
NICV: Normalized Inter-Class Variance
for Detection of Side-Channel Leakage?

Shivam Bhasin1 Jean-Luc Danger1,2 Sylvain Guilley1,2 Zakaria Najm1

1 Institut MINES-TELECOM, TELECOM ParisTech,
Department COMELEC, 46 rue Barrault,

75 634 PARIS Cedex 13, FRANCE.
2 Secure-IC S.A.S., 80 avenue des Buttes de Coësmes,

35 700 Rennes, FRANCE.

{bhasin,danger,guilley,znajm}@telecom-paristech.fr

Abstract. Side-Channel Attacks (SCA) are considered a serious threat against em-
bedded cryptography. Therefore security critical chips must be tested for SCA re-
sistance before deployment or certification. SCA are powerful but can need a lot of
computation power, especially in the presence of countermeasures. The computation
complexity of these attacks can be reduced by selecting a small subset of points
where leakage prevails. In this paper, we propose a method to detect relevant leakage
points in side-channel traces. The method is based on Normalized Inter-Class Variance
(NICV). A key advantage of NICV over state-of-the-art is that NICV does neither
need a clone device nor the knowledge of secret parameters of the crypto-system.
NICV has a low computation requirement and it detects leakage using public infor-
mation like input plaintexts or output ciphertexts only. It can also be used to test the
efficiency of leakage models, the quality of traces and robustness of countermeasures.
A theoretical rationale of NICV with practical application on real crypto-systems are
provided to support our claims.

Keywords: Cryptography, Side-channel analysis, Leakage Detection.

1 Introduction

Security-critical devices must undergo a certification process before being launched
into the public market. One of the many security threats tested in the certification
process is Side-Channel Attacks (SCA [1,2]). SCA pose a serious practical threat to
physical implementation of secure devices by exploiting unintentional leakage from
a device like the power consumption, electromagnetic emanation or timing. Several
certification/evaluation labs are running SCA daily on devices under test to verify
their robustness.

The certification process is expensive and very time-consuming which also in-
creases the overall time-to-market for the device under test. It worsens when the
? Some ideas contained in this paper have also been presented orally at the first International

Cryptographic Module Conference (ICMC 2013), Sept. 24–26, 2013, in Gaithersburg area (MD,
USA).

2 S. Bhasin et al.

desired security level increases. For instance, it is usually considered that a Com-
mon Criteria (CC [3]) evaluation at highest assurance level for penetration attacks
(AVA.VLAN.5) requires the device to resist attacks with 1 million traces. Similarly,
the draft ISO standard 17,825 [4] (extension of FIPS 140-2) demands resistance
against side-channel analysis with 10,000 traces (level 3) and with 100,000 traces
(level 4). The traces can have millions of points and thus running SCA on these
traces can be really time consuming. Also several attacks must be tested on the
same set of traces before certifying a device. To accelerate the evaluation process, a
methodology should be deployed which compress the enormous traces to a small set
of relevant points.

Related Works The compression of SCA traces which results in reduced time
complexity of the attacks, can be achieved by selecting a small subset of points
where leakage prevails. This issue of selecting relevant time samples have been dealt
previously by some researchers. Chari et al. [2] use templates to spot interesting
time samples. The method involves building templates T on n different values of
the subkey. Interesting time samples can then be found as points which maximizes∑n

i,j=1(Ti − Tj). In this equation, Ti is the average of the traces when the sensitive
variable belongs to the class i. Two further improvements were then proposed by
Gierlichs et al. [5]. The first improvement, also called as Sum Of Squared pairwise
Differences (SOSD), simply computes

∑n
i,j=1(Ti − Tj)

2 for i ≥ j. SOSD avoids
cancellation of positive and negative differences. SOSD can be further improved by
normalizing it by some variance. This normalized SOSD is called SOST (Sum Of
Squared pairwise T-differences [5], where a T-difference means a Student T-test)
and computed as

n∑

i,j=1

 Ti − Tj√

σi2

mi
+

σj2

mj

2

,

where σi is the variance of T in class i, and mi is the number of samples in class i.
If m is the total number of traces, we have

∑n
i=1mi = m, and mi is also m times

the estimated probability for the traces to belong to class i. When the classes are
equally populated (i.e., ∀i, mi = m/n), the SOST rewrites as:

m

n

n∑

i,j=1

(Ti − Tj)2
σi2 + σj2

,

A practical problem with template-based detection techniques comes from the
computation of templates. First of all, templates require an access to a clone device.
Secondly, templates need two sets of traces: one for profiling with random keys and
another for attacking with an unknown but fixed key. An alternative to the latter
limitation is model-based templates which can exploit the same set of traces as
proposed in [6]. Although model-based templates can be really efficient, they are
relevant for the chosen power model only.

NICV for Detection of Side-Channel Leakage 3

Another method proposed in this context is the Principal Components Analysis
(PCA). PCA is used for dimensionality reduction. It yields a new basis of the time
samples in which the inter-class variance is greater. This basis takes into account
the covariance of the samples. In side-channel analysis, the goal of PCA is to gather
all the information in a single (or few) component(s) [7]. Eventually, other empirical
methods use chosen plaintext attacks, such as the differences between plaintexts
0x00 . . . 0000 and 0x00 . . . 00ff. This technique requires many requests to check for
all the bytes, not only the least significant byte. Furthermore, it is not always possible
to choose the plaintext messages (e.g. when modes of operations with initial vectors
are used).

In this paper, we propose a new method relying on a metric called “Normalized
Inter-Class Variance” (NICV). This NICV method allows to detect interesting time
samples, without the need of a profiling stage on a clone device. Hence the SCA
traces can be compressed and the analysis could be greatly accelerated. The main
characteristics of the proposed method are:

– NICV operates without the need of a clone device, i.e. it requires no profiling
stage and use the same set of traces which are to be analyzed,

– it uses only public information like plaintext or ciphertext,

– the method is leakage model agnostic, it is not an analysis tool but a helper to
speed up the analysis, but

– it can serve to evaluate the accuracy of various leakage models and choose which
is the best applicable.

Compared to PCA, the purpose of NICV is to return the total variation of the
traces at each time sample, so as to test which leakage model causes inter-class
variation.

The rest of the paper is organized as follows. General background to SCA is
recalled in Sec. 2. The rationale of NICV to select SCA relevant time samples is
detailed in Sec. 3. This is followed by some practical use cases applied on real devices
like FPGA and smartcards in Sec. 4. Finally, Sec. 5 draws general conclusions.

2 General Background

Side-channel analysis consists in exploiting dependencies between the manipulated
data and the analog quantities (power consumption, electromagnetic radiation, . . .)
leaked from a CMOS circuit. Suppose that several power consumption traces, de-
noted Y , are recorded while a cryptographic device is performing an encryption
or decryption operation. An attacker predicts the intermediate leakage L(X), for
a known part of the ciphertext (or plaintext) X and key hypothesis K. Next, the
attacker uses a distinguisher like Correlation Power Analysis (CPA [1]), to distin-
guish the correct key k? from other false key hypotheses. CPA is a computation
of the Pearson Correlation Coefficient ρ between the measured leakage Y and the

4 S. Bhasin et al.

predicted leakage L(X), which is defined as:

CPA : ρ [Y ;L(X)] =
E [(Y − E [Y]) · (L(X)− E [L(X)])]√

Var [L(X)] · Var [Y]
∈ [−1; +1] ,

where E and Var denote the mean and the variance respectively.

Various distinguishers have been proposed in literature. In [8], authors show that
all statistical distinguishers eventually turn out to be equivalent. The differences
observed by an attacker are due to statistical artifact which arises from imprecise
estimations due to limited numbers of observations. In the rest of the paper without
loss of generality, we use CPA as a distinguisher.

Authors of [8] also show that a proper estimation of leakage model L(X) can
define the efficiency of the attack. Therefore a detection technique is needed which
can detect the relevant leakage points and the most efficient leakage model. In the
following, we introduce NICV as a leakage detection technique and its power to
evaluate estimated leakage models. As shown later, NICV is not a SCA channel
distinguisher itself. NICV works in co-ordination with any SCA distinguishers like
CPA to enhance their performance. Even variance-based distinguishers as introduced
in [9] can be made efficient using NICV.

3 Leakage Detection using NICV

In this section, we first describe our normalized inter-class variance (NICV) detec-
tion technique. We provide the mathematical background of NICV and then discuss
its behavior in a side-channel context.

3.1 Rationale of the NICV Detection Technique

Let us call X one byte of the plaintext or of the ciphertext (that is, the domain of
X is X = F8

2), and Y ∈ R the leakage measured by the attacker1. Both random
variables are public knowledge. Then, for all leakage prediction function L of the
leakage knowing the value of x taken by X (as per Proposition 5 in [10]), we have:

ρ2 [L(X);Y] = ρ2 [L(X);E [Y |X]]︸ ︷︷ ︸
0≤ · ≤1

×ρ2 [E [Y |X] ;Y] . (1)

Again in Corollary 8 of [10], the authors derive:

ρ2 [E [Y |X] ;Y] =
Var [E [Y |X]]

Var [Y]
, (2)

1 In general, Y can be continuous, but X must be discrete (and X must be of finite cardinality).

NICV for Detection of Side-Channel Leakage 5

which we refer to as the normalized inter-class variance (NICV). In equations (1)
and (2), E (resp. Var) denotes the expectation (resp. the variance). Once combined,
they yield that for all prediction function L : F8

2 → R, we have:

ρ2 [L(X);Y] ≤ Var [E [Y |X]]

Var [Y]
. (3)

Therefore, the NICV is the envelop or maximum of all possible correlations com-
putable from X with Y . There is an equality in (3) if and only if L(x) = E [Y |X = x],
which is the optimal prediction function.

In practice, the (square) CPA value does not attain the NICV value, owing to
noise and other imperfections. This is illustrated in Fig. 1. The difference can come
from various reasons like:

– The attacker knows the exact prediction function, but as usual not the actual key.
For instance, let us assume the traces can be written as Y = wH(S(X⊕k?))+N ,
where k? ∈ F8

2 is the correct key, S : F8
2 → F8

2 is a substitution box, wH is the
Hamming weight function, and N is some measurement noise, that typically
follows a centered normal distribution N ∼ N (0, σ2). In this case, the optimal
prediction function L(x) = E [Y |X = x] is equal to: L(x) = wH(S(X ⊕ k?)) (the
only hypothesis on the noise is that it is centered and mixed additively with the
sensitive variable). This argument is at the base of the soundness of CPA: ∀k 6=
k?, ρ [wH(S(X ⊕ k));Y] ≤ ρ [wH(S(X ⊕ k?));Y] ≤

√
Var [E [Y |X]] /Var [Y].

– The CPA is smaller than NICV when the attacker assumes a wrong model, for
instance L(x) = wH(x⊕ k?), when Y = wH(S(x⊕ k?)) +N .

– Eventually, the attacker can have an approximation of the leakage model, for
instance L(x) = wH(S(x⊕ k?)), whereas actually Y =

∑8
i=1 βi · Si(x⊕ k?) +N ,

where βi ≈ 1, but slightly deviate from one.

The distance between CPA and NICV is, in non-information theoretic attacks (i.e.
attacks in the proportional / ordinal scale, as opposed to the nominal scale [11]) is
similar to the distance between perceived information (PI) and mutual information
(MI) [12].

Now, if X is uniformly distributed, the NICV in itself is not a distinguisher.
Indeed, if we assume that Y = wH(S(X ⊕ k?)) +N , then:

Var [E [Y |X]] =
∑

x∈X
P[X = x]E [Y |X = x]2 − E [Y]2

=
1

28

∑

x∈X
E [wH(S(x⊕ k?)) +N]2 −

(∑

x∈X
E [wH(S(x⊕ k?)) +N]

)2

=
1

28

∑

x′=x⊕k?∈X
E
[
wH(S(x′))

]2 −
(∑

x′=x⊕k?∈X
E
[
wH(S(x′))

]
)2

= Var [wH(S(X))] on the one hand, and

Var [Y] = Var [wH(S(X))] + Var [N] on the other hand, because X ⊥⊥ N .

6 S. Bhasin et al.

L(x) = wH(x⊕ k⋆)

L(x) = wH(x⊕ k), k 6= k⋆ (ghost peaks, printed with dashed lines)

L(x) = wH(S(x⊕ k⋆))

Sb
ox

inp
ut

Sb
ox

ou
tp
ut

1

0

(envelop)

|ρ [L(x);Y] | |ρ [L(x);Y] |

√
NICV =

√
Var[E[Y |X]]

Var[Y]

time

Fig. 1. NICV metric when Y =
∑8

i=1 βi · Si(x ⊕ k?) + N , and attack results for some prediction
functions

All in one:

NICV =
Var [E [Y |X]]

Var [Y]
=

1

1 + 1
SNR

, (4)

where the signal-to-noise ratio SNR is the ratio between:

– the signal, i.e. the variance of the informative part, namely Var [wH(S(X ⊕ k?))],
and

– the noise, considered as the variance Var [N].

Clearly, Eqn. (4) does not depend on the secret key k? as both Y and X are public
parameters known to the attacker.

Remark 1. In the binary case (n = 2) when both classes are equally probable, the

expression of NICV simplifies to: NICV = Var[E[Y |X]]
Var[Y] =

(
E[Y |X=0]−E[Y |X=1]

2

)2

Var[Y] .

Now comparing NICV with other leakage detection techniques like SOST and
SOSD we can give the following remarks.

Remark 2. SOSD is actually proportional to the inter-class variance (this point was
not made by the authors of [5]). Indeed, with our notations, Ti

.
= E [Y |X = i]. And

thus:

∑

i,j

(Ti − Tj)2 = 2× 2n
∑

i

T 2
i − 2

(∑

i

Ti

)2

=

2× 22n
∑

x

E
[
Y 2|X = x

]
P[x]− 2

(
28E [Y]

)2
= 22n+1Var [E [Y |X]] .

NICV for Detection of Side-Channel Leakage 7

But this inter-class variance is not normalized. Therefore, the SOSD can be large
at samples where Var [N] is large, although not containing (much) information.

Remark 3. SOST which was proposed as an improvement over SOSD is normalized.
Using our notations, SOST is equal to

m×
∑

(x,x′)∈X 2

(E [Y |X = x]− E [Y |X = x′])2√
Var [E [Y |X = x]] /P[X = x] + Var [E [Y |X = x′] /P[X = x′]]

,

where m is the number of traces. This certainly is an expression that is not usual in
statistics, and a priori cannot be simplified.

3.2 Discussion

The mathematical background of NICV as a leakage detection technique was previ-
ously discussed. We learned that NICV has evident advantages over other methods
because all its input parameters are public like side-channel traces and associated
plaintexts/ciphertexts. Since public parameters are used for computation of NICV,
there is no need for access to clone device which is a limiting requirement in template-
based detection techniques. Another interesting observation is that the expression
of NICV (Eq. (1)) does not contain L(x). In other words, NICV is leakage model
agnostic. Moreover from Eq. (3), we learn that NICV forms the envelope of all cor-
relation coefficients for all leakage models. NICV provides the worst case leakage of
a devise and therefore estimates the accuracy of leakage model used as illustrated
in Fig. 1. Thus NICV has a clear application in comparing various leakage models.

4 Use Cases

We detailed the theoretical soundness and advantages of NICV as a leakage detec-
tion technique in Sec. 3. In this section, we apply NICV in practical side-channel
evaluation scenarios. Several use cases of NICV are discussed in the following.

4.1 Accelerating Side-Channel Attacks

The main application of NICV is to find the interesting time samples for accelerating
SCA. A simple trace of an AES execution can have millions of points. Therefore it
is of interest for the evaluator to know few interesting points rather than attacking
the whole trace. We first apply the metric on traces of an AES-128 implementation
running on an FPGA which performs one round per clock cycle. These traces are
small and contain only 1, 000 points. The comparison of our metric with a correlation
coefficient computed with the good key is shown in Fig. 2. The correlation is based
on Hamming distance model of the state register of the AES core. The model can
be expressed as wH(vali ⊕ valf) where vali and valf are initial and final value of

8 S. Bhasin et al.

the register. This leakage model is shown to be very efficient in CMOS technology.
A relevant peak of NICV is seen at the same moment as in correlation peak. Thus
NICV is able to detect the point of leakage in the trace. It can be noticed that NICV
curve shows several other peaks apart from the correlation peak. As shown later in
Sec. 4.2, other peaks in the NICV curve comes either from other leakage models or
post-processing of cipher in the circuit.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0 100 200 300 400 500 600 700 800 900 1000

N
IC

V
/ρ

2

Time Sample

NICV
ρ(Model 1)

2

Fig. 2. NICV vs Correlation for a AES-128 hardware implementation

Next we apply our metric on a software implementation of AES-256 running on
an ATMEL AVR microcontroller. It is here that we can see the advantage of NICV.
A single trace of this implementation contains 7 million points and needs roughly
5.3 Mbytes of disk space when stored in the most compressed format. These details
are in respect to a LeCroy wavescanner 6100A oscilloscope with a bandwidth of
1 GHz. We applied NICV on these traces to find the leakage points related to each
of the 16 bytes of the AES. Fig. 3 shows the computation of NICV on the first round
only (for better resolution of results). The computations of Sbox0 for round 1 takes
only 1̃000 time samples. Once the interesting time samples corresponding to each
executed operation is known, the trace size is compressed from 7000000 to 1000, i.e.
a gain of roughly 7000×.

One very interesting application of NICV that we found during our experiments
is to reverse engineering. We computed NICV for all the 16 bytes of the plaintext
and plotted the 16 NICV curves in Fig. 3 (depicted in different colors). By closely
observing Fig. 3, we can distinguish individual operations from the sequence of byte
execution. Each NICV curve (each color) shows all sensitive leakages related to that

NICV for Detection of Side-Channel Leakage 9

particular byte. Moreover, with a little knowledge of the algorithm, one can easily
follow the execution of the algorithm. For example, the execution of all the bytes
in a particular sequence indicates the SubBytes or AddRoundKey operation. Ma-
nipulation of bytes in sequence {1, 5, 9, 13}, {2, 6, 10, 14} and {3, 7, 11, 15} indicates
the ShiftRows operations. The ShiftRows operation of AES, shift 3 out of 4 rows
with different constant. This can be clearly seen is Fig. 3, that that only three rows
are manipulated and the bytes in the first row i.e. {0, 4, 8, 12} are not used during
this time. Similarly MixColumns can also be identified by just looking the bytes
manipulated together. Moreover, detecting precise leakage points of each operation
can help an attacker run collision attacks.

AddRoundKey SubBytes
MixColumns

Column1 Column2 Column3 Column4
Row2

Row3
Row4

ShiftRows

Fig. 3. NICV computed for a AES-128 software implementation to detect each round operation.

4.2 Testing Leakage Models

A common problem in SCA is the choice of leakage model which directly effects
the efficiency of the attack. As shown in Sec. 3.1, the correlation between modeled
leakage (L(X,K)) and traces (Y = L(X,K?) + N) is smaller or equal to NICV.
The equality exists only if the modeled leakage is the same as the traces. We tested
two different leakage models for the state register resent before the Sbox operation
of AES i.e. wH(vali ⊕ valf) (Model 1) and vali ⊕ valf (Model 2). Similar model
are built for another register which is intentionally introduced at the output of
the Sbox i.e. wH(S(vali)⊕S(valf)) (Model 3) and S(vali)⊕S(valf) (Model 4). We
implemented the AES on an FPGA and acquired SCA traces to compare the leakage
models. Fig. 4 shows the square of correlation of four different leakage models with
the traces against the NICV curve. It can be simply inferred from Fig. 4(b) that

10 S. Bhasin et al.

Model 4 performs the best while Model 2 is the worst. The gap between NICV
and ρ(Model4)2 is quite large due to reasons mentioned in Sec 3.1. This means that
there exist other leakage models which could perform better than Model 4. However,
finding these models might not be easy because of limited knowledge of design and
device characteristics available.

4.3 Testing Countermeasure Implementation

An application where NICV can also come handy to a designer is in evaluation
of SCA countermeasures. Several countermeasures can be deployed to make SCA
harder or impossible. However, if the countermeasure is badly implemented or not
balanced, simple SCA like CPA can extract the key. One can also use NICV in this
context to make the analysis faster. Unlike CPA, NICV does not need computation
of intermediate values or repeating the attack for all key hypothesis. Application of
NICV on a protected implementation will detect any linear leakage if the counter-
measure is badly implemented. We test NICV on a dual-rail logic (DPL [13]) counter-
measure applied on AES-128 hardware implementation. The security of DPL largely
depends on the amount of imbalance in routing of individual wires. The curves in
Fig. 5 represent two different bytes of the AES, one which is properly routed and
the other badly. NICV clearly distinguishes the badly routed byte of the AES, giv-
ing a feedback to the designer about the point of vulnerability. Fig. 5(b) has two
NICV peaks, one w.r.t correlation and the other due to post-processing of cipher.
On the other hand, Fig. 5(a) contains a unique NICV peak due to post-processing
of cipher. We know that the second peak is not related to the secret key because of
the extremely low correlation value at time samples (800—1, 000).

Even from an evaluator’s viewpoint, NICV can also help analyzing protected
implementations. For example, in the case of masked implementation, an evaluator
has knowledge of ciphertext Z and mask M . This allows the evaluator to compute
NICV as Var[E[Y |(Z⊕M)]]

Var[E[Y]] and detect points where masked data is computed. A direct
application NICV with mask is collision attacks.

4.4 Comparing Quality of Measurements

SNR is often used to estimate the quality of a measurement setup/traces to compare
different measurement setups. The problem with SNR is that it is computed using
a specific leakage model. NICV is a good candidate for quality comparison owing to
the independence from choice of leakage model.

4.5 Accelerating SCA on Asymmetric Key Cryptography

Asymmetric key cryptography consists in computing exponentiations. For example,
in RSA [14], the computation consists in Xd (modulo N) from X. For the sake
of simplicity, let us consider a right-to-left exponentiation. Such exponentiation is

NICV for Detection of Side-Channel Leakage 11

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0 100 200 300 400 500 600 700 800 900 1000

N
IC

V
/ρ

2

Time Sample

NICV
ρ(Model 1)

2

ρ(Model 2)
2

ρ(Model 3)
2

ρ(Model 4)
2

(a)

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0 100 200 300 400 500 600 700 800 900 1000

ρ
2

Time Sample

ρ(Model 1)
2

ρ(Model 2)
2

ρ(Model 3)
2

ρ(Model 4)
2

(b)

Fig. 4. (a) NICV vs ρ2 of four different models, (b) and its zoom

12 S. Bhasin et al.

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0 200 400 600 800 1000 1200

ρ
2

Time Sample

NICV
ρ(Model 1)

2

(a)

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0 200 400 600 800 1000 1200

N
IC

V
/ρ

2

Time Sample

NICV
ρ(Model 1)

2

(b)

Fig. 5. NICV vs Correlation for (a) well, (b) badly protected bytes of a DPL implementation

NICV for Detection of Side-Channel Leakage 13

illustrated in Alg. 1, where N is the modulus (e.g. that fits on 1024 bits), and R[1]
and R[2] are two 1024 bit temporary registers. Let us call di the 1024 bits of d. We
assume d0 = 1.

Algorithm 1: Unprotected right-to-left 1024 bit RSA implementation

Input : X ∈ ZN , d = (d1023, · · · , d0)2
Output: Xd ∈ ZN

1 R[1]← 1
2 R[2]← X
3 for i ∈ J0, 1023K do
4 if di = 1 then
5 R[1]← R[2] ·R[1] /* Multiply */

6 end
7 R[2]← R[2] ·R[2] /* Square */

8 end
9 return R[1]

Hence the number X3 will be computed (in R[1]; refer to line 5) if and only
if d1 = 1. This conditional operation is at the basis of the SCA on RSA [15]: if a
correlation between the traces Y and the prediction L(X) = X3 exists, then d1 = 1;
otherwise, d1 = 0. For this alternative to be tested with NICV, one should compute
Y |X3, where X3 (modulo N) is a large number (e.g. 1, 024 bits). To be tractable,
small parts of X3 like the least significant byte (LSB) shall be used instead of X3.
In this case, a leakage can be detected by computing Var

[
E
[
Y |LSB(X3)

]]
/Var [Y].

The corresponding attack would use the prediction function L(X) = LSB(X3).

For sure, the test is relevant only if the bit d1 is set in the private key d. But if
it is not, then maybe d2 is set. In this case, a leakage can be detected by computing
Var

[
E
[
Y |LSB(X5)

]]
/Var [Y]. Similarly, if d1 = d2 = 0, it is plausible that d3 = 1,

and thus X9 is computed. Thus, it is sufficient, in order to detect a leakage to

compute Var
[
E
[
Y |LSB(X2i+1)

]]
/Var [Y] for a couple of small i > 0. Any significant

peak indicates a potential vulnerability.

If, for example, the 10 NICV quantities Var
[
E
[
Y |LSB(X2i+1)

]]
/Var [Y], for

1 ≤ i ≤ 10, are computed (without knowing the key d), then a vulnerability is
detected with probability 1 − 2−10 (indeed, 2−10 is the probability of having d1 =
. . . = d10 = 0). This methodology is illustrated in Fig. 6.

5 Conclusions and Perspectives

We presented NICV as a leakage detection technique for side-channel leakage. NICV
uses public information like plaintext or ciphertext for detecting leakage and there-
fore has a low computation footprint. It can be seen as the worst case leakage analysis

14 S. Bhasin et al.

Var[E[Y |LSB(X5)]]
Var[Y]

Var[E[Y |LSB(X9)]]
Var[Y]

Var[E[Y |LSB(X3)]]
Var[Y]

There is peak

There is no peak

Caption: ...

Leak detected

d1 = 1

d2 = 1

d3 = 1

No leak...
...with proba
≥ 1− 2−10

R[1] = X3

R[1] = X5

R[1] = X9

X X2 X4 X8 X16 ...R[2] :

Fig. 6. Illustration of the application of NICV to RSA

which envelops correlation coefficient of all possible leakage models. However NICV
cannot be used directly as a distinguisher for an attack. Unlike templates, NICV
can operate on the same set of traces which are used for attack. We demonstrated
the power of NICV in several use cases related to SCA like detecting relevant time
samples, comparing leakage models, testing countermeasures etc. NICV can also be
used in context of accelerating SCA on asymmetric cryptography.

Future works can focus on extending the power of NICV in detecting higher-order
leakage and extensive application to asymmetric key cryptography.

References

1. Brier, É., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model. In: CHES.
Volume 3156 of LNCS., Springer (2004) 16–29 Cambridge, MA, USA.

2. Chari, S., Rao, J.R., Rohatgi, P.: Template Attacks. In: CHES. Volume 2523 of LNCS., Springer
(2002) 13–28 San Francisco Bay (Redwood City), USA.

3. Consortium, C.C.: Common Criteria (aka CC) for Information Technology Security Evaluation
(ISO/IEC 15408) (2013)
Website: http://www.commoncriteriaportal.org/.

4. Easter, R.J.: Text for ISO/IEC 1st WD 17825 – Information technology – Security techniques –
Non-invasive attack mitigation test metrics for cryptographic modules (2012) Prepared within
ISO/IEC JTC 1/SC 27/WG 3. (Online).

5. Gierlichs, B., Lemke-Rust, K., Paar, C.: Templates vs. Stochastic Methods. In: CHES. Volume
4249 of LNCS., Springer (2006) 15–29 Yokohama, Japan.

6. Aabid, M.A.E., Guilley, S., Hoogvorst, P.: Template Attacks with a Power Model. Cryptology
ePrint Archive, Report 2007/443 (2007) http://eprint.iacr.org/2007/443/.

7. Archambeau, C., Peeters, É., Standaert, F.X., Quisquater, J.J.: Template Attacks in Principal
Subspaces. In: CHES. Volume 4249 of LNCS., Springer (2006) 1–14 Yokohama, Japan.

http://www.commoncriteriaportal.org/
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=60612
http://eprint.iacr.org/2007/443/

NICV for Detection of Side-Channel Leakage 15

8. Mangard, S., Oswald, E., Standaert, F.X.: One for All - All for One: Unifying Standard DPA
Attacks. Information Security, IET 5 (2011) 100–111 ISSN: 1751-8709 ; Digital Object Identifier:
10.1049/iet-ifs.2010.0096.

9. Standaert, F.X., Gierlichs, B., Verbauwhede, I.: Partition vs. Comparison Side-Channel Dis-
tinguishers: An Empirical Evaluation of Statistical Tests for Univariate Side-Channel Attacks
against Two Unprotected CMOS Devices. In: ICISC. Volume 5461 of LNCS., Springer (2008)
253–267 Seoul, Korea.

10. Prouff, E., Rivain, M., Bevan, R.: Statistical Analysis of Second Order Differential Power
Analysis. IEEE Trans. Computers 58 (2009) 799–811

11. Whitnall, C., Oswald, E., Standaert, F.X.: The myth of generic DPA...and the magic of learning.
Cryptology ePrint Archive, Report 2012/256 (2012) http://eprint.iacr.org/2012/256.

12. Renauld, M., Standaert, F.X., Veyrat-Charvillon, N., Kamel, D., Flandre, D.: A Formal Study
of Power Variability Issues and Side-Channel Attacks for Nanoscale Devices. In: EUROCRYPT.
Volume 6632 of LNCS., Springer (2011) 109–128 Tallinn, Estonia.

13. Bhasin, S., Guilley, S., Souissi, Y., Graba, T., Danger, J.L.: Efficient Dual-Rail Implementations
in FPGA using Block RAMs. In: ReConFig, IEEE Computer Society (2011) 261–267 Cancún,
Quintana Roo, México. DOI: 10.1109/ReConFig.2011.32.

14. Rivest, R.L., Shamir, A., Adleman, L.M.: A Method for Obtaining Digital Signatures and
Public-Key Cryptosystems. Commun. ACM 21 (1978) 120–126

15. Messerges, T.S., Dabbish, E.A., Sloan, R.H.: Power Analysis Attacks of Modular Exponenti-
ation in Smartcards. In Koç, Ç.K., Paar, C., eds.: CHES. Volume 1717 of LNCS., Springer
(1999) 144–157

http://eprint.iacr.org/2012/256

