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Abstract. We present RASP, a new protocol for privacy-preserving range search
and sort queries on encrypted data in the face of an untrusted data store. The con-
tribution of RASP over related work is twofold: first, RASP improves privacy
guarantees by ensuring that after a query for range [a,b] any new record added to
the data store is indistinguishable from random, even if the new record falls within
range [a,b]. Second, RASP is highly practical, abstaining from expensive asym-
metric cryptography and bilinear pairings. Instead, RASP only relies on hash and
block cipher operations. The main idea of RASP is to build upon a new update-
oblivious bucket-based data structure. We allow for data to be added to buckets
without leaking into which bucket it has been added. As long as a bucket is not
explicitly queried, the data store does not learn anything about bucket contents.
Furthermore, no information is leaked about data additions following a query.
Besides formally proving RASP’s privacy, we also present a practical evaluation
of RASP using Amazon Dynamo.

1 Introduction
Outsourcing data to cloud stores has become a popular strategy for businesses, as cloud
properties like scalability and flexibility allow for significant costs savings. However,
cloud infrastructures cannot always be trusted, due to, for example, hacker and insider
attacks [10, 18]. While encryption of outsourced data protects against many privacy
threats in cloud scenarios, it renders subsequent operations on data (i.e., data analy-
sis) impractical and inefficient. Although fully homomorphic encryption (FHE) offers
an elegant solution to perform operations and data analysis on encrypted data, today’s
techniques are still impractical and their use will negate any cloud cost advantages.

In this paper, we address the specific problem of performing practical range search
and sort queries on encrypted outsourced data in a privacy-preserving fashion. We en-
vision a generic scenario, where a set of users upload a large number of encrypted data
records to an untrusted cloud store. From time to time, a surveyor wants to perform
data analysis operations. Specifically, the surveyor queries for all the records in a cer-
tain range of categories. Alternatively, the surveyor may query for the top m sorted
records, i.e., the m smallest records following some order.

Although the individual data records are encrypted, an untrusted cloud could still
infer information about them by performing multiple range and sort operations, in-
cluding the record access patterns, and correlating them. Consequently, also the opera-
tions (“queries”) need to be privacy protected. The crucial challenge here is practicality,



i.e., high efficiency in terms of bandwidth, user/surveyor/cloud computations and mem-
ory requirements. Besides FHE, another technique that could apply here is Oblivious
RAM [9]. With n the total number of outsourced records in the cloud, recent research
has lowered ORAM worst-case communication complexity down to poly-logarithmic
in n [16, 17]. Still, for large n (i.e. n = 230 records or more), this overhead becomes
overly expensive. Finally, techniques such as Order Preserving Encryption (OPE) [5]
are highly efficient, but provide weaker privacy guarantees.

We present RASP (“Range And Sort Privacy”), an original scheme for privacy-
preserving range and sort queries on encrypted data. At the core of RASP, we introduce
a new privacy-preserving bucket data structure LL similar to bucket sort. Each individ-
ual bucket in LL can grow dynamically in size, and we will use the buckets to represent
the categories that (encrypted) records can belong to. Similar to standard bucket sort,
we assume that the number D of possible different buckets for records remains small
compared to n (D≪ n). We call our data type LL, which is of independent interest,
update-oblivious, as it hides into which bucket a new record is added. RASP uses LL
for range search, where it hides bucket contents until the surveyor explicitly queries
for them. RASP also naturally extends to support m-sort queries. Targeting efficiency,
RASP achieves slightly weaker privacy properties than, e.g., ORAM, but stronger pri-
vacy than related work on range search [6, 15]. Moreover, RASP only relies on hash
computations and symmetric encryption, outperforming related work based on asym-
metric cryptography and expensive bilinear pairings.

The major contributions of this paper are:

– RASP, a protocol that allows range search and sort queries on encrypted data in the
cloud. We formally prove that the cloud cannot learn any information about added
records until the surveyor queries them. Also, details about the queries are hidden,
and only the overlap between queries is leaked.

– LL, a dynamic data structure that provably hides any information about a newly
added data record until this data record is explicitly read.

– RASP is efficient and scales well. The user’s and surveyor’s, computational and
communication complexities are constantO(1) in the total number of records n. In
contrast to related work, RASP seamlessly integrates multiple different users that
do not trust each other.

– We implement and evaluate RASP in Amazon’s DynamoDB cloud.

2 Problem Statement

Background: To motivate our work, we use an example scenario throughout this paper.
Assume a set of users U that continuously upload data records to a cloud store. Each
record comprises: (1.) a category I of some domain D with an order relation, e.g.,
D = {1, ... ,D} ⊂ N and “≤”, and (2.) some payload data M . For the sake of range
search and sort queries in this paper, M is not particularly interesting, and we focus
only on indices I . After some time, users have uploaded a total of n records to the
cloud, where n can become very large, while D is comparatively small, e.g., n= 230

and D=1024. Periodically, a surveyor queries the uploaded records for those records
whose indices match a certain range in D. The set of records that match this range has



size m. Alternatively, the surveyor wants to retrieve the first m records according to
their sorted indices.

Possible Applications: One can imagine various real world application scenarios that
fall within the above general setup. For example, imagine a set of banks (“users”) that
upload financial transactions, i.e., the amount of each transaction together with details
such as sender, receiver, date etc. Eventually, to detect fraudulent behavior and money
laundering, the police queries for all transactions within some suspicious range or them
highest transactions of a certain time period. Alternatively, imagine a set of physicians
that upload patient records, comprising the patient’s personal information and, say, the
patient’s blood pressure. At some point, for further analysis, a health insurance wants
to retrieve details about all patients with blood pressure in a critical range or the top m
patients with high blood pressure. In both application scenarios, the stored data is sen-
sitive, and the underlying cloud store should not learn details about either stored data or
queries performed. This implies encrypting uploaded data by the users and “oblivious
queries” by the surveyor.

2.1 Range and Sort Queries

We now formalize privacy-preserving m-Range and m-Sort schemes. We start by in-
troducing the functionality that each scheme should support.

Definition 1 (m-Range Search and m-Sort Scheme Π). Let I,0≤ I≤D−1, denote
a category within domain D and M a plaintext (“payload”). A m-Range and m-Sort
search scheme Π comprises the following algorithms.

– KeyGen(s): This algorithm uses security parameter s to generate secret key SK
and the set of user keys {Seedi}1≤i≤|U|.

– Encrypt(I,M,Seedi): encrypts M at category I using user key Seedi. The algo-
rithm’s output is ciphertext C.

– Decrypt(C,SK,i): decrypts ciphertext C, such that Decrypt(Encrypt(I,M,Seedi),
SK)=M , where SK and Seedi were generated from KeyGen(s).

– PrepareRangeQuery(a,b,SK): uses secret key SK and a pair a,b∈N with a≤ b to
generate a range query token T R.

– RangeQuery(T R,{C1,...,Cn}): using range search token T R=PrepareRangeQuery(a,
b,SK) and a set of ciphertexts Ci, a response SR = {Ci|Ci = Encrypt(Ii,Mi,
Seedj)∀j,1≤j≤|U| and I∈ [a,b]} is computed.

– PrepareSortQuery(m,SK): with secret key SK and length m,1≤m≤n, outputs a
sort query token T S .

– SortQuery(T S ,{C1,...,Cn}): using sort query token T S and ciphertexts Ci, out-
puts a sequence SS =< C ′

1, C
′
2, ... , C

′
m > as response. Here, ciphertext C ′

i =
Encrypt(Ii,Mi,Seedi) denotes the ciphertext on the ith position according to the
order of the underlying indices I . More formally: (1.) for C ′

1: there is no Cj,1≤j≤n

such that Ij<I1, (2.) for any pair C ′
i,C

′
i+1: either Ii=Ii+1, or Ii<Ii+1 and there

are a total i ciphertexts Cj,1≤j≤i with Ij<Ii+1, (3.) for any pair C ′
i,C

′
j :C

′
i ̸=C ′

j .



2.2 Privacy

We will now present RASP’s notion of privacy. Informally, our goal is to leak as little
information as possible about the outsourced data records and the queries to the cloud.
While the IND-CPA encryption of records already provides a viable first step, the chal-
lenge is to restrict leakage of query access patterns. For example, the cloud should
not learn any additional information about records that are not part of a query result
– besides that these records are obviously not in the queried range or among the top
m records. Typically, ORAM based solutions would offer strong protection. However,
focusing on efficiency, we dismiss ORAM, because even recent research resulting in
poly-logarithmic worst-case communication complexity [16, 17] quickly become ex-
pensive with large n such as n=230.

RASP focuses on a slightly weaker notion of privacy than ORAM: intuitively, the
cloud (now called adversaryA) should not learn any details about a new recordR that is
added to the store, i.e., A should not learn anything about R’s category I (and payload
M ). Only as soon as the surveyor executes a range search or sort query, A will learn
whether R matches this query or not. Our goal is that any two records R,R′ that do not
match a query will remain computationally indistinguishable for A. We now formalize
our privacy goal. Targeting a simulation-based privacy definition, the idea is that, given
a well specified privacy-leakage, a polynomial-time simulator can generate a transcript
of RASP which is computationally indistinguishable from the output of the actual pro-
tocol. If this is true, then A cannot learn any information beyond the defined leakage.

We allow A to only learn: (1.) the operation pattern, i.e., which operation (range or
sort) is performed, (2.) the data access pattern, i.e., which records are accessed during
an operation, and (3.) the enumeration pattern, i.e., which records are returned.

We focus on key-value “(k,v)” based systems such as Amazon Dynamo DB or S3
as underlying store/database platform in this paper, so we assume that each record is
uniquely addressable by an address k in the store.

Definition 2 (Operation). For m-Range and m-Sort scheme Π , operation op is de-
fined as either (Encrypt,I,M,Seedi), (RangeQuery,a,b,SK) or (SortQuery,m,SK).
For ease of exposition, we introduce the following functions on operations:

– Type : op→{Encrypt,RangeQuery,SortQuery} which extracts the operation type
from an operation.

– Execute : op→ (K=(k1,...,kt),C=(c1,...,ct)) which executes op and returns the
result. The set K contains the sequence of addresses accessed on the cloud, and C
contains the data, i.e., records at those addresses after the operation.

– Categories : (c1,...,ct)→{I1,...,It}⊂Dt which extracts the categories Ii out of a
sequence of records ci.

Definition 3 (History). A q-query history is the sequence of operationsH=(o1,...,oq),
where oi=(Encrypt,I,M), oi=(RangeQuery,a,b) or oi=(SortQuery,m).

Definition 4 (Operation Pattern). The operation pattern induced by a q-query history
H is the sequence β(H)=(Type(o1),...,Type(oq)).



Definition 5 (Category Pattern). Let π be a random permutation of integers {1,...,D}.
The category pattern of a q-query history is the following q-length sequence σ(H):
first, consider the case that Type(oi) = RangeQuery or Type(oi) = SortQuery. Let
Execute(oi) = ((k1, ... ,kt),(c1, ... ,ct)) and Categories(c1, ... ,ct) = {I1, ... ,It}. Then,
σ(H)[i] is the unordered set of tuples {(π(I1),χ(I1)),...(π(It),χ(It))}, where χ(I)=
(e1,...,em) returns the indices such that ∀j < i : oej =(Encrypt,Ij ,Mj). If Type(oi)=
Encrypt, then σ(H)[i] is the empty set.

That is, σ(H) reveals which previous Encrypt operations are being queried as part of
the current range search or sort query operation i and the pattern of categories that are
accessed for that operation. For any two range queries, σ(H) will tell which categories
they have in common. Due to random permutation π, σ(H) does not give any informa-
tion about the ordering of the categories beyond what can be inferred by the overlap.

Definition 6 (Sort Leakage). The sort leakage from a q-query historyH is the q-length
sequence γ(H) defined as follows: if oi is a sort query, i.e., Type(oi) = SortQuery
with Execute(oi) = ((k1, ... ,kt),(c1, ... , ct)) and Categories(c1, ... , ct) = {I1, ... , It},
then γ(H)[i] is the tuple (m,(π(1), ... ,π(t))). If Type(oi) = Encrypt or Type(oi) =
RangeSearch, then γ(H)[i] is ⊥.

This means that the sort leaks the first j categories, including their order, as well as the
number of records returned by the query.

Definition 7 (Trace). The trace induced by a q-query history H is the tuple τ(H) =
(σ(H),β(H),γ(H)).

Definition 8 (Privacy-Preserving). LetΠ be anm-Range Search andm−Sort Scheme
implementing Execute for operations Encrypt,RangeQuery,SortQuery and therewith
generating trace τ . Let s∈N be the security parameter, A be an adversary, and S be a
simulator. Consider the following two experiments:

RealΠA(s) SimΠ
A,S(s)

K←KeyGen(1s) for 1≤ i≤q
for 1≤ i≤q (stA,oi)←A(stA,(K1,C1),

(stA,oi)←A(stA,(K1,C1), ...,(Ki−1,Ci−1))
...,(Ki−1,Ci−1)) (Ki,Ci,stS)←S(stS ,τ(o1,...,oi))

(Ki,Ci)←Execute(oi) let K∗=(K1,...,Kq)
let K∗=(K1,...,Kq) let C∗=(C1,...,Cq)
let C∗=(C1,...,Cq) output v=(K∗,C∗) and stA
output v=(K∗,C∗) and stA

Scheme Π is privacy-preserving, iff for all PPT adversaries A, there exists a PPT sim-
ulator S, such that for all PPT distinguishers D,

|Pr[D(v,stA)=1:(v,stA)←RealΠA(s)]−
Pr[D(v,stA)=1:(v,stA)←SimΠ

A,S(s)]|≤negl(s).



Our definition captures an adaptive adversary which generates the history one oper-
ation at a time, seeing the results of the previous operations. This allows for an adversary
which changes his strategy depending on what the simulator has output after i<q oper-
ations. Consequently, the simulator calculates one step of the simulation at a time based
on a partial trace generated from an adaptive history.

Definition 8 is generic in that it allows us to bound the information leaked by any
protocol which uses a cloud data store. If there exists a simulator, given only the trace,
which can produce a sequence of “accesses” that is indistinguishable from a real exe-
cution of the protocol, then no information other than the trace can be leaked.
Discussion: Note that our privacy definition is stronger than “selective security” offered
by related work on range search [6, 15]. There, a query for a specific range [a,b] implies
that A from then on will be able to automatically determine whether records added in
future will also be within [a,b] or not. In contrast, our privacy definition guarantees that
even a record R∈ [a,b] added after the range query for [a,b] is indistinguishable from
random until [a,b] is queried again. We stress that our privacy notion is also stronger
than IND-OCPA [14], leaking only record-category relations that are explicitly queried.

3 Update-Oblivious Linked Lists

For its range and sort queries, RASP relies on a new kind of data type that we call
update-oblivious add-enumerate data type. Its purpose is to allow a Writer to add val-
ues to buckets (the categories). Also, a Reader can enumerate all values of a bucket. The
sole privacy goal is to hide from an adversary storing all data which bucket a new value
is added to by the Writer until this specific bucket is enumerated by the Reader. We
will now start by describing the operations and privacy properties that update-oblivious
add-enumerate data types support. Then, we will introduce an original data type LL, a
sequence of linked lists that supports update-oblivious operations, and we will prove its
privacy properties.

An add-enumerate data type comprises a sequence of D buckets, dynamic data
structures indexed by I,1≤I≤D. This data type supports adding values to the individ-
ual buckets and enumerating individual buckets, i.e., enumerating all values that have
been previously added to one of the buckets. Again, we assume a key-value based under-
lying store. Each “value” v added is uniquely addressable by an address k in the store.
More formally, an add-enumerate data type supports the following two algorithms:

– Add(I,v) : On input bucket I,1≤I≤D and a value v∈{0,1}∗, this algorithm adds
v to I and outputs an address k∈{0,1}∗. We call the pair (k,v) valid.

– Enumerate(I) : This algorithm returns the set {(k,v)|v∈I∧(k,v) is valid}.

3.1 Update-Oblivious Privacy

Again, we use a simulation-based privacy definition for update-oblivious data types.
Similarly to Definition 8,A can learn (1.) the operation pattern (which operation is per-
formed on the data type), (2.) the data access pattern (which data in the individual data
structures is accessed during an operation), and (3.) the enumeration pattern (which val-
ues are returned as part of an Enumerate). However, the enumeration pattern will not
reveal the indices of values enumerated never before. Being clear from the context, we



reuse the notions of histories and operations defined previously in the context of add-
enumerate data types, with a new definition of Trace to quantify information leakage.

Definition 9 (Operation). An operation op is either (Add,I,v) or (Enumerate,I,⊥).

Definition 10 (Enumeration Pattern). The enumeration pattern induced by a q-query
history H is q×q binary matrix σ(H) where for 1≤ i,j≤q the entry in the ith row and
jth column is 1, iff i≤j Type(oj)=Enumerate and Ii=Ij . Otherwise, this entry is 0.

If Type(oi) = Add, then the ith row of this matrix contains ones in the columns
corresponding to an enumerate that happens after this add. Therewith, the enumeration
pattern reveals which category an add corresponds to only after an enumerate occurs
for that same category. If the result of an add is never queried, i.e., no enumerate occurs
after for that category, then the entire row in the matrix will contain only zeroes, and
the category of the add is not leaked.

Definition 11 (Access Pattern). Let π be a random permutation of the integers {1,...,
D}. The access pattern of a q-query history is q-length sequence γ(H), such that, if oi
is an enumerate on category j, then γ(H)[i]=π(j). Otherwise, γ(H)[i]=0.

That is, access pattern γ will reveal when two enumerates are on the same category.
This is also revealed as part of the enumeration pattern, but we include this separate
notation for clarity.

Definition 12 (Trace). The trace induced by a q-query history H is the tuple τ(H)=
(σ(H),β(H),γ(H)).

Definition 13 (Adaptive update-oblivious). We define adaptive update-oblivious (“update-
oblivious”) privacy using the same generic simulation-based experiments as above
(Definition 8), but include the new Definition 12 of trace for this data structure.

3.2 The Data Type LL

We present a new add-enumerate data type LL which implements the sequence of D
buckets as linked lists on top of any key-value based store.

Overview: The main rationale of LL is that Reader and Writer synchronize their
access to the same bucket/linked list I using an array of flags. If the Writer wants to
update linked list I by adding a new value, he verifies whether the Reader has enumer-
ated I after the last add by checking the flag for this list. If the Reader has enumerated
I , then the Writer does not append a new value to I , but creates a new chain for I ,
adds the new value to this chain, and updates the flag. The Writer will continue adding
values to this new chain, until the Reader enumerates I again. Then, the Writer will
create another new chain etc. On the other hand, the Reader checks a flag to understand
whether the Writer has created a new chain for I , thereby knowing how many chains of
I contain values.

Details: Reader and Writer share a secret key κ. LL comprises a total of D linked
lists which are indexed by I,1 ≤ I ≤ D. In the underlying key-value store, the head
of linked list I , the start of the first chain of I , can be accessed using address hκ(I,1),
where h is a pseudo-random function, and “,” is an unambiguous pairing of inputs.



Algorithm 1: LL-Add(I,v,κ)
Input : Pair (I,v), secret

key κ, local sequences of next
list pointers Ψ=(ψ1,...,ψD)
and counters ΓWriter =(γWriter

1 ,
...,γWriter

D ),security parameter s
Output: Address

k, ciphertext e of new record
1 Eκ(∆) :=Get(hκ(“delta”))

and decrypt to ∆=(δ1,...,δD);
2 if δI =1 then
3 γWriter

I :=γWriter
I +1;

4 ψI :=hκ(I,γ
Writer
I );

5 δI :=0;
6 Put(hκ(“delta”),

Eκ(∆)=Eκ(δ1,...,δD));
7 end
8 k :=ψI ;

9 ψI
$←{0,1}s;

10 new Record e;
11 e.value:=Eκ(v); e.ψ :=Eκ(ψI);
12 Put(k,e);
13 return (k,e);

Algorithm 2: LL-Enumerate(I,κ)

Input : Category
I , secret key κ, local counters
Γ Reader =(γReader

1 ,...,γReader
D )

Output: Set
of ciphertexts S={ci|ci∈I}

1 S :=∅;
2 Eκ(∆) :=Get(hκ(“delta”))

and Decrypt to ∆=(δ1,...,δD);
3 for i :=1 to γReader

I −1 do
4 start :=hκ(I,i);
5 S :=S∪Retrieve(start,κ);
6 if δI =0 then
7 start :=hκ(I,γ

Reader
I );

8 S :=S∪Retrieve(start,κ);
9 δI :=1;

10 Put(hκ(“delta”),
Eκ(∆)=Eκ(δ1,...,δD));

11 γReader
I :=γReader

I +1;

12 return (S);

Writer and reader synchronize using an encrypted array of flags ∆ = (δ1,...,δD),
δi ∈ {0,1}. They can save and retrieve Eκ(∆), where E denotes encryption, in the
underlying key-value store using address hκ(“delta”). Initially, all flags δi are set to 0.

For each linked list I , the Writer stores a local counter γWriter
i . All counters are ini-

tialized to 1. The purpose of these counters is to keep track of the number of chains that
have been created per linked list. Each time the Writer starts a new chain for a linked
list I , he increases γWriter

I by one. Along the same lines, the Reader also keeps a local
sequence of counters γReader

i , initialized to 1. Each time the Reader sees that the flag for
a specific linked list I has been changed, i.e., the Writer has created a new chain for
I , the Reader will increase γReader

I by one. Moreover, the Writer locally stores for each
linked list I a next pointer ψI . This next pointer represents the address in the underlying
key-value store for the next value v to be added to linked list I . Initially, each ψI is set
to hκ(I,1), i.e., the start of the first chain of list I .

Add: In case the Writer wants to add a new value v to linked list I , he executes Al-
gorithm 1. First, he downloads and decrypts the δi. Note that we use the standard key-
value semantic Get and Put to access data in the underlying store. If δI = 1, then the
Reader has accessed list I since the last add, and the Writer creates a new chain for I .
The Writer increases counter γWriter

I , sets next pointer ψI to the start of the new chain
hκ(I,γ

Writer
I ), resets flag δI , and uploads a new encryption of all flags ∆. In any case,

the Writer uploads an encrypted version of v using the current address that ψI points at.
Together with the encryption of v, the Writer also uploads a randomly chosen encrypted



Algorithm 3: LL-Retrieve(ψ,κ)
Input : Chain start pointer ψ, secret key κ
Output: Set of ciphertexts S

1 S :=∅;
2 Record e :=Get(ψ);
3 while e ̸=⊥ do
4 S :=S∪e.value;
5 ψ :=Dκ(e.ψ);
6 e :=Get(ψ);

7 return S;

new next pointer ψI . For convenience, we call the combination of an encrypted value v
and encrypted next pointer ψI a record.

Enumerate: In case the Reader wants to retrieve all (encrypted) values of linked list I ,
he executes Algorithm 2. First, the Reader downloads and decrypts the δi. If δI =1, then
the Writer has not updated I since the last enumerate. Consequently, the Reader will
retrieve all values of all the current (γReader

I −1) chains of list I . Otherwise, if δI = 1,
then the Writer has started a new chain for I since the last enumerate. So, the Reader
will retrieve all records of the previous (γReader

I −1) chains of I , then retrieve all records
of chain γReader

I , set flag δI , encrypt and upload all flags ∆, and finally increase counter
γReader
I . Note that the Reader retrieves all values of a chain by using Algorithm 3. There,
D is the decryption algorithm for encryptions E. Using ∆ for synchronization between
Writer and Reader, the Writer will avoid putting a new value into the underlying store
using an address that the Reader has previously already queried for as part of an enu-
merate. In this case, the Writer will start a new chain and notify the Reader that a new
chain is available.

3.3 Privacy Analysis
In accordance with Curtmola et al. [8], we introduce PCPA-secure encryption as an
encryption producing ciphertexts that are indistinguishable from random. This can be
implemented, e.g., by a PRP (like AES) in CBC- or Counter-mode.

Theorem 1. If h is a pseudo-random function, and E is a PCPA-secure encryption,
then LL is update-oblivious.
Due to space constraints, we move the proof to Appendix A.

Discussion: Our definition of update-oblivious and data type LL capture only semi-
honest (“honest-but-curious”) adversaries. A fully malicious adversary A, however,
might violate an implicit consistency requirement that we have: read-after-write con-
sistency. Although the Reader has read bucket I and set δI := 1, A could send an old
version of E(∆) with δI =0 to the Writer during Add. Consequently, the Writer would
not create a new chain, but add a new record at an address already read by the Reader –
violating update-obliviousness. Yet, we can modify LL in a straightforward manner to
cope with consistency attacks. We augment ∆ by two additional global counters, one
for the Reader, one for the Writer. Both counters will be encrypted as part of ∆. For



each Enumerate operation, the Reader increases its counter. For each Add, the Writer
increases its counter. Both parties keep local copies of counters and can therewith ver-
ify the freshness of ∆ before each operation. Along the lines of Li et al. [13], we then
achieve Fork Consistency. Due to space constraints, we will not discuss details.

Extensions: The update-oblivious property can be extended to other data types. Let a
monotonically-expanding data type be any data type S, that supports two general oper-
ations Add(S,E), and Enumerate(S,param) such that i< j⇒Enumerate(Si,param)⊆
Enumerate(Sj,param). We postulate that any monotonic data type can be made update-
oblivious. Hash Tables, Trees, Graphs are examples of data types that can be restricted
to be monotonically-expanding, if deletions are not allowed. Such expanding types
make sense in applications where data is continuously added to an application data
store. For example, an update-oblivious Hash Table that stores key-value pairs can be
constructed using our bucket data type LL. The user hashes the key into a bucket id I ,
then invokes LL-Add(I,v,κ). Graphs (and their special case trees) can be viewed as a
collection of edges. The Add adds edges to the collection, while Enumerate lists the
edges (or properties of the edges). We conjecture that our bucket data type LL can be
used to enable the same update-obliviousness for expanding graphs, trees, and other
dynamic data types.

4 RASP

Overview: The main rationale behind RASP is to arrange uploaded data with category
I using an update-oblivious add-enumerate data type such as LL that offers buckets. In
RASP, each individual bucket represents a category I within domain D of uploaded data
M . With n≫D, we achieve low query complexity similar to bucket sort. Uploading
new data into a bucket is realized by using Add in LL. Similarly, range search queries
and actual bucket sorts can be realized using Enumerate. Our goal with this approach
is to reduce the complexity for range search and sort queries over related work. RASP’s
query complexity depends only on D and U which we assume to be small, but the
complexity is independent of n as in related work. To support multiple users U , we use
an LL data type per user. Users share pairwise different keys with the surveyor.

4.1 RASP Details

We now present RASP’s details, following the notation introduced in Section 2.1. The
system is initialized with KeyGen, producing key material for users and the surveyor.
Each time, a user Ui wants to upload data to the cloud, he first uses Encrypt and uploads
the resulting ciphertext into the cloud’s key-value store. For a range query, the surveyor
executes PrepareRangeQuery and RangeQuery intertwined. For a sort query, he uses
PrepareSortQuery and SortQuery intertwined. In the algorithms below, E and D are
PCPA encryption and decryption (see Section 3.3) such as AES-CBC with random IVs,
and h is a pseudo-random function such as HMAC [4] using proper padding of inputs.

KeyGen(k) As shown in Algorithm 4, the system is initialized by generating a secret
key SK for the surveyor as well as individual user keys Seedi. A key Seedi is then sent
to user Ui, and the surveyor receives SK. Note that knowledge of SK is sufficient for
the surveyor to compute users keys Seedi himself.



Algorithm 4: KeyGen(s) – generate keys for surveyor and users
Input: Security parameter s
Output: Surveyor’s secret key SK, set of user keys {Seedi}1≤i≤|U|

1 SK $←{0,1}s;
2 for i :=1 to |U| do
3 Seedi :=hSK(i);

4 return SK,{Seedi}1≤i≤|U|;

Algorithm 5: Encrypt(I,M,Seedi) –
user Ui encrypts and uploads to cloud.

Input: Category
I , data M , user Ui’s key Seedi

Output: Ciphertext
C that is uploaded to cloud

1 κ :=Seedi;
2 (k,C) :=LL-Add(I,M,κ);
3 return C;

Algorithm 6: Decrypt(C, SK, i) –
surveyor decrypts ciphertext

Input: Ciphertext C,
surveyor secret key SK, user ID i

Output: Data M
1 Seedi :=hSK(i);
2 M :=DSeedi(C);
3 return M ;

Encrypt(I,M,Seedi) Algorithm 5 is executed by user Ui that wants to add data M
to bucket I in the key-value store. Ui simply runs LL-Add to add data M to cate-
gory/bucket I in LL. Note that LL-Add uploads the encrypted data to the key-value
store as of Algorithm 1.

Decrypt(C,SK, i) Algorithm 6 is run by the surveyor. The surveyor computes Seedi
using his secret key SK and decrypts the ciphertext.

PrepareRangeQuery(a,b,SK) and RangeQuery(T R,{C1, ... ,Cn}) For ease of under-
standing, we present PrepareRangeQuery and RangeQuery together in Algorithm 7. As
you will see, token T R of PrepareRangeQuery is the sequence of addresses ki required
to download ciphertexts Ci from the key-value store. The surveyor iterates over all pos-
sible users to generate their keys Seedi and retrieve all data for buckets j∈ [a,b]. The sur-
veyor permutes his access to buckets j by using permutations πSeedi which are random
permutations over integers {a,...,b}. To retrieve all data of user Ui in bucket π(j)Seedi ,
the surveyor uses LL-Enumerate(πSeedi(j),Seedi). The rationale behind using πSeedi to
enumerate buckets is not to always access, first, bucket a, then bucket a+1, then a+2
etc. until bucket b, but to access buckets in a random order. Note that LL-Enumerate
internally uses addresses to access data in the key-value store, representing T R.

PrepareSortQuery(m,SK) and SortQuery(T S , {C1,...,Cn}) Similar to range search
queries, we consolidate PrepareSortQuery and SortQuery together in Algorithm 8.
Again, the surveyor starts by computing all possible user keys Seedi. Now, the sur-
veyor iterates over all possible buckets and therein over all possible users, starting with
the lowest bucket. To retrieve data from individual buckets, the surveyor uses Algo-
rithm LL-Enumerate-UpTo(i,Seedj ,m). This is a slight variation of the standard LL-
Enumerate(i,Seedj), cf. Algorithm 2. We do not give details for LL-Enumerate-UpTo,
because the only difference is the additional parameter m. This parameter specifies that



Algorithm 7: PrepareRangeQuery(a,
b, SK) and RangeQuery(T R, {C1,
... , Cn}) – surveyor prepares and
executes range query from a to b with
cloud

Input: Surveyor:
Indices a and b, surveyor’s secret
key SK, Cloud: pairs (ki,Ci)

Output: Set of ciphertext SR={Ci}
1 SR :=∅;
2 for i :=1 to |U| do
3 for j :=a to b do
4 Seedi :=hSK(i);
5 SR :=SR∪LL-

Enumerate(πSeedi(j),Seedi);

6 return SR;

Algorithm 8: PrepareSortQuery(m,
SK) and SortQuery(T S ,{C1,...,Cn})

Input: Surveyor: Position in sorted
data P , window length m, secret
key SK, Cloud: pairs (ki,Ci)

Output: Set of ciphertext SS={Ci}
1 for i :=1 to |U| do
2 Seedi :=hSK(i);

3 SS :=∅; i :=1; pos :=1;
4 while m>0 and pos≤D do
5 S′ :=LL-

Enumerate-UpTo(pos,Seedi,m);
6 m :=m−|S′|;
7 SS :=SS∪S′;
8 if i= |U| then
9 i :=1;

10 pos :=pos+1;

11 else
12 i := i+1;

13 return SS ;

algorithm LL-Enumerate will stop retrieving ciphertexts after finding m ciphertexts (if
available) while iterating over the chains of category i, regardless whether there might
be more ciphertexts in the chains. Following the definition of m-sort in Section 2.1, the
search token T S in RASP is the sequence of addresses for the key-value store.

Note During range search and sort queries, when the surveyor performs multiple
Enumerate sequentially for the same user, it is not necessary to download and upload
∆ multiple times, but only once. The same ∆ can be used for all categories/buckets of
a single user, so this saves a factor ofD in computation and communication complexity
without affecting privacy. We apply this optimization in our evaluation in Section 4.3.

4.2 Privacy Analysis
Theorem 2. If LL is update-oblivious, then RASP is privacy-preserving.
Due to space constraints, we move the proof to Appendix A.

4.3 Evaluation
We have implemented RASP in Java, and the source code is available for download [3].
Our implementation uses Amazon’s Dynamo DB cloud as key-value cloud storage.
Dynamo DB charges based on the required Get/Put operations per second which is
essentially an estimation of the load expected on the database. For our tests, with con-
figured a database supporting 1000 Get and 1000 Puts per second and read-after-write
consistency. Such a database would cost ≈ $580 per month [2]. As encryption E, we
use 128 Bit AES in CBC-mode, and is HMAC is based on SHA-1 as underlying hash
function h. As we are only interested in the additional overhead of RASP compared to
a non-privacy preserving protocol, we did not encrypt and upload a real payload d (e.g.,



patient data) as part of records, but only a random string of length 160 Bit. In the real
world, this could be an address for a larger file in the cloud. For the user and surveyor
part of RASP, we have used a laptop with 2.4 GHz i7 CPU and 8 GByte RAM.

As RASP’s query performance does not depend on n, we have measured timings for
Encrypt (and upload), Range Queries, and Sort Queries on a Dynamo data store with a
fixed number of n=220 records. We have varied the number of users |U|={100,1000},
D={256,8192}, and m={1% of n,5% of n} for range queries and m={50,500} for
topm-sort. Asm only depends on n, the distribution of records into categories does not
matter, and users add data uniformly randomly into categories. To model interleaving
client and surveyor operations (and force creating new chains), we distributed queries
exponentially with n

100 average arrival rate. However, we measured timings only after
adding all n records, representing worst case queries. We have run each sample point
20 times, and relative standard deviation was low at <5%.

Table 4 in Appendix A sums up our evaluation and presents timings in ms per
record. All timings are dominated by network latency. In Dynamo, a single Get takes
31 ms, and a Put takes 39 ms. In contrast, AES encryption (≈ 14 ns) and HMAC eval-
uation (≈ 6 ns) are comparably fast on our hardware. Note that the time for a single
Encrypt of a single user is significantly higher per record compared to Range and Sort
queries for the surveyor (per record), although they same operations (encryption, hash,
network access) are required. This is due to the fact that during, e.g., a range query,
the surveyor can enumerate multiple LL-buckets of multiple users in parallel with Dy-
namo. Dynamo allows to issue multiple Get-requests from multiple threads in parallel,
reducing the total response time significantly. Timings increase slightly with D, as ∆
becomes larger and needs to be downloaded/uploaded and decrypted/encrypted by the
surveyor. Similarly, with increasing |U|, more ∆ need to be taken care of. Sort is more
expensive than Range search, because access to buckets cannot be parallelized as with
range search: to find the first m records, buckets need to be accessed sequentially.

As you can see from Table 4, RASP is highly efficient. Even large range queries
retrieving ≈ 50,000 records, i.e., 5% of n over 8,192 categories and 1,000 users take
only ≈ 1 min time. Similarly, for the same configuration, retrieving the top-50 records
takes only ≈30 seconds. Again, we stress that these number do not depend on n.

5 Related Work and Summary

Traditionally, privacy-preserving range search and sort queries can be realized based
on, for example, ORAM [9] protocols. The idea would be to simply encrypt all records,
store them in an ORAM, and let the surveyor perform the range search on the ORAM.
This results in “ideal” privacy, because plaintexts can be encrypted using an IND-CPA
cipher, and ORAM does not leak any information about accesses and therewith queries.
The drawback of ORAM is that its worst-case communication complexity remains high
for this application despite recent results that reduce it to poly(logn) [16, 17]. Alter-
natively, using OPE [5, 14], ciphertexts retain the order of their underlying plaintexts,
making range search and sorting straightforward. However, OPE gives weak privacy
guarantees, as the relationship between ciphertexts is visible to the cloud.

Some related work focuses especially on privacy-preserving range search. For ex-
ample, Hacigümüs et al. [11] and Hore et al. [12] encrypt records and put ciphertexts



Table 1. Worst-case complexity for m-Range search. n: total number of records,
m: number of records queried D: size of domain, U : set of users, s,s′: security
parameters. Typically, s≫ logn,s≫ logD,s> s′,n≫D,n≥m. Related work
requires additional factor |U| for multi-user.

m-Range
Computation per
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Insert Query

per Query
User Surveyor Cloud
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OPE [14] O(logn)‡ O(logn+m)‡ — O((logn+m)·s)
ORAM [16] O(log3n)‡ O(n·log3n)‡ — O(n·log3n·s)
ORAM [17] O(log2n)‡ O(n·log2n)‡ — O(n·log2n·s)

Range Search [6] O(D)⋄ O(m)‡,⋄ O(n)⋄ O(m·s)
Range Search [15] O(logD)⋄ O(logD+m)⋄ O(n)⋄ O(m·(logD+s))

M
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U
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r Ideal O(1) O(m) — O((m+logD)·s))

This paper O(D)‡ O(|U|·D+m)‡ — O((|U|·D+m)·s)
‡ Involves Symmetric cryptography ⋄Involves Exponentiations/Pairings

in a set of permuted categories. While this hides into which category a record is added,
the cloud automatically learns the relationship between ciphertexts and can determine
which ciphertexts are in the same category. Boneh and Waters [6] and Shi et al. [15]
overcome this drawback and hide membership to a category until this particular cate-
gory is queried – still, the cloud will be able to determine for any ciphertext added after
the query whether it is belonging to the previously queried category or not. While Boneh
and Waters [6] is “match concealing” (MC), the work by Shi et al. [15] is “match reveal-
ing” (MR), i.e., the cloud will learn the category of a record that matches a range query.
Moreover, both schemes make use of computationally expensive bilinear pairings.

We sum up RASP’s asymptotic performance and compare it to related work in ta-
bles 1 to 3. We stress that related work has not been designed for use in multi-user
scenarios. While related work could be extended to multiple users, e.g., using different
keys for each user in OPE or separate ORAMs for each user, this increases complexities
significantly or would requires significant redesign. A straightforward extension adds a
factor of |U| in tables 1 to 3, which quickly renders such approaches overly costly.

Tables 1 and 2 show the computational complexities to add a new record to the
store for the user (for both range search and sort), for the surveyor to perform the query,
and for the cloud during a query. The computational complexities comprise record en-
cryption and decryption (for m records) operations. The communication complexities
denote the communication between surveyor and cloud during a range or sort query.
Security factor s in the communication complexities indicates that ciphertexts are ex-
changed. In each table, we compare to an ideal solution, representing a lower bound for
each complexity, respectively.

ORAM does not provide any ordering, range queries would require scanning through
all n records and quickly become expensive for large n, cf. Table 1. Consequently, a
system based on ORAM would probably insert using a balanced tree or Radix sort. A
balanced tree requires O(n · logn) accesses to the ORAM and Radix sort O(n · logD)
accesses, each of them with complexity in poly(logn). OPE and an Ideal solution all



Table 2. Worst-case complexity for m-Sort.
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Table 3. Storage worst-case complexity and privacy guarantees.

Storage
PrivacyPer User MemoryCiphertext
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OPE [14] O(logn+s) O(s) IND-OCPA
ORAM [16] O(logn·s) O(s) IND-CPA and PatternORAM [17] O(s′ ·s) O(s′ ·log2n·s)

Range Search [6] O(D) O(s) MC
Range Search [15] O(logD·s) O(logD ·s) MR
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This paper O(s) O(D·logn+s) >IND-OCPA, >MC/MR,
<IND-CPA and Pattern

require a factor of logD in communication complexity, because the m records in the D
categories/buckets need to be addressed. While related works on range search [6, 15] or
OPE [14] have better asymptotic complexities than RASP, an overhead of logD instead
of D, we show in our evaluation in Section 4.3 that RASP’s constants are very low, es-
pecially compared to related work. RASP only uses symmetric cryptography, i.e., hash
functions and block ciphers compared to expensive bilinear pairings and identity based
encryption of related work [6, 15]. Also, RASP does not require any expensive O(n)
computation on the cloud side that the surveyor would have to pay for [1], but only a
cheap key-value based storage cloud such as Amazon Dynamo [2].

For m-sort, a scheme based on OPE would use, e.g., an m-MinHeap [7] with
O(n · logm) complexity for the cloud. Again, ORAM-based sorting mechanisms with
O(n·logD) accesses to the ORAM become quickly too expensive. In contrast to related
work, RASP is close to an Ideal solution, besides the additional factor of |U|·D which
is small in practice, cf. Section 4.3. Note that recent range search schemes [6, 15] do not
support m-sort queries in a straightforward way, so we cannot include them in Table 2.

Table 3 summarizes storage requirements. Being tree based, OPE by Popa et al.
[14] requires an additional O(logn) storage overhead per ciphertext. Similarly, recent
ORAMs are tree based and, with n nodes in the tree, require an overhead factor of
either O(logn) [16] or O(s′) [17] per ciphertext. Here, s′ is an additional security pa-
rameter. While the work by Stefanov et al. [17] has superior computational worst-case
complexity than Stefanov et al. [16], O(log2n) compared to O(log3n), a drawback is



its large memory requirement of O(s′ ·log2n·s). In contrast, RASP features only O(s)
ciphertext overhead and O(D · logn+ s) (for D counters and SK) memory require-
ments. Finally, RASP offers weaker privacy than ideal IND-CPA and indistinguishable
query patterns. However, RASP’s privacy notion is stronger than related work’s “match
concealing”, “match revealing” [15] or IND-OCPA.
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A Appendix

Proof (of Theorem 1). We describe a PPT simulator LS such that for all PPT adver-
sariesA, the outputs of RealLLA (s) and SimLL

A,LS(s) are indistinguishable. Consider the
simulator LS that, given a partial trace of a history H , τ(o1,...,oi), outputs v=(Ki,Ci)
as follows. LS keeps as state, a vector B of length D which contains the most recent
contents of each bucket (from the simulator’s perspective). B is initialized to all empty
sequences, and LS will update B for each Enumerate which reveals additional bucket
records. Additionally, LS manages list k which holds the addresses of add operations
and an associative array c which maps addresses to values. c represents the simulator’s
view of the store’s memory. If c is evaluated on an address which is empty, it returns⊥.
If i is the operation LS is simulating and
1.) β(o1, ..., oi)[i] = Add: LS sets k[i] and c[k[i]] to uniformly random strings and
outputs Ki={k[i]} and Ci={c[k[j]]}.
2.) β(o1, ...,oi)[i] = Enumerate: LS creates the sequence K′ such that it contains, in
order, every record k[x] where σ(H)[x,i] = 1. LS then sets Bγ(H)[i] to Bγ(H)[i] con-
catenated with K′ and a uniformly random string. This can be viewed as the simulator
returning all the records from the previous enumerate on the same bucket, plus any addi-
tional records that have been added to the bucket since then and finally adding a random
empty address on the end (representing the end of a list). LS then returns Ki=Bγ(H)[i]

and Ci equal to c evaluated on every address in Ki.
Since the outputs of h and E are indistinguishable from random, simulator LS can

put random strings in Ki and Ci during adds. Because of the enumeration pattern leak-
age, LS can also guarantee the correct pattern in Ki during enumerates by a simple
check of β(H). Future enumerates will also return, as a prefix, previous enumerates
which guarantees consistency. LS simulates the end of a linked list by appending a ran-
dom address and a ⊥ value to each enumerate. ⊓⊔

Proof (of Theorem 2). We describe a PPT simulator S such that for all PPT adversaries
A, the outputs of RealRASP

A (s) and SimRASP
A,S (s) are indistinguishable. We construct

a simulator S that uses data type LL. Given a partial trace of a history H , τ(o1,...,oi),
S outputs v=(Ki,Ci) as follows:

Using the trace information, S will translate the encrypt, range search, and sort op-
erations in H into LL’s Add and Enumerate operations which can be passed to LS. S
keeps, as state, sequences b, and g, and a matrix s, representing the operation pattern,
access pattern, and enumeration pattern respectively, which will be created and passed
to LS as its trace. Generally speaking, encrypt operations will be translated into Adds
in a one-to-one manner, and both range searches and sort queries will be translated
into one or more Enumerate operations. Therefore, S will also have a counter x which
keeps track of what location in the simulated trace it is at (initialized to 1). If oi is the
operation S is simulating, and
1.) β(H)[i]=Encrypt: S sets b[x] to Add, increments x, and returns LS(b,s,g).
2.) β(H)[i] =RangeSearch: Parse σ(H)[i] as {(b1,t1),...,(bn,tn)}, where bs are per-
muted bucket IDs and ts are indices of related Encrypt operations. σ(H)[i] is an un-
ordered set, so S orders it numerically by bℓ from lowest to highest. S sets Ki := ∅
and Ci = ∅. ∀bℓ, S sets b[x] to Enumerate, sets g[x] to bℓ, ∀u ∈ tℓ sets s[x,u] to 1,



appends LS(b,s,g) to Ki and Ci, and increments x. This creates a series of enumerate
operations in the trace for LS which is linked to all the correct add operations through
σ(H). S returns Ki and Ci.
3.) β(H)[i]=SortQuery: Parse γ(H)[i] as (m,(b1,...,bn)). S proceeds as for RangeSearch,
but instead of ordering the enumerates by the random permutation π, it orders them ac-
cording to the leakage from γ(H) (i.e., in the order of the underlying categories).
S, according to the algorithms for range search and sorting, emulates a number of

add and enumerate queries which are to be done by the update-oblivious linked list data
structure. Since we can translate every encrypt, range search or sort operation directly
into one or more add or enumerate operations, S returns exactly the output of simulator
LS . Therefore, if the linked list data structure is secure and can be simulated by simu-
lator LS, the output of S is indistinguishable from the output of the real protocol. ⊓⊔

Table 4. RASP evaluation results, timings [ms] are per record.

D=256 D=8192
|U|=100 |U|=1000 |U|=100 |U|=1000

Encrypt 64 65
Range Query 1% ; 5% 0.68 ; 0.73 0.92 ; 1.18 0.79 ; 0.93 1.06 ; 1.37

Sort Query top-50 ; top-500 29.58 ; 29.36 50.62 ; 49.59 421 ; 443 546 ; 564


