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Abstract

We study homomorphic authenticated encryption, where privacy and authenticity of data
are protected simultaneously. We define homomorphic versions of various security notions
for privacy and authenticity, and investigate relations between them. In particular, we show
that it is possible to give a natural definition of IND-CCA for homomorphic authenticated
encryption, unlike the case of homomorphic encryption. Also, we construct a homomorphic
authenticated encryption scheme supporting arithmetic circuits on ZQ for smooth modulus
Q, which is chosen-ciphertext secure both for privacy and authenticity. Our scheme is based
on the error-free approximate GCD assumption.

1 Introduction

Homomorphic cryptography allows processing of cryptographically protected data. For example,
homomorphic encryption lets a third party which does not have the secret key to evaluate func-
tions implicitly using only ciphertexts so that the computed ciphertext decrypts to the correct
function value. Similarly, homomorphic signature allows a third party who is not the signer to
derive a signature to the output of a function, given signatures of the inputs. This possibility
for secure delegation of computation could potentially be used for many applications including
cloud computing, and so it makes homomorphic cryptography a very interesting area, which
was recently attracting many focused research activities, especially since Gentry’s first construc-
tion [15] of a fully homomorphic encryption scheme in 2009. While existing fully homomorphic
encryption schemes [15, 22, 7, 8] are still many orders slower than ordinary encryption schemes
to be truly practical, many progresses [21, 16, 11, 12, 10, 4, 6, 17, 18, 5] are being made in
improving the efficiency of fully homomorphic encryption schemes. Eventually, a truly practical
fully homomorphic encryption scheme could be used to implement secure cloud computing ser-
vices where even the cloud provider cannot break the privacy of the data stored and processed
by the cloud.

But, if such user data is important enough to protect its privacy, in many scenarios the au-
thenticity of the data would also be worth protecting simultaneously. Indeed, in symmetric-key
cryptography, the authenticated encryption [20, 2, 13, 19] is exactly such a primitive protect-
ing both privacy and authenticity of data. Therefore, we would like to study homomorphic
authenticated encryption (henceforth abbreviated as HAE), which is a natural analogue of the
authenticated encryption for homomorphic cryptography. A HAE is a symmetric-key primitive
which allows public evaluation of functions using only corresponding ciphertexts.
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Just as in the case of homomorphic encryption, one important goal in this area might be to
design a fully homomorphic authenticated encryption. Since there are several known construc-
tions of fully homomorphic encryption schemes, if there exists a fully homomorphic signature, or
even a fully homomorphic MAC, then we may construct a fully homomorphic authenticated en-
cryption scheme by generic composition [2]. Unfortunately, the homomorphic signature scheme
closest to being fully homomorphic is [3], where only low-degree polynomial functions are sup-
ported. A fully homomorphic MAC is proposed by Gennaro and Wichs [14], but it supports only
a limited number of verification queries, so that the solution is incomplete. So far, the problem
of constructing a fully homomorphic authenticated encryption is still not completely solved.

Our contribution in this paper is twofold. First, we define various security notions for HAE
and study relations among them. For privacy, we define homomorphic versions of IND-CPA and
IND-CCA. While for homomorphic encryption, the usual IND-CCA security is not achievable
due to the malleability, nevertheless we may define a version of IND-CCA for HAE schemes.
It is because that for HAE, encryption of a plaintext is done with respect to a ‘label’, and
similarly decryption of a ciphertext is done with respect to a ‘labeled program’. So, while the
ciphertext is still malleable by function evaluation, a decryption query should essentially declare
how the ciphertext was produced. This allows a homomorphic version of IND-CCA to be defined
naturally.

For authenticity, we define UF-CPA, the homomorphic version of the unforgeability when the
adversary has access to the encryption oracle. We also consider UF-CCA, where the adversary
not only has the encryption oracle but also the decryption oracle. Moreover, we consider strong
unforgeability flavors of authenticity and define homomorphic versions accordingly: SUF-CPA
and SUF-CCA. We investigate relationship between these notions, and, for example, show that
SUF-CPA implies SUF-CCA. And, we show that IND-CPA and SUF-CPA imply IND-CCA.
Together, this shows that a HAE scheme with IND-CPA and SUF-CPA security is in fact IND-
CCA and SUF-CCA.

The second contribution is that we propose a HAE scheme supporting arithmetic circuits.
This scheme is not fully homomorphic, but only somewhat homomorphic, but we show that our
scheme is secure and satisfies both IND-CCA and SUF-CCA. Another appeal of our scheme
is that it is a simple and natural construction based on the error-free approximate GCD (EF-
AGCD) assumption. EF-AGCD assumption was used before [22, 11, 12, 10] in constructing fully
homomorphic encryption schemes supporting boolean circuits, but here we use it to construct a
HAE scheme supporting arithmetic circuits on ZQ for Q ∈ Z+.

We prove the privacy of our scheme using EF-AGCD, when the modulus Q is a smooth
positive integer, that is, when Q has only small prime factors. In order to achieve this, we
generalize the proof technique (especially LSB predictor construction) of [22] from binary to
small primes, then combine these moduli to extend the security to smooth positive integers.
While the privacy of the scheme for general modulus Q can be (trivially) proven if we assume
the decisional EF-AGCD as in [10], it is a stronger assumption than EF-AGCD, which is not yet
known whether equivalent to EF-AGCD or not. It would be an interesting problem to prove the
security of our scheme for general Q based only on EF-AGCD.

2 Related work

Gennaro and Wichs [14] proposed the first construction of the fully homomorphic MAC. Their
construction uses FHE, and exploits the randomness in the encryption to hide information nec-
essary for authentication. In fact, since their scheme naturally encrypts plaintexts using FHE,
it is already a fully homomorphic authenticated encryption. But, their construction essentially
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does not allow verification queries, so it satisfies only weaker security notions: IND-CPA and UF-
CPA, according to our definition. Construction of a fully-homomorphic authenticated encryption
scheme satisfying chosen ciphertext security is still an interesting open problem.

Catalano and Fiore [9] proposed two somewhat homomorphic MACs supporting arithmetic
circuits on Zp for prime modulus p. In their construction, a MAC for a messagem is a polynomial
σ(X) such that its constant term σ(0) is equal to the message m, and its value σ(α) on a hidden
random point α is equal to randomness determined by the ‘label’ τ of the message m. While
their construction is very simple and practical for low-degree polynomials, it does not protect
privacy of data, and it seems that this cannot be changed by simple modifications, for example
by choosing a secret random value β as the value satisfying σ(β) = m. Also, in their scheme,
the size of the prime modulus p is determined by the security parameter, so it cannot be chosen
arbitrarily by the application.

Our scheme is not as efficient as the schemes of Catalano and Fiore, but certainly much more
efficient than the generically composed HAE of a FHE scheme and the Catalano-Fiore homo-
morphic MAC. And our scheme is also very simple and its security is relying on the error-free
approximate GCD assumption, an assumption which was used in the context of fully homomor-
phic encryption schemes before [22, 11, 12, 10]. Moreover, in our construction, the modulus Q
does not depend on the security parameter so that it can be chosen depending on the application.

Our scheme can also be compared with a homomorphic encryption scheme called IDGHV
presented in [10]. It supports encryption of a plaintext vector (m1, . . . ,mℓ) where each mi is an
element in ZQi

. Like our scheme, IDGHV also uses the Chinese remainder theorem, and indeed
our construction can be seen as a special-case, symmetric-key variant of IDGHV where ℓ = 1,
and where encryption randomness is pseudorandomly generated from the label. We intentionally
omitted encryption of multiple plaintexts for simplicity of exposition, but our construction can
naturally be extended in this way. Also, we used EF-AGCD assumption, while the security
of IDGHV is based on the much stronger decisional version of EF-AGCD assumption. Note
that under this decisional assumption, the privacy of our scheme can be proven trivially for any
modulus Q.

Security notions of the authenticated encryption was studied before. Bellare and Namprem-
pre [2] studied both privacy and authenticity of authenticated encryption schemes, and the au-
thenticity notions are later studied further by Bellare, Goldreich and Mityagin [1]. Our UF-CPA
and SUF-CPA can be considered as homomorphic versions of INT-PTXT-1 and INT-CTXT-1
of [1], respectively. Our UF-CCA and SUF-CCA are comparable to homomorphic versions of
INT-PTXT-M and INT-CTXT-M, respectively, but in our UF/SUF-CCA, the adversary has
access to the decryption oracle, while in INT-PTXT-M and INT-CTXT-M, the adversary has
access to the verification oracle.

3 Preliminary

3.1 Notations

In this paper, we use the following notations for intervals of integers. For any real number a and
b, we define

[a, b] := {x ∈ Z | a ≤ x ≤ b} ,
(a, b] := {x ∈ Z | a < x ≤ b} ,
[a, b) := {x ∈ Z | a ≤ x < b} ,
(a, b) := {x ∈ Z | a < x < b} .
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For any real number a, the nearest integer ⌊a⌉ of a is defined as the unique integer in[
a− 1

2 , a+ 1
2

)
. The ring Zn of integers modulo n is represented as the set (−n

2 ,
n
2 ]. This means

that
x mod n := x−

⌊x
n

⌉
· n

for any integer x. For example, Z2 = {0, 1}, Z3 = {−1, 0, 1}.
For any positive integers n and m with gcd(n,m) = 1, CRT(n,m) is the isomorphism from

Zn × Zm onto Znm, satisfying

(CRT(n,m)(a, b) mod n,CRT(n,m)(a, b) mod m) = (a, b)

for any (a, b) ∈ Zn × Zm.
In this paper, the security parameter is always denoted as λ, and the expression

f(λ) = negl(λ)

means that f(λ) is a negligible function, that is, for any c > 0, f satisfies

|f(λ)| ≤ λ−c

for all sufficiently large λ ∈ Z+.
Also, lg means the logarithm to base 2. And ∆(D1, D2) denotes the statistical distance

between two distributions D1 and D2.

3.2 Security assumptions

In this section we define security assumptions we are going to use in this paper. In order to do
this, first let us define some distributions.

Definition 1. For any positive integers p, q0, ρ, R and Q, let us define the following distributions.

D(p, q0, ρ) := {choose q
$← [0, q0), r

$← (−2ρ, 2ρ) : output pq + r},

Z(p, q0, R,Q) := {choose q
$← Zq0 , r

$← ZR : output pq + rQ},

R(p, q0, R,Q) := {choose q
$← Zq0 , r

$← ZR, m
$← ZQ : output pq + rQ+m}.

Clearly, we can efficiently sample from these distributions for given parameters.
When a distribution is given as an input to an algorithm, it means that a sampling oracle

for the distribution is given; we use the same notation for a sampling oracle as that of the
distribution from which it samples.

Note that
R(p, q0, R,Q) = Z(p, q0, RQ, 1).

Also, it is easy to check that the following holds:

∆(D(p, q0, ρ) mod pq0,Z(p, q0, 2
ρ+1, 1)) = ∆(U((−2ρ, 2ρ)),U(Z2ρ+1)) =

1

2ρ+1
,

where U(S) is the uniform distribution over a finite non-empty set S.
Let PRIME be the set of all prime numbers and ROUGH(x) the set of all integers having no

prime factors less than x.
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Definition 2. The (η, γ, ρ)-EF-AGCD (error-free approximate GCD) assumption means that
for any PPT adversary A, we have

Pr [A(η, γ, ρ, pq0,D(p, q0, ρ)) = p] = negl(λ),

where p
$← [2η−1, 2η) ∩ PRIME, q0

$← [0, 2γ/p) ∩ ROUGH(2λ).

The EF-AGCD assumption is suggested by Coron et al. [11] to prove the security of their vari-
ants of the DGHV scheme [22], which depends on a weaker assumption, the approximate GCD
(AGCD) assumption. To simplify the security proofs of our scheme, we need a slightly different
assumption, which can be shown to be equivalent to (η, γ, ρ)-EF-AGCD.

Definition 3. The (η, γ,R)-EF-AGCD′ assumption means that for any PPT adversary A, we
have

Pr [A(η, γ,R, pq0,Z(p, q0, R, 1)) = p] = negl(λ),

where p
$← [2η−1, 2η) ∩ PRIME, q0

$← [0, 2γ/p) ∩ ROUGH(2λ).

Essentially, in this assumption the noise bound does not have to be a power of 2, and a sample
from Z(p, q0, R, 1) can be negative. In Theorem 10, we will show that the (η, γ, ρ)-EF-AGCD
assumption implies (η, γ,R)-EF-AGCD′ if lgR = ρ+ ω(λ). We need the following intermediate
assumption.

Definition 4. The (η, γ,R,Q)-ZOR assumption means that for any PPT distinguisher D, we
have ∣∣∣Pr [D(η, γ,R,Q, pq0,Z(p, q0, R,Q), z) = 1 | z ← Z(p, q0, R,Q)]

− Pr [D(η, γ,R,Q, pq0,Z(p, q0, R,Q), z) = 1 | z ← R(p, q0, R,Q)]
∣∣∣

= negl(λ)

where p
$← [2η−1, 2η) ∩ PRIME, q0

$← [0, 2γ/p) ∩ ROUGH(2λ).

The (η, γ,R,Q)-ZOR assumption is similar to the decisional approximate GCDQ assumption
used in Cheon et al. [10], but which is in fact stronger than the (η, γ,R,Q)-ZOR assumption.

4 Homomorphic authenticated encryption

In this section, we define the homomorphic authenticated encryption (HAE) and its security. In
the following, M and C are the plaintext space and the ciphertext space, respectively, L is the
label space, and F is the admissible function space.

4.1 Syntax

Labeled programs. First, let us define labeled programs, a concept first introduced in [14].
For each HAE, a set of admissible functions F is associated. In reality, F is not a set of

mathematical functions, but a set of representations of mathematical functions; an element f of
F is a concrete representation of a function which can be evaluated in polynomial time, and in
general, it is possible for two distinct representations f ̸= f ′ to represent the same mathematical
function. It is required that any f ∈ F should represent a function of form f : Ml → M for
some l ∈ Z+ which depends on f . We will simply call an element f ∈ F an admissible function.
The number l is the arity of f .
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A HAE encrypts a plaintext m ∈ M under a ‘label’ τ ∈ L, and a labeled program is
an admissible function together with information which plaintexts should be used as inputs.
Formally, a labeled program is a tuple P = (f, τ1, . . . , τl), where f ∈ F is an admissible function
f : Ml → M, and τi ∈ L are labels for i = 1, . . . , l for each input of f . The idea is that, if
mi are plaintexts encrypted under the label τi, respectively, then the evaluation of the labeled
program P = (f, τ1, . . . , τl) is f(m1, . . . ,ml).

We also define the identity labeled program with label τ , which is Iτ = (id, τ), where id :M→
M is the identity function and τ ∈ L is a label.

Homomorphic authenticated encryption. A HAE is a tuple Π = (Gen,Enc,Eval,Dec) of
the following four PPT algorithms.

• (ek , sk) ← Gen(1λ): given a security parameter λ, Gen(1λ) outputs a public evaluation
key ek and a secret key sk .

• c ← Enc(sk , τ,m): given a secret key sk , a label τ ∈ L and a plaintext m ∈ M,
Enc(sk , τ,m) outputs a ciphertext c ∈ C.

• c̃ ← Eval(ek , f, c1, · · · , cl): given an evaluation key ek , an arity-l admissible function f :
Ml →M in F and l ciphertexts c1, · · · , cl ∈ C, the deterministic algorithm Eval outputs
a ciphertext c̃ ∈ C.

• m or ⊥ ← Dec(sk , (f, τ1, · · · , τl), ĉ): given a secret key sk , a labeled program (f, τ1, · · · , τl)
and a ciphertext ĉ ∈ C, the deterministic algorithm Dec outputs a message m ∈M or ⊥.

We assume that evaluation key ek implicitly contains the information about M, C, L, and F .
As mentioned above, we assume that both Eval and Dec are deterministic algorithms.

Compactness. In order to exclude trivial constructions, we require that there exists some
c > 0 such that, for any λ ∈ Z+, the output size of Eval(ek , . . . ) and Dec(sk , ·, ·) are bounded by
λc for any choice of their input, when (ek , sk)← Gen(1λ). That means that the ciphertext size
is independent of the choice of the admissible function f or the arity of f .

Correctness. A HAE scheme must satisfy the following two correctness properties:

• We should have
m = Dec(sk , Iτ ,Enc(sk , τ,m)),

for any λ ∈ Z+, τ ∈ L and m ∈M, when (ek , sk)← Gen(1λ).

• We should have
f(m1, . . . ,ml) = Dec(sk , (f, τ1, . . . , τl), c),

for any λ ∈ Z+, any f ∈ F , any τi ∈ L, mi ∈M for i = 1, . . . , l, when (ek , sk)← Gen(1λ),
ci ← Enc(sk , τi,mi) for i = 1, . . . , l, and c← Eval(ek , f, c1, . . . , cl).

In addition, we require that a HAE should satisfy a property we call ciphertext constant
testability, which will be explained next.
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4.2 Constant testability

Given a HAE Π, an admissible function f : Ml → M of arity l, a subset I of the index
set {1, · · · , l}, plaintexts (mi)i∈I ∈ M|I|, and their corresponding ciphertexts (ci)i∈I ∈ C |I|,
consider the following functions:

f̃(mi)i∈I
:= f(mi)i∈I ,

c̃f,(ci)i∈I
:= Eval(ek , f, (ci)i∈I).

More explicitly, f̃(mi)i∈I
is a function fromMl−|I| toM defined by

f̃(mi)i∈I
(mj)j ̸∈I := f(m1, · · · ,ml),

for any (mj)j ̸∈I ∈ Ml−|I|. That is, plaintexts for the index set I are fixed, and plaintexts for
the indices in {1, . . . , l} \ I are considered as variables.

Similarly, c̃f,(ci)i∈I
is a function from Cl−|I| to C defined by

c̃f,(ci)i∈I
(cj)j ̸∈I := Eval(ek , f, c1, · · · , cl),

for any (cj)j ̸∈I ∈ Cl−|I|. In particular, f̃(mi)i∈I
and c̃f,(ci)i∈I

are constant functions if I =
{1, . . . , l}.

Sometimes we would like to determine whether such a function f̃(mi)i∈I
or c̃f,(ci)i∈I

is constant
or not. Therefore we define a property called ‘constant testability’. Depending whether we are
working on plaintexts or ciphertexts, we define two versions of constant testability accordingly.

Definition 5. We say that a HAE Π satisfies the plaintext constant testability (PCT) if there
exists a PPT algorithm that determines if the function f̃(mi)i∈I

is constant or not with over-

whelming probability, for any admissible function f : Ml → M of arity l, any subset I of the
index set {1, · · · , l} and any (mi)i∈I ∈M|I|.

Definition 6. We say that a HAE Π satisfies the ciphertext constant testability (CCT) if
there exists a PPT algorithm that determines if the function c̃f,(ci)i∈I

is constant or not with
overwhelming probability, for any evaluation key ek generated by Π.Gen, any admissible function
f :Ml →M of arity l, any subset I of the index set {1, · · · , l} and any (ci)i∈I ∈ C|I|.

When the set of admissible functions supported by a HAE is simple, both PCT and CCT may
be satisfied. But, the plaintext constant testability might be a difficult property to be satisfied
in general; for example, if a HAE supports general boolean circuits, then PCT implies that
the CIRCUIT-SAT problem can be solved in polynomial time with overwhelming probability,
therefore the polynomial hierarchy PH collapses.

On the other hand, we claim that a HAE to satisfy the ciphertext constant testability is a
relatively mild requirement: unlike the plaintext spaceM, often the ciphertext space C might be
a large ring, and c̃f,(ci)i∈I

is a polynomial on the ring C, in which case we may use the Schwartz-
Zippel lemma to perform the polynomial identity testing. This applies to our HAE scheme to
be presented in this paper, as shown in Theorem 8.

Moreover, we show that if Π is a HAE which does not necessarily satisfy CCT, then there is
a simple generic transformation which turns it into another HAE Π′ which satisfies CCT, while
preserving original security properties satisfied by Π. This will be shown in Theorems 5, 6 and 7.

Therefore, without loss of generality, we assume the property CCT to be an additional re-
quirement for a HAE to satisfy.

7



4.3 Privacy

Here we define security notions of privacy for HAE. First, let us define IND-CPA.

Indistinguish against chosen plaintext attack. Our definition of privacy for HAE is a
homomorphic version of the IND-CPA security. We use the following security game IND-CPAΠ,A

between the challenger and the adversary A, which is a natural adaptation of the corresponding
security game of the symmetric-key encryption.

The main difference is that, in case of a HAE, at most one message m ∈M can be encrypted
to produce the corresponding ciphertext c ← Enc(sk , τ,m) under each label τ ∈ L. In other
words, a label used once in an encryption cannot be used again. To prevent from generating
two ciphertexts with respect to the same label, an encryption history S will be kept in the game
IND-CPA. If a label τ is not in the history S, then we say that the label τ is new.

IND-CPAΠ,A(1
λ):

Initialization. A key pair (ek , sk) ← Gen(1λ) is generated, a set S is initialized as
the empty set ∅. Then ek is given to A.

Queries. A may make encryption queries adaptively. For each encryption query
(τ,m) of A, if (τ, ·, ·) /∈ S (that is, (τ,m, c) ̸∈ S for any m ∈ M, c ∈ C),
then the challenger returns the answer c ← Enc(sk , τ,m) to A and updates
S ← S ∪ {(τ,m, c)}. Otherwise, the query is rejected.

Challenge. A outputs the challenge (τ∗,m∗
0,m

∗
1). If (τ∗, ·, ·) /∈ S, then the chal-

lenger flips a coin b
$← {0, 1}, gives the corresponding challenge ciphertext

c∗ ← Enc(sk , τ∗,m∗
b) to A and updates S ← S ∪ {(τ∗,m∗

b , c
∗)} . Otherwise,

the challenge is rejected.

Queries. Again A may make encryption queries adaptively, and such queries are
answered precisely as before.

Finalization. A outputs a bit b′, and then the challenger returns 1 if b = b′, and 0
otherwise.

The advantage of A in the game IND-CPA for the scheme Π is defined as

AdvIND-CPA
Π,A (λ) :=

∣∣∣∣Pr [IND-CPAΠ,A(1
λ) = 1

]
− 1

2

∣∣∣∣ .
We say that a HAE Π satisfies IND-CPA, if the advantage AdvIND-CPA

Π,A (λ) is negligible for any
PPT adversary A.

Indistinguish against chosen ciphertext attack. We also consider a homomorphic version
of the IND-CCA security of symmetric-key encryption. Even though the usual IND-CCA security
is not achievable for homomorphic encryption due to the malleability, nevertheless we may define
a version of IND-CCA for HAE. It is because that for HAE, decryption of a ciphertext is done with
respect to a labeled program. So, while the ciphertext is still malleable by function evaluation,
a decryption query should essentially declare how the ciphertext was produced. This allows a
homomorphic version of IND-CCA to be defined naturally as follows.

Homomorphic IND-CCA for a HAE Π = (Gen,Enc,Eval,Dec) is defined using the following
security game IND-CCAΠ,A, which is also a natural extension of the security game IND-CCA of
a symmetric-key encryption.
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This time, the important difference is on the definition of legality of a decryption query
after the Challenge phase. In the IND-CCA game for the symmetric encryption, the only illegal
decryption query after Challenge phase is the decryption query for the challenge ciphertext itself.
On the other hand, in the HAE case, any decryption query for a ciphertext that was produced
by function evaluation which may depend on the input m∗

0 or m∗
1 should be considered illegal,

since decryption of that ciphertext would trivially reveal the bit b. This is formalized as follows.
To check the legality of a decryption query after Challenge, the security game keeps the

encryption history S. Then, we say that a decryption query ((f, τ1, · · · , τl), ĉ) after Challenge
phase is illegal, if τ∗ = τi∗ for some i∗ ∈ I, and the two functions f̃0 and f̃1 are not equal, where

I := {i ∈ {1, · · · , l} | (τi,mi, c) ∈ S for some mi ∈M, c ∈ C} ,

f̃0 := f(mi)i∈I ,with mi∗ = m∗
0,

f̃1 := f(mi)i∈I ,with mi∗ = m∗
1.

This means that the admissible function f depends nontrivially whether m∗
0 or m∗

1 is used as the
i∗th plaintext input. In that case, the adversary may fill in the rest of the input slots of f so that
the function value differs depending on whether m∗

0 or m∗
1 is used, and produce a ciphertext ĉ

by homomorphic evaluation of f , and make the illegal decryption query to learn whether m∗
0 or

m∗
1 was used to produce the challenge ciphertext. In the following security game, it is forbidden

for the adversary A to make any illegal decryption query after the Challenge phase.

IND-CCAΠ,A(1
λ):

Initialization. A key pair (ek , sk)← Gen(1λ) is generated and a set S is initialized
to be the empty set ∅. Then ek is given to the adversary A.

Queries. A may make encryption queries and decryption queries adaptively. For
each encryption query (τ,m) of A, if (τ, ·, ·) ̸∈ S then the query is replied with
an answer c← Enc(sk , τ,m) and S is updated as S ← S∪{(τ,m, c)} . Otherwise,
the encryption query is rejected. Each decryption query ((f, τ0, · · · , τl), ĉ) of A
is answered by Dec(sk , (f, τ1, · · · , τl), ĉ).

Challenge. A outputs the challenge tuple (τ∗,m∗
0,m

∗
1). If (τ

∗, ·, ·) ̸∈ S, then a coin

b
$← {0, 1} is flipped and the challenge ciphertext c∗ ← Enc(sk , τ∗,m∗

b) is given
to A, and S is updated as S ← S ∪ {(τ∗,m∗

b , c
∗)}. Otherwise, the challenge is

rejected.

Queries After Challenge. Again, A may make encryption queries and decryption
queries adaptively. This time, it is forbidden for A to make illegal decryption
queries. Then, any encryption or decryption query of A is answered precisely as
before.

Finalization. A outputs a bit b′, and then the challenger returns 1 if b = b′, and 0
otherwise.

The advantage of A in the game IND-CCA for the scheme Π is defined as

AdvIND-CCA
Π,A (λ) :=

∣∣∣∣Pr [IND-CCAΠ,A(1
λ) = 1

]
− 1

2

∣∣∣∣ .
We say that a HAE Π satisfies IND-CCA, if the advantage AdvIND-CCA

Π,A (λ) is negligible for any
PPT adversary A which does not make illegal decryption queries.
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4.4 Authenticity

Unforgeability under chosen plaintext attack. Our authenticity definition for HAE is an
adaptation of the definition given by Catalano and Fiore [9] for homomorphic MACs.

First, we define the forgery of an adversary. Let ((f, τ1, · · · , τl), ĉ) be a forgery attempt of an
adversary, and let S be the encryption history maintained by the security game. We say that it
is a forgery, if the following holds:

1. It is valid, that is, ⊥ ≠ Dec((f, τ1, · · · , τl), ĉ) and,

2. One of the following holds:

• Type 1 forgery: f̃ = f(mi)i∈I is not constant, or,

• Type 2 forgery: f̃ = f(mi)i∈I is constant but f̃ ̸= Dec((f, τ1, · · · , τl), ĉ),

where
I = {i ∈ {1, · · · , l} | (τi,mi, c) ∈ S for some mi ∈M, c ∈ C} ,

f̃ :Ml−|I| →M defined by f̃(mj)j ̸∈I := f(m1, . . . ,ml).

We define the unforgeability under chosen plaintext attack (UF-CPA) of a HAE Π using the
following security game UF-CPAΠ,A.

UF-CPAΠ,A(1
λ):

Initialization. A key pair (ek , sk)← Gen(1λ) is generated and a set S is initialized
to be the empty set ∅. Then ek is given to the adversary A.

Queries. A may make encryption queries adaptively. For each encryption query
(τ,m) of A, if (τ, ·, ·) /∈ S, then the query is replied with the answer c ←
Enc(sk , τ,m), and S is updated with S ← S ∪ {(τ,m, c)}. Otherwise, the query
is rejected.

Finalization. A outputs a forgery attempt ((f, τ1, · · · , τl), ĉ). The challenger returns
0 if ⊥ = Dec(sk , (f, τ1, · · · , τl), ĉ). Otherwise, I is initialized as ∅, and for each
i = 1, . . . , l, if (τi,m, c) ∈ S for some m ∈ M, c ∈ C, then let I ← I ∪ {i} and
mi ← m. And then let f̃ = f(mi)i∈I . If f̃ is not constant, or if f̃ is constant
but f̃ ̸= Dec(sk , (f, τ1, · · · , τl), ĉ), then the challenger returns 1. Otherwise, 0 is
returned.

The advantage of A in the game UF-CPA for the scheme Π is defined as

AdvUF-CPA
Π,A (λ) := Pr

[
UF-CPAΠ,A(1

λ) = 1
]
.

We say that a HAE Π satisfies UF-CPA, if the advantage AdvUF-CPA
Π,A (λ) is negligible for any

PPT adversary A.

Unforgeability under chosen ciphertext attack. It is also natural to consider a stronger
variant of unforgeability, in which an adversary is allowed to make decryption queries as well as
encryption queries. We call this variant UF-CCA. The only difference of UF-CCA from UF-CPA
is the Queries phase, which is given below.
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Queries. A may make encryption queries and decryption queries adaptively. For
each encryption query (τ,m) of A, if (τ, ·, ·) /∈ S, then the query is replied
with the answer c← Enc(sk , τ,m), and S is updated with S ← S ∪ {(τ,m, c)}.
Otherwise, the query is rejected. Each decryption query ((f, τ0, · · · , τl), ĉ) of A
is answered by Dec(sk , (f, τ1, · · · , τl), ĉ).

The advantage of A in the game UF-CCA for the scheme Π is defined as

AdvUF-CCA
Π,A (λ) := Pr

[
UF-CCAΠ,A(1

λ) = 1
]
.

We say that a HAE Π satisfies UF-CCA, if the advantage AdvUF-CCA
Π,A (λ) is negligible for any

PPT adversary A.

Strong unforgeability under chosen plaintext attack. Sometimes it is useful to consider
stronger definition of authenticity. So let us define strong unforgeability for HAE.

We first define strong forgery of an adversary. Let ((f, τ1, · · · , τl), ĉ) be a forgery attempt of
an adversary, and let S be the encryption history maintained by the security game. We say that
it is a strong forgery, if the following holds:

1. It is valid, that is, ⊥ ≠ Dec((f, τ1, · · · , τl), ĉ) and,

2. One of the following holds:

• Type 1 strong forgery: c̃ = Eval(ek , f, (ci)i∈I) is not constant, or,

• Type 2 strong forgery: c̃ = Eval(ek , f, (ci)i∈I) is constant but c̃ ̸= ĉ,

where
I = {i ∈ {1, · · · , l} | (τi,m, ci) ∈ S for some m ∈M, ci ∈ C} ,
c̃ : Cl−|I| → C defined by c̃(cj)j ̸∈I := Eval(ek , f, c1, · · · , cl).

Now, we define the strong unforgeability under chosen plaintext attack (SUF-CPA) of a HAE
Π using the following security game SUF-CPAΠ,A.

SUF-CPAΠ,A(1
λ):

Initialization. A key pair (ek , sk)← Gen(1λ) is generated and a set S is initialized
to be the empty set ∅. Then ek is given to the adversary A

Queries. A may make encryption queries adaptively. For each encryption query
(τ,m) of A, if (τ, ·, ·) /∈ S, then the query is replied with the answer c ←
Enc(sk , τ,m), and S is updated with S ← S ∪ {(τ,m, c)}. Otherwise, the query
is rejected.

Finalization. A outputs a forgery attempt ((f, τ1, · · · , τl), ĉ). The challenger returns
0 if ⊥ = Dec(sk , (f, τ1, · · · , τl), ĉ). Otherwise, I is initialized as ∅, and for each
i = 1, . . . , l, if (τi,m, c) ∈ S for some m, c, then let I ← I ∪ {i} and ci ← c.
And then let c̃ = Eval(ek , f, (ci)i∈I). If c̃ is not constant, or if c̃ is constant but
c̃ ̸= ĉ, then the challenger returns 1. Otherwise, 0 is returned.

The advantage of A in the game SUF-CPA for the scheme Π is defined as

AdvSUF-CPA
Π,A (λ) := Pr

[
SUF-CPAΠ,A(1

λ) = 1
]
.

We say that a HAE Π satisfies SUF-CPA, if the advantage AdvSUF-CPA
Π,A (λ) is negligible for any

PPT adversary A.

11



Strong unforgeability under chosen ciphertext attack. Also for strong unforgeability,
we consider security against chosen ciphertext attacks, which we call SUF-CCA. Again, the only
difference of SUF-CCA from SUF-CPA is the Queries phase, which is given below.

Queries. A may make encryption queries and decryption queries adaptively. For
each encryption query (τ,m) of A, if (τ, ·, ·) /∈ S, then the query is replied
with the answer c← Enc(sk , τ,m), and S is updated with S ← S ∪ {(τ,m, c)}.
Otherwise, the query is rejected. Each decryption query ((f, τ0, · · · , τl), ĉ) of A
is answered by Dec(sk , (f, τ1, · · · , τl), ĉ).

The advantage of A in the game SUF-CCA for the scheme Π is defined as

AdvSUF-CCA
Π,A (λ) := Pr

[
SUF-CCAΠ,A(1

λ) = 1
]
.

We say that a HAE Π satisfies SUF-CCA, if the advantage AdvSUF-CCA
Π,A (λ) is negligible for any

PPT adversary A.

4.5 Relations on security notions

In this section, we investigate relations between the six security notions defined in the previous
section. First, we have trivial implications from CCA security to CPA security.

Theorem 1. UF-CCA implies UF-CPA, SUF-CCA implies SUF-CPA, and IND-CCA implies
IND-CPA.

Proof. Trivial.

The following theorem says that the strong unforgeability implies unforgeability.

Theorem 2. SUF-CCA implies UF-CCA. And SUF-CPA implies UF-CPA.

Proof. It is enough to show that a forgery is also a strong forgery. Let ((f, τ1, · · · , τl), ĉ) be
a forgery. If it is a forgery of type 1, then f̃ = f(mi)i∈I is not constant. That is, there
exist two tuples (m1

j )j ̸∈I and (m2
j )j ̸∈I such that f̃(m1

j )j ̸∈I ̸= f̃(m2
j )j ̸∈I . Then there exists two

distinct tuples (c1j )j ̸∈I and (c2j )j ̸∈I such that m1
j = Dec(sk , Iτj , c

1
j ) and m2

j = Dec(sk , Iτj , c
2
j ) for

each j ̸∈ I. Then we have c̃(c1j )j ̸∈I ̸= c̃(c2j )j ̸∈I by the correctness property, which shows that
c̃ = Eval(ek , f, (ci)i∈I) is nonconstant. So it is a strong forgery of type 1.

If it is a forgery of type 2 but not a strong forgery of type 1, then both f̃ and c̃ are constants
and f̃ ̸= Dec(sk , (f, τ1, · · · , τl), ĉ). But f̃ = Dec(sk , (f, τ1, · · · , τl), c̃), again by the correctness.
This means that ĉ ̸= c̃, and this shows that it is a strong forgery of type 2.

Bellare et al. [1] showed that, in case of a MAC, strong unforgeability implies strong un-
forgeability even when the adversary has access to the verification oracle, and in case of an AE,
integrity of ciphertexts implies integrity of ciphertexts even when the adversary has access to the
verification oracle. The following can be considered as a homomorphic analogue to the result.

Theorem 3. SUF-CPA implies SUF-CCA.

Proof. We prove the theorem by a hybrid argument to transform the game SUF-CCA into
another game that is essentially the same as the game SUF-CPA.

Let A be any PPT adversary. Without loss of generality, we may assume that A makes
exactly q = q(λ) decryption queries.

For each i ∈ {0, . . . , q}, define SUF-CCAi to be the game that is identical to SUF-CCA except
that the first i decryption queries are answered by the following decryption simulation.
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Decryption Simulation. For a decryption query ((f, τ1, · · · , τl), ĉ) made by the
adversary A, let I ← ∅ and do the following for i = 1, · · · , l: If (τi,m, c) ∈ S
for some m ∈ M and c ∈ C, then I ← I ∪ {i} and mi = m, ci = c. And then
let c̃ = Eval(ek , f, (ci)i∈I) and f̃ = f(mi)i∈I . If c̃ is constant and c̃ = ĉ, then
return f̃ . Otherwise, return ⊥.

In particular, SUF-CCA is equal to SUF-CCA0. So,

AdvSUF-CCA0

Π,A (λ) = AdvSUF-CCA
Π,A (λ).

Moreover, since the decryption simulation does not use any secret information and is efficiently
computable by the CCT property in SUF-CCAq, the adversary A does not obtain any useful
information by the decryption queries at all in this game. Formally, we can easily construct an
adversary A′ which plays SUF-CPA game and makes the same number of encryption queries as
A does, and satisfying

AdvSUF-CCAq

Π,A (λ) = AdvSUF-CPA
Π,A′ (λ).

For each i ∈ {1, . . . , q}, the difference between AdvSUF-CCAi−1

Π,A (λ) and AdvSUF-CCAi

Π,A (λ) is
bounded by the probability that the decryption simulation on the ith decryption query made by
A fails (that is, is different from the real decryption). From the definition of a strong forgery, it
is easy to check that the decryption simulation fails if and only if the decryption query made by
A is a strong forgery: we have

decryption simulation fails

⇐⇒ c̃ is constant and c̃ = ĉ, but ⊥ = Dec(sk , (f, τ1, . . . , τl), ĉ), or,

c̃ is nonconstant, or c̃ is constant but c̃ ̸= ĉ, but ⊥ ≠ Dec(sk , (f, τ1, . . . , τl), ĉ),

but when c̃ is constant and c̃ = ĉ, by the correctness we should have Dec(sk , (f, τ1, . . . , τl), ĉ) = f̃ ,
which should also be a constant not equal to ⊥, therefore this subcase cannot happen. So,

decryption simulation fails

⇐⇒ c̃ is nonconstant, or c̃ is constant but c̃ ̸= ĉ, but ⊥ ≠ Dec(sk , (f, τ1, . . . , τl), ĉ)

⇐⇒ ((f, τ1, . . . , τl), ĉ) is a strong forgery.

Hence, we may construct a PPT adversary A′′ for the game SUF-CPA using the ith decryption
query made by A. Specifically, A′′ runs the adversary A until it makes the ith decryption
query, while answering the encryption queries using its own encryption queries and answering
the previous decryption queries by the decryption simulation. Then A′′ aborts the running of A,
and outputs the ith decryption query of A as its own forgery attempt.

So, ∣∣∣AdvSUF-CCAi−1

Π,A (λ)−AdvSUF-CCAi

Π,A (λ)
∣∣∣ ≤ AdvSUF-CPA

Π,A′′ (λ) = negl(λ).

Therefore,

AdvSUF-CCA
Π,A (λ) ≤ AdvSUF-CPA

Π,A′ (λ) +
∣∣∣AdvSUF-CCA

Π,A (λ)−AdvSUF-CPA
Π,A′ (λ)

∣∣∣
= negl(λ) +

∣∣∣AdvSUF-CCA0

Π,A (λ)−AdvSUF-CCAq

Π,A (λ)
∣∣∣

≤ negl(λ) +

q∑
i=1

∣∣∣AdvSUF-CCAi

Π,A (λ)−AdvSUF-CCAi−1

Π,A (λ)
∣∣∣

≤ negl(λ) + q · negl(λ)
= negl(λ).
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So AdvSUF-CCA
Π,A (λ) is also negiligible for any PPT adversary A and therefore Π is SUF-CCA.

Theorem 4. IND-CPA and SUF-CPA together imply IND-CCA.

Proof. Proof of this theorem is similar to that of Theorem 3; again we prove this theorem by a
hybrid argument to transform the game IND-CCA into another game that is essentially same as
the game IND-CPA.

Let A be a PPT adversary engaging in the game IND-CCA. Again, without loss of generality,
we assume that A makes exactly qb = qb(λ) decryption queries before the Challenge phase, and
qa = qa(λ) decryption queries after the Challenge phase.

For each i ∈ {0, . . . , qb}, define IND-CCAb,i to be the game that is equal to IND-CCA except
that the first i decryption queries before the Challenge phase are answered by the same decryption
simulation as shown in Theorem 3.

For each i ∈ {0, . . . , qa}, define IND-CCAa,i to be the game that is equal to IND-CCA except
that all decryption queries before the Challenge phase, and the first i decryption queries after
the Challenge phase are answered by the same decryption simulation.

By definition, IND-CCAb,0 = IND-CCA and IND-CCAb,qb = IND-CCAa,0. So,

AdvIND-CCAb,0

Π,A (λ) = AdvIND-CCA
Π,A (λ),

AdvIND-CCAb,qb

Π,A (λ) = AdvIND-CCAa,0

Π,A (λ).

Now, we construct a PPT adversary A′ for the security game IND-CPA using the adversary
A. The adversary A′ simulates the game IND-CCAa,qa for the adversary A as follows:

The adversary A′(1λ):

Initialization. The evaluation key ek is generated and given to A′. Then A′ initial-
izes S ← ∅, and gives ek to the adversary A.

Queries. When A makes an encryption query (τ,m), if (τ, ·, ·) ̸∈ S then A′ makes
the same encryption query, receives the ciphertext c ← Enc(sk , τ,m), replies
A with the answer c, and updates S by S ← S ∪ {(τ,m, c)}. Otherwise, the
encryption query is rejected.

When A makes a decryption query ((f, τ0, · · · , τl), ĉ), it is answered by the de-
cryption simulation as in Theorem 3.

Challenge. A outputs the challenge tuple (τ∗,m∗
0,m

∗
1). If (τ∗, ·, ·) ̸∈ S, then A′

outputs the same challenge tuple, and receives the challenge ciphertext c∗ ←
Enc(sk , τ∗,m∗

b). A′ gives the challenge ciphertext c∗ to A, and updates S by
S ← S ∪ {(τ∗,m∗

0, c
∗)}. Otherwise, the challenge is rejected.

Queries After Challenge. Any encryption query, or any decryption query of A is
answered precisely as before.

Finalization. When A outputs a bit b′, the adversary A′ outputs the same bit b′.

In the first Queries phase, the simulation of A′ for the game IND-CCAa,qa is perfect. But,
in the Challenge phase, the history S is updated by S ← S ∪ {(τ∗,m∗

0, c
∗)} because A′ does not

know the coin b, while in the actual game IND-CCAa,qa , S is updated by S ← S∪{(τ∗,m∗
b , c

∗)}.
We need to show that, despite this the simulation of A′ for the game IND-CCAa,qa in the ‘Queries
After Challenge’ phase is correct.
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We see that the decryption simulation might potentially be incorrect only when b = 1 and
τ∗ ∈ I. So, suppose that a decryption query of A is ((f, τ0, · · · , τl), ĉ) when b = 1 and τ∗ ∈ I.
Let τ∗ = τi∗ for some i∗ ∈ {1, . . . , l}. Let us compare how this query is answered in the game
IND-CCAa,qa and in the simulation of A′.

In the game IND-CCAa,qa , m∗
1 is encrypted under the label τ∗ to produce the ciphertext c∗.

So, in the game IND-CCAa,qa , c̃ = Eval(ek , f, (ci)i∈I) and f̃ = f(mi)i∈I are computed, and the
decryption query is answered with f̃ if and only if c̃ is constantly equal to ĉ ∈ C. And in the
computation of f̃ , m∗

1 is used for the i∗th plaintext input. To emphasize this fact, let us denote
this f̃ as f̃1, meaning that m∗

1 was used to produce this plaintext.
In the simulation of A′, still m∗

1 is encrypted under the label τ∗ to produce the ciphertext
c∗, and c̃ = Eval(ek , f, (ci)i∈I) and f̃ = f(mi)i∈I are computed, and the decryption query is
answered with f̃ if and only if c̃ is constantly equal to ĉ ∈ C. But, this f̃ is computed using m∗

0

as the i∗th plaintext input. So let us denote this f̃ as f̃0.
Therefore, in both scenarios, the decryption query is answered by ⊥ if and only if c̃ is noncon-

stant, or c̃ is constant but not equal to ĉ. Meanwhile, when c̃ is constantly equal to ĉ, then the
game IND-CCAa,qa will output f̃1, but the simulation of A′ will output f̃0. Despite this, recall
that any decryption query made by A after the Challenge phase is legal by the definition of IND-
CCA. Hence, we have f̃0 = f̃1. This shows that A′ correctly simulates the game IND-CCAa,qa ,
and we conclude that

AdvIND-CCAa,qa

Π,A (λ) = AdvIND-CPA
Π,A′ (λ).

Now consider the difference of each consecutive two games. Again, for each i ∈ {1, . . . , qb}, the
difference between AdvIND-CCAb,i−1

Π,A (λ) and AdvSUF-CCAb,i

Π,A (λ) is not greater than the probability
that the decryption simulation on the ith decryption query made by A before Challenge fails,
and we may use this to construct an adversary A′′ for the game SUF-CPA just like in Theorem 3.
Note that A′′ aborts the running of A before it has any chance to output the challenge tuple.

So, ∣∣∣AdvIND-CCAb,i−1

Π,A (λ)−AdvIND-CCAb,i

Π,A (λ)
∣∣∣ ≤ AdvSUF-CPA

Π,A′′ (λ) = negl(λ).

Similarly, for each i ∈ {1, . . . , qa}, the difference betweenAdvIND-CCAa,i−1

Π,A (λ) andAdvSUF-CCAa,i

Π,A (λ)
is not greater than the probability that the decryption simulation on the ith decryption query
made by A after Challenge fails, and we may use this to construct an adversary A′′ for the
game SUF-CPA just like in Theorem 3. In this case, the challenge tuple output of A is han-

dled by A′′; A′′ flips the coin b
$← {0, 1}, and obtains the challenge ciphertext via its encryp-

tion query (τ∗,m∗
b). Since A′′ knows the coin b, the correct encryption history is maintained:

(τ∗,m∗
b , c

∗) ∈ S.
So, ∣∣∣AdvIND-CCAa,i−1

Π,A (λ)−AdvIND-CCAa,i

Π,A (λ)
∣∣∣ ≤ AdvSUF-CPA

Π,A′′ (λ) = negl(λ).
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Hence,

AdvIND-CCA
Π,A (λ) ≤ AdvIND-CPA

Π,A′ (λ) +
∣∣∣AdvIND-CCA

Π,A (λ)−AdvIND-CPA
Π,A′ (λ)

∣∣∣
= negl(λ) +

∣∣∣AdvIND-CCAb,0

Π,A (λ)−AdvIND-CCAa,qa

Π,A (λ)
∣∣∣

≤ negl(λ) +

qb∑
i=1

∣∣∣AdvIND-CCAb,i

Π,A (λ)−AdvIND-CCAb,i−1

Π,A (λ)
∣∣∣

+

qa∑
i=1

∣∣∣AdvIND-CCAa,i

Π,A (λ)−AdvIND-CCAa,i−1

Π,A (λ)
∣∣∣

≤ negl(λ) + (qb + qa) · negl(λ) = negl(λ).

So, AdvIND-CCA
Π,A (λ) is also negiligible for any PPT adversary A. Therefore Π is IND-CCA.

In conclusion, we see that IND-CPA and SUF-CPA together imply the strongest security
notions, IND-CCA and SUF-CCA. In our construction in Section 5, we only to show that our
scheme is IND-CPA and SUF-CPA.

4.5.1 Generic transformation for ciphertext constant testability

Suppose that Π is a HAE scheme which is not necessarily ciphertext constant testable. We
describe a generic construction that transforms a HAE Π into another HAE Π′ satisfying the
property CCT while preserving IND-CPA or SUF-CPA of the original scheme Π. Our con-
struction is based on the Merkle hash tree technique used by Gennaro and Wichs [14]. For
concreteness, here we assume that Π represents admissible functions as circuits1. In such a case,
we also assume that Eval algorithm works by evaluating ciphertexts gate by gate; the evaluation
of a circuit becomes a circuit of ciphertexts.

Let H : {0, 1}∗ → {0, 1}n be a collision-resistant hash function. We define the hash tree as
in [14]. The hash tree fH of a circuit f : Ml → M is a function from ({0, 1}∗)l into {0, 1}n,
which takes as input bitstrings xi ∈ {0, 1}∗ for each input wire of f . For each wire w in the
circuit f , we define the value of the hash tree fH(x1, . . . , xl) at w recursively:

• val(w) := H(xi), if w is the ith input wire of f .

• val(w) := H(val(w1), . . . , val(wt)), if w is the output wire of some gate with input wires
w1, . . . , wt.

We define the output of fH(x1, . . . , xl) as the val(wout) of the output wire wout of the circuit f .
For example, if f consists of only one gate, then fH(x1, · · · , xl) = H(H(x1), · · · , H(xl)).

Also, for each wire w in the circuit f , we define the index set ind(w) associated with the wire
w recursively:

• ind(w) := {i}, if w is the ith input wire of f .

• ind(w) := ind(w1)∪ · · · ∪ ind(wt), if w is the output wire of some gate with input wires w1,
. . . , wt.

1In general case, the construction is even simpler: instead of the Merkle hash tree, we may simply use a hash
function. The hash tree is only needed to support composition of circuit representation of functions.
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We say that the ith input wire of f is unused in f , if i ̸∈ ind(wout). If the ith input wire is
unused, then the value of f does not depend on the ith input. If the ith input wire is not unused,
then we say that it is used in f .

Remark 1. In this paper, a circuit is a DAG where each vertex with positive indegree and positive
outdegree is assigned a gate, and there is a unique dedicated wire wout called the output wire. In
general, there might be many vertices with zero outdegree, but only one is the outgoing vertex
of wout. We use this definition to allow possibility of easily representing projection functions
πi :Ml →M, for example. But, under this definition, some input wires may be unused.

Now, using a pseudorandom function F and a family H of collision-resistant hash functions,
we can transform a HAE Π to another HAE Π′ as follows.

Scheme Π′ = (Gen′,Enc′,Eval′,Dec′):

• (ek ′, sk ′) ← Gen′(1λ): Generate keys (ek , sk) ← Gen(1λ), k ← {0, 1}λ and
H ← H. Return ek ′ = (ek , H) and sk ′ = (sk , k).

• c′ ← Enc′(sk ′, τ,m): Let h = H(Fk(τ)) and c← Enc(sk , τ,m). Return (h, c).

• c̃′ ← Eval′(ek ′, f, c′1, · · · , c′l): Let f : Ml → M be a circuit. For each i =

1, · · · , l, parse c′i = (hi, ci). Let h̃ = fH(h1, · · · , hl) and c̃← Eval(ek , f, c1, · · · , cl).
Return (h̃, c̃).

• m ← Dec′(sk ′, (f, τ1, · · · , τl), c̃′): Let f : Ml → M be a circuit. Parse c̃′ =
(h̃, c̃). For each i = 1, · · · , l, let hi = H(Fk(τi)). If h̃ = fH(h1, · · · , hl), then
return Dec(sk , (f, τ1, · · · , τl), c̃). Otherwise, return ⊥.

Above, we assume that Fk : {0, 1}λ → {0, 1}λ and H : {0, 1}∗ → {0, 1}λ.
Π′ and Π share the same message space M and the label space L. The ciphertext space of

Π′ is {0, 1}λ × C, where C is the ciphertext space of Π.
And the correctness of Π′ can easily be concluded from that of Π. Below, we show that the

constructed scheme Π′ satisfies the CCT property, and also this generic transformation preserves
both SUF-CPA and IND-CPA.

Theorem 5. The HAE scheme Π′ satisfies CCT.

Proof. As in p. 7, let f :Ml →M be an arity-l admissible function, I a subset of the index set
{1, . . . , l}, and (mi)i∈I ∈ M|I| and (c′i = (hi, ci))i∈I ∈ ({0, 1}λ × C)|I| some plaintexts and their
corresponding ciphertexts.

Consider c̃′ : ({0, 1}λ × C)l−|I| → {0, 1}λ × C defined as

c̃′ := Eval(ek ′, f, (c′i)i∈I) = (fH(hi)i∈I ,Eval(ek , f, (ci)i∈I)).

The above expression c̃′ is a function of the values for the ‘missing’ indices: (hi)i ̸∈I and (ci)i̸∈I .
If I = {1, . . . , l}, then c̃′ is clearly constant. Now, suppose that I ̸= {1, . . . , l}. Consider

the case when the ith input of f is unused for all indices i ̸∈ I. In that case, again clearly c̃′ is
constant.

Finally, consider the case that the ith input of f is actually used for at least one index i ̸∈ I.
Since the underlying hash function H is collision-resistant, the hash tree fH(h1, . . . , hl) cannot
be constant on the variable hi except with negligible probability. So, c̃′ is not constant except
with negligible probability. This means that we can trivially determine if c̃′ is constant or not.
Therefore, Π′ satisfies the property CCT.

Theorem 6. If Π is IND-CPA, then Π′ is also IND-CPA.
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Proof. We will just provide a sketch of the proof. Let A′ be any PPT adversary for the game
IND-CPAΠ′,A′ . We construct a PPT adversary A for the game IND-CPAΠ,A that simulates the
game IND-CPAΠ′,A′ for the adversary A′.

Most of the simulation is trivial message-passing, but for the challenge (τ∗,m∗
0,m

∗
1) made by

A′, A returns the challenge ciphertext (H(r), c∗) to A′, where r
$← {0, 1}λ and c∗ is the challenge

ciphertext given to A in the security game IND-CPAΠ,A.
This simulation does work because τ∗ is a new label and F is a PRF. Moreover, H(r) in the

challenge ciphertext given to A′ does not contain any information that may help A′ to distinguish
between m∗

0 and m∗
1. So the advantage of A′ entirely comes from c∗. Therefore, the difference

of advantages of A and A′ is negligible. More formally, we have

AdvIND-CPA
Π′,A′ (λ) ≤ AdvIND-CPA

Π,A (λ) +AdvPRF
F,A′′(λ).

Theorem 7. If Π is SUF-CPA, then Π′ is also SUF-CPA.

Proof. Let A′ be a PPT adversary engaged in the security game SUF-CPAΠ′,A′ . Using A′, we
construct a PPT adversary A for the security game SUF-CPAΠ,A which simulates the game
SUF-CPAΠ′,A′ for the adversary A′.

Adversary A(1λ):

Initialization. A set S is initialized to be the empty set ∅. Receiving the evaluation
key ek , the adversary A picks H ← H, k ← {0, 1}λ, and gives the evaluation
key ek ′ := (ek , H) to A′, and keeps the PRF key k by himself.

Queries. Whenever A′ makes an encryption query (τ,m), if (τ, ·, ·) /∈ S, then A
makes the same encryption query. Receiving the answer c← Enc(sk , τ,m), the
adversary A computes h := H(Fk(τ)), answers the encryption query of A′ by
c′ := (h, c), and updates S by S ← S ∪ {(τ,m, c′)}. Otherwise, the query is
rejected.

Forgery. A′ outputs a forgery attempt ((f, τ1, · · · , τl), ĉ′). Parse ĉ′ = (ĥ, ĉ). Then
the adversary A outputs ((f, τ1, · · · , τl), ĉ).

Now, let us show that if the forgery attempt ((f, τ1, · · · , τl), ĉ′ = (ĥ, ĉ)) of A′ is a strong forgery
for SUF-CPAΠ′,A′ , then ((f, τ1, · · · , τl), ĉ) is also a strong forgery for SUF-CPAΠ,A, except with
negligible probability. Let I be the set of indices i ∈ {1, . . . , l} such that (τi,mi, ci) ∈ S.

Since ((f, τ1, · · · , τl), ĉ′) is valid in Π′, ((f, τ1, · · · , τl), ĉ) is also valid in Π. Also, we have

fH(H(Fk(τ1)), · · · , H(Fk(τl))) = ĥ.
Suppose I ̸= {1, . . . , l}, and assume there exists at least an index j ̸∈ I which is used in the

circuit f . In this case, we claim that fH(H(Fk(τ1)), · · · , H(Fk(τl))) = ĥ only with negligible
probability. Since j is new, Fk(τj) is computationally indistinguishable to a random number

rj
$← {0, 1}λ. Due to the collision resistance of H, the probability

Pr
[
fH(H(Fk(τ1)), · · · , rj , · · · , H(Fk(τl))) = ĥ

∣∣∣ rj $← {0, 1}λ
]

should be negligible. So, fH(H(Fk(τ1)), · · · , H(Fk(τl))) = ĥ holds only with negligible probabil-

ity. Therefore, since we already have fH(H(Fk(τ1)), · · · , H(Fk(τl))) = ĥ, we may assume with
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negligible exception that any i ̸∈ I is unused in the circuit f . In this case, both c̃′ and c̃ are
constants, where

c̃′ = (h̃, c̃),

with
h̃ := fH((H(Fk(τi)))i∈I), c̃ = Eval(ek , f, (ci)i∈I).

But then ((f, τ1, · · · , τl), ĉ′) must be a strong forgery of type 2. So we have

ĉ′ = (ĥ, ĉ) ̸= (ĥ, c̃) = c̃′.

Therefore, ĉ ̸= c̃, and ((f, τ1, · · · , τl), ĉ) is a strong forgery of type 2 for Π. This shows that

AdvSUF-CPA
Π′,A′ (λ) ≤ AdvSUF-CPA

Π,A (λ) = negl(λ).

Hence Π′ is SUF-CPA.

5 Construction

In this section, we describe our HAE Π and show that it satisfies correctness and CCT. All of
the parameters η, γ, µ, ρ′, B, which will be appeared in the scheme, are polynomials in λ. The
specific choices of these parameters are given after the description of the scheme.

We use a pseudorandom function F in our construction. We assume that Fk : {0, 1}λ → Zq0

for each k
$← {0, 1}λ. The message space and the ciphertext space of our scheme is ZQ and Zy0

,
respectively, and the label space is {0, 1}λ. To represent admissible functions we use arithmetic
circuits, that is, circuits consisting of + gates and × gates. Therefore, such a circuit f of arity l
determines a polynomial f : Zl → Z with integral coefficients. We use such a circuit to compute
function values of plaintext inputs in ZQ, and also to homomorphically evaluate ciphertexts in
Zy0

. The precise description of the admissible function space will be given in the next, together
with discussions on the correctness property.

SCHEME. Π = (Gen,Enc,Eval,Dec)

• (ek , sk) ← Gen(1λ, Q): Given security parameter λ and a B-smooth integer Q
with 2 ≤ Q ≤ 2µ, let

∏t
i=1 p

ei
i be the prime factorization of Q, where t ∈ Z+

and pi ≤ B for all i = 1, · · · , t. Let Q̃ =
∏t

i=1 pi and R = Q̃ρ′
. Choose

p
$← [2η−1, 2η)∩PRIME and q0

$← [0, 2γ

p )∩ROUGH(2λ). Let y0 = pq0. Generate

k ← {0, 1}λ. Return ((Q,R, y0), (p, q0, k)).

• c ← Enc(sk , τ,m): Given the secret key sk , a label τ ∈ {0, 1}λ and a plaintext

m ∈ ZQ, choose r
$← ZR. Let a = rQ + m and b = Fk(τ). Return c =

CRT(p,q0)(a, b).

• c̃← Eval(ek , f, c1, · · · , cl): Given the evaluation key ek , an arithmetic circuit f
of arity l and ciphertexts c1, · · · , cl, return f(c1, · · · , cl) mod y0

• m ← Dec(sk , (f, τ1, · · · , τl), ĉ): For i = 1 to l, compute bi ← Fk(τi) and
b = f(b1, · · · , bl) mod q0. Return m = (ĉ mod p) mod Q, if b = ĉ mod q0. Oth-
erwise, return ⊥.
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Correctness To show the correctness of the scheme, let (ek , sk)← Gen(1λ, Q) for some mod-
ulus Q and λ ∈ Z+, ci ← Enc(sk , τi,mi) for each i = 1, · · · , l and c̃← Eval(ek , f, c1, · · · , cl) for
an arithmetic circuit f of arity l. We identify the arithmetic circuit f with the l-variate integral
polynomial determined by f . Let d := deg(f), Then

c̃ mod p = f(c1, · · · , cl) mod y0 mod p

= f(c1, · · · , cl) mod p

= f(c1 mod p, · · · , cl mod p) mod p

= f(r1Q+m1, · · · , rlQ+ml) mod p

= f(r1Q+m1, · · · , rlQ+ml)

The last equality in the above equations holds if

| f(r1Q+m1, · · · , rlQ+ml) | ≤
p

2
.

And so, in this case,

(c̃ mod p) mod Q = f(r1Q+m1, · · · , rlQ+ml) mod Q

= f(m1, · · · ,ml) mod Q

Since | f(r1Q+m1, · · · , rlQ+ml) | ≤ ∥f∥1 · (RQ)d ≤ ∥f∥1 · 2µ(ρ
′+1)d and 2η−2 ≤ p/2, the

correctness is guaranteed if
∥f∥1 · 2µ(ρ

′+1)d ≤ 2η−2,

equally,

d ≤ η − 2− lg ∥f∥1
µ(ρ′ + 1)

.

More simply, if ∥f∥1 ≤ 2d,

d ≤ η − 2

µ(ρ′ + 1) + 1
.

Let d̄ =
⌊

η−2
µ(ρ′+1)+1

⌋
. Then an admissible function in our scheme is an arithmetic circuit f such

that deg f ≤ d̄ and ∥f∥1 ≤ 2d̄ as a polynomial over ZQ.

Parameter selection. In the scheme, the parameters η, γ, µ,B, ρ′ are given as follows.

• µ can be any polynomial and may be determined by the specific application using the
scheme. A typical choice could be µ = O(λ).

• B can also be any polynomial and may be determined by a specific application using the
scheme. This means that we can choose a B-smooth modulus Q not greater than 2µ. B
does not affect efficiency of the scheme, and only has to be polynomially bounded so that
Theorem 11 is applicable, as it will be seen in Theorem 9.

• ρ′ = 2(ρ + λ) to satisfy the condition ρ′ = 2(ρ + ω(lg λ)) for privacy, Theorem 9 and
authenticity, Theorem 15, where ρ is a parameter used in (η, γ, ρ)-EF-AGCD assumption.
We may set ρ′ = 4λ, since usually ρ = λ in the (η, γ, ρ)-EF-AGCD assumption.

• η = d̄(µ(ρ′ + 1) + 1) + 2 for some upper bound d̄ on degree of admissible functions. This
is a consequence of discussions about correctness property. If we choose d̄ = O(λ) and
µ = O(λ), then η = O(λ3).
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• γ = η2ω(lg λ) to resist known attacks on the approximate GCD problem as explained in
[22, 10] . If we choose η = O(λ3), then γ = Õ(λ6)

Theorem 8. The scheme Π satisfies the property CCT.

Proof. Let ek be an evaluation key generated by Gen(1λ, Q) for some λ ∈ Z+ and a modulus Q,

f any admissible arity-l arithmetic circuit for some l ∈ Z+ and (ci)i∈I any element in Z| I |
y0 for

some subset I of the index set {1, · · · , l}. We construct an algorithm ALG-CCT that determines
if c̃ = Eval(ek , f, (ci)i∈I) is constant or not with overwhelming probability, as follows.

procedure ALG-CCT(ek , f , (ci)i∈I):
if I = {1, · · · , l} then

return 1
else

(c0j )j /∈I , (c
1
j )j /∈I

$← (Zy0
)l−| I |

if c̃(c0j )j /∈I ≡ c̃(c1j )j /∈I mod y0 then
return 1

else
return 0

The algorithm ALG-CCT is essentially the usual probabilistic polynomial identity testing. In
the scheme Π, c̃ can be considered as an (l− | I |)-variate polynomial over Zy0 of degree ≤ deg f .
We have

c̃ = f(ci)i∈I mod y0 : Zl−|I|
y0

→ Zy0

In case I = {1, · · · , l}, c̃ is clearly constant and the algorithm outputs 1 correctly. In case
I ⊊ {1, · · · , l}, consider the function c̃′ := c̃ − c̃(c0j )j /∈I mod y0 for any (c0j )j /∈I ∈ (Zy0

)l−| I |. If

c̃ is constant, then c̃′ is constantly zero and c̃′(c1j )j /∈I = c̃(c1j )j /∈I − c̃(c0j )j /∈I ≡ 0 mod y0 for any

(c1j )j /∈I ∈ (Zy0)
l−| I |. So, c̃(c0j )j /∈I ≡ c̃(c1j )j /∈I mod y0 and the algorithm outputs 1 correctly. If c̃

is not constant, then c̃′ is not constantly zero and the algorithm outputs the incorrect answer 1
when c̃(c0j )j /∈I ≡ c̃(c1j )j /∈I mod y0, that is, c̃′(c1j )j /∈I ≡ 0 mod y0. This is the only case that the
algorithm outputs an incorrect answer. So the error probability of the algorithm is

Pr
[
c̃′(c1j )j /∈I ≡ 0 mod y0 | (c1j )j /∈I

$← (Zy0
)l−| I |

]
,

when c̃′ is not constantly zero.
To find an upper bound on the error probability of the algorithm using Schwartz-Zippel

lemma, we need the following fact. A 2λ-rough random integer y0 is square-free with overwhelm-
ing probability and there exists some prime factor p′ of y0 such that c̃′ mod p′ is not constantly
zero and p′ ≥ 2λ. From these, we have

Pr
[
c̃′(c1j )j /∈I ≡ 0 mod y0 | (c1j )j /∈I

$← (Zy0
)l−| I |

]
≤ Pr

[
c̃′(c1j )j /∈I ≡ 0 mod p′ | (c1j )j /∈I

$← (Zy0
)l−| I |

]
= Pr

[
c̃′(c1j )j /∈I ≡ 0 mod p′ | (c1j )j /∈I

$← (Zp′)l−| I |
]

≤ deg f

p′
≤ d̄

2λ
= negl(λ)

where d̄ is the upper bound on degrees of the admissible functions in our scheme, which is
polynomially bounded. Therefore, the error probability of the algorithm is negligible and we can
efficiently determine if c̃ is constant or not with overwhelming probability.
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6 Security

In this section, we prove our HAE scheme satisfies both IND-CPA and SUF-CPA. From this,
we conclude that Π is actually IND-CCA and SUF-CCA by Theorem 3 and Theorem 4. For
simplicity, we consider the scheme Π as an ideal scheme which is obtained by replacing the
pseudorandom function F in our scheme with a random function from {0, 1}λ into Zq0 . If F is
pseudorandom, then the security of this ideal scheme Π implies that of the real scheme.

6.1 Privacy

The privacy of the scheme Π is stated in the following theorem.

Theorem 9. The scheme Π is IND-CPA under the assumption (η, γ, ρ)-EF-AGCD if ρ′ =
2(ρ+ ω(lg λ)).

Proof. For any B-smooth integer Q ≥ 2, let
∏t

i=1 p
ei
i be the prime factorization of Q, where

t ∈ Z+ and pi ≤ B(λ) for all i = 1, · · · , t. Let Q̃ =
∏t

i=1 pi. The theorem is proved through the
following five steps. Each step will be proved later as a theorem.

1. If the (η, γ, ρ)-EF-AGCD assumption holds, then the (η, γ, p
ρ′
2 +1
i )-EF-AGCD′ assumption

holds for all i ∈ {1, · · · , t}.

2. For any i ∈ {1, · · · , t}, if the (η, γ, p
ρ′
2 +1
i )-EF-AGCD′ assumption holds, then the (η, γ, pρ

′

i , pi)-ZOR
assumption holds.

3. For any i ∈ {1, · · · , t}, if the (η, γ, pρ
′

i , pi)-ZOR assumption holds, then the (η, γ, pρ
′

i , peii )-ZOR
assumption holds.

4. If the (η, γ, pρ
′

i , peii )-ZOR assumption holds for all i ∈ {1, · · · , t}, then the (η, γ, Q̃ρ′
, Q)-ZOR

assumption holds.

5. If the (η, γ, Q̃ρ′
, Q)-ZOR assumption holds for any B-smooth integer Q ≥ 2, then the

scheme Π is IND-CPA.

Step 1 is a consequence of Theorem 10, since lg p
ρ′
2 +1
i ≥ ρ′

2 = ρ+ω(lg λ). Step 2 is a consequence

of Theorem 11, since ρ′

2 = ω(lg λ) and each pi ≤ B is a polynomially bounded prime integer.
Step 3 follows from Theorem 12. Step 4 is a consequence of Theorem 13, obtained by iteratively
applying the theorem (t − 1) times. So far, we have shown that if ρ′ = 2(ρ + ω(lg λ)) then the
(η, γ, ρ)-EF-AGCD assumption implies the (η, γ,Qρ′

, Qe)-ZOR assumption for any B-smooth
integer Q ≥ 2. Step 5 is a consequence of Theorem 14 since ρ′ = ω(lg λ). At last, we obtain the
theorem.

Theorem 10. If the (η, γ, ρ)-EF-AGCD assumption holds then the (η, γ,R)-EF-AGCD′ assump-
tion holds for any integer R with lgR = ρ+ ω(lg λ).

Proof. It is enough to show that there exists a PPT algorithm A that takes a sample from
D(p, q0, ρ) as an input and then returns an output statistically close to Z(p, q0, R, 1) for given
parameters η, γ, ρ,R and y0 = pq0. Construct a PPT algorithm A as follows.

procedure A(x):
S =

⌊
R

2ρ+1

⌋
s

$← ZS
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return (xS + s) mod y0

We assume that gcd(q0, S) = 1, since

Pr
[
gcd(q0, S) ̸= 1 | q0

$← [0, 2γ/p) ∩ ROUGH(2λ)
]
= negl(λ).

Consider the distribution of the output y′ of A.

y′ = (xS + s) mod y0 ;x← D(p, q0, ρ), s
$← ZS

= (pqS + rS + s) mod y0 ; q
$← [0, q0), r

$← (−2ρ, 2ρ)

= pq′ + (rS + s) ; q′
$← Zq0 since gcd(q0, S) = 1

= pq′ + r′ ; r′ = rS + s

The distribution of r′ is a uniform distribution over the set {rS + s | r ∈ (Z2ρ+1 \ {2ρ}), s ∈ Zs} ⊂
ZS·2ρ+1 ⊂ ZR. Thus

∆(Z(p, q0, R, 1), y′) = ∆(U(ZR), r
′) = 1− S(2ρ+1 − 1)

R
= 1 +

1

R
− S2ρ+1

R

≤ 1 +
1

R
− R− 2ρ+1

R

=
1 + 2ρ+1

R
= negl(λ),

since lgR = ρ+ ω(lg λ). So, A is a PPT algorithm that we want.

Theorem 11. The (η, γ,Qρ′+1)-EF-AGCD′ assumption implies the (η, γ,Q2ρ′
, Q)-ZOR assump-

tion, if Q is a polynomially bounded prime integer and ρ′ = ω(lg λ).

Proof. Suppose that there exists a PPT distinguisher D for the problem (η, γ,Q2ρ′
, Q)-ZOR such

that p0 − p1 ≥ ϵ
2 , where

p0 = Pr
[
D(η, γ,Q2ρ′

, Q, y0,Z(p, q0, Q
2ρ′

, Q), z′) = 1 | z′ ← Z(p, q0, Q
2ρ′

, Q)
]
,

p1 = Pr
[
D(η, γ,Q2ρ′

, Q, y0,Z(p, q0, Q
2ρ′

, Q), z′) = 1 | z′ ← R(p, q0, Q
2ρ′

, Q)
]
,

for some non-negligible function ϵ, where p
$← [2η−1, 2η)∩PRIME, q0

$← [0, 2γ/p)∩ROUGH(2λ)
and y0 = pq0. In inputs of D, the tuple (η, γ,Q2ρ′

, Q, y0,Z(p, q0, Q
2ρ′

, Q)) is completely deter-
mined by (p, q0) for a given security parameter λ and a modulus Q. Let Sλ,Q be the set of all
possible pairs (p, q0). Define S′

λ,Q be the subset of Sλ,Q, consisting of all pairs (p, q0) such that

p0 − p1 ≥ ϵ(λ)
2 . Then

Pr
[
(p, q0) ∈ S′

λ,Q | (p, q0)
$← Sλ,Q

]
=
|S′

λ,Q|
|Sλ,Q|

≥ ϵ(λ)

2

Let us assume that a tuple (η, γ,Q2ρ′
, Q, y0,Z(p, q0, Q

2ρ′
, Q)) which is determined by some

(p, q0) ∈ S′
λ,Q is given. And we may also assume gcd(q0, Q) = 1, since

Pr
[
gcd(q0, Q) ̸= 1 | q0

$← [0, 2γ/p) ∩ ROUGH(2λ)
]
= negl(λ).
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Before we describe a PPT algorithm FindPrime solving the problem (η, γ,Qρ′+1)-EF-AGCD′,
let us show that we can construct a PPT algorithm FindLSD, which computes (z mod p) mod Q
with a overwhelming probability for a given input (η, γ,Q2ρ′

, Q, y0,Z(p, q0, Q
2ρ′

, Q), T, z) using
the distinguisher D. The algorithm essentially performs a brute-force search for all possible
values in ZQ. Since Q is polynomially bounded, this can be done in polynomial time. It is clear
that for any j ∈ ZQ,

(z − j mod p) mod Q = 0 ⇐⇒ j = (z mod p) mod Q.

To properly use the distinguisher D, we need a randomization of z − j, where the parameter
Qρ′+1, the randomness size, increases to Q2ρ′

. More precisely, we need a subroutine Randomize,
which outputs a sample from Z(p, q0, Q

2ρ′
, Q) if (z − j mod p) mod Q = 0, otherwise a sample

from R(p, q0, Q
2ρ′

, Q). And we also need to amplify the advantage of D by calling D repeatedly
T times for each input z−j. By applying the Chernoff bound, we can get an adequate value of T
to guarantee an overwhelming success probability of FindLSD. The pseudo codes of FindLSD
and its subroutine Randomize are given as below.

1: procedure FindLSD(η, γ,Q2ρ′
, Q, y0,Z(p, q0, Q

2ρ′
, Q), T, z):

2: for each j ∈ ZQ do
3: for each k = 1 to T do
4: z′ ← Randomize(Q, y0,Z(p, q0, Q

2ρ′
, Q), z − j)

5: bj,k ← D(η, γ,Q2ρ′
, Q, y0,Z(p, q0, Q

2ρ′
, Q), z′)

6: bj =
∑T

k=1 bj,k

7: Find j∗ ∈ ZQ such that bj∗ = max {bj | j ∈ ZQ}
8: return j∗

1: procedure Randomize(Q, y0,Z(p, q0, Q
2ρ′

, Q), z):

2: α
$← ZQ

3: x← Z(p, q0, Q
2ρ′

, Q)
4: z′ = (αz + x) mod y0
5: return z′

At first, consider the output z′ of the PPT algorithm Randomize for an input z such that
r = (z mod p) ∈ ZQρ′+1 .

z′ = (αz + x) mod y0

= (α · (pq + r) + x) mod y0 ; z = pq + r, r ∈ ZQρ′+1

= (α · (pq + r) + pq′′ + r′′Q) mod y0 ;x = pq′′ + r′′Q, q′′
$← Zq0 , r

′′ $← ZQ2ρ′

= (p · (αq + q′′) + r′′Q+ αr) mod y0

= pq′ + (r′′ +

⌊
αr

Q

⌉
) ·Q+ (αr mod Q) ; q′ = αq + q′′

= pq′ + r′Q+ (αr mod Q) ; r′ = r′′ +

⌊
αr

Q

⌉
= pq′ + r′Q+m′ ;m′ = αr mod Q

The distribution of q′ is uniform over Zq0 since it is randomized by q′′. The distribution of r′ is
close to the uniform distribution over ZQ2ρ′ with the statistical distance at most 1

Qρ′−1 = negl(λ),

since r′′
$← Zq2ρ′ and ∣∣∣∣⌊αrQ

⌉∣∣∣∣ ≤ Qρ′+1.
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The distribution of m′ is uniform over ZQ if r mod Q ̸= 0. Note that if Q is prime, then every
nonzero element is invertible. And m′ = 0 if r mod Q = 0. Thus,

z′ ← R(p, q0, Q
2ρ′

, Q), if (z mod p) mod Q ̸= 0

z′ ← Z(p, q0, Q
2ρ′

, Q), if (z mod p) mod Q = 0.

and Randomize outputs an independent sample from R(p, q0, Q
2ρ′

, Q) or Z(p, q0, Q
2ρ′

, Q) at
each time.

Now, let us find some lower bound of the success probability

pr := Pr
[
FindLSD(η, γ,Q2ρ′

, Q, y0,Z(p, q0, Q
2ρ′

, Q), T, z) = (z mod p) mod Q
]
.

At the line 5 of the algorithm FindLSD, by the property of the algorithm Randomize, we have

Pr [bj,k = 1 | j = (z mod p) mod Q] = p0,

Pr [bj,k = 1 | j ̸= (z mod p) mod Q] = p1,

for each k = 1, · · · , T . At the line 6 of the algorithm FindLSD, the variable bj counts the
number of times that the distinguisher D outputs 1 for each j ∈ ZQ. Since p0 ≥ p1 + ϵ/2, the
distinguisher D outputs 1 more likely if j = (z mod p) mod Q than otherwise. The algorithm
FindLSD amplifies the success probability by voting: it outputs j∗ which attains the maximum
in the set {bj | j ∈ ZQ}, that is, bj∗ = max {bj | j ∈ ZQ} at the line 7 of the algorithm FindLSD.
Thus,

pr = Pr [j∗ = (z mod p) mod Q]

≥ Pr

[
bj
T
≥ p0 −

ϵ

4
| j = (z mod p) mod Q

]
·
(
Pr

[
bj
T
≤ p0 −

ϵ

4
| j ̸= (zi mod p) mod Q

])Q−1

≥
(
1− Pr

[
bj
T
− p0 < − ϵ

4
| j = (z mod p) mod Q

])
·
(
1− Pr

[
bj
T
− p1 >

ϵ

4
| j ̸= (zi mod p) mod Q

])Q−1

; p1 +
ϵ

4
≤ p0 −

ϵ

4

≥
(
1− exp

(
−Tϵ2

32

))Q

; Chernoff bound

≥ (1− exp(−λ))Q ;T =

⌈
32λ

ϵ2

⌉
= 1− negl(λ)

Therefore, the algorithm FindLSD outputs the correct answer with an overwhelming probability.
Using the algorithm FindLSD, we can construct a PPT algorithm FindPrime solving the

problem (η, γ,Qρ′+1)-EF-AGCD′ with a non-negligible probability. This is a generalization of
the algorithm given in Theorem 4.2 in DGHV [22], which recovers a secret prime p using the
LSB predictor and the binary GCD in modulus 2. We extend the algorithm to any small prime
Q in error-free case. The idea is that for a sample z0 from Z(p, q0, Q

ρ′+1, 1), we can transform

z0 such that z0 mod p =
∑ρ′

j=0 rjQ
j for some unknown random values rj ∈ ZQ into zρ+1 such

that zρ+1 mod p =
∑ρ′

j=0 sjQ
j for some chosen values sj ∈ ZQ through (ρ′ + 1) steps. At each
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step, the least significant Q-ary digit of zi mod p which we get from the algorithm FindLSD, is
removed and Q-ary represention of zi mod p shifts right by one place. And then some randomly
chosen value si in ZQ is inserted as the most significant Q-ary digit.

z0 mod p = (rρ′ , rρ′−1, · · · , r1, r0)Q
z1 mod p = (s0, rρ′ , · · · , r2, r1)Q

· · ·
zρ′ mod p = (sρ′−1, sρ′−2, · · · , s0, rρ′)Q

zρ′+1 mod p = (sρ′ , sρ′−1, · · · , s1, s0)Q

Since we know the values s0, · · · , sρ′ , we can compute gcd(y0, z
′ −
∑ρ′

j=0 sjQ
j). This gives us a

correct answer p with a non-negligible probability. The pseudo codes of FindPrime is given as
below.

1: procedure FindPrime(η, γ,Qρ′+1, y0,Z(p, q0, Q
ρ′+1, 1)):

2: z0 ← Z(p, q0, Q
ρ′+1, 1)

3: T =
⌈

λ
ϵ(λ)2

⌉
.

4: for i = 0 to ρ′ do
5: ri = FindLSD(η, γ,Q2ρ′

, Q, y0,Z(p, q0, Q
2ρ′

, Q), T, zi)
6: βi = y−1

0 · (zi − ri) mod Q

7: si
$← ZQ

8: zi+1 = ( zi−ri−βiy0

Q + siQ
ρ′
) mod y0

9: return gcd(y0, zρ′+1 −
∑ρ′

i=0 siQ
i)

At first, let us show that at line 5 in the algorithm FindPrime, we can make a sample
from the distribution Z(p, q0, Q

2ρ′
, Q) using a sample from Z(p, q0, Q

ρ′+1, 1). Let y′ = (yQρ′−1 +

r)Q mod y0, where y ← Z(p, q0, Q
ρ′+1, 1) and r

$← ZQρ′−1 . Then

y′ = (yQρ′−1 + r)Q mod y0

= ((pq + r′)Qρ′−1 + r)Q mod y0 ; q
$← Zq0 , r

′ $← ZQρ′+1

= pqQρ′
+ (r′Qρ′−1 + r)Q mod y0

= pq′ + (r′Qρ′−1 + r)Q ; q′
$← Zq0 since gcd(q0, Q) = 1

= pq′ + r′′Q ; r′′
$← ZQ2ρ′ .

So the distribution of y′ is identical to Z(p, q0, Q
2ρ′

, Q).

At the line 2 of the algorithm FindPrime, we may let z0 mod p =
∑ρ′

j=0 rjQ
j for some

r0, · · · , rρ′ ∈ ZQ since z0 ← Z(p, q0, Q
ρ′+1, 1). Now let us show that

zi mod p =

i−1∑
j=0

sjQ
ρ′−i+1+j +

ρ′∑
j=i

rjQ
j−i

for each i = 0, · · · , ρ′ + 1 by using induction on i. In case i = 0, the statement is trivially true.
For some i ∈ {0, 1, · · · , ρ′}, suppose that the statement is true. Then zi − ri − βiy0 mod Q = 0
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since βi = y−1
0 · (zi − ri) mod Q and

zi+1 =

(
zi − ri − βiy0

Q
+ siQ

ρ′
)

mod y0

=

(
pq +

∑i−1
j=0 sjQ

ρ′−i+1+j +
∑ρ′

j=i rjQ
j−i − ri − βiy0

Q
+ siQ

ρ′

)
mod y0

=

pq − βipq0 +
(∑i−1

j=0 sjQ
ρ′−i+j +

∑ρ′

j=i+1 rjQ
j−i−1

)
·Q

Q
+ siQ

ρ′

 mod y0

=

q − βiq0
Q

· p+
i−1∑
j=0

sjQ
ρ′−i+j +

ρ′∑
j=i+1

rjQ
j−i−1 + siQ

ρ′

 mod y0

= pq′ +

i∑
j=0

sjQ
ρ′−i+j +

ρ′∑
j=i+1

rjQ
j−i−1

where pq − βipq0 ≡ q − βiq0 ≡ 0 (mod Q) since gcd(p,Q) = 1. And

q′ =
q − βiq0

Q
mod q0

≡ (q − βiq0)(Q
−1 mod q0) mod q0 ; gcd(q0, Q) = 1

≡ q(Q−1 mod q0) mod q0

Since q
$← Zq0 , q

′ is also uniformly distributed over Zq0 . Thus,

zi+1 mod p =

i∑
j=0

sjQ
ρ′−i+j +

ρ′∑
j=i+1

rjQ
j−i−1.

At last, in case i = ρ′, we may write

zρ′+1 = pq′ +

ρ′∑
j=0

sjQ
j ,

for q′
$← Zq0 , and we have

gcd

y0, zρ′+1 −
ρ′∑
j=0

sjQ
j

 = p,

if gcd(q′, q0) = 1. And

Pr
[
FindPrime(η, γ,Qρ′+1, y0,Z(p, q0, Q

ρ′+1, 1)) = p
]

≥ ϵ

2
· (1− negl(λ))ρ

′+1 ·
(
1− Pr

[
gcd(q′, q0) ̸= 1 | q′ $← Zq0

])
≥ ϵ

2
− negl(λ).

Since Pr
[
gcd(q′, q0) ̸= 1 | q′ $← Zq0

]
is negligible, the algorithm FindPrime outputs the correct

answer p with a non-negligible probability.
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Theorem 12. The (η, γ,Qρ′
, Q)-ZOR assumption implies the (η, γ,Qρ′

, Qe)-ZOR assumption
for any positive integer e.

Proof. Suppose that there exists a PPT distinguisher D′ such that

Pr
[
D′(η, γ,Qρ′

, Qe, y0,Z(p, q0, Q
ρ′
, Qe), z′) = 1 | z′ ← Z(p, q0, Q

ρ′
, Qe)

]
− Pr

[
D′(η, γ,Qρ′

, Qe, y0,Z(p, q0, Q
ρ′
, Qe), z′) = 1 | z′ ← R(p, q0, Q

ρ′
, Qe)

]
≥ ϵ(λ),

for some non-negligible function ϵ. For each i ∈ {0, 1, · · · , e}, define

pi := Pr
[
D′((η, γ,Qρ′

, Qe, y0,Z(p, q0, Q
ρ′
, Qe), z′) = 1 | z′ ← Z(p, q0, Q

ρ′+i, Qe−i)
]
.

Then

p0 − pe =

e−1∑
i=0

(pi − pi+1) ≥ ϵ(λ)

since R(p, q0, Q
ρ′
, Qe) = Z(p, q0, Q

ρ′+e, Q0). So there exists some i ∈ {0, 1, · · · , e− 1} such that
pi − pi+1 is non-negligible. For such an i, we construct a PPT distinguisher D for the problem
(η, γ,Qρ′

, Q)-ZOR, as follows.

procedure D(η, γ,Qρ′
, Q, y0,Z(p, q0, Q

ρ′
, Q), z):

r′
$← ZQi

z′ = (z + r′Qρ′+1) ·Qe−i−1 mod y0
return D′((η, γ,Qρ′

, Qe, y0,Z(p, q0, Q
ρ′
, Qe), z′)

Note that the distinguisher D can easily simulate the sampling oracle Z(p, q0, Q
ρ′
, Qe) for D′

using its own oracle Z(p, q0, Q
ρ′
, Q); just multiply a sample from Z(p, q0, Q

ρ′
, Q) by Qe−1 mod y0.

Now consider the distribution of z′.

z′ = (z + r′Qρ′+1) ·Qe−i−1 mod y0

= ((pq + rQ+m) + r′Qρ′+1) ·Qe−i−1 mod y0 ; q
$← Zq0 , r

$← ZQρ′ ,m ∈ ZQ

= pqQe−i−1 + (r + r′Qρ′
) ·Qe−i +mQe−i−1 mod y0

= pq′ + r′′Qe−i +mQe−i−1 ; q′
$← Zq0 , r

′′ $← ZQρ′+i

= pq′ + (r′′Q+m)Qe−i−1

In the above, as in the previous theorem, we have assumed gcd(q0, Q) = 1, because

Pr
[
gcd(q0, Q) ̸= 1 | q0

$← [0, 2γ/p) ∩ ROUGH(2λ)
]
= negl(λ).

Thus,

z′ ← Z(p, q0, Q
ρ′+i, Qe−i), if z ← Z(p, q0, Q

ρ′
, Q)

z′ ← Z(p, q0, Q
ρ′+i+1, Qe−i−1), if z ← R(p, q0, Q

ρ′
, Q)

Therefore,

Pr
[
D(η, γ,Qρ′

, Q, y0,Z(p, q0, Q
ρ′
, Q), z) = 1 | z ← Z(p, q0, Q

ρ′
, Q)

]
= Pr

[
D′(η, γ,Qρ′

, Qe, y0,Z(p, q0, Q
ρ′
, Qe), z′) = 1 | z′ ← Z(p, q0, Q

ρ′+i, Qe−i)
]

= pi
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and

Pr
[
D(η, γ,Qρ′

, Q, y0,Z(p, q0, Q
ρ′
, Q), z) = 1 | z ← R(p, q0, Q

ρ′
, Q)

]
= Pr

[
D′(η, γ,Qρ′

, Qe, y0,Z(p, q0, Q
ρ′
, Qe), z′) = 1 | z′ ← Z(p, q0, Q

ρ′+i+1, Qe−i−1)
]

= pi+1

This completes the proof since pi − pi+1, which is equal to the advantage of D for the
(η, γ,Qρ′

, Q)-ZOR problem, is non-negligible.

Theorem 13. The (η, γ,R1, Q1)-ZOR assumption and the (η, γ,R2, Q2)-ZOR assumption imply
the (η, γ,R1R2, Q1Q2)-ZOR assumption.

Proof. To shorten the formulas occurring in this proof, we use the following notation

ZR
Q := Z(p, q0, R,Q)

to represent the sampling oracle Z(p, q0, R,Q).
Suppose that there exists a PPT distinguisher D for the (η, γ,R1R2, Q1Q2)-ZOR problem

such that

Pr
[
D(η, γ,R1R2, Q1Q2, y0,Z

R1R2

Q1Q2
, pq + rQ1Q2) = 1 | q $← Zq0 , r

$← ZR1R2

]
− Pr

[
D(η, γ,R1R2, Q1Q2, y0,Z

R1R2

Q1Q2
, pq + rQ1Q2 +m) = 1 | q $← Zq0 , r

$← ZR1R2 ,m
$← ZQ1Q2

]
≥ ϵ(λ)

for some non-negligible function ϵ. For each i ∈ ZQ1Q2
, define pi as below.

pi := Pr
[
D(η, γ,R1R2, Q1Q2, y0,Z

R1R2

Q1Q2
, pq + rQ1Q2 + i) = 1 | q $← Zq0 , r

$← ZR1R2

]
.

Then

p0 = Pr
[
D(η, γ,R1R2, Q1Q2, y0,Z

R1R2

Q1Q2
, pq + rQ1Q2) = 1 | q $← Zq0 , r

$← ZR1R2

]
and∑

i∈ZQ1Q2
pi

Q1Q2

=Pr
[
D(η, γ,R1R2, Q1Q2, y0,Z

R1R2

Q1Q2
, pq + rQ1Q2 +m) = 1 | q $← Zq0 , r

$← ZR1R2
,m

$← ZQ1Q2

]
.

So the difference of the two probabilities is

p0 −
∑

i∈ZQ1Q2
pi

Q1Q2
= p0 −

∑
i∈ZQ1

piQ2

Q1
+

∑
i∈ZQ1

piQ2

Q1
−
∑

i∈ZQ1Q2
pi

Q1Q2
≥ ϵ(λ)

and either p0 −
∑

i∈ZQ1
piQ2

Q1
or

∑
i∈ZQ1

piQ2

Q1
−

∑
i∈ZQ1Q2

pi

Q1Q2
is non-negligible.

Now we construct a PPT distinguisher D1 for the (η, γ,R1, Q1)-ZOR problem and D2 for the
(η, γ,R2, Q2)-ZOR problem, as follows:

procedure D1(η, γ,R1, Q1, y0,Z(p, q0, R1, Q1), z):
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r′
$← ZR2

z′ = (z + r′R1Q1) ·Q2 mod y0
return D(η, γ,R1R2, Q1Q2, y0,Z(p, q0, R1R2, Q1Q2), z

′)

and,

procedure D2(η, γ,R2, Q2, y0,Z(p, q0, R2, Q2), z):

r′
$← ZQ1R1

z′ = z + r′R2Q2

return D(η, γ,R1R2, Q1Q2, y0,Z(p, q0, R1R2, Q1Q2), z
′)

The distinguishersD1, D2 should be able to simulate the sampling oracle Z(p, q0, R1R2, Q1Q2)
for the distinguisher D. The distinguisher D1 has access to the sampling oracle Z(p, q0, R1, Q1).

So D1 can compute x′ := xR2Q2 + r′Q1Q2, where x ← Z(p, q0, R1, Q1) and r′
$← ZR2 . We

can easily show that the distribution of x′ is identical to Z(p, q0, R1R2, Q1Q2). Similarly, the
distinguisher D2 can sample from Z(p, q0, R1R2, Q1Q2).

In case of the (η, γ,R1, Q1)-ZOR problem, D1 receives z = pq + rQ1 + m, where q
$← Zq0 ,

r
$← ZR1

and m ∈ ZQ1
. Here, we have m = 0 in case z ← Z(p, q0, R1, Q1), and m is uniform on

ZQ1
in case z ← R(p, q0, R1, Q1).

And consider the distribution of z′:

z′ = (z + r′R1Q1) ·Q2 mod y0

= pqQ2 + (r + r′R1)Q1Q2 +mQ2 mod y0

= pq′ + r′′Q1Q2 +mQ2

where q′
$← Zq0 , r

′′ $← ZR1R2
. Thus

Pr [D1(η, γ,R1, Q1, y0,Z(p, q0, R1, Q1), z) = 1 | z ← Z(p, q0, R1, Q1)]

− Pr [D1(η, γ,R1, Q1, y0,Z(p, q0, R1, Q1), z) = 1 | z ← R(p, q0, R1, Q1)]

=Pr
[
D(η, γ,R1R2, Q1Q2, y0,Z

R1R2

Q1Q2
, pq′ + r′′Q1Q2) = 1 | q′ $← Zq0 , r

′′ $← ZR1R2

]
− Pr

[
D(η, γ,R1R2, Q1Q2, y0,Z

R1R2

Q1Q2
, pq′ + r′′Q1Q2 +mQ2) = 1 | q′ $← Zq0 , r

′′ $← ZR1R2 ,m
$← ZQ1

]
= p0 −

∑
i∈ZQ1

piQ2

Q1
.

In case of the (η, γ,R2, Q2)-ZOR problem, D2 receives z = pq + rQ2 + m, where q
$← Zq0 ,

r
$← ZR2 and m ∈ ZQ2 . Similar to previous, we have m = 0 in case z ← Z(p, q0, R2, Q2), and m

is uniform on ZQ2
in case z ← R(p, q0, R2, Q2).

Again consider the distribution of z′.

z′ = z + r′R2Q2

= pq + (r + r′R2) ·Q2 +m

= pq + r′′Q2 +m

= pq + (

⌊
r′′

Q1

⌉
Q1 + r′′ mod Q1) ·Q2 +m

= pq +

⌊
r′′

Q1

⌉
·Q1Q2 +Q2 · (r′′ mod Q1) +m

= pq + r′′′Q1Q2 +m′Q2 +m
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where r′′
$← ZQ1R1R2 , r

′′′ $← ZR1R2 , m
′ $← ZQ1 .

Thus, when z ← Z(p, q0, R2, Q2), the distribution of z′ is identical to pq + rQ1Q2 + mQ2,

with r
$← ZR1R2 , m

$← ZQ1 , and when z ← R(p, q0, R2, Q2), the distribution of z′ is identical to

pq + rQ1Q2 +m, with r
$← ZR1R2

, m
$← ZQ1Q2

. Then,

Pr [D2(η, γ,R2, Q2, y0,Z(p, q0, R2, Q2), z) = 1 | z ← Z(p, q0, R2, Q2)]

− Pr [D2(η, γ,R2, Q2, y0,Z(p, q0, R2, Q2), z) = 1 | z ← R(p, q0, R2, Q2)]

=Pr
[
D(η, γ,R1R2, Q1Q2, y0,Z

R1R2

Q1Q2
, pq + rQ1Q2 +mQ2) = 1 | q $← Zq0 , r

$← ZR1R2
,m

$← ZQ1

]
− Pr

[
D(η, γ,R1R2, Q1Q2, y0,Z

R1R2

Q1Q2
, pq + rQ1Q2 +m) = 1 | q $← Zq0 , r

$← ZR1R2
,m

$← ZQ1Q2

]
=

∑
i∈ZQ1

piQ2

Q1
−
∑

i∈ZQ1Q2
pi

Q1Q2
.

We have already seen that either p0−
∑

i∈ZQ1
piQ2

Q1
or

∑
i∈ZQ1

piQ2

Q1
−

∑
i∈ZQ1Q2

pi

Q1Q2
is non-negligible.

Therefore in this case, eitherD1 solves (η, γ,R1, Q1)-ZOR problem orD2 solves (η, γ,R2, Q2)-ZOR
with non-negligible advantage.

Theorem 14. If the (η, γ, Q̃ρ′
, Q)-ZOR assumption holds for any B-smooth integer Q ≥ 2 and

ρ′ = ω(lg λ), then the scheme Π is IND-CPA, where Q =
∏t

i=1 p
ei
i is the prime factorization of

Q and Q̃ =
∏t

i=1 pi for some t ∈ Z+.

Proof. Suppose that there exists a PPT adversary A for the IND-CPA security game of the
scheme Π such that

Pr
[
IND-CPAΠ,A(1

λ) = 1
]
≥ 1/2 + ϵ(λ)

for some non-negligible function ϵ. Then, we can construct a PPT distinguisherD for the problem
ZOR(η, γ, Q̃ρ′

, Q), by simulating the game IND-CPAΠ,A as follows.

distinguisher D(η, γ, Q̃ρ′
, Q, y0,Z(p, q0, Q̃

ρ′
, Q), z):

Initialization. Let R = Q̃ρ′
and initialize a set S → ∅. Give ek = (Q,R, y0) to A.

Queries. For each encryption query (τ,m) ∈ {0, 1}λ × ZQ of A, if (τ, ·, ·) ̸∈ S, then

sample x ← Z(p, q0, Q̃
ρ′
, Q), compute c := x +m, return c to A, and update S

by S ← S ∪ {(τ,m, c)}. Otherwise, reject the query.

Challenge. For the challenge (τ∗,m∗
0,m

∗
1) of A, if (τ, ·, ·) ̸∈ S, then flip a coin

b
$← {0, 1}, compute the challenge ciphertext c∗ := z +m∗

b , return c to A, and
update S by S ← S ∪ {(τ∗,m∗

b , c
∗)}. Otherwise, reject the challenge.

Queries. Again A may make encryption queries adaptively, and such a query is
answered exactly as before.

Finalization. For the output b′ of A, return 1 if b = b′. Otherwise, return 0.

Let us consider the distribution of the ciphertext c produced by D.

c = x+m = pq + rQ+m

where q
$← Zq0 and r

$← ZR. Since gcd(p, q0) = 1, we see that c mod q0 is uniformly distributed
over Zq0 . And clearly, c mod p = rQ+m. Thus the distribution of c is identical to that of a real
ciphertext. Now, consider the distribution of the challenge ciphertext c∗. If z ← Z(p, q0, R,Q),
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then the distribution of c∗ is identical to that of original security game by the same reason as
above. But when z ← R(p, q0, R,Q),

c∗ = z +mb = pq + rQ+m+mb

= pq +

(
r +

⌊
m+mb

Q

⌉)
Q+ ((m+mb) mod Q)

= pq + r′Q+m′

where q
$← Zq0 and r

$← ZR and m
$← ZQ. Since −1 ≤ ⌊m+mb

Q ⌉ ≤ 1, the distribution of

r′ = r +

⌊
m+mb

Q

⌉
is close to the uniform distribution over ZR with the statistical distance at most 1

R , which is
negligible. And clearly, m′ is uniformly distributed over ZQ. Thus, the distribution of c∗ is
close to R(p, q0, R,Q) with the statistical distance at most 1

R . In other words, c∗ contains only
negligible information on the challenge plaintext mb. So

Pr
[
D(η, γ, Q̃ρ′

, Q, y0,Z(p, q0, Q̃
ρ′
, Q), z) = 1 | z ← Z(p, q0, R,Q)

]
≥ 1

2
+ ϵ

and ∣∣∣∣Pr [D(η, γ, Q̃ρ′
, Q, y0,Z(p, q0, Q̃

ρ′
, Q), z) = 1 | z ← R(p, q0, R,Q)

]
− 1

2

∣∣∣∣ ≤ 1

R

Therefore,

Pr
[
D(η, γ, Q̃ρ′

, Q, y0,Z(p, q0, Q̃
ρ′
, Q), z) = 1 | z ← Z(p, q0, R,Q)

]
− Pr

[
D(η, γ, Q̃ρ′

, Q, y0,Z(p, q0, Q̃
ρ′
, Q), z) = 1 | z ← R(p, q0, R,Q)

]
≥ ϵ− 1

R
,

and
1

R
=

1

Q̃ρ′ ≤
1

2ρ′ .

Therefore, the PPT distinguisher D has non-negligible advantage if ρ′ = ω(lg λ).

6.2 Authenticity

The authenticity of the scheme Π is stated in the following theorem.

Theorem 15. The scheme Π is SUF-CPA under the assumption (η, γ, ρ)-EF-AGCD if ρ′ =
ρ+ ω(lg λ).

Proof. The theorem is a collorary of Theorem 10 and Theorem 16. This is proved through the
following two steps.

1. If (η, γ, ρ)-EF-AGCD assumption holds and ρ′ = ρ+ω(lg λ), then the (η, γ, Q̃ρ′
)-EF-AGCD′

assumption holds for any positive integer Q̃ ≥ 2.

2. If the (η, γ, Q̃ρ′
)-EF-AGCD′ assumption holds for any integer Q̃ ≥ 2, then the scheme Π is

SUF-CPA.
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Step 1 is the consequence of Theorem 10, since log Q̃ρ′ ≥ ρ′ = ρ + ω(lg λ). Step 2 will be
proved as Theorem 16.

Theorem 16. If the (η, γ, Q̃ρ′
)-EF-AGCD′ assumption holds for any Q̃ ≥ 2, then the scheme

Π is SUF-CPA.

Proof. Suppose there exists a PPT adversary A for the game SUF-CPA such that

Pr
[
SUF-CPAΠ,A(1

λ, Q) = 1
]
≥ ϵ(λ)

for some non-negligible function ϵ and some integer Q ≥ 2. Let Q =
∏t

i=1 p
ei
i be the prime

factorization of Q for some t ∈ Z+. Let Q̃ =
∏t

i=1 pi, then Q̃ ≥ 2. We construct a PPT

algorithm A′ solving the problem (η, γ, Q̃ρ′
)-EF-AGCD′ by simulating the game SUF-CPA for

the adversary A as follows.

algorithm A′(η, γ, Q̃ρ′
, y0,Z(p, q0, Q̃

ρ′
, 1)):

Initialization. Let R = Q̃ρ′
and initialize S ← ∅. Give ek = (Q,R, y0) to A.

Queries. For each encryption query (τ,m) ∈ {0, 1}λ × ZQ of A, give the answer
c = (xQ+m) mod y0 to A, where x← Z(p, q0, R, 1) and S ← S ∪ {(τ,m, c)} if
(τ, ·, ·) /∈ S. Otherwise, reject the query.

Finalization. Let ((f, τ1, · · · , τl), ĉ) be the forgery attempt output by A. For each
i ∈ {1, · · · , l}, set the value of ci as follows. Let ci = c if (τi,m, c) ∈ S for

some m ∈ M and c ∈ C. Otherwise, choose ci
$← Zy0 . And then, compute

c̃ = f(c1, · · · , cl) mod y0. Output y0/ gcd(y0, c̃− ĉ).

Note that q0 has no small prime factors and Q is the product of small primes. So gcd(q0, Q) = 1.
Consider the distribution of the answer c for an encryption query (τ,m) of A.

c = xQ+m mod y0 ;x← Z(p, q0, R, 1)

= pqQ+ rQ+m ; q
$← Zq0 , r

$← ZR

= pq′ + rQ+m ; q′
$← Zq0

So c mod q0 is uniformly distributed over Zq0 and c mod p = rQ+m. This is exactly same dis-
tribution as that of a real ciphertext output by Enc(sk , x,m) in the scheme Π. Now consider the
forgery attempt ((f, τ1, · · · , τl), ĉ) made by A in the Finalization phase. In case ((f, τ1, · · · , τl), ĉ)
is a strong forgery of type 1, c̃ = f(ci)i∈I is not constant, where I is the set of indices i such that
τi is not new with respect to S. So we can apply the probabilistic polynomial identity test as in
Theorem 8.

Pr
[
c̃(cj)j ̸∈I ≡ ĉ mod y0 | (cj)j /∈I

$← (Zy0
)l−| I |

]
≤ d̄

2λ

where d̄ is some upper bound on degree of the admissible functions in our scheme and is poly-
nomially bounded. This means that c̃(cj)j ̸∈I ̸= ĉ mod y0 with overwhelming probability. In case
((f, τ1, · · · , τl), ĉ) is a strong forgery of type 2, c̃(cj)j ̸∈I = c̃ ̸= ĉ mod y0. In any case, c̃ ̸= ĉ mod y0
but c̃ ≡ ĉ mod q0 since any strong forgery is valid. Therefore, gcd(y0, ĉ− c̃) = q0 and the output
of the algorithm A′ is exactly p with overwhelming probability if the challenge made by A is a
strong forgery. Since A makes a strong forgery with non-negligible probability, so A′ outputs the
correct answer p with non-negligible probability. This completes the proof.
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Mehdi Tibouchi, and Aaram Yun. Batch fully homomorphic encryption over the integers. In
Advances in Cryptology — EUROCRYPT 2013, volume 7881 of Lecture Notes in Computer
Science, pages 315–335, Berlin, Heidelberg, 2013. Springer.

34
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