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Abstract. This paper introduces a new obfuscation called obfuscation of en-
crypted blind signature. Informally, encrypted blind signature enable the message
is blind to signer, and she couldn’t distinguish two encrypted signatures by her-
self. A obfuscation of encrypted blind signature makes the process of encrypted
blind signature unintelligible for any third party, while still keeps the original en-
crypted blind signature functionality. We use schnorr’s blind signature scheme
and linear encryption scheme as blocks to construct a new obfuscator. Moreover,
we propose two new security definition: blindness w.r.t encrypted blind signa-
ture (EBS) obfuscator and one-more unforgeability(OMU) w.r.t EBS obfuscator,
and prove them based on Decision Liner Diffie-Hellman(DL) assumption and the
hardness of discrete logarithm, respectively. We also demonstrate that our obfus-
cator satisfies the Average-Case Virtual Black-Box Property(ACVBP) property
w.r.t dependent oracle, it is indistinguishable secure. Our paper expand a new di-
rection for the application of obfuscation.
Keywords: Obfuscation, Blind signature, Indistinguishable security.

1 Introduction

Obfuscation in cryptography has been formally proposed by Barak, Goldreich et al.[1]
at the first time. Although it has been a theoretically hot area, there isn’t much more
progress in the past few years. The implementation of obfuscation mainly depends on
how to construct a secure obfuscator. Informally, obfuscator is an algorithm program
that transforms a program into a new unintelligible program while its functionality re-
mains the same. Barak et al. suggested that an obfuscator ought to satisfy the following
three property:

1. Functionality: the obfuscated program has the same functionality as the original
program.

2. Polynomial Slowdown: the description length and running time of the obfuscated
program are at most polynomially larger than the original program’s.
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3. Virtual Black-Box Property(VBP): Anything that can be efficiently computed from
obfuscated program can be efficiently computed given oracle access to the original
program.

Obfuscation has profound effects on both theory and application, such as soft-
ware protection, homomorphic encryption, removing random oracles and transform-
ing private-key encryption into public-key encryption. Despite all that, Barak et al. has
prove the impossibility of obfuscation even under a very weak definition. Later, more
impossible obfuscation results of natural functionalities were shown in [2][3][4][5].
Even so, cryptographic community has been dedicating to conducting a series of ex-
ploration, and they found that there still exist simple classes of functions such as point
functions[6][7][8][2][3][9] with the possibility of obfuscation.

Before 2007, several positive results of obfuscation were mainly about simple func-
tions. The first obfuscation of complicated cryptographic functionality was proposed by
Hohenberger et al.[10] in TCC’07. They obfuscate re-encryption and proved the secu-
rity of obfuscator in the standard model. In brief, the re-encryption functionality is the
one that takes a ciphertext for a message encrypted under Alice’s public key and trans-
forms it into a ciphertext for the same message under Bob’s public key. Hohenberger
et al. presented an improved security property called ACVBP. Following the security
definition of ACVBP[10], Hada [11] showed a secure obfuscation for encrypted sig-
nature, which generates a signature on a given message under Alice’s secret signing
key and then encrypts the signature under Bob’s public encryption key. Later, on the
basis of Honhenberger’s results, Nishanth Chandran et al. [12] refined the delegation of
access of re-encryption functionality, demonstrating the security of collusion-resistant
obfuscation. These are the only known three obfuscations of complicated cryptographic
functionality.

Blind signature has a wide range of applications in e-cash and electronic election.
A blind signature is a protocol introduced by Chaum [13] for protecting the anonymity
of signer, which was based on the RSA digital signature scheme. Unlike general dig-
ital signature scheme, blind signature requires that signer signs the message without
knowing the message or the resulting signatures while the user could verify it publicly,
it’s a interactive protocol between signer and user. A blind signature must satisfies the
following property:

1. Unforgeability: Adversary can not produce a legal blind signature on message after
interacting with signer.

2. Blindness: The signatures of two given messages are computationally indistin-
guishable even under a set of known message-signature pairs.

Later, Okamoto[14] put forward to Schorr’s blind signature scheme, which is based
on discrete logarithm problem. Schnorr[15] then proved its security.

In this paper, we first use Schnorr’s blind signature scheme and linear encryption
scheme[16] as blocks to construct a secure obfuscator for blind signature, which is
complete and verifiable. In order to prove the security of the obfuscator, we propose
two new security definition, Blindness w.r.t encrypted blind signature(EBS) obfusca-
tor and one-more unforgeability (EBS) obfuscator, to prove our Theorem 5. Our main



method is to construct different adversaries to break the hardness assumption under se-
curity definition of ACVBP w.r.t dependent oracle, the scheme is insecure if any of the
adversaries is successful. The specific refers to section 5. We also prove that the OMU
w.r.t EBS functionality implys OMU w.r.t EBS obfuscator under the assumption that
EBS obfuscator satisfies ACVBP w.r.t dependent oracle set. Obviously, we have OMU
w.r.t EBS obfuscator. At last, we present the security proof of EBS obfuscator. i.e., the
EBS obfuscator satisfies ACVBP w.r.t dependent oracle. Thus, we prove that, under
the ACVBP w.r.t dependent oracle, generating a blind signature on a message and then
encrypting the signature is functionally equivalent to encrypting the sign key and then
generating a blind signature on the message.

The article structure is as follows: Section 2 is preliminaries which contain three
parts; We propose new security definitions which is the basis of theorem’s proof in
section 3; We construct the secure obfuscator for special EBS functionality in section 4
and prove its security in section 5.

2 Preliminaries

In this section, we present the basic definition of security and the hardness assumption
that our proofs rely on.

2.1 Bilinear Maps

Set BMsetup be an initialization algorithm: on input security parameter 1k, outputs
the bilinear map parameters as pq, g,G,GT , eq, where G,GT are groups of prime order
q P Θp2kq, g is a generator of G and e is an efficient bilinear mapping from G ˆ G to
GT . The mapping e satisfies the following two property:

– Bilinear: For all g P G and a, b P Zq, epga, gbq “ epg, gqab.
– Non-degenrate: If g generates G, then epga, gbq ‰ 1.

2.2 Complexity Assumptions

Definition 1. (DL Assumption) For every PPT machine D, every polynomial pp¨q, all
sufficiently large n P N, and every z P t0, 1uploypnq,

ˇ

ˇ

ˇ

ˇ

ˇ

Pr

»

–

p “ pq,G,GT , e, gq Ð S etupp1nq;
a Ð Zq; b Ð Zq; r Ð Zq; s Ð Zq; : decision “ 1
decision Ð Dpp, pga, gbq, pgr`s, pgaqr, pgbqsq, zq.

fi

fl´

Pr

»

–

p “ pq,G,GT , e, gq Ð S etupp1nq;
a Ð Zq; b Ð Zq; r Ð Zq; s Ð Zq; t Ð Zq; : decision “ 1
decision Ð Dpp, pga, gbq, pgt, pgaqr, pgbqsq, zq.

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1

ppnq



2.3 The Definition of General Security

In this subsection we review the security definition of public-key encryption(PKE)
scheme and digital blind signature(DBS) scheme. S etup is an algorithm that gener-
ates a parameter,on security parameter 1n, which is used commonly by multiple users
in a pair of PKE and DBS schemes.

A probabilistic public key cryptosystem PKE is a probabilistic polynomial time
Turing machine Π that

(1)EKG: on inputs p generates a pair of pubic-secret key ppk, skq and outputs the
description of two algorithms, E and D such that

(2)E is a probabilistic encryption algorithm: for some constants p , public key pk
and a plaintext m, returns the ciphertext c, let MS pp, pkq be the message space defined
by pp, pkq.

(3)D is a deterministic decryption algorithm: for some constants p, secret key sk
and ciphertext c, returns the plaintext m.

Definition 2. (Indistinguishability of Encryptions against CPAs) A PKE scheme pEKG,
E,Dq satisfies the indistinguishability if the following condition holds: For every PPT
machine pair pA1, A2q(adversary), every polynomial pp¨q, all sufficiently large n P N,
and every z P t0, 1upolypnq,

2 ¨ Pr

»

—

—

–

p Ð S etupp1nq; ppk, skq Ð EKGppq;
pm1,m2, hq Ð A1pp, pk, zq; b Ð t0, 1u; c Ð Epp, pk,mbq;
d Ð A2pp, pk, pm1,m2, hq, c, zq;
b “ d.

fi

ffi

ffi

fl

´ 1 ď
1

ppnq

where we assume that A1 produces a valid message pair m1 and m2 P MS pp, pkq and
a hints h.

A blind digital signature DBS also contains three algorithms:
(1)S KG: on inputs p generates a pair of pubic-secret key ppk, skq.
(2)pS ,Uq is a probabilistic interactive signing algorithm: for some constants p ,

secret key sk and l-bit plaintext m “ m1m2 ¨ ¨ ¨ml P MS pp, pkq, the execution of algo-
rithm S pskq (by signer), and algorithm Uppk,mq (by user) for message m generates the
signature σ, where MS pp, pkq is the message space defined by pp, pkq.

(3)V is a deterministic verification algorithm: for some constants p, public key pk,
message m and signature σ, if σ is the valid signature of m, it accept; Otherwise returns
K.

Security of a blind signature scheme include one-more unforgeability and blindness.

Definition 3. (Blindness) A blind signature scheme DBS “ pS KG, pS ,Uq,Vq is called
blind if for any efficient algorithm A3, all sufficiently large n P N, and every z P
t0, 1upolypnq,there exist

2 ¨ Pr

»

—

—

–

p Ð S etupp1nq; ppk, skq Ð S KGppq;
b Ð t0, 1u; pσ0, σ1q Ð Aă¨,Uppk,mbqą

1,ă¨,Uppk,m1´bqą
1

3 pp, pk, zq;
b˚ Ð A3pσ0, σ1q;
b “ b˚.

fi

ffi

ffi

fl

´ 1 ď
1

ppnq



where A3 is the malicious Signer and U is the honest user. If σ0 “K or σ1 “K, then
the Signer is not informed about other signature either.

Note that we use Xă¨,Ypy0qą
1,ă¨,Ypy1qą

1
to define the process that X invoke arbitrarily

ordered executions with Ypy0q and Ypy1q, but interact with each algorithm only once.

Definition 4. (One-more Unforgeability) A DBS scheme pS KG, pS ,Uq,Vq is unfor-
getable if for any efficient algorithm A4(the malicious user), every polynomial pp¨q,
all sufficiently large n P N,and every z P t0, 1upolypnq, there exist

Pr

»

—

—

–

p Ð S etupp1nq; ppk, skq Ð S KGppq;

ppm˚1 , σ
˚
1 q, . . . , pm

˚
k`1, σ

˚
k`1qq Ð A!S p,sk"

k

4 pp, pk, zq;
i f m˚i ‰ m˚j f or i ‰ j;
Vpp, pk,m˚i , σ

˚
i q “ Accept f or all i; then return 1.

fi

ffi

ffi

fl

ď
1

ppnq

where S p,sk is the signing oracle (circuit) .

Note that we use X!Y"k
to define the process that X sample access to Y for at most k

times.

3 Construct the Secure Obfuscator for Special EBS Functionality

This section presents a secure obfuscator for the blind signature and prove the security
based on the generalized ACVBP definition.

3.1 Schnorr’s Blind Signature

We use Schnorr’s blind signature scheme[14] as a block to build the EBS functionality.
Specific process is as follows:

S KG(p)

1. Parse p “ pq,G,GT , e, gq.
2. Select g1 P G and x P Zq randomly.
3. Output the secret key sk “ gx

1 and public key pk “ pg1, ggx
1q, where y “ ggx

1 .

S ign(p, sk,m)

1. Parse p “ pq,G,GT , e, gq.
2. Signer select k P Zq randomly and computer t “ gk mod p, then send t to User.
3. User select α, β P Zq randomly and computer ω “ tgαyβ mod p, then compute

c “ Hpm||ωq and c1 “ c´ β mod q, send c1 to Signer.
4. Signer compute u “ k ´ c1 ¨ sk mod q, and sent u to User.
5. User computer v “ u` α mod q.
6. User output signature σ “ pc, vq.

Veri f y(p, pk,m, σ)

1. Parse p “ pq,G,GT , e, gq, pk “ pg1, ggx
1q, m “ m1,m2, . . . ,mn, and σ “ pc, vq.

2. Compute gvyc “ ω.
3. Accept if Hpm||ωq “ c; otherwise output K.



3.2 Linear Encryption Scheme

The Boneh’s linear encryption scheme[16] is another block to build the EBS function-
ality, which is as follows:

EKG(p):

1. Parse p “ pq,G,GT , e, gq.
2. Select a P Zq and b P Zq randomly.
3. Output the secret key ske “ pa, bq and public key pke “ pga, gbq.

Enc(p, pke,m)

1. Parse p “ pq,G,GT , e, gq.
2. Select r P Zq, s P Zq randomly.
3. Compute pc1, c2, c3q “ ppgaqr, pgbqs, gr`smq.
4. Output c “ pc1, c2, c3q.

Veri f y(p, ske, c)

1. Parse p “ pq,G,GT , e, gq, ske “ pa, bq, and c “ pc1, c2, c3q.
2. Output m “ c3{pc

1{a
1 {c1{b

2 q.

Theorem 1. [16] Under DL assumption, the linear encryption scheme satisfies the in-
distinguishability.

3.3 The Obfuscator for the EBS Functionality

Our EBS functionality consists of the blind signature scheme and encryption scheme
above. We can construct a circuit Cp,sk,pke which contains a common parameter p,
the signing secret key sk and the public encryption key pke. Note that the important
point of obfuscation is that how to rerandomize the Enc to make the two results are
scalar homomorphic. Here, we use the ReRand algorithm, given a cipertext pc1, c2, c3q

and public key pke “ pga, gbq, to rerandomize the ciphertext pc1, c2, c3q as following:
pc1pgaqr

1

, c2pgbqs1 , c3gr1`s1q Ð ReRandpp, pke, pc1, c2, c3qq, where r1, s1 P Zq are ran-
dom parameter.

Given a circuit Cp,sk,pke , the detail of our obfuscator for the EBS Functionality
Ob fEBS is below:

1. Extracts pp, sk, pk, pkeq, where sk “ gx
1 ,pk “ ggx

1 and pke “ pga, gbq.
2. Parse p “ pq,G,GT , e, gq .
3. Signer runs Encpp, pke, skq Ñ pc1, c2, sk1q “ ppgaqr, pgbqs, gr`sgx

1q to obtain a new
signing secret keysk1 “ gr`sgx

1, computes the corresponding public signing key
pk1 “ pg1, ggr`sgx

1q, where y1 “ ggr`sgx
1 , and sends pc1, c2q to User.

4. Signer selects a random parameter k P Zq, then sends t “ gk to User.
5. Randomly chooses α, β P Zq, User counts ω1 “ tgαpy1qβ, c1 “ Hpm||ω1q, and

c2 “ c1 ´ β, then transmits c2 to Signer.



6. Signer gives User u1, where u1 “ k ´ c2 ¨ sk1.
7. User gets pc1, v1q=pHpm||ω1q, u1 ` αq.
8. User computes c3 “ c1{a

1 c1{b
2 c1, rerandomize the ciphertext pc1, c2, c3q as C1 “

pc11, c
1
2, c

1
3q Ð ReRandpp, pke, pc1, c2, c3qq

(Note:pc11, c
1
2, c

1
3q “ ppg

aqr`r1 , pgbqs`s1 , c1gr`r1`s`s1 ).
9. User compute C2 Ð Encpp, pk, v1q. (We define C2 “ pc21 , c

2
2 , c

2
3q).

10. User output the encrypted blind signature σ “ pC1,C2q.

The output signature σ “ pC1,C2q is blind to the Signer, as Signer couldn’t rec-
ognize either pc1, v1q or pα, βq. But Verifier can verify the signature σ by following
verification algorithm Vpp, pk,m, σq:

1. Compute c1 “ c13{ppc
1
1q

1{a
pc12q

1{b
q, v1 “ c23{ppc

2
1q

1{a
pc22q

1{b
q, gv1y1c

1

“ pω, and
Hpm||pωq “ pc.

2. If pc “ c1, accept σ “ pC1,C2q; otherwise output K.

Obviously, the obfuscation can be executed in polynomial time and have the same
functionality compare with the original blind signature. So we omit the two proofs about
functionality and polynomial slowdown.

4 The New Security Definition of the Blind Signature in the
Context of EBS

We modify the above definitions to adapt to our proposals in the context of EBS. Be-
cause we need to prove the security of blind signature in the presence of the obfuscator
we proposed. In this section, we allow the Signer to access the obfuscation circuit as
follows:

Definition 5. (Blindness w.r.t. EBS Obfuscator) An encrypted signature scheme EBS “
pS KG, EKG, pS ,Uq,Vq w.r.t obfuscator is called blind if for any efficient algorithm A3,
all sufficiently large n P N, and every z P t0, 1upolypnq, there exist

2¨Pr

»

—

—

—

—

–

p Ð S etupp1nq; ppk, skq Ð S KGppq; ppke, skeq Ð EKGppq;
C1 Ð Ob f pCp,sk,pkeq;
b Ð t0, 1u; pσ0, σ1q Ð Aă¨,Uppk,mbqą

1,ă¨,Uppk,m1´bqą1

3 pp, pk, pke,C1, zq;
b˚ Ð A3pσ0, σ1q;
b “ b˚.

fi

ffi

ffi

ffi

ffi

fl

´1 ď
1

ppnq

where A3 is the malicious Signer and U is the honest user. If σ0 “K or σ1 “K, then
the Signer is not informed about other signature either.

Definition 6. (One-more Unforgeability w.r.t. EBS Obfuscator) An EBS scheme pS KG, EKG,
pS ,Uq,Vq is unforgetable if for any efficient algorithm A4(the malicious user), every
polynomial pp¨q, all sufficiently large n P N, and every z P t0, 1upolypnq, there exists

Pr

»

—

—

—

—

–

p Ð S etupp1nq; ppk, skq Ð S KGppq; ppke, skeq Ð EKGppq;
C1 Ð Ob f pCp,sk,pkeq;

ppm˚1 , σ
˚
1 q, . . . , pm

˚
k`1, σ

˚
k`1qq Ð A!S p,sk"

k

4 pp, pk, pke,C1, zq;
i f m˚i ‰ m˚j f or i ‰ j ;
Vpp, pk,m˚i , σ

˚
i q “ Accept f or all i; then return 1.

fi

ffi

ffi

ffi

ffi

fl

ď
1

ppnq



where S p,sk is the signing oracle (circuit) .

Definition 7. (ACVBP w.r.t Dependent Oracles) Let T pCq be a set of oracles dependen-
t on the circuit C. A circuit obfuscator Obf for C satisfies the ACVBP w.r.t dependent
oracle set T if the following condition holds: There exists a PPT oracle machine S
(simulator) such that, for every PPT oracle machine D (distinguisher), every polynomi-
al pp¨q, all sufficiently large n P N, and every z P t0, 1upolypnq,

ˇ

ˇ

ˇ

ˇ

ˇ

Pr

»

–

C Ð Cn;
C
1

Ð Ob f pCq; : b “ 1
b Ð D!C,TpCq"pC

1

, zq.

fi

fl´Pr

»

–

C Ð Cn;
C
2

Ð S!C"p1n, zq; : b “ 1
b Ð D!C,TpCq"pC

2

, zq.

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1

ppnq

where D!C,TpCq" means that D has sampling access to all oracles contained in T pCq
in addition to C.

5 The Security of Special EBS Obfuscator

In this section, we attribute the the security of special EBS obfuscator to DL assumption
and the random oracle model. Although our obfuscation can remove the random oracle
in theory, there still have no effective methods to do so. The reason why we prove it in
random oracle model is that the signature scheme we choose is secure in random model,
which is inherent property of the original signature scheme.

At first, we will prove the completeness property of our special EBS obfusca-
tor. Informally, the signature is complete if for any message m, verification algorithm
Vpp, pk,m, σq always set up, i.e., the probability: PrVpp,pk,m,σq “ 1.

Lemma 1. The EBS obfuscation is complete.

Proof. Once the verifier receives the signature σ “ pC1,C2q, he finish the following
proceeds in a polynomial reduction:

1. Compute c1 “ c13{ppc
1
1q

1{a
pc12q

1{b
q.

2. Compute v1 “ c23{ppc
2
1q

1{a
pc22q

1{b
q.

According to the verification algorithm, he has gv1py1qc
1

“ gu1`αggx
1c1 “ gu1`α`gx

1c1 .
As u1 “ k´ c2 ¨ sk1 and c2 “ c1 ´ β, obtain the equation u1 ` α` gx

1c1 “ k` α` βsk1.
Thus, gv1y1c

1

“ gkgαgβsk1 . Because t “ gk and y1 “ gsk1 , he have gv1y1c
1

“ tgαgβ “ ω1.
Then, the equation Hpm||ω1q “ c1 must be established. We outcome the completeness
of EBS obfuscation.

Theorem 2. Under DL assumption, for the EBS obfuscator and two messages m0, m1
selected by the malicious Signer A3, the distributions of σ0 and σ1 are computationally
indistinguishable.

Proof. The blindness of EBS obfuscator follows directly from the hardness of DL as-
sumption in the group G. More formally, we show that if an adversary A3 can distin-
guish the signatures pσ0, σ1q of two message m0 and m1 under sk with non-negligible



probability, then we construct an adversary A1 that will break the DL assumption with
advantage ε as well.

At first, we analyze the result of EBS obfuscator: we get σ “ pC1,C2q “ ppgaqr`r1 ,
pgbqs`s1 , c1gr`r1`s`s1 , pgaqr

2

, pgbqs2 , v1gr2`s2q, where r, s, r1, s1, r2, s2 are all random pa-
rameters. Through the process of obfuscation above, we have c1 “ Hpm||ω1q, v1 “
k ´ c1 ¨ sk1 ` β ¨ sk1 ` α, where k, α, β are random and ω1 “ gkgαpy1qβ. So when fix
the secret key sk1, and v1 depends the value of c1 (i.e, v1 and c1 are linearly dependent).
Thus the value of C2 relay on c1. Cause C1 and C2 have the same form, so we can only
consider C1 in the following work(C2 also has the same result, we omit it here). Let
ps “ s` s1, pr “ r ` r1, so we have C1 “ pgpr, gps, gpr`psq.

A1 works as follows:

– A1 receives as input a tuple pg, pa, bq, B “ gpr,K “ gps,Wq where g is a random gen-
erator of the group G and r, s are random exponents. The goal of A1 is to determine
whether W “ gpr`ps.

– A1 picks a random generator g of group G.
– On receiving two message m0 and m1 from A3, A1 flips a bit b at random and sends

the signature σb :“ ppgaqpr, pgbqps, cbWq as the signature of mb to A3.
– A3 replies with a bit b˚. A1 simply output 1 if b “ b˚ (i.e., guessing that W “ gpr`ps);

otherwise output a random bit(i.e., W is a random parameter).

It is easy to see that when W is random, the signature σb is independent of b and
hence the success probability of A3 in this case is exactly 1

2 . When W “ gpr`ps, the sig-
nature σb has the same distribution as the result of EBS obfuscator. According to the
assumption, the adversary A3 has advantage at least ε. That is, A1 succeeds in determin-
ing whether W “ gpr`ps with non-negligible advantage, A1 break the DL assumption.

Theorem 3. [15] The blind signature is one-more unforgeable if discrete logarithm is
hard.

Theorem 4. Let T pCp,sk,pkeq be S p,sk. If the EBS obfuscator satisfies ACVBP w.r.t de-
pendent oracle set T , then the one-more unforgeability(OMU) w.r.t the EBS functional-
ity implies the one-more unforgeability w.r.t EBS obfuscator.

Proof. We show that, if there exists an adversary A4 to break the OMU w.r.t Obf when
the OMU w.r.t EBS is satisfied, then it will contradict the ACVBP w.r.t dependent oracle
set T of EBS obfuscator. Let the distinguisher D have sample access to T pCp.sk,pkeq to
check whether A4 succeeds in breaking OMU w.r.t Obf.

1. Inputs a circuit C(either an obfuscated circuit or a simulated circuit) and an auxiliary-
input z.

2. Extracts pp, pk, pkeq through sampling access to Cp,pk,pke .

3. Samples access to S p,sk at most k times ppm˚1 , σ
˚
1 q, . . . , pm

˚
k , σ

˚
k qq Ð A!S p,sk"

k

4 pp, pk,
pke,C, zq to simulate pm˚k`1, σ

˚
k`1q.

4. Vpp, pk,m˚k`1, σ
˚
k`1q “ Accept for mk`1 ‰ mi where i P t1, ku.

If C is an obfuscated circuit, then the probability D output 1 equal to the probability
that A4 breaks OMU w.r.t Obf, which is non-negligible by the assumption. And if C



is a simulated circuit, then the probability D output 1 is negligible, otherwise, A4 can
break the OMU w.r.t EBS functionality. So the probability which ACVBP established
is non-negligible. Hence it will contradict the ACVBP w.r.t dependent oracle set T of
EBS obfuscator. Theorem is established.

Theorem 5. Let T pCp,sk,pkeq be S p,sk. The EBS obfuscator satisfies ACVBP w.r.t depen-
dent oracle set T under DL assumption.

Proof. According to the EBS obfuscator we proposed, the security proof of obfuscator
that contains an interactive process between Signer and User is a little different from
the previous work. We use the variant of Hada’s proof method. At first, we construct an
simulator S to simulate the behaves of the obfuscated circuit; the two execution process
is as follows(Note that the value pp, pk, pkeq is easy to get through sampling access to
Cp,pk,pke . So we mainly focus on psk1, pc1, c2qq.):

1. Inputs the security parameter 1n and an an auxiliary-input z.
2. Extracts pp, pk, pkeq through sampling access to Cp,pk,pke .
3. Parses p “ pq,G,GT , e, gq and pk “ pg1, ggx

1q.
4. Randomly select Junk Ð G.
5. Computes c1, c2, c3 Ð Encpp, pke, Junkq and set sk1 “ c3.
6. Outputs psk1, pc1, c2qq.

And then we consider the worst case that the interactive values are captured by
adversary already, i.e., the value of k, t, c2, u1, v1, ω1 are known(ω1 can get by comput-
ing gv1y1c

1

), we proved the output distribution of S is indistinguishable from the real
distribution pC1,C2q for any PPT distinguisher. In particular, when the distinguish-
er is permitted to sampling access to CS “ tCp,sk,pke , S p,sku, assume the probabili-
ty that a distinguisher D!C,S" distinguish the two output distribution above is non-
negligible. That is the probability of the following formula is non-negligible. And let
z “ pk, t, c2, u1, v1, ω1q to be the auxiliary-input, we have:

Real one:

Pr

»

—

—

—

—

—

—

–

p Ð S etupp1nq; ppke, skeq Ð EKGppq;
ppk, skq “ pggx

1 , gx
1q Ð S KGppq;

pc1, c2, sk1q Ð Encpp, pke, skq;
pk1 “ pg1, ggr`sgx

1q;
b Ð D!C,S"ppp, pke, pk1, sk1, pc1, c2qq, pk, t, c2, u1, v1, ω1qq;
b “ 1.

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Junk one:

Pr

»

—

—

—

—

—

—

—

—

–

p Ð S etupp1nq; ppke, skeq Ð EKGppq;
ppk, skq “ pggx

1 , gx
1q Ð S KGppq;

Junk Ð G;
pc1, c2, sk1q Ð Encpp, pke, Junkq;
pk1 “ pg1, ggr`sgx

1q;
b Ð D!C,S"ppp, pke, pk1, sk1, pc1, c2qq, pk, t, c2, u1, v1, ω1qq;
b “ 1.

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl



Third we construct an adversary pA1, A2q to break the indistinguishability of the
linear encryption scheme. A1 produces a message pair pm1,m2q “ psk, Junkq and an
associated hint h “ pk. Given a ciphertext c(of either m1 or m2), A2 distinguish the
results of m1 and m2 by distinguisher D as follows:

1. Parse p “ pq,G,GT , e, gq and pke, cipertext c and auxiliary z “ pk, t, c2, u1, v1, ω1q.
2. Get the output m1,m2 of A1, h “ pk “ ggx

1 and c “ pc1, c2, sk1q, let pk1 “ gc3 .
3. Simulate D!C,S"ppp, pke, pk1, sk1, pc1, c2qq, pk, t, c2, u1, v1, ω1qq.
4. Output the result of D.

If c is a ciphertext of m1, then the probability A2 output 1 equal to first probability,
otherwise, it is qual to the later probability. According to the Theorem 1, the difference
of the two probability above is negligible which contradicts to the assumption. Theorem
is established.

6 Conclusion

A new functionality for obfuscation has been proposed in this paper under DL assump-
tion and the hardness of discrete logarithm. Following Hohenberger and Hada’s steps,
we present two new security definition and our scheme is a further application which not
only protect the Signer’s secret key from revealing, but also keep the signature blinding
from the Signer. This functionality is very useful in E-Cash and E-Vote. At the same
time, our scheme resists different PPT adversaries and satisfies ACVBP w.r.t dependent
oracle property. Furthermore, we will continue to fucus on the research and application
of obfuscation.
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