and LWE.

A class of lattices, with the property that qZn ⊆ L ⊆ Zn for some integer q, is called
a q-ary lattice. This class has interesting applications in cryptography. One special sub-
class of q-ary lattices—used in this paper—is described next. Let n, m, and q be positive
integers. For a matrix A ∈ Zn×mq , define the following set of points:

Λ⊥q (A)
def
=
{

z ∈ Zm | Az ≡ 0 (mod q)
}
. (18)

It can be shown that any discrete additive subgroup of any finite dimensional vector space
over R is a lattice (see for example [IR90, page 327]). Therefore, Λ⊥q (A) denotes an
m-dimensional lattice, since it is a discrete additive subgroup of Rm×m. The following
average-case problem is defined on this class of lattices:

Short Integer Solution (SIS): For a random matrix A, find a “short” non-zero
lattice point in the lattice defined by Equation 18. More specifically, define the problem
SISpq,m,n,β as follows: Given a random matrix A←R Zn×mq , find a vector z ∈ Λ⊥q (A)\{0},
such that ‖z‖p ≤ β.

We also define the collision-finding SISpq,m,n,β problem as follows: Given a random

matrix A←R Zn×mq , find two distinct vectors z1, z2 ∈ Zm, such that Az1 ≡ Az2 (mod q)
and ‖z1‖p, ‖z2‖p ≤ β.

The following relations hold between the SIS and collision-finding SIS problems:

• If collision-finding SISpq,m,n,β is hard, then SISpq,m,n,β is hard. Assume, to the

contrary, that SISpq,m,n,β is easy. Then we find a vector z1 ∈ Λ⊥q (A) \ {0}, such
that ‖z1‖p ≤ β. Then, the vectors z1 and z2 = 0 constitute an answer for the
collision-finding SISpq,m,n,β, contradicting the premise.

• If SISpq,m,n,β is hard, then collision-finding SISpq,m,n,β/2 is hard. Assume, to

the contrary, that collision-finding SISpq,m,n,β is easy. Then we find two distinct
z1, z2 ∈ Zm, such that Az1 ≡ Az2 (mod q) and ‖z1‖p, ‖z2‖p ≤ β/2. Define z as
z1− z2. Notice that z ∈ Λ⊥q (A) \ {0}. Applying the triangle inequality, we also get
‖z‖p ≤ ‖z1‖p + ‖z2‖p ≤ β, contradicting the premise.

40



Fact 4. SIS2
q,m,n,β reduces to SIS∞q,m,n,β/

√
m (and the same reduction holds for the re-

spective collision-finding problems). This is because for any A ∈ Zn×mq and any vector

z ∈ Λ⊥q (A) \ {0}, if ‖z‖∞ ≤ β/
√
m , then ‖z‖2 ≤ β.

Another average-case lattice problem is called “learning with errors” or LWE. Specif-
ically, for the security parameter n, let integers m = m(n) and q = q(n) be polynomial in
n, and let χ be a probability distribution on Zq. The problem LWEq,m,n,χ is defined as
follows: Given a random matrix A ∈ Zn×mq and a linear system b = AT s + e (mod q),
find the secret vector s, where the entries of the vector e are i.i.d. samples from χ. Regev
[Reg05] showed that if χ is a discrete Gaussian distribution with with standard deviation
roughly αq ≥ 2

√
n , then there is an efficient quantum reduction from solving worst-case

lattice problems with approximation factor Õ(n/α), to solving LWE. This result was later
generalized to classical (PPT) reductions [Pei09, BLP+13].
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