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ABSTRACT
We revisit the problem of privacy-preserving range search and sort
queries on encrypted data in the face of an untrusted data store.
Our new protocol RASP has several advantages over existing work.
First, RASP strengthens privacy by ensuring forward security: af-
ter a query for range [a,b], any new record added to the data store is
indistinguishable from random, even if the new record falls within
range [a,b]. We are able to accomplish this using only traditional
hash and block cipher operations, abstaining from expensive asym-
metric cryptography and bilinear pairings. Consequently, RASP is
highly practical, even for large database sizes. Additionally, we
require only cloud storage and not a computational cloud like re-
lated works, which can reduce monetary costs significantly. At the
heart of RASP, we develop a new update-oblivious bucket-based
data structure. We allow for data to be added to buckets without
leaking into which bucket it has been added. As long as a bucket is
not explicitly queried, the data store does not learn anything about
bucket contents. Furthermore, no information is leaked about data
additions following a query. Besides formally proving RASP’s pri-
vacy, we also present a practical evaluation of RASP on Amazon
Dynamo, demonstrating its efficiency and real world applicability.

1. INTRODUCTION
Outsourcing data to cloud stores has become a popular strategy

for businesses, as cloud properties like scalability and flexibility al-
low for significant costs savings. However, cloud infrastructures
cannot always be completely trusted, due to, for example, hacker
and insider attacks [12, 25]. While encryption of outsourced data
protects against many privacy threats in cloud scenarios, it renders
subsequent operations on data (i.e., data analysis) extremely dif-
ficult. Although fully homomorphic encryption (FHE) offers an
elegant solution to perform operations and data analysis on en-
crypted data, today’s techniques are still impractical and their use
can negate any cloud cost advantages.

In this paper, we address the problem of performing privacy-
preserving range search and sort queries on encrypted outsourced
data with a particular focus on practicality. We envision a sce-
nario where a set of users upload a large number of encrypted data
records to an untrusted cloud store. From time to time, a surveyor
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wants to perform data analysis operations. Specifically, the sur-
veyor queries for all the records in a certain range of values (“cate-
gories”). Alternatively, the surveyor may query for the topm sorted
records, i.e., the m smallest records following some order.

Although the individual data records are encrypted, an untrusted
cloud could still infer information about them by observing multi-
ple range and sort operations. For example, the cloud could learn
access patterns and correlate them. Consequently, also the analy-
sis operations (“queries”) need to be privacy protected. The crucial
challenge here is practicality, i.e., high efficiency in terms of band-
width and memory requirements as well as user/surveyor/cloud com-
putations.
Related Work Besides FHE, another approach that could apply
here is performing range or sort queries on top of an Oblivious
RAM [11]. However, with n the total number of outsourced records
in the cloud, ORAM worst-case communication complexity is poly-
logarithmic in n [20, 24]. Thus, for large n (such as n=230 records
or more), this overhead becomes unacceptably expensive for sort-
ing and range search. Along the same lines, searchable encryp-
tion techniques [7, 10, 21] would either require computational and
communication complexities linear in n or non-trivial extensions
to perform updates to stored data in a privacy-preserving fashion.
Other techniques such as Order Preserving Encryption (OPE) [5]
are highly efficient, but provide weak privacy. Finally, recent work
on range search [6, 16, 19, 26] offers insufficient “selective” pri-
vacy and, being based on bilinear pairings, becomes impractical
for, e.g., embedded devices or smartphones and large n as targeted
in this paper. None of the above related works support multiple
users. Note that we discuss insufficiency of related work in great
detail at the end of the paper in Section 5.
Our contributions. We present RASP (“Range And Sort Pri-
vacy”), an original scheme for privacy-preserving range and sort
queries on encrypted data. At the core of RASP, we introduce a
new privacy-preserving bucket data structure LL similar to bucket
sort. Each individual bucket in LL can grow dynamically in size,
and we will use the buckets to represent the categories that (en-
crypted) records can belong to. As with standard bucket sort, we
assume that the number D of possible different buckets for records
remains small compared to n (D � n). We call our data type
LL, which is of independent interest, update-oblivious, as it hides
into which bucket a new record is added. RASP uses LL for range
search, where it hides bucket contents until the surveyor explicitly
queries for them. RASP also naturally extends to support m-sort
queries. While RASP targets practicality and offers weaker pri-
vacy properties than, e.g., ORAM, it provides stronger, forward-
secure privacy compared to related work on range search [6, 16,
19, 26]. Moreover, RASP only relies on efficient computations
such as hashing and symmetric encryption, in contrast to expen-



sive pairing-based related work. The technical highlights of this
paper are:

• LL, a dynamic data structure that provably hides any infor-
mation about a newly added data record until this data record
is explicitly read. (Section 3)

• RASP, a protocol employing LL for range search and sort
queries on encrypted data in the cloud with support for multi-
ple users. Compared to related work on range search, RASP
offers stronger, forward-secure privacy. We formally prove
that the cloud cannot learn any information about records
added until the surveyor queries them. Details about queries
are hidden, and only the overlap between queries is leaked.
RASP is efficient and scales well. The users’ and surveyor’s,
computational and communication complexities are constant
in the total number of records. In contrast to related work,
RASP seamlessly integrates into cheap storage-only, no com-
putation cloud services such as Amazon S3 or Dynamo and
allows for multiple different users that do not trust each other.
(Section 4)

• An implementation and evaluation of LL and RASP in Ama-
zon’s DynamoDB cloud. The source code is available for
download [3].

2. PROBLEM STATEMENT
General scenario: To motivate our work, we use an example sce-
nario throughout this paper. Assume a set of users U that continu-
ously upload data records to a cloud store. Each record comprises:
(1.) a category I of some domain D with an order relation, e.g.,
D = {1, ... ,D} ⊂ N and “≤", and (2.) some payload data M .
For the sake of range search and sort queries in this paper, M is
not particularly interesting, and we focus only on indices I . After
some time, users have uploaded a total of n records to the cloud,
where n can become very large, while D is comparatively small,
e.g., n= 230 and D = 1024. Periodically, a surveyor queries the
uploaded records for those records whose indices match a certain
range in D. The set of records that match this range has size m.
Alternatively, the surveyor wants to retrieve the first m records ac-
cording to their sorted indices.
Possible Applications: One can imagine various real world appli-
cation scenarios that fall within the general setup above. For ex-
ample, imagine a set of banks (“users”) that upload financial trans-
actions, i.e., the amount of each transaction together with details
such as sender, receiver, and date. At times, to detect fraudulent
behavior and money laundering, the police queries for all transac-
tions within some suspicious range or the m highest transactions
of a certain time period. Alternatively, imagine a set of physicians
that upload patient records, comprising the patient’s personal infor-
mation and, say, the patient’s blood pressure. Once in a while, for
further analysis, a health insurance wants to retrieve details about
all patients with blood pressure in a critical range or the top m pa-
tients with high blood pressure. In both application scenarios, the
stored data is sensitive, and the underlying cloud store should not
learn details about either stored data or queries performed. This im-
plies encrypting uploaded data by the users and “oblivious queries”
by the surveyor.
Trust Model: We only assume that the surveyor is trusted by the
users. The cloud server is untrusted, and any user can collude with
the server and they should not be able to reveal any data besides
their own. Additionally, users should not be able to reveal addi-
tional data by colluding with each other.

2.1 Range and Sort Queries
We now formalize privacy-preserving range andm-sort schemes.

We start by introducing the functionality that each scheme should
support. The main idea is that users respectively encrypt and up-
load their records to the store, while the surveyor performs range
search and sort operations.

DEFINITION 1 (RANGE SEARCH AND m-SORT SCHEME Π).
Let I,0≤ I ≤D−1, denote a category within domain D and M
a plaintext (“payload”). A Range and m-Sort search scheme Π
comprises the following algorithms.

• KeyGen(s): This algorithm uses security parameter s to
generate secret key SK and a set of user keys {Seedi}1≤i≤|U|.

• Encrypt(I,M,Seedi): encrypts M at category I using user
key Seedi. The algorithm’s output is ciphertext C.

• Decrypt(C,SK,i): decrypts ciphertextC, such that Decrypt(
Encrypt(I,M,Seedi),SK,i) =M , where SK and Seedi were
generated from KeyGen(s).

• PrepareRangeQuery(a,b,SK): uses secret key SK and a pair
a,b∈N with a≤b to generate a range query token T R.

• RangeQuery(T R,{C1, ... ,Cn}): using range search token
T R=PrepareRangeQuery(a,b,SK) and a set of ciphertexts
Ci, a response SR = {Ci|Ci = Encrypt(Ii,Mi,Seedj)∀j,
1≤j≤|U| and Ii∈ [a,b]} is computed.

• PrepareSortQuery(m,SK): with secret key SK and length
m,1≤m≤n, outputs a sort query token T S .

• SortQuery(T S ,{C1, ... ,Cn}): using sort query token T S
and ciphertexts Ci, outputs a sequence SS =< C′1,C

′
2, ... ,

C′m > with C′i ∈ {C1,...,Cn} as response. Here, ciphertext
C′i = Encrypt(Ii,Mi,Seedi) denotes the ciphertext on the
ith position according to the order of the underlying indices
I . More formally: (1.) for C′1: there is no Cj,1≤j≤n such
that Ij <I1, (2.) for any pair C′i,C

′
i+1: either Ii = Ii+1, or

Ii < Ii+1 and there are a total i ciphertexts Cj,1≤j≤i with
Ij<Ii+1, (3.) for any pair C′i,C

′
j :C′i 6=C′j .

2.2 Privacy
Overview: We will now present RASP’s notion of privacy. In-
formally, our goal is to leak as little information as possible about
the outsourced data records and the queries to the cloud. While
the IND-CPA encryption of records already provides a viable first
step, the challenge is to restrict leakage of query access patterns.
For example, the cloud should not learn any additional informa-
tion about records that are not part of a query result – besides
that these records are obviously not in the queried range or among
the top m records. Typically, ORAM based solutions would of-
fer strong protection. However, focusing on efficiency, we dismiss
ORAM, because its poly-logarithmic worst-case communication
complexity [20, 24] quickly becomes expensive with large n such
as n=230. Additionally, as ORAM does not allow multiple users,
a straightforward extension to range search and sort is vulnerable
to collusions.

RASP targets privacy that is slightly weaker than ORAM’s pri-
vacy, but still stronger than privacy provided by related work on
range search. We call this privacy forward-secure. Intuitively, the
cloud (now called adversary A) should not learn any details about
a new record R that is added to the store, i.e., A should not learn
anything about R’s category I (and payload M ). Only when the



surveyor executes a range search or sort query willA learn whether
R matches this query or not. Our goal is that any two records R,
R′ that do not match a query will remain computationally indis-
tinguishable for A. We formalize our privacy goal. Targeting a
standard simulation-based privacy definition, the idea is that, given
a well specified privacy-leakage, a polynomial-time simulator can
generate a transcript of RASP which is computationally indistin-
guishable from the output of the actual protocol. If this is true, then
A cannot learn any information beyond the defined leakage.
In summary, forward-secure privacy allows A to only learn: (1.)
the operation pattern, i.e., which operation (range or sort) is per-
formed, (2.) the data access pattern, i.e., which records are accessed
during an operation, and (3.) the enumeration pattern, i.e., which
records are returned. As we will discuss later in Section 2.3 this
forward-secure privacy is actually stronger than the privacy offered
by related work on range search [6, 16, 19, 26].

We focus on key-value “(k, v)” based cloud stores/databases
such as Amazon Dynamo DB or S3 in this paper, so we assume
that each record is uniquely addressable by an address k in the
store. We refer to the keys in the key-value paradigm as addresses
to avoid the confusion with cryptographic keys.

2.2.1 Formal Definitions
Following Curtmola et al. [10], we formalize privacy by quanti-

fying the information leakage of a scheme Π.

DEFINITION 2 (OPERATION). For range and m-sort scheme
Π, an operation op is defined as either (Encrypt,I,M,Seedi) or
(RangeQuery,a,b,SK) or (SortQuery,m,SK). For ease of expo-
sition, we introduce the following functions on operations:

• Type : op→{Encrypt,RangeQuery,SortQuery} which ex-
tracts the operation type from an operation.

• Execute : (op,K)→ (K= (k1,...,kt),C= (c1,...,ct)) which
executes op using the key K and returns the result. The set
K contains the sequence of addresses accessed on the cloud,
and C contains the data, i.e., records at those addresses after
the operation.

• Categories : (c1,...,ct)→{I1,...,It}⊂Dt which extracts the
categories Ii out of a sequence of records ci.

DEFINITION 3 (HISTORY). The q-query history H is the se-
quence of operations H= (o1,...,oq), where oi= (Encrypt,I,M),
oi=(RangeQuery,a,b) or oi=(SortQuery,m).

DEFINITION 4 (OPERATION PATTERN). The operation pat-
tern β(H) induced by a q-query history H is defined as the se-
quence β(H)=(Type(o1),...,Type(oq)).

The operation pattern is a very mild leakage, only telling the ad-
versary whether we are doing range search or sort queries.

DEFINITION 5 (QUERY PATTERN). Let π be a random per-
mutation of integers {1, ... ,D}. The query pattern of a q-query
history is the q-length sequence σ(H) defined as follows: first,
consider the case that Type(oi) = RangeQuery or Type(oi) =
SortQuery. Let Execute(oi,K) = ((k1, ... , kt), (c1, ... , ct)) and
Categories(c1,...,ct)={I1,...,It}. Then, σ(H)[i] is the unordered
set of tuples {(π(I1),χ(I1)),...(π(It),χ(It))}, where χ(I) = (e1,
... ,em) returns the indices such that ∀j < i : oej = (Encrypt,Ij ,
Mj). If Type(oi)=Encrypt, then σ(H)[i] is ⊥.

That is, σ(H) reveals which previous Encrypt operations are be-
ing queried as part of the current range search or sort query oper-
ation i (as in related work) and the pattern of categories that are
accessed for that operation. For any two range queries, σ(H) will
tell which categories they have in common. Due to random per-
mutation π, σ(H) does not give any information about the order-
ing of the categories beyond what can be inferred by the overlap.
Note that this leakage is also relatively weak: all existing schemes
other than Oblivious RAM leak the intersection of the results of two
queries, and the category overlap can be determined from this with
a high degree of accuracy if the adversary has some knowledge of
the plaintext distribution.

DEFINITION 6 (SORT LEAKAGE). The sort leakage from a
q-query history H is the q-length sequence γ(H) defined as fol-
lows: if oi is a sort query, i.e., Type(oi)=SortQuery with Execute(
oi) = ((k1,...,kt),(c1,...,ct)) and Categories(c1,...,ct) = {I1,...,
It}, then γ(H)[i] is the tuple (m,(π(1),...,π(t))). If Type(oi) =
Encrypt or Type(oi)=RangeSearch, then γ(H)[i] is ⊥.

This means that the sort leaks the first j categories, including their
order, as well as the number of records returned by the query.

DEFINITION 7 (TRACE). The trace induced by a q-query his-
tory H is the tuple τ(H)=(σ(H),β(H),γ(H)).

DEFINITION 8 (FORWARD-SECURE PRIVACY). Let Π be a
Range Search and m−Sort Scheme implementing Execute for op-
erations Encrypt,RangeQuery,SortQuery and therewith generat-
ing trace τ . Let s ∈ N be the security parameter, A be an adver-
sary, and S be a simulator. Consider the following two experiments
RealΠA(s) and SimΠ

A(s):

RealΠA(s)

K=(SK,{Seedi}1≤i≤|U|)←KeyGen(1s)
for 1≤ i≤q

(stA,oi)←A(stA,(K1,C1),
...,(Ki−1,Ci−1),1s)

(Ki,Ci)←Execute(oi,K)
let K∗=(K1,...,Kq)
let C∗=(C1,...,Cq)
output v=(K∗,C∗) and stA

SimΠ
A,S(s)

for 1≤ i≤q
(stA,oi)←A(stA,(K1,C1),

...,(Ki−1,Ci−1),1s)
(Ki,Ci,stS)←S(stS ,τ(o1,...,oi),1

s)
let K∗=(K1,...,Kq)
let C∗=(C1,...,Cq)
output v=(K∗,C∗) and stA

Scheme Π is forward-secure privacy-preserving, iff for all PPT
adversaries A, there exists a PPT simulator S, such that for all
PPT distinguishers D,

|Pr[D(v,stA)=1:(v,stA)←RealΠA(s)]−

Pr[D(v,stA)=1:(v,stA)←SimΠ
A,S(s)]|≤negl(s).

2.2.2 Discussion
Our definition captures an adaptive adversary which generates

the history one operation at a time, seeing the results of the previous
operations. This allows for an adversary which changes his strategy
depending on what the simulator has output after i< q operations.



Consequently, the simulator calculates one step of the simulation at
a time based on a partial trace generated from an adaptive history.

Definition 8 is generic in that it allows us to bound the informa-
tion leaked by any protocol which uses a cloud store. If there exists
a simulator, given only the trace, which can produce a sequence
of “accesses” that is indistinguishable from a real execution of the
protocol, then no information other than the trace can be leaked.

2.3 Forward-Secure privacy vs. privacy of
related work

We stress that forward-secure privacy, Definition 8, is stronger
than privacy models of related work on range search [6, 16, 19, 26].
These schemes offer only selective security. That is, a query for a
specific range [a, b] implies that A from then on will be able to
automatically determine whether new records added in future will
also be within [a,b] or not – a major disadvantage. In contrast, our
privacy definition guarantees that even a record R ∈ [a,b] added
after the range query for [a, b] is indistinguishable from random
until [a,b] is queried again. Moreover, the work by Shi et al. [19]
is Match Revealing (selective-MR). This means that, if a record
matches, its category is leaked to A, too. In contrast, the work by
Boneh and Waters [6] and Lu [16] is Match Concealing (selective-
MC). Definition 8 never leaks the category to A, and therefore is
Match Concealing. Additionally, Lu [16] requires that the adver-
sary must not know the distribution of records’ categories. As the
ciphertexts are stored in aB-tree, visible to the store, knowledge of
the category distribution is enough to reveal all ciphertexts, cf. Lu
[16], §9. This is a rather significant drawback, as there are many
useful situations where the adversary may either partially or fully
know the plaintext distribution.

Definition 8 is also stronger than Order Preserving Encryption
(IND-OPE). In IND-OPE,A immediately learns the order of records.
After a range query,A can determine for any record added in the fu-
ture whether it is in the (encrypted) range or not. Also,A learns for
any record whether it is smaller or larger than a range’s (encrypted)
endpoint. In contrast, Definition 8 only leaks membership to an
encrypted range of encrypted records for those records queried at
the time of the query, but not for updates (therefore called “update-
oblivious”). Targeting practicality, Definition 8 is weaker than the
one of ORAM. In contrast to ORAM, Definition 8 does not protect
access patterns. That is, A can observe that subsequent queries ac-
cess the same records. However, as noted before, in addition to its
inefficiency ORAM is vulnerable to collusion attacks as it does not
support multiple users.

3. UPDATE-OBLIVIOUS LINKED LISTS
For its range and sort queries, RASP relies on a new kind of

data type that we call update-oblivious add-enumerate data type.
Its purpose is to allow a Writer to add values to buckets (the cat-
egories). Also, a Reader can enumerate all values of a bucket.
The sole privacy goal is to hide from an adversary storing all data
which bucket a new value is added to by the Writer at the least
until this specific bucket is enumerated by the Reader. We will
now start by describing the operations and privacy properties that
update-oblivious add-enumerate data types support. Then, we will
introduce an original data type LL, a sequence of linked lists that
supports update-oblivious operations, and we will prove its privacy
properties.

An add-enumerate data type comprises a sequence ofD buckets,
dynamic data structures indexed by I,1 ≤ I ≤D. This data type
supports adding values to the individual buckets and enumerating
individual buckets, i.e., enumerating all values that have been pre-
viously added to one of the buckets. Again, we assume a key-value

based underlying cloud store. Each “value” v added is uniquely
addressable by an address k in the store. More formally, an add-
enumerate data type supports two algorithms:

• Add(I,v) : On input bucket I,1≤ I≤D and a value v∈{0,
1}∗, this algorithm adds v to I and outputs an address k∈{0,
1}∗. We call the pair (k,v) valid.

• Enumerate(I) : This algorithm returns the set {(k,v)|v ∈
I∧(k,v) is valid}.

3.1 Update-Oblivious Privacy
Again, we use a simulation-based privacy definition for update-

oblivious data types. Similarly to Definition 8,A can learn (1.) the
operation pattern (which operation is performed on the data type),
(2.) the data access pattern (which data in the individual data struc-
tures is accessed during an operation), and (3.) the enumeration
pattern (which values are returned as part of an Enumerate). How-
ever, the enumeration pattern will not reveal the indices of values
enumerated never before. Being clear from the context, we reuse
the notions of histories and operations defined previously in the
context of add-enumerate data types, with a new definition of Trace
to quantify information leakage.

DEFINITION 9 (OPERATION). An operation op is either (Add,
I,v) or (Enumerate,I,⊥).

DEFINITION 10 (ENUMERATION PATTERN). An enumeration
pattern induced by a q-query history H is the q×q binary matrix
σ(H), where for 1≤ i,j≤ q the entry in the ith row and jth column
is 1, iff i≤ j Type(oj) =Enumerate and Ii = Ij . Otherwise, this
entry is 0.

If Type(oi) =Add, then the ith row of this matrix contains ones
in the columns corresponding to an enumerate that happens after
this add. Therewith, the enumeration pattern reveals which cate-
gory an add corresponds to only after an enumerate occurs for that
same category. If the result of an add is never queried, i.e., no
enumerate occurs after for that category, then the entire row in the
matrix will contain only zeroes, and the category of the add is not
leaked.

DEFINITION 11 (ACCESS PATTERN). Let π be a random per-
mutation of the integers {1,...,D}. The access pattern of a q-query
history is q-length sequence γ(H), such that, if oi is an enumerate
on category j, then γ(H)[i]=π(j). Otherwise, γ(H)[i]=0.

That is, access pattern γ will reveal when two enumerates are on the
same category. We stress that this is also revealed as part of the enu-
meration pattern, and so is not additional leakage, but we include
this separate notation for clarity and ease of exposition in our proof.

DEFINITION 12 (TRACE). The trace induced by a q-query his-
tory H is the tuple τ(H)=(σ(H),β(H),γ(H)).

DEFINITION 13 (ADAPTIVE UPDATE-OBLIVIOUS). We define
adaptive update-oblivious (“update-oblivious”) privacy using the
same generic simulation-based experiments as above (Definition 8),
but include the new Definition 12 of trace for this data structure.

3.2 The Data Type LL

We present a new add-enumerate data type LL which implements
the sequence of D buckets as linked lists on top of any key-value
based store.



Algorithm 1: LL-Add(I,v,κ)

Input : Pair (I,v), secret key
κ, local sequences of next list pointers Ψ=(ψ1,...,ψD) and
counters ΓWriter =(γWriter

1 ,...,γWriter
D ),security parameter s

Output: Address k, ciphertext e of new record
1 C :=Get(hκ(“delta”)); // C=Encκ(∆)
2 ∆=(δ1,...,δD) :=Decκ(C);
3 if δI =1 then
4 γWriter

I :=γWriter
I +1;

5 ψI :=hκ(I,γWriter
I );

6 δI :=0;
7 Put(hκ(“delta”),Encκ(∆)=Encκ(δ1,...,δD));
8 end
9 k :=ψI ;

10 ψI
$←{0,1}s;

11 new Record e;
12 e.value :=Encκ(v); e.ψ :=Encκ(ψI);
13 Put(k,e);
14 return (k,e);

Overview: The main rationale of LL is that Reader and Writer syn-
chronize their access to the same bucket/linked list I using an array
of flags. If the Writer wants to update linked list I by adding a
new value v, he verifies whether the Reader has enumerated I af-
ter the last add by checking the flag for this list. If the Reader has
enumerated I , then the Writer does not simply append v to I , but
creates a new chain for I , adds v to this chain, and updates the flag.
The Writer will continue adding values to this new chain, until the
Reader enumerates I again. Then, the Writer will create another
new chain etc. On the other hand, the Reader checks a flag to un-
derstand whether the Writer has created a new chain for I , thereby
knowing how many chains of I contain values. The security ratio-
nale for starting a new chain for I after an enumeration of I is that
A cannot determine category I for a newly added value by linking
to a previous enumerate of I .

Details: Reader and Writer share a secret key κ that, for simplicity,
has been exchanged in advance. LL comprises a total of D linked
lists which are indexed by I,1≤I≤D. In the underlying key-value
store, the head of linked list I , the start of the first chain of I , can
be accessed using address hκ(I,1), where h is a pseudo-random
function, and “,” is an unambiguous pairing of inputs.

Writer and reader synchronize using an encrypted array of flags
∆ = (δ1,...,δD), δi∈{0,1}. They can save and retrieve Encκ(∆),
where Enc denotes encryption, in the underlying key-value store
using address hκ(“delta”). Initially, all flags δi are set to 0.

For each linked list I , the Writer stores a local counter γWriter
i .

All counters are initialized to 1. The purpose of these counters is
to keep track of the number of chains that have been created per
linked list. Each time the Writer starts a new chain for a linked
list I , he increases γWriter

I by one. Along the same lines, the Reader
also keeps a local sequence of counters γReader

i , initialized to 1. Each
time the Reader sees that the flag for a specific linked list I has been
changed, i.e., the Writer has created a new chain for I , the Reader
will increase γReader

I by one. Moreover, the Writer locally stores for
each linked list I a next pointer ψI . This next pointer represents
the address in the underlying key-value store for the next value v to
be added to linked list I . Initially, each ψI is set to hκ(I,1), i.e.,
the start of the first chain of list I .

Add: In case the Writer wants to add a new value v to linked list I ,
he executes Algorithm 1. First, he downloads and decrypts the δi.
Note that we use the standard key-value semantic Get and Put to
access data in the underlying store. If δI = 1, then the Reader has

Algorithm 2: LL-Enumerate(I,κ)

Input : Category
I , secret key κ, local counters ΓReader =(γReader

1 ,...,γReader
D )

Output: Set of ciphertexts S={ci|ci∈I}
1 S :=∅;
2 C :=Get(hκ(“delta”)); // C=Encκ(∆)
3 ∆=(δ1,...,δD) :=Decκ(C);
4 for i :=1 to γReader

I −1 do
5 start :=hκ(I,i);
6 S :=S∪Retrieve(start,κ);

7 if δI =0 then
8 start :=hκ(I,γReader

I );
9 S :=S∪Retrieve(start,κ);

10 δI :=1;
11 Put(hκ(“delta”),Encκ(∆)=Encκ(δ1,...,δD));
12 γReader

I :=γReader
I +1;

13 return (S);

Algorithm 3: LL-Retrieve(ψ,κ)

Input : Chain start pointer ψ, secret key κ
Output: Set of ciphertexts S

1 S :=∅;
2 Record e :=Get(ψ);
3 while e 6=⊥ do
4 S :=S∪e.value;
5 ψ :=Dκ(e.ψ);
6 e :=Get(ψ);

7 return S;

accessed list I since the last add, and the Writer creates a new chain
for I . The Writer increases counter γWriter

I , sets next pointer ψI to
the start of the new chain hκ(I,γWriter

I ), resets flag δI , and uploads
a new encryption of all flags ∆. In any case, the Writer uploads
an encrypted version of v using the current address that ψI points
at. Together with the encryption of v, the Writer also uploads a
randomly chosen encrypted new next pointer ψI . For convenience,
we call the combination of an encrypted value v and encrypted next
pointer ψI a record.

Enumerate: In case the Reader wants to retrieve all (encrypted)
values of linked list I , he executes Algorithm 2. First, the Reader
downloads and decrypts the δi. If δI = 1, then the Writer has not
updated I since the last enumerate. Consequently, the Reader will
retrieve all values of all the current (γReader

I − 1) chains of list I .
Otherwise, if δI = 0, then the Writer has started a new chain for
I since the last enumerate. So, the Reader will retrieve all records
of the previous (γReader

I − 1) chains of I , then retrieve all records
of chain γReader

I , set flag δI , encrypt and upload all flags ∆, and
finally increase counter γReader

I . Note that the Reader retrieves all
values of a chain by using Algorithm 3. There, D is the decryption
algorithm for encryptions Enc. Using ∆ for synchronization be-
tween Writer and Reader, the Writer will avoid putting a new value
into the underlying store using an address that the Reader has pre-
viously already queried for as part of an enumerate. In this case,
the Writer will start a new chain and notify the Reader that a new
chain is available.

3.3 Privacy Analysis
For our proof, we use the notion of IND$-CPA encryption from

Rogaway [18]. Informally, this definition means that an encryption
scheme (Enc,Dec) is indistinguishable from an oracle which pro-
duces random strings of the same length as a ciphertext. This can be
implemented, e.g., by a PRP (like AES) in CBC- or Counter-mode.



THEOREM 1. If h is a pseudo-random function, and Enc is an
IND$-CPA encryption, then LL is update-oblivious.

PROOF. We describe a PPT simulator LS such that for all PPT
adversaries A, the outputs of RealLLA (s) and SimLL

A,LS(s) are in-
distinguishable. Consider the simulator LS that, given a partial
trace of a history H , τ(o1,...,oi), outputs v= (Ki,Ci) as follows.
LS keeps as state, a vector B of length D which contains the most
recent contents of each bucket (from the simulator’s perspective).
B is initialized to all empty sequences, and LS will update B for
each Enumerate which reveals additional bucket records. Addi-
tionally, LS manages list k which holds the addresses of add oper-
ations and an associative array c which maps addresses to values. c
represents the simulator’s view of the store’s memory. If c is evalu-
ated on an address which is empty, it returns⊥. If i is the operation
LS is simulating and
1.) β(o1, ...,oi)[i] = Add: LS sets k[i] and c[k[i]] to uniformly
random strings and outputs Ki={k[i]} and Ci={c[k[j]]}.
2.) β(o1,...,oi)[i]=Enumerate: LS creates the sequence K′ such
that it contains, in order, every record k[x] where σ(H)[x,i] = 1.
LS then sets Bγ(H)[i] to Bγ(H)[i] concatenated with K′ and a uni-
formly random string. This can be viewed as the simulator return-
ing all the records from the previous enumerate on the same bucket,
plus any additional records that have been added to the bucket since
then and finally adding a random empty address on the end (repre-
senting the end of a list). LS then returns Ki = Bγ(H)[i] and Ci
equal to c evaluated on every address in Ki.

Since the outputs of h and Enc are indistinguishable from ran-
dom, simulator LS can put random strings in Ki and Ci during
adds. Because of the enumeration pattern leakage, LS can also
guarantee the correct pattern in Ki during enumerates by a simple
check of β(H). Future enumerates will also return, as a prefix, pre-
vious enumerates which guarantees consistency. LS simulates the
end of a linked list by appending a random address and a ⊥ value
to each enumerate.

Resiliency to Collusion Attacks: Since every user has their own
key, independent of the other users, it is simple to see that users
cannot collude with each other or with the cloud server to learn
anything beyond their own data.

Extensions to Mitigate Consistency Attacks: Contrary to previ-
ous work on range search [6, 16, 19, 26], we allow different entities
to access data: the Reader and the Writer. As the two entities syn-
chronize using ∆, a fully malicious adversary could mount attacks
by desynchronization, such as sending outdated versions of ∆.

So far, our definitions of update-oblivious and of data type LL
above have implicitly required read-after-write consistency. Yet,
although the Reader has read bucket I and set δI := 1, A could
send an old version of Enc(∆) with δI = 0 to the Writer during
Add. Consequently, the Writer would not create a new chain, but
add a new record at an address already read by the Reader – violat-
ing update-obliviousness.

Thus, we now show how we can easily extend our system to cope
even with adversariesA mounting consistency attacks. Inspired by
Li et al. [15], we augment ∆ by two additional global counters, one
for the Reader, one for the Writer. Both counters will be encrypted
as part of ∆. For each Enumerate, the Reader increases its counter.
For each Add, the Writer increases its counter. Both parties keep
local copies of counters, compare to ∆’s counters upon receipt,
and therewith verify the freshness of ∆. Even in the face of fully
malicious A mounting consistency attacks on the (augmented) ∆,
this approach achieves Fork Consistency, the strongest consistency
possible in the absence of a third trusted party [15]. In short, after

such an attack, Surveyor and User will be in different “worlds”: no
change performed to the data will ever be seen by the Surveyor.
The surveyor remains at the state of the old, not-updated data set,
however with full privacy guarantees. For more details on this tech-
nique, we refer to Li et al. [15]. Note that in scenarios similar to
related work with only one entity to read and write to the store, LL
would not synchronize ∆, making consistency attacks impossible.

Generalization: The update-oblivious property can be extended
to other data types. Let a monotonically-expanding data type S
be any data type supporting two general operations Add(S,E) and
Enumerate(S,param) such that i < j ⇒ Enumerate(Si, param)
⊆ Enumerate(Sj,param). We postulate that any monotonic data
type can be made update-oblivious. Hash Tables, Trees, Graphs are
examples of data types that can be restricted to be monotonically-
expanding, if deletions are not allowed. Such expanding types
make sense in applications where data is continuously added to an
application data store. For example, an update-oblivious Hash Ta-
ble that stores key-value pairs can be constructed using our bucket
data type LL. The user hashes the key into a bucket id I , then
invokes LL-Add(I,v,κ). Graphs (and trees) can be viewed as a
collection of edges. The Add adds edges to the collection, while
Enumerate lists edges (or properties of edges). Our bucket data
type LL can be used to implement the same update-obliviousness
for expanding graphs, trees, and other dynamic data types.

4. RASP
Overview: The main rationale behind RASP is to arrange up-

loaded data with category I using an update-oblivious add-enumer-
ate data type such as LL that offers buckets. In RASP, each indi-
vidual bucket represents a category I within domain D of uploaded
data M . With n�D, we achieve low query complexity similar to
bucket sort. Uploading new data into a bucket is realized by using
Add in LL. Similarly, range search queries and actual bucket sorts
can be realized using Enumerate. Our goal with this approach is to
reduce the complexity for range search and sort queries over related
work. RASP’s query complexity depends only on D and U which
we assume to be small, but the complexity is independent of n as in
related work. To support multiple users U , we use an LL data type
per user. Users share pairwise different keys with the surveyor.

4.1 RASP Details
We now present RASP’s details, following the notation intro-

duced in Section 2.1. The system is initialized with KeyGen, pro-
ducing key material for users and the surveyor. Each time, a userUi
wants to upload data to the cloud, he first uses Encrypt and uploads
the resulting ciphertext into the cloud’s key-value store. For a range
query, the surveyor executes algorithms PrepareRangeQuery and
RangeQuery intertwined. Similarly, for a sort query, he executes
algorithms PrepareSortQuery and SortQuery intertwined. In the
algorithms below, Enc and Dec are IND$-CPA encryption and de-
cryption (see Section 3.3) such as AES-CBC with random IVs, and
h is a pseudo-random function such as HMAC [4] using proper
input padding.

KeyGen(k) As shown in Algorithm 4, the system is initialized by
generating a secret key SK for the surveyor as well as individual
user keys Seedi. A key Seedi is then sent to user Ui, and the sur-
veyor receives SK. Note that knowledge of SK is sufficient for the
surveyor to compute users keys Seedi himself.

Encrypt(I,M,Seedi) Algorithm 5 is executed by userUi that wants
to add data M to bucket I in the key-value store. Ui simply runs
LL-Add to add data M to category/bucket I in LL. Note that LL-
Add uploads encrypted data to the key-value store.



Algorithm 4: KeyGen(s) – generate keys for surveyor and
users

Input: Security parameter s
Output: Surveyor’s secret key SK, set of user keys {Seedi}1≤i≤|U|

1 SK $←{0,1}s;
2 for i :=1 to |U| do
3 Seedi :=hSK(i);

4 return SK,{Seedi}1≤i≤|U|;

Algorithm 5: Encrypt(I,M, Seedi) – user Ui encrypts and
uploads to cloud.

Input: Category I , data M , user Ui’s key Seedi
Output: Ciphertext C that is uploaded to cloud

1 κ :=Seedi;
2 (k,C) :=LL-Add(I,M,κ);
3 return C;

Algorithm 6: Decrypt(C,SK,i) – surveyor decrypts ciphertext
Input: Ciphertext C, surveyor secret key SK, user ID i
Output: Data M

1 Seedi :=hSK(i);
2 M :=DecSeedi (C);
3 return M ;

Algorithm 7: PrepareRangeQuery(a, b, SK) and
RangeQuery(T R, {C1, ... , Cn}) – surveyor prepares and
executes range query from a to b with cloud

Input: Surveyor: Indices
a and b, surveyor’s secret key SK, Cloud: pairs (ki,Ci)

Output: Set of ciphertext SR={Ci}
1 SR :=∅;
2 for i :=1 to |U| do
3 for j :=a to b do
4 Seedi :=hSK(i);
5 SR :=SR∪LL-Enumerate(πSeedi (j),Seedi);

6 return SR;

Decrypt(C,SK, i) Algorithm 6 is run by the surveyor. The sur-
veyor computes Seedi using his secret key SK and decrypts the
ciphertext.

PrepareRangeQuery(a,b,SK) and RangeQuery(T R,{C1,...,Cn})
For ease of understanding, we present PrepareRangeQuery and
RangeQuery together in Algorithm 7. As you will see, token T R
of PrepareRangeQuery is the sequence of addresses ki required to
download ciphertexts Ci from the key-value store. The surveyor
iterates over all possible users to generate their keys Seedi and re-
trieve all data for buckets j ∈ [a, b]. The surveyor permutes his
access to buckets j by using permutations πSeedi which are random
permutations over integers {a, ... ,b}. To retrieve all data of user
Ui in bucket π(j)Seedi , the surveyor uses LL-Enumerate(πSeedi(j),
Seedi). The rationale behind using πSeedi to enumerate buckets is
not to always access, first, bucket a, then bucket a+1, then a+2
etc. until bucket b, but to access buckets in a random order. Note
that LL-Enumerate internally uses addresses to access data in the
key-value store, representing T R.

PrepareSortQuery(m, SK) and SortQuery(T S , {C1, ... , Cn})
Similar to range search queries, we consolidate PrepareSortQuery
and SortQuery together in Algorithm 8. Again, the surveyor starts

Algorithm 8: PrepareSortQuery(m,SK) and SortQuery(T S ,
{C1,...,Cn})
Input: Surveyor: Position in sorted data

P , window length m, secret key SK, Cloud: pairs (ki,Ci)
Output: Set of ciphertext SS={Ci}

1 for i :=1 to |U| do
2 Seedi :=hSK(i);

3 SS :=∅; i :=1; pos :=1;
4 while m>0 and pos≤D do
5 S′ :=LL-Enumerate-UpTo(pos,Seedi,m);
6 m :=m−|S′|;
7 SS :=SS∪S′;
8 if i= |U| then
9 i :=1;

10 pos :=pos+1;

11 else
12 i := i+1;

13 return SS ;

by computing all possible user keys Seedi. Now, the surveyor it-
erates over all possible buckets and therein over all possible users,
starting with the lowest bucket. To retrieve data from individual
buckets, the surveyor uses Algorithm LL-Enumerate-UpTo(i,Seedj ,
m). This is a slight variation of the standard LL-Enumerate(i,
Seedj), cf. Algorithm 2. We do not give details for LL-Enumerate-
UpTo, because the only difference is the additional parameter m.
This parameter specifies that algorithm LL-Enumerate will stop re-
trieving ciphertexts after finding m ciphertexts (if available) while
iterating over the chains of category i, regardless whether there
might be more ciphertexts in the chains. Following the definition of
m-sort in Section 2.1, the search token T S in RASP is the sequence
of addresses for the key-value store.

Note During range search and sort queries, when the surveyor
performs multiple Enumerate sequentially for the same user, it is
not necessary to download and upload ∆ multiple times, but only
once. The same ∆ can be used for all categories/buckets of a single
user, so this saves a factor ofD in computation and communication
complexity without affecting privacy. We apply this optimization
in our evaluation in Section 4.3.

4.2 Privacy Analysis

THEOREM 2. If LL is update-oblivious, then RASP is forward-
secure privacy-preserving.

PROOF. We describe a PPT simulator S such that for all PPT
adversaries A, the outputs of RealRASP

A (s) and SimRASP
A,S (s) are

indistinguishable. We construct a simulator S that uses data type
LL. Given a partial trace of a history H , τ(o1, ... ,oi), S outputs
v=(Ki,Ci) as follows:

Using the trace information, S will translate the encrypt, range
search, and sort operations in H into LL’s Add and Enumerate op-
erations which can be passed to LS. S keeps, as state, sequences
b, and g, and a matrix s, representing the operation pattern, ac-
cess pattern, and enumeration pattern respectively, which will be
created and passed to LS as its trace. Generally speaking, encrypt
operations will be translated into Adds in a one-to-one manner, and
both range searches and sort queries will be translated into one or
more Enumerate operations. Therefore, S will also have a counter
x which keeps track of what location in the simulated trace it is at
(initially set to 1). If oi is the operation S is simulating, and
1.) β(H)[i] = Encrypt: S sets b[x] to Add, increments x, and
returns LS(b,s,g).



2.) β(H)[i] = RangeSearch: Parse σ(H)[i] as {(b1,t1), ... ,(bn,
tn)}, where bs are permuted bucket IDs and ts are indices of re-
lated Encrypt operations. σ(H)[i] is an unordered set, so S orders
it numerically by b` from lowest to highest. S sets Ki := ∅ and
Ci = ∅. ∀b`, S sets b[x] to Enumerate, sets g[x] to b`, ∀u ∈ t`
sets s[x,u] to 1, appends LS(b,s,g) to Ki and Ci, and increments
x. This creates a series of enumerate operations in the trace for LS
which is linked to all the correct add operations through σ(H). S
returns Ki and Ci.
3.) β(H)[i] = SortQuery: Parse γ(H)[i] as (m,(b1, ... ,bn)). S
proceeds as for RangeSearch, but instead of ordering the enumer-
ates by the random permutation π, it orders them according to the
leakage from γ(H) (i.e., in the order of the underlying categories).
S, according to the algorithms for range search and sorting, em-

ulates a number of add and enumerate queries which are to be done
by the update-oblivious linked list data structure. Since we can
translate every encrypt, range search or sort operation directly into
one or more add or enumerate operations, S returns exactly the out-
put of simulator LS. Therefore, if the linked list data structure is
secure and can be simulated by simulator LS, the output of S is
indistinguishable from the output of the real protocol.

4.3 Evaluation
We have implemented RASP in Java, and the source code is

available for download [3]. As RASP does not require any compu-
tation on the store, our implementation uses the standard Amazon
Dynamo DB cloud as the underlying key-value store. Dynamo DB
charges based on the required Get/Put operations per second which
is essentially an estimation of the load expected on the database.
For our tests, we configured a database supporting 3000 Get and
1000 Puts per second and read-after-write consistency. Such a
database would cost ≈$680 per month [2]. As encryption Enc, we
use 128 Bit AES in CBC-mode and HMAC with SHA-1 as hash
function h. As we are only interested in the additional overhead
of RASP compared to a non-privacy preserving protocol, we did
not encrypt and upload a real payload d (e.g., patient data) as part
of records, but only a random string of length 160 Bit. In the real
world, this could be an address for a larger file in the cloud. For
the user and surveyor part of RASP, we have used a laptop with
2.4 GHz i7 CPU and 8 GByte RAM.

As RASP’s query performance does not depend on n, we have
measured timings for Encrypt (Algorithm 5, including upload),
Range Queries, and Sort Queries on a Dynamo data store with a
fixed number of n= 225 records. We have set the number of users
|U| to 100 and varied D = {64,256,1024}, and m from .01% to
.4% of n for range queries. For m-sort, we varied m from 32 to
512. Data is distributed into buckets according to a Gaussian dis-
tribution to better represent a real world scenario. In practice, the
most interesting pieces of data are usually in the tail of the distri-
bution, and most data is distributed normally. However, this choice
does not significantly effect the running time of our scheme as it de-
pends only on m and D. The uneven values of m for range search
are the result of querying ranges separated by one bucket when
D = 64 (the smallest unit of change that would be evenly divisi-
ble for all values of D). Since the data is Gaussian, increasing the
range by one bucket increases m by an uneven amount. To model
interleaving client and surveyor operations (and force creating new
chains), we distributed queries exponentially with n

100
average ar-

rival rate. However, we measured timings only after adding all n
records, representing worst case queries. We have run each sample
point 20 times, and relative standard deviation was low at <5%.

Figure 1 sums up our evaluation and presents timings in ms per
record. All timings are dominated by network latency. In Dy-

namo, a single Get takes 31 ms, and a Put takes 39 ms. In con-
trast, (Java Bouncy Castle) AES encryption (≈14 µs) and HMAC
evaluation (≈ 6 µs) are comparably fast on our setup. In com-
parison, a typical Type-A 512 bit pairing [8] required by related
work [6, 16, 19, 26] is 3 orders of magnitude more expensive and
takes ≈ 8 ms, an exponentiation takes ≈ 11 ms. We stress that,
in contrast to other work [16], our evaluation does not rely on (ex-
pensive) cryptographic hardware acceleration running on the user,
surveyor, or cloud store. We established a baseline (≈0.21 ms) by
testing the amount of time it takes to retrieve a record from Dynamo
without any encryption or secure data structure. This was done
using Dynamo’s built-in range search capability and represents a
lower bound for any range search algorithm. A single Encrypt of a
single user in RASP takes ≈64 ms in our configurations.

Times for single Get, Put, and Encrypt are significantly higher
compared to Range and Sort queries for the surveyor per record,
although the same operations (encryption, hash, network access)
are required. This is due to the fact that during, e.g., a range
query, RASP allows the surveyor to enumerate multiple LL-buckets
in parallel with Dynamo. Dynamo allows to issue multiple Get-
requests from multiple threads in parallel, reducing the total re-
sponse time significantly. We estimate the single record upload
time in related work, e.g., Lu [16] to≈589ms for D=256 (2+6·
logD exponentiations + 1 Put) which is notably higher than RASP.

Timings for range queries, Fig. 1a, and sort queries, Fig. 1b, in-
crease slightly with D, as ∆ becomes larger and needs to be down-
loaded/uploaded and decrypted/encrypted by the surveyor. Simi-
larly, with increasing |U|, more ∆ need to be downloaded and pro-
cessed. Sort is more expensive than range search, because access to
buckets cannot be parallelized: to find the first m records, buckets
need to be accessed sequentially. However, sort has an additional
security property that is not present with range search. If the end of
a sort query lands in a bucket which contains entries for more than
one user, not all of the users’ data will be revealed (only enough
to satisfy the sort query). In exchange for this additional privacy,
sort queries are significantly more expensive. If this additional pri-
vacy is not needed, one can accomplish the same thing by issuing
sequential range queries for each bucket until enough results are re-
turned to satisfy the m-sort. This will achieve similar performance
per record to the much faster range sort.

To put RASP’s range search into perspective, we determined the
performance for Lu [16] by using JPBC [8] to find a cost for one
pairing on our hardware and then multiplying by the number of
pairings needed per query in their scheme. We then divided by the
number of records returned to get an amortized query computation
cost per record and finally added the baseline communication cost
as outlined above. Note that our comparison is for RASP with 100
users and related work with just a single user. When related work
is modified for multiple users, the straightforward way which al-
lows for the same cross-user privacy guarantees as RASP (making
a separate index for each user) imposes over a 20 times slowdown.
We compare against our scheme with 100 users to show that we can
scale to a multi-user setting with minimal performance degradation.

In comparison with Lu [16], range search with RASP is several
times faster when D or m are small, but also comes very close to
the optimal baseline when m is larger, see Fig. 1a. Additionally,
RASP is faster at adding records by an order of magnitude. As
the costs for exponentiation and pairing based related work is non-
negligible even on our powerful hardware, we conclude that its use
in scenarios with embedded devices, smartphones, and large n is
limited. On the server side, RASP does not require any compu-
tation to be performed at the store and so can be run on a cloud
storage service without any costly computational resources.
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Figure 1: RASP evaluation results

5. RELATED WORK AND SUMMARY
ORAM Privacy-preserving range search and sort queries could

be realized based on, for example, ORAM [11] protocols. The idea
would be to simply encrypt all records, store them in an ORAM
(e.g., in sorted order), and let the surveyor perform the range search
on the ORAM. This results in strong privacy, because plaintexts can
be encrypted using an IND-CPA cipher, and ORAM does not leak
any information about accesses and therewith queries. The draw-
back of ORAM is that its worst-case communication complexity
remains high for this application, despite recent results that reduce
it to poly(logn) [20, 24]. We do not include “ObliviStore” [22] in
our comparison, because, fundamentally, it is only an implementa-
tion of the

√
n complexity ORAM by Stefanov et al. [23]. While

also targeting practicality, it requires either trusted hardware on the
data store or a private cloud for the user and is therefore difficult to
compare to our setup. Currently, Wang et al. [27] are using ORAM
to develop general oblivious data structures. While they are able
to reduce complexity for, e.g., a search tree down to O(logn) with
O(logn) client memory, this is still more than RASP, cf. Table 1.
OPE Alternatively, using OPE [5, 17], ciphertexts retain the or-
der of their underlying plaintexts, making range search and sorting
straightforward. However, OPE gives weak privacy, as the relation-
ship between ciphertexts is immediately visible to the cloud.
Searchable Encryption Schemes for general search on encrypted
data, see seminal work by Song et al. [21] or Boneh et al. [7],
or see Curtmola et al. [10] for an overview, can be extended in
a straightforward way to perform range search. For example, each
data record could be encrypted with the category it belongs to. Such
constructions would have the (prohibitive) drawback of being lin-
ear in n. Any more efficient approach, e.g., enumerating over cat-
egories as RASP, would need to solve the (non-trivial) problem of
being forward-secure. One might apply RASP to allow for such
privacy, resulting in a protocol comparable to RASP. Similarly, it
is non-trivial to extend searchable encryption schemes to allow for
sort in a privacy-preserving, yet practical way and, consequently,
deserves its own research.
Range Search Some related work focuses especially on privacy-
preserving range search. For example, Hacigümüs et al. [13] and
Hore et al. [14] encrypt records and put ciphertexts in a set of per-
muted categories. While this hides into which category a record is
added, the cloud automatically learns the relationship between ci-
phertexts and can determine which ciphertexts are in the same cate-
gory. Other works [6, 16, 19, 26] overcome this drawback and hide
membership to a category until this particular category is queried
– still, the cloud will be able to determine for any ciphertext added
after the query whether it is belonging to the previously queried

category or not. While [6, 16, 26] are selective match concealing
(selective-MC), [19] is selective match revealing (selective-MR),
i.e., the cloud will learn the category of a record that matches a
range query. Moreover, these schemes make use of computation-
ally expensive bilinear pairings. Similarly, recent work by Wand
et al. [26] uses asymmetric cryptography to overcome a certain pri-
vacy leakage in multi-dimensional range search. However, based
on R-trees, its range search worst-case complexity is in O(n).

Comparison.
As RASP offers not only range search, but also sort capabilities

together with stronger (forward-secure) privacy than related range
search schemes or OPE, it is difficult to compare its performance.
Still, to put things into perspective, we sum up RASP’s asymptotic
performance and contrast it to related work in tables 1 and 2.

We stress that related work has not been designed for use in
multi-user scenarios. While related work could be extended to
multiple users, e.g., using different keys for each user in OPE or
separate ORAMs for each user, this increases complexities signif-
icantly or would require a significant redesign. A straightforward
extension adds a factor of |U| in tables 1 and 2, which renders such
approaches overly costly.
Computation and Communication Tables 1 and 2 show the com-
putational complexities to add a new record to the store for the
user (for both range search and sort), for the surveyor to perform
the query, and for the cloud during a query. The computational
complexities comprise record encryption and decryption (for m
records) operations. The communication complexities denote the
communication between surveyor and cloud during a range or sort
query. Security factor s in the communication complexities indi-
cates that symmetric key ciphertexts are exchanged, and s′ indi-
cates asymmetric key ciphertexts. In each table, we compare to
an ideal solution, representing a lower bound for each complexity,
respectively.

ORAM provides a regular RAM interface, so any operation can
be done by simply using the same “ideal” algorithm that would be
used on unencrypted data. The overall cost of this operation will
then be the same as the ideal, but with a poly-logarithmic overhead
specific to the ORAM implementation. For example, In the case of
an Insert, an ideal solution would be using an interval tree [9]. OPE
and an Ideal solution all require (a factor of) logD communica-
tion complexity, because them records in theD categories/buckets
need to be addressed.

Note: It is important to point out that, while related work on
range search [6, 16, 19] or OPE [17] has better asymptotic com-
plexities than RASP (logD vs. D), RASP is linear in D only due



Table 1: Worst-case complexities for range search and privacy comparison. n: total number of records,
m: number of records queried D: size of records’ domain, U : set of users, s,s′: security parameters.
Typically, s� logn,s� logD,s′ > s,n�D,n≥m. Related work requires additional factor |U| for
multi-user. Note: RASP is linear in D only due to bit array ∆ which is very small in practice.
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log3n)‡ log3n)‡ log3n·s) IND-CPA and
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log2n)‡ log2n)‡ log2n·s)

Range Search
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[16] O(logD)‡,� O(logD+m)‡,�
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logn+m)� s·m)
[19] O(logD)‡,� O(logD+m)‡,� O(n)� O(m·(logD+s)) selective-MR

M
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U
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r

Ideal O(logD) O(logD+m) — O((m+logD)·s) IND-CPA and
Pattern

This paper O(D)‡ O(|U|·D+m)‡ — O((|U|·D+m)·s) Forward-
Secure
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Table 2: Worst-case complexity for m-Sort.
m-Sort

Computation per CommunicationQuery per QuerySurveyor Cloud

Si
ng

le
U
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r

OPE [17] O(m)‡ O(logn+m) O(m·s)
ORAM

[20] O(m·log3n)‡ — O(m·log3n·s)
[24] O(m·log2n)‡ — O(m·log2n·s)
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r Ideal O(m) — O(m·s)

This paper O(|U|·D+m)‡ — O((|U|·D+m)·s)
‡ Involves Symmetric Cryptography

to synchronization array ∆. In practice, bit array ∆ is very small,
especially compared to a single patient record. For example, with
D= 8192 categories, |∆|= 1 KByte resulting in only 64 AES op-
erations. In all practical scenarios as targeted in this paper (n�D)
the linear number of AES operations will outperform logD expo-
nentiations and pairing operations.

Refering to our evaluation in Section 4.3, we indicate that RASP’s
constants are very low, using only symmetric cryptography, i.e.,
hash functions and block ciphers. Also, RASP does not require any
expensive O(n) computation on the cloud side that the surveyor
would have to pay for [1], but only a cheap key-value based storage
cloud such as Amazon Dynamo [2].

For m-sort, a scheme based on OPE [17] would just parse the
OPE tree and send the m records. Again, ORAM-based sorting
mechanisms with O(m) accesses to the ORAM (assuming records
are already sorted, e.g., in an interval tree) become quickly too ex-
pensive. In contrast to related work, RASP is close to an Ideal solu-
tion, besides the additional factor of |U|·D which is small in prac-
tice, cf. Section 4.3. Note that recent range search schemes [6, 16,
19, 26] do not support m-sort queries in a straightforward way, so
we cannot include them in Table 2. While extending range search
schemes to support sorting in an efficient, yet secure (e.g., forward-
secure) way might be possible, it is far from straightforward.
Privacy RASP’s forward-secure privacy notion is stronger than re-
lated work’s selective match concealing or selective match reveal-
ing [19] or IND-OCPA as discussed in Section 2.3. Yet, RASP
offers weaker privacy than ideal IND-CPA and indistinguishable

query patterns.
Storage Finally, we briefly summarize storage requirements. Being
tree based, OPE by Popa et al. [17] requires an additional O(logn)
storage overhead per ciphertext. Similarly, recent ORAMs are tree
based and, with n nodes in the tree, require an overhead factor of
either O(logn) [20] or O(s′) [24] per ciphertext. Here, s′ is an ad-
ditional security parameter. While the work by Stefanov et al. [24]
has superior computational worst-case complexity than Shi et al.
[20], O(log2 n) compared to O(log3 n), a drawback is its large
memory requirement of O(s′ · log2n · s). In contrast, RASP fea-
tures only O(s) ciphertext overhead and O(D · logn+ s) (for D
counters and SK) memory requirements.

6. CONCLUSION
RASP addresses privacy-preserving range search and sort on out-

sourced, encrypted data. RASP offers stronger privacy than related
work as well as support for multiple, non-trusted users. RASP
builds on top of LL, a new dynamic data structure (of independent
interest) for privacy-preserving add/enumerate operations. Both,
RASP and LL seamlessly integrate into cheap, real world storage-
only cloud services such as S3 or DynamoDB. Abstaining from
pairings and exponentiations, our protocols target practicality. Our
performance evaluations show that, even without hardware accel-
eration support, RASP offers substantially better performance than
recent logD range search techniques for some interesting settings,
in addition to requiring only storage capabilities and not cloud com-
putation (a significant cost savings).
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