
Functional Encryption for Randomized Functionalities

Vipul Goyal∗ Abhishek Jain† Venkata Koppula‡ Amit Sahai§

Abstract

In this work, we present the first definitions and constructions for functional encryption sup-
porting randomized functionalities. The setting of randomized functionalities require us to revisit
functional encryption definitions by, for the first time, explicitly adding security requirements
for dishonest encryptors, to ensure that they cannot improperly tamper with the randomness
that will be used for computing outputs. Our constructions are built using indistinguishability
obfuscation.

1 Introduction

Originally, encryption was thought of as a way to encrypt “point to point” communication. How-
ever, in the contemporary world with cloud computing and complex networks, it has become clear
that we need encryption to offer more functionality. To address this issue, the notion of functional
encryption (FE) has been developed [SW05, GPSW06, BW07, KSW08, BSW11, O’N10]. In a
functional encryption for a family F , it is possible to derive secret keys Kf for any function f ∈ F
from a master secret key. Given an encryption of some input x, that user can use its secret key Kf

to obtain f(x), and should learn nothing else about x beyond f(x).
A driving force behind functional encryption research has been to understand what class

of functions can be supported by functional encryption. This remarkable line of research has
progressed to now encompass all functions describable by deterministic polynomial-size circuits
[SS10, GVW12, GKP+13, CIJ+13, GGH+13]. We continue this line of research to move even beyond
deterministic polynomial-size circuits: specifically, we consider the case of randomized functional-
ities. Indeed, not only are randomized functionalities strongly motivated by real-world scenarios,
but randomized functionalities present new challenges for functional encryption. Techniques devel-
oped in the context of functional encryption for deterministic circuit do not directly translate into
techniques for randomized circuits. To understand the basic technical problem, below we give an
illustrative example.

Let us illustrate the desiderata for functional encryption for randomized functions by considering
an example of performing an audit on an encrypted database through random sampling. Suppose
there is a bank that maintains large secure databases of the transactions in each of its branches.
There is an auditor Alice who would like to gain access to a random sample of database entries

∗Microsoft Research, India. vipul@microsoft.com
†Johns Hopkins University. abhishek@cs.jhu.edu. Work done in part while visiting Microsoft Research, India.
‡UT Austin. kvenkata@cs.utexas.edu. Part of this research was conducted during internship at Microsoft

Research, India.
§UCLA. sahai@cs.ucla.edu

1

from each branch in order to manually audit these records and check for improper transactions.
We note that random sampling of transactions for manual analysis is quite common during audits.
There are two primary concerns:

• The auditor wants to ensure that cheating in a branch is caught with reasonable probability.

• The organization wants to ensure that a malicious auditor cannot learn undesirable informa-
tion (e.g., too much about a particular customer) from the encrypted databases. In particular,
it wants to ensure that a malicious auditor cannot gain access to arbitrarily chosen parts of
the database, but rather is limited to seeing only a randomly selected sample for each branch.

If we try to solve this problem naively using functional encryption, by giving the auditor a
secret key SKf that lets it obtain a random subset of an encrypted database CT, we are faced with
the question: where does the randomness come from? Clearly, the randomness cannot be specified
in the ciphertext alone since then a cheating encrypter (bank branch) could influence it. It cannot
be specified in the decryption key alone as well: then auditor would get the same (or correlated)
sample from the databases of different branches. (We also stress that since functional encryption
does not guarantee function privacy, randomness present in the function f , even if chosen by a
trusted party, would be known to Alice.)

Even if the randomness was chosen by an XOR of coins built into the decryption key and
the ciphertext, this would allow malicious encryptors, over time, to ensure correlations among the
random coins used by the auditor when inspecting different databases (or the same database after
updates to it). Such correlations could potentially be used to eventually learn completely the coins
embedded in the decryption key (based on the auditor’s actions in response to planted improprieties
in databases). Another option is to use a pseudorandom function (PRF) whose key is inbuilt in the
decryption key. However again, since functional encryption does not guarantee function privacy,
the PRF key could be completely leaked to a malicious auditor. As a result, the sample would not
be “random” anymore in the auditor’s view (since he knows the PRF key).

This scenario also illustrates the importance of dealing with dishonest encryptors in the context
of functional encryption for randomized functionalities, because of the influence they can have on
the choice of coins used in computing the output. The issue of dishonest encryptors is, in fact, also
relevant to the case of deterministc functionalities.1 However, to the best of our knowledge, this
issue was never considered explicitly in previous work on functional encryption. This is perhaps
because in the context of deterministic functionalities, the issue of dishonest encryptors seems very
related to simple correctness, which is not the case in the current work.

Defining functional encryption for randomized functionalities. To avoid the problems
sketched in the examples above, we define functional encryption for randomized functionalities
using the simulation paradigm: We want that an adversary, given SKf and an honestly generated
encryption of x, be simulatable given only f(x; r) where r is true randomness that is completely
unknown to the adversary. At the same time, consider an adversary that can generate dishonest
ciphertexts ĈT and learn from outside the output of decrypting ĈT using a secret key SKg (that is
unknown to the adversary). We want such an adversary to be simulatable given only g(x̂; r), where

1For example, the FE schemes in [GVW12, GKP+13] are not secure against a dishonest encryptor who uses
the simulator algorithm to create ciphertexts. Indeed, such an adversary can force arbitrary outputs on an honest
receiver. However, a straightforward compilation of these schemes with simulation-sound NIZK proofs of knowledge
yields security against dishonest encryptors.

2

x̂ is an input that is information-theoretically fixed by ĈT and r is again true randomness that is
unknown to the adversary. Note that a crucial feature of our definition is that if a party uses a secret
key SKf on a particular ciphertext CT, it will always get back f(x; r) for the same randomness
r. In other words, the user cannot repeatedly sample the functionality to obtain multiple outputs
for different random coins. This allows users of our definition to more tightly control how much
information an adversary or user learns. However, given two distinct ciphertexts CT1 and CT2 both
encrypting x, a malicious user possessing SKf should obtain exactly two independent samples of
the output of the function: f(x; r1) and f(x; r2).

Application to differentially private data release. A natural application of functional en-
cryption would be to provide non-interactive differentially private data release with high levels of
accuracy. Consider a scenario where a government would like to allow researchers to carry out
research studies on different hospital patient record databases, but only if the algorithm that ana-
lyzes the patient data achieves a sufficient level of differential privacy. Without using cryptography,
methods for allowing the hospitals to publish differentially private data that would allow for mean-
ingful and diverse research studies must incur very high accuracy loss [DNR+09]. An alternative
would be to have a government agency review a specific research algorithm f , and if the algorithm
guarantees sufficient privacy, to issue a secret key SKf that the researcher could use to obtain the
output of her algorithm on any hospital’s encrypted patient records. Note that in such a setting,
the hospital patient record could be encrypted and stored without any noise addition. The noise
could be added by the algorithm f after computing the correct output. Such a setting would ensure
very high accuracy (essentially the same as the interactive setting where the hospitals store data
in clear and answer the researcher queries after adding noise in an online fashion).

Note however, to achieve differential privacy, such an algorithm f must be randomized. Fur-
thermore, typical differentially private algorithms require that the randomness used to compute the
output must be correctly and freshly sampled each time and be kept secret (or else the differential
privacy could be completely compromised). By realizing functional encryption that would allow
such randomized function evaluation, we would simultaneously remove the need for the hospital
to participate in any study beyond simply releasing an encrypted database, and remove the need
for the researcher to share his hypothesis and algorithm with any entity beyond the government
regulatory body that issues secret keys.

1.1 Our Results

We show how to formalize the definition sketched above, generalizing the simulation-based security
definitions given in [BSW11, O’N10]. We then construct a functional encryption scheme supporting
arbitrary randomized polynomial-size circuits assuming indistinguishability obfuscation for circuits
and one-way functions. We prove security in the selective model that can be amplified to full
security using standard complexity leveraging.

While our focus is on simulation-based security, we note that it cannot be realized for an
unbounded number of messages [BSW11, BO13]. Towards that end, in Appendix 2.1.2, we also
provide indistinguishability-based security definitions for randomized functions, generalizing the
case of deterministic functions [BSW11, O’N10]. We prove security in the selective model for
an unbounded number of messages (again, this can be amplified to full security using standard

3

complexity leveraging2).
The starting point for our construction is the functional encryption scheme of [GGH+13] for

polynomial-size deterministic circuits. In that scheme, in essence the secret key SKf is built upon
obfuscating the function f using an indistinguishability obfuscator [BGI+01]. We show how to
modify this construction to achieve our notion of functional encryption for randomized function-
alities by building upon the recently introduced idea of punctured programming [SW14]. In par-
ticular, we embed a psuedo-random function (PRF) key into the obfuscated program, which is
executed on the ciphertext, to obtain the randomness used to derive the output. We adapt ideas
from [DDN91, Sah99] to ensure that valid ciphertexts are unique. The core of our argument of
security is to show that indistinguishability obfuscation guarantees the secrecy of the random coins
derived by this method.

Our results immediately imply the application to differential privacy: Consider two “neighbor-
ing” databases x0 and x1. Differential privacy guarantees that the statistical distance between
the distributions of outputs of the mechanism f for these two databases is at most eε, a small
(but non-negligible) quantity. Now consider an adversary’s view given an encryption of x0. By
our simulation-based notion of security, the adversary’s view can be simulated given only f(x0; r)
where r is true (secret) randomness. This view is eε close to the view that would be generated
given only f(x1; r), by differential privacy of f . Finally we apply our definition to show that this
view is negligibly close to the real adversary’s view given an encryption of x1. Thus, our functional
encryption scheme when applied to f yields a computationally differentially private mechanism.

1.2 Other Applications

Subsequent to our work, Garg et al. [GGHZ14] use functional encryption for randomized func-
tions in NC1 as a crucial tool to construct fully secure functional encryption for all circuits from
multilinear maps. We refer the reader to their paper for more details.

1.3 Related Work

In an independent and concurrent work, Alwen et al. [ABF+13] also study functional encryption
for randomized functions.3 The main difference between their work and ours is that they do not
consider security against malicious encryptors. In particular, they provide a construction of FE
for randomized functions from FE for deterministic functions by encrypting a PRF key along with
every message. This PRF key is evaluated over the identifier associated with a function key to
sample randomness on the fly, which is then used to compute the function output. Interestingly,
they show that a 2-ary version of randomized FE can be used to construct fully homomorphic
encryption (see [ABF+13] for details). However, they do not provide a construction of such an FE
scheme.

We note that while the security definition of [ABF+13] suffices for their target application, in this
work, we model randomized functionalities following the standard approach in secure computation
where in the ideal world, no single party has full control over the randomness used in the function
evaluation and instead the randomness is chosen by the trusted party. In particular, we require

2Subsequent to our work, Waters [Wat14] gave a construction of fully secure functional encryption (for determinis-
tic functions) from indistinguishability obfuscation, without complexity leveraging. We leave the problem of adapting
our techniques to the scheme of [Wat14] for future work.

3See [GJKS13] for the eprint version of our work.

4

that the randomness used for the computation is chosen uniformly even if either of the parties is
malicious. Indeed, as discussed earlier, this is the main source of non-triviality in our results.

1.4 Organization

The rest of this paper is organized as follows. We start by presenting the formal definitions for
functional encryption for randomized functionalities (Section 2). Next, we recall the definitions for
various cryptographic primitives used in our construction (Section 3). We then present our con-
struction of functional encryption for randomized functionalities (Section 4) and prove its security
in the selective model (Section 5).

2 Functional Encryption for Randomized Functions

In this section, we present definitions for functional encryption for randomized functions (or rand-FE
for short). We start by presenting the syntax for rand-FE and then proceed to give the security
definitions for the same.

Syntax. Throughout the paper, we denote the security parameter by 1κ. Let X = {Xκ}κ∈N,
R = {Rκ}κ∈N and Y = {Yκ}κ∈N be ensembles where each Xκ, Rκ and Yκ is a finite set. Let
F = {Fκ}κ∈N be an ensemble where each Fκ is a finite collection of randomized functions. Each
function f ∈ Fκ takes as input a string x ∈ Xκ and randomness r ∈ Rκ and outputs f(x; r) ∈ Yκ.

A functional encryption scheme FE for randomized functions F consists of four algorithms
(rFE.Setup, rFE.Enc, rFE.Keygen, rFE.Dec):

• Setup rFE.Setup(1κ) is a PPT algorithm that takes as input the security parameter κ and
outputs the public key MPK and the master secret key MSK.

• Encryption rFE.Enc(x,MPK) is a PPT algorithm that takes as input a message x and the
public key MPK and outputs a ciphertext CT.

• Key Generation rFE.Keygen(f,MSK) is a PPT algorithm that takes as input a function
f ∈ F and the master secret key MSK and outputs a secret key SKf .

• Decryption rFE.Dec(CT, SKf) is a deterministic algorithm that takes as input a ciphertext
CT, the public key MPK and a secret key SKf and outputs a string y ∈ Yκ.

Definition 2.1 (Correctness). A functional encryption scheme FE for randomized function family
F is correct if for every polynomial n = n(κ), every ~f ∈ Fnκ and every ~x ∈ X nκ , the following two
distributions are computationally indistinguishable:

1. Real:
{
rFE.Dec

(
CTi,SKfj

)}n,n
i=1,j=1

, where:

• (MPK,MSK)← rFE.Setup(1κ)

• CTi ← rFE.Enc(xi,MPK) for i ∈ [n]

• SKfj ← rFE.Keygen(fj ,MSK) for j ∈ [n]

2. Ideal: {fj (xi; ri,j)}n,ni=1,j=1 where ri,j ← Rκ

5

Remark 2.2. We note that unlike the case of deterministic functions where it suffices to define
correctness for a single ciphertext and a single key, in the case of randomized functions, it is
essential to define correctness for multiple ciphertexts and functions. To see this, consider the
scenario where a secret key SKf corresponding to a function f is implemented in such a way that
it has some “fixed” randomness r hardwired in it. Now, upon decrypting any ciphertext CT ←
rFE.Enc(x,MPK) with SKf , one would obtain the output f(x; r) w.r.t. the same randomness r.
Note that this clearly incorrect implementation of SKf would satisfy the correctness definition for
a single ciphertext and a single key, but will fail to satisfy our definition given above.

2.1 Security for Functional Encryption

We now present our security definitions for rand-FE. We first observe that existing security defini-
tions for functional encryption only consider the malicious receiver setting, in that they intuitively
guarantee that an adversary who owns a secret key SKf corresponding to a function f cannot
learn anymore than f(x) from an encryption of x. In this work, we are also interested in achieving
security against malicious senders. In particular, we would like to guarantee that an adversarial en-
cryptor cannot force “bad” outputs on an honest receiver. As discussed earlier, this is particularly
important when modeling randomized functions.

We consider a a unified adversarial model that captures both malicious receivers and malicious
senders. We present both simulation-based and indistinguishability-based security definitions. For
simplicity, we present our security definitions for the selective model, where the adversary must
decide the challenge messages up front, before the system parameters are chosen.

2.1.1 Simulation Based Security

We now present a simulation-based security definition (or, SIM-security) for rand-FE. If we only
consider malicious receivers, then our definition looks essentially identical to the standard (selective)
SIM-security definition for FE (for deterinistic functions) [BSW11, O’N10]. In order to provide
security against adversarial senders, we extend the existing definition. To understand the main idea
behind our definition, let us consider an honest receiver who owns a secret key SKf corresponding
to a function f . Then, in order to formalize the intuition that an adversarial sender cannot force
“incorrect” outputs on this honest receiver, we allow the adversary to make decryption queries
for arbitrary ciphertexts4 w.r.t. the secret key SKf . In the ideal world, the simulator must be
able to“extract” the plaintext x from each decryption query and compute as output f(x; r) for
some true randomness r. We then require that the decryption query in the real world yields an
indistinguishable output.

We now proceed to give our formal definition. For simplicity, below we define security w.r.t.
black-box simulators, although we note that our definition can be easily extended to allow for non-
black-box simulation following [BO13, CIJ+13]. Our definition is parameterized by q that denotes
the number of challenge messages.

Definition 2.3 (SIM-security for rand-FE). A functional encryption scheme FE for the randomized
function family F is said to be q-SIM-secure if there exists a simulator S = (S1, S2, S3) such
that for every PPT adversary A = (A1, A2, A3), the outputs of the following two experiments are
computationally indistinguishable:

4This is similar in spirit to the standard chosen-ciphertext security notion for public-key encryption.

6

Experiment REALFEA (1κ):
(~x, st1)← A1 (1κ) where ~x ∈ X qκ
(MPK,MSK)← rFE.Setup(1κ)

st2 ← A
O1(MSK,·), O2(MSK,·,·)
2 (MPK, st1)

CT∗i ← rFE.Enc(xi,MPK) for i ∈ [q]

α← A
O1(MSK,·), O2(MSK,·,·)
3

(
~CT
∗
, st2

)
Output (~x, {f} , {g} , {y}, α)

Experiment IDEALFEA (1κ):
(~x, st1)← A1 (1κ) where ~x ∈ X qκ
(MPK, ~CT

∗
, st′)← S1 (1κ)

st2 ← A
O′1(·), O′2(·,·)
2 (MPK, st1)

α← A
O′1(·), O′2(·,·)
3

(
~CT
∗
, st2

)
Output (~x, {f ′} , {g′} , {y′}, α)

where,

1. Real experiment: O1(MSK, ·) denotes the key generation oracle rFE.Keygen(·,MSK). The
set {f} denotes the key queries made by A2 and A3.

O2(MSK, ·, ·) denotes a decryption oracle that takes inputs of the form (CT, g) where g ∈ F . If
the query is from A3, then we require that CT 6= CT∗i . O2 computes SKg ← rFE.Keygen(g,MSK)
and returns rFE.Dec(CT, SKg). The set {g} denote the functions that appear in the decryption
queries of A2 and A3 and {y} denotes the responses of O2.

2. Ideal experiment: O′1(·) denotes the simulator algorithm S2(st
′, ·) that has oracle access

to the ideal functionality KeyIdeal(~x, ·). The functionality KeyIdeal accepts key queries f ′ and
returns f ′(xi, ri) for every xi ∈ ~x and randomly chosen ri ∈ Rκ. The set {f ′} denotes the
key queries made by S2 to KeyIdeal.

O′2(·, ·) denotes the simulator algorithm S3(st
′, ·, ·) that has oracle access to ideal functionality

DecryptIdeal(·, ·). The functionality DecryptIdeal accepts input queries (x, g′) and returns y′ =
g′(x; r) for randomly chosen r ∈ Rκ. The set {g′} denotes the functions that appear in the
queries of S3 and {y′} denotes the responses of DecryptIdeal.

We note that in the above selective security definition, pre-ciphertext key queries are essentially
redundant since an adversary can defer all such queries to the post-ciphertext key query phase.
Nevertheless, we present our definition in the above form to remain syntactically consistent with
the full security definition that consists of two distinct key query phases.

2.1.2 Indistinguishability Based Security

Here we present indistinguishability-based security definitions for rand-FE. We give two (incompa-
rable) definitions: the first definition, referred to as INDpre-security allows for adversaries that make
key queries before obtaining the public key. The second definition, referred to as INDpost-security,
allows for key queries after the adversary receives the public key, but puts additional constraints on
the distribution of these queries. In both cases, we strengthen the adversary by allowing decryption
queries in a similar manner as the SIM-security definition.

Security against key queries before public key. We first give a security definition for the
case where the adversary is restricted to making key queries before obtaining the public key. Similar
to the FE definition for deterministic functions [BSW11, O’N10], we consider two worlds: a left

7

world where the adversary requests ciphertexts for challenge message x0, and a right world where
the challenge message is x1. Our definition differs from standard definition for (deterministic) FE in
two ways. First, instead of requiring the outputs corresponding to x0 and x1 to be equal (for every
key query f), we now require them to be computationally indistinguishable5 (given the auxiliary
input of the adversary). Second, we strengthen the adversary by allowing her to make decryption
queries in the same manner as the SIM-security definition.

Definition 2.4 (INDpre-secure rand-FE). A functional encryption scheme FE is INDpre-secure if
for every non-uniform PPT adversary A = (A1, A2, A3), every z ∈ {0, 1}∗, the distributions
Exp0FE,A(1κ, z) and Exp1FE,A(1κ, z) are computationally indistinguishable, where ExpbFE,A(1κ, z) is
defined as follows :

Experiment ExpbFE,A(1κ, z):

(MPK,MSK)← rFE.Setup(1κ)

(x0, x1, st1)← A
rFE.Keygen(·,MSK)
1 (1κ, z) where x0, x1 ∈ Xκ

st2 ← A
O(MSK,·,·)
2 (MPK, st1)

CT∗ ← rFE.Enc(xb,MPK)
Output A3(CT

∗, st2)

In the above experiment:

1. Let {f} denote the list of key queries made by A1 to the key generation oracle. Then, the
distributions (z, {f (x0)}) and (z, {f (x1)}) are computationally indistinguishable.

2. O(MSK, ·, ·) denotes a decryption oracle that takes inputs of the form (CT, g) where g ∈ F .
It computes SKg ← rFE.Keygen(g,MSK) and returns rFE.Dec(CT, SKg).

Remark 2.5 (Unbounded INDpre security). Definition 2.4 can be naturally extended to allow for
multiple challenge messages. The constraint on the key queries {f} made by A2 will now be
that given the challenge message vectors (~x0, ~x1), for every i, the distributions (z, {f (x0[i])}) and
(z, {f (x1[i])}) are computationally indistinguishable. We call this unbounded INDpre security.

Note that by a standard hybrid argument, INDpre security (for one message) implies unbounded
INDpre security.

Security against key queries after public-key. Next we give a security definition for the case
where the adversary is allowed to make key queries after obtaining the public key. The crucial
difference from the previous definition is that we now require that the output distributions in the
left and right world should be statistically indistinguishable.

Definition 2.6 (INDpost-secure rand-FE). A functional encryption scheme FE is INDpost-secure for
the randomized function family F if for every non-uniform PPT adversary A = (A1, A2), every z ∈
{0, 1}∗, the distributions Exp0FE,A(1κ, z) and Exp1FE,A(1κ, z) are computationally indistinguishable,

where ExpbFE,A(1κ, z) is defined as follows :

5We note that this condition cannot be verified efficiently.

8

Experiment ExpbFE,A(1κ, z):

(MPK,MSK)← rFE.Setup(1κ)
(x0, x1, st1)← A1(1

κ, z) where x0, x1 ∈ Xκ
CT∗ ← rFE.Enc(xb,MPK)

Output A
rFE.Keygen(·,MSK),O(MSK,·,·)
2 (MPK,CT∗, st1)

In the above experiment:

1. Let {f} denote the list of key queries made by A2 to the key generation oracle. Then the
distributions (MPK, z, {f (x0)}) and (MPK, z, {f (x1)}) are statistically indistinguishable.

2. O(MSK, ·, ·) denotes a decryption oracle that takes inputs of the form (CT, g) where CT 6= CT∗

and g ∈ F . It computes SKg ← rFE.Keygen(g,MSK) and returns rFE.Dec(CT,SKg).

Remark 2.7 (Unbounded INDpost security). Similar to Definition 2.4, the above definition can also
be naturally extended to capture security for multiple challenge messages. We call this unbounded
INDpost security. Note that one-message INDpost security implies unbounded INDpost security.

Remark 2.8 (Statistical vs Computational Indistinguishability). Note that if we modify Definition
2.6 by requiring the output distributions to be computationally indistinguishable (as in Definition
2.4, then it may result in a circularity. Consider a key query f from A2 that simply re-encrypts
the plaintext underlying the challenge ciphertext CT∗b .

6 In this case, the requirement on the output
distributions is the same as our desired security guarantee for the challenge ciphertexts, which results
in a vaccuous definition. By requiring the output distributions to be statistically indistinguishable,
we are able to break such circularity.

2.1.3 SIM implies IND

It is easy to see that SIM-security implies both INDpre and INDpost security. Furthermore, since
INDpre (resp., INDpost) security for one message implies unbounded INDpre (resp., INDpost) security,
we have that 1-SIM security implies unbounded INDpre and INDpost security. We state it below:

Lemma 2.9. Let FE be a 1-SIM-secure FE scheme for randomized function family F . Then FE
is also unbounded INDpre-secure and unbounded INDpost-secure for F .

The proof follows in the same manner as the case of deterministic functions [BSW11]. We
provide a sketch in Appendix C for the case of one message. Combining this with remarks 2.5 and
2.7 yields the proof of lemma 2.9 for unbounded messages.

3 Preliminaries

In this section, we present definitions for various cryptographic primitives that we shall use in
our construction of functional encryption for randomized functions. We assume familiarity with
standard semantically secure public-key encryption and strongly unforgeable signature schemes
and omit their formal definition from this text. Below, we recall the notions of indistinguishability
obfuscation, puncturable pseudorandom functions, non-interactive witness indistinguishable proof
systems and perfectly binding commitment schemes.

6Note that in Definition 2.4, such a query is not possible since the adversary is required to make all the key queries
before receiving the public key.

9

3.1 Indistinguishability Obfuscation

Here we recall the notion of indistinguishability obfuscation that was defined by Barak et al.
[BGI+01]. Intuitively speaking, we require that for any two circuits C1 and C2 that are “functionally
equivalent” (i.e., for all inputs x in the domain, C1(x) = C2(x)), the obfuscation of C1 must
be computationally indistinguishable from the obfuscation of C2. Below we present the formal
definition following the syntax of [GGH+13].

Definition 3.1. (Indistinguishability Obfuscation) A uniform PPT machine iO is called an indis-
tinguishability obfuscator for a circuit class {Cκ} if the following holds:

• Correctness: For every κ ∈ N, every C ∈ Cκ, every input x in the domain of C, we have
that

Pr[C ′(x) = C(x) : C ′ ← iO(C)] = 1

• Indistinguishability: For every κ ∈ N, for all pairs of circuits C0, C1 ∈ Cκ, if C0(x) = C1(x)
for all inputs x, then for all PPT adversaries A, we have:

|Pr[A(iO(C0)) = 1]− Pr[A(iO(C1)) = 1]| ≤ negl(κ)

Recently, Garg et al. [GGH+13] gave the first candidate construction for an indistinguishability
obfuscator iO for the circuit class P/poly. Subsequent to their work, Pass et al [PST14] con-
struct an indistinguishability obfuscator based on an “uber” assumption on multilinear encodings.
More recently, Gentry et al [GLSW14] construct an indistinguishability obfuscator based on the
multilinear subgroup elimination assumption.

3.2 Puncturable Pseudorandom Functions

Puncturable family of PRFs are a special case of constrained PRFs [BW13, BGI14, KPTZ13],
where the PRF is defined on all input strings except for a set of size polynomial in the security
parameter. Below we recall their definition, as given by [SW14].

Syntax A puncturable family of PRFs is defined by a tuple of algorithms (Key, Eval, Puncture)
and a pair of polynomials n(·) and m(·) :

• Key Generation Key(1κ) is a PPT algorithm that takes as input the security parameter κ
and outputs a PRF key K

• Punctured Key Generation Puncture(K,S) is a PPT algorithm that takes as input a PRF
key K, a set S ⊂ {0, 1}n(κ) and outputs a punctured key KS

• Evaluation Eval(K,x) is a deterministic algorithm that takes as input a key K (punctured
key or PRF key), a string x ∈ {0, 1}n(κ) and outputs y ∈ {0, 1}m(κ)

Definition 3.2. A family of PRFs Key, Eval, Puncture is puncturable if it satisfies the following
properties :

• Functionality preserved under puncturing. Let K ← Key(1κ), KS ← Puncture(K,S).
Then, for all x /∈ S, Eval(K,x) = Eval(KS , x).

10

• Pseudorandom at punctured points. For every PPT adversary (A1, A2) such that A1(1
κ)

outputs a set S ⊂ {0, 1}n(κ) and x ∈ S, consider an experiment where K ← Key(1κ) and
KS ← Puncture(K,S). Then∣∣Pr[A2(KS , x,Eval(K,x)) = 1]− Pr[A2(KS , x, Um(κ)) = 1]

∣∣ ≤ negl(κ)

where U` denotes the uniform distribution over ` bits.

As observed by [KPTZ13, BW13, BGI14], the [GGM86] construction of PRFs from one-way
functions easily yield puncturable PRFs.

Theorem 3.3 ([GGM86, KPTZ13, BW13, BGI14]). If one-way functions exist, then for all poly-
nomials n(κ) and m(κ), there exists a puncturable PRF family that maps n(κ) bits to m(κ) bits.

We note that in the above construction, the size of the punctured key KS grows linearly with
the size of the punctured set S.

3.3 Non-Interactive Witness Indistinguishable Proofs

In this section, we present the definition for non-interactive witness-indistinguishable (NIWI) proofs.
We emphasize that we are interested in proof systems, i.e., where the soundness guarantee holds
against computationally unbounded cheating provers.

Syntax. Let R be an efficiently computable relation that consists of pairs (x,w), where x is called
the statement and w is the witness. Let L denote the language consisting of statements in R. A
non-interactive proof system for a language L consists of a setup algorithm NIWI.Setup, a prover
algorithm NIWI.Prove and a verifier algorithm NIWI.Verify, defined as follows:

• Setup NIWI.Setup(1κ) is a PPT algorithm that takes as input the security parameter 1κ and
outputs a common reference string crs.

• Prover NIWI.Prove(crs, x, w) is a PPT algorithm that takes as input the common reference
string crs, a statement x along with a witness w. (x,w) ∈ R; if so, it produces a proof string
π, else it outputs fail.

• Verifier NIWI.Verify(crs, x, π) is a PPT algorithm that takes as input the common reference
string crs and a statement x with a corresponding proof π. It outputs 1 if the proof is valid,
and 0 otherwise.

Definition 3.4 (NIWI). A non-interactive witness-indistinguishable proof system for a language L
with a PPT relation R is a tuple of algorithms (NIWI.Setup,NIWI.Prove,NIWI.Verify) such that the
following properties hold:

• Perfect Completeness: For every (x,w) ∈ R, it holds that

Pr[NIWI.Verify(crs, x,NIWI.Prove(crs, x, w)) = 1] = 1

where crs ← NIWI.Setup(1κ), and the probability is taken over the coins of NIWI.Setup,
NIWI.Prove and NIWI.Verify.

11

• Statistical Soundness: For every adversary A, it holds that

Pr[NIWI.Verify(crs, x, π) = 1 ∧ x /∈ L | crs← NIWI.Setup(1κ); (x, π)← A(crs)] = negl(1κ)

• Witness Indistinguishability: For any triplet (x,w0, w1) such that (x,w0) ∈ R and
(x,w1) ∈ R, the distributions {crs,NIWI.Prove(crs, x, w0)} and {crs,NIWI.Prove(crs, x, w1)}
are computationally indistinguishable, where crs← NIWI.Setup(1κ).

Recently, it was shown by Sahai and Waters [SW14] that NIWI proofs can be constructed from
indistinguishability obfuscation and one-way functions.

3.4 Commitment Schemes

A commitment scheme Com is a PPT algorithm that takes as input a string x and outputs
C ← Com(x). A perfectly binding commitment scheme must satisfy the perfect binding and com-
putational hiding properties :

• Perfectly Binding : This property states that two different strings cannot have the same
commitment. More formally, ∀x1 6= x2, s1, s2 Com(x1; s1) 6= Com(x2; s2)

• Computational Hiding For all strings x0 and x1 (of the same length), for all PPT adver-
saries A, we have that :

|Pr[A(Com(x0)) = 1]− Pr[A(Com(x1) = 1)]| ≤ negl(κ)

For simplicity of exposition, we present our FE scheme in Section 4 using a non-interactive per-
fectly binding scheme. We stress, however, that it is actually sufficient to use a standard 2-round
statistically binding scheme in our construction. Such schemes can be based on one way functions.

4 Our Construction

Let F denote the family of all PPT functions. We now present a functional encryption scheme FE
for F . For any a priori bounded q = poly(κ), we prove that FE is q-SIM-secure. Note that from
Lemma 2.9, it follows that FE is also unbounded INDpre and INDpost secure.

Note that in the case of SIM-security, the size of the secret keys in FE grows linearly with q. It
follows from [BSW11, BO13, CIJ+13] that such a dependence on q is necessary.

Notation. Let (NIWI.Setup, NIWI.Prove, NIWI.Verify) be a NIWI proof system. Let Com be a
perfectly binding commitment scheme. Let iO be an indistinguishability obfuscator for all efficiently
computable circuits. Let (Key, Puncture, Eval) be a puncturable family of PRF. Let (Gen, Sign,
Verify) be a strongly unforgeable one-time signature scheme. Finally, let (PKE.Setup, PKE.Enc,
PKE.Dec) be a semantically secure public-key encryption scheme.

Let c-len = c-len(1κ) denote the length of ciphertexts in (PKE.Setup, PKE.Enc, PKE.Dec) .
Let v-len = v-len(1κ) denote the length of verification keys in (Gen, Sign, Verify). We shall use a
parameter len = 2 · c-len + v-len in the description of our scheme.

We now proceed to describe our scheme FE = (rFE.Setup, rFE.Enc, rFE.Keygen, rFE.Dec).

12

Setup rFE.Setup(1κ): The setup algorithm first computes a CRS crs← NIWI.Setup for the NIWI
proof system. Next, it computes two key pairs – (PK1, SK1) ← PKE.Setup(1κ), (PK2, SK2) ←
PKE.Setup(1κ) – of the public-key encryption scheme. Finally, it computes a commitment C ←
Com(0len).

The public key MPK = (crs, PK1, PK2, C) and the master secret key MSK = SK1. The
algorithm outputs (MPK,MSK).

Encryption rFE.Enc(x,MPK): To encrypt a message x, the encryption algorithm first generates
a key pair (sk, vk) ← Gen(1κ) of the one-time signature scheme. It then computes ciphertexts
c1 ← PKE.Enc(x, PK1; r1) and c2 ← PKE.Enc(x, PK2; r2). Next, it computes a NIWI proof π ←
NIWI.Prove(crs, z, w) for the NP statement z = (z1 ∨ z2) where z1 and z2 are defined as follows:

z1 := (∃x, s1, s2 such that c1 = PKE.Enc(x, PK1; s1) ∧ c2 = PKE.Enc(x, PK2; s2)) (1)

z2 := (∃s such that C = Com(c1‖c2‖vk, s) (2)

A witness wreal = (x, s1, s2) for z1 is referred to as the real witness, while a witness wtrap = s for z2
is referred to as the trapdoor witness.

The honest encryption algorithm uses the real witness wreal to compute π. Finally, it computes
a signature σ ← Sign(c1‖c2‖π, sk) on the string c1‖c2‖π using sk. The output of the algorithm is
the ciphertext CT = (c1, c2, π, vk, σ).

Key Generation rFE.Keygen(f,MSK): On input f ,the key generation algorithm first chooses a
fresh PRF key K ← Key(1κ). It then computes the secret key SKf ← iO(Gf) where the function
Gf is described in Figure 1. Note that Gf has the public key MPK, the secret key SK1 and the
PRF key K hardwired in it.

Input: Ciphertext CT
Constants: MPK, SK1, K, f

1. Parse CT = (c1, c2, π, vk, σ).

2. If Verify(σ, c1‖c2‖π, vk), then output ⊥ and stop, otherwise continue to the next step.

3. If NIWI.Verify(crs, z, π) = 0, then output ⊥ and stop, otherwise continue to the next step. Here
z = (c1, c2, vk, PK1, PK2, C) is the statement corresponding to π.

4. Compute x← PKE.Dec(c1, SK1).

5. Compute r ← Eval(K, c1‖c2‖vk).

6. Output f(x; r).

Figure 1: Functionality Gf

The algorithm outputs SKf as the secret key corresponding to f .

Size of Function Gf . In order to prove that FE is q-SIM-secure, we require the function Gf to
be padded with zeros such that |Gf | = |Sim.Gf |, where the “simulated” functionality Sim.Gf is
described later in Figure 2. In this case, the size of SKf grows linearly with q.

13

Decryption rFE.Dec(CT, SKf): On input CT, the decryption algorithm computes and outputs
SKf (CT).

This completes the description of FE . We prove the correctness of FE in Appendix B.

Theorem 4.1. Assuming indistinguishability obfuscation for all polynomial-time computable cir-
cuits and one-way functions, the proposed scheme FE is 1-SIM-secure.

5 Proof of Theorem 4.1

We now prove that the proposed scheme FE is 1-SIM-secure. Our proof can be naturally extended
to q-SIM-security, for any a priori fixed q = poly(κ).

We first construct an ideal world adversary aka simulator S in Section 5.1. Next, in Section 5.2,
we prove indistinguishability of the outputs of the real and ideal world experiments via a hybrid
argument.

5.1 Description of Simulator

We describe a simulator S = (S1, S2, S3) that makes black-box use of a real world adversary
A = (A1, A2, A3).

Algorithm S1. S1 first performs a simulated setup procedure. Namely, it first computes a CRS
crs← NIWI.Setup(1κ) for the NIWI proof system and two key pairs – (PK1, SK1)← PKE.Setup(1κ)
and (PK2, SK2)← PKE.Setup(1κ) – for the public-key encryption scheme. Next, it chooses a key
pair for the signature scheme - (sk∗, vk∗)← Gen(1κ). Then, it computes the commitment C in the
following manner: (a) First compute c∗1 ← PKE.Enc(~0, PK1) and c∗2 ← PKE.Enc(~0, PK2). (b) Next,
compute C ← Com(c∗1‖c∗2‖vk∗). Let s denote the randomness used to compute C .

S1 constructs a proof π∗ by using the trapdoor witness s, i.e., π∗ ← NIWI.Prove(crs, y, s),
where the statement y = (c∗1, c

∗
2, vk

∗, PK1, PK2, C). Finally, it computes a signature σ∗ ←
Sign(c∗1‖c∗2‖π∗, sk∗). It sets MPK = (crs, PK1, PK2, C) and challenge ciphertext CT∗ = (c∗1, c

∗
2, π
∗, vk∗, σ∗).

Algorithm S2. S2 simulates the key generation oracle. Whenever A2 or A3 makes a key query
for a function f , S2 performs the following sequence of steps:

1. Query the ideal functionality KeyIdeal on input f . Let y∗ be the output of KeyIdeal .

2. Compute a PRF key K ← Key(1κ) and a punctured key K ′ ← Puncture(K, c∗1‖c∗2‖vk∗).

3. Compute the secret key SKf ← iO(Sim.Gf) where the functionality Sim.Gf is described in
Figure 2. Sim.Gf has the public key MPK, secret key SK1, the punctured key K ′, the challenge
ciphertext CT∗ and the output value y∗ hardwired in it.

4. Return SKf .

14

Input: Ciphertext CT
Constants: MPK, SK1, K ′, f , CT∗ = (c∗1, c

∗
2, π
∗, vk∗, σ∗), y∗

1. Parse CT = (c1, c2, π, vk, σ).

2. If Verify(σ, c1‖c2‖π, vk), then output ⊥ and stop, otherwise continue to the next step.

3. If NIWI.Verify(crs, z, π) = 0, then output ⊥ and stop, otherwise continue to the next step. Here
z = (c1, c2, vk, PK1, PK2, C) is the statement corresponding to π.

4. If (c1‖c2‖vk = c∗1‖c∗2‖vk∗) output y and stop.

5. Compute x← PKE.Dec(c1, SK1).

6. Compute r ← Eval(K ′, c1‖c2‖vk).

7. Output f(x; r).

Figure 2: Functionality Sim.Gf

Algorithm S3. S3 simulates the decryption oracle. Whenever A2 or A3 makes a decryption query
(CT, g) where CT = (c1, c2, π, vk, σ), S3 performs the following sequence of steps:

1. If Verify(σ, c1‖c2‖π, vk), then output ⊥ and stop, otherwise continue to the next step.

2. If NIWI.Verify(crs, z, π) = 0, then output ⊥ and stop, otherwise continue to the next step.
Here z = (c1, c2, vk, PK1, PK2, C) is the statement corresponding to π.

3. Compute x← PKE.Dec(c1, SK1).

4. Return DecryptIdeal(x, g).

5.2 Indistinguishability of the Outputs

We now describe a series of hybrid experiments H0, . . . ,H11, where H0 corresponds to the real world
and H11 corresponds to the ideal world experiment. In Appendix A, we prove that for every i, the
output of Hi is computationally indistinguishable from the output of Hi+1.

Hybrid H0: This is the real experiment. Here, each decryption query (CT, g) is answered using
a decryption key skg ← iO(Gg) where Gg is defined in the same manner as Gf , except that it has
function g hardwired in it.

Hybrid H1: This experiment is the same as H0 except in the manner in which the key queries
of the adversary are answered. Let CT∗ = (c∗1, c

∗
2, π
∗, vk∗, σ∗) denote the challenge ciphertext.

Whenever the adversary A2 or A3 makes a key query f , we perform the following steps:

1. Compute a PRF keyK ← Key(1κ) and then compute a punctured keyK ′ ← Puncture(K, c∗1‖c∗2‖vk∗).

2. Compute r ← Eval(K, c∗1‖c∗2‖vk∗) and y∗ = f(x; r).

15

3. Compute the secret key SKf ← iO(Sim.Gf) where the functionality Sim.Gf is described in
Figure 2. Note that Sim.Gf has the public key MPK, master secret key MSK, the punctured
key K ′, the challenge ciphertext components ct∗ and the output value y∗ (as computed above)
hardwired in it.

4. Return SKf .

Hybrid H2: This experiment is the same as H1, except that we now answer the key queries of A2

and A3 in the same manner as the simulator S2.

Hybrid H3: This experiment is the same as H2, except that the setup algorithm computes the
commitment C in the following manner: let CT∗ = (c∗1, c

∗
2, π
∗, vk∗, σ∗) denote the challenge cipher-

text. Then, C ← Com(c∗1‖c∗2‖vk∗).

Hybrid H4: This experiment is the same as H3, except that we modify the challenge ciphertext
CT∗ = (c∗1, c

∗
2, π
∗, vk∗, σ∗): the proof string π∗ is now computed using the trapdoor witness s where

s is the randomness used to compute the commitment C.

Hybrid H5: This experiment is the same as H4, except that in the challenge ciphertext CT∗ =
(c∗1, c

∗
2, π
∗, vk∗, σ∗), the second ciphertext c∗2 is an encryption of zeros, i.e., c∗2 ← PKE.Enc(~0, PK2).

Hybrid H6: This experiment is the same as H5, except that for every key query f , the secret key
SKf is computed as SKf ← iO(Sim.G′f) where Sim.G′f is the same as function Sim.Gf except that:

1. It has secret key SK2 hardwired instead of SK1.

2. It decrypts the second component of each input ciphertext using SK2. More concretely, in
Step 5 of Sim.G′f , plaintext x is computed as x← PKE.Dec(c2, SK2).

Hybrid H7: This experiment is the same as H6, except that we modify the manner in which the
decryption queries of A2 and A3 are answered: each query (CT, g) is answered using a decryption
key skg ← iO(G′f) where G′g is the same as function Gg except that:

1. It has secret key SK2 hardwired instead of SK1.

2. It decrypts the second component of each input ciphertext using SK2. More concretely, in
Step 4 of Gg, plaintext x is computed as x← PKE.Dec(c2, SK2).

Hybrid H8: This experiment is the same as H7, except that in the challenge ciphertext CT∗ =
(c∗1, c

∗
2, π
∗, vk∗, σ∗), the first ciphertext c∗1 is an encryption of zeros, i.e., c∗1 ← PKE.Enc(~0, PK1).

Hybrid H9: This experiment is the same as H8, except that we modify the manner in which the
decryption queries of A2 and A3 are answered: each query (CT, g) is answered using a decryption
key skg ← iO(Gf).

16

Hybrid H10: This experiment is the same as H9, except that we change the manner in which
the key queries are answered. For every key query f , the secret key SKf is computed as SKf ←
iO(Sim.Gf).

Hybrid H11: This experiment is the same as H10, except that we now answer the decryption
queries of A2 and A3 in the same manner as the simulator algorithm S3. Note that this is the ideal
experiment.

This completes the description of the hybrid experiments. We prove their indistinguishability
in Appendix A.

6 Acknowledgements

We thank Gil Segev for helpful comments on our security definitions. We also thank Ran Canetti,
Shafi Goldwasser, Brent Waters and Xiang Xe for useful discussions.

References

[ABF+13] Joël Alwen, Manuel Barbosa, Pooya Farshim, Rosario Gennaro, S. Dov Gordon, Stefano
Tessaro, and David A. Wilson. On the relationship between functional encryption,
obfuscation, and fully homomorphic encryption. In Cryptography and Coding - 14th
IMA International Conference, 2013.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In Lecture
Notes in Computer Science, pages 1–18. Springer-Verlag, 2001.

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudoran-
dom functions. In PKC, 2014.

[BO13] Mihir Bellare and Adam O’Neill. Semantically-secure functional encryption: Possibility
results, impossibility results and the quest for a general definition. 2013.

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and
challenges. In TCC, 2011.

[BW07] Dan Boneh and Brent Waters. Conjunctive, subset, and range queries on encrypted
data. In TCC, 2007.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applica-
tions. In ASIACRYPT, 2013.

[CIJ+13] Angelo De Caro, Vincenzo Iovino, Abhishek Jain, Adam O’Neill, Omer Paneth, and
Giuseppe Persiano. On the achievability of simulation-based security for functional
encryption. In CRYPTO (2), 2013.

[DDN91] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptography (extended
abstract). In STOC, pages 542–552, 1991.

17

[DNR+09] Cynthia Dwork, Moni Naor, Omer Reingold, Guy N. Rothblum, and Salil P. Vadhan. On
the complexity of differentially private data release: efficient algorithms and hardness
results. In STOC, pages 381–390, 2009.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In FOCS, 2013.

[GGHZ14] Sanjam Garg, Craig Gentry, Shai Halevi, and Mark Zhandry. Fully secure functional
encryption without obfuscation. IACR Cryptology ePrint Archive, 2014:666, 2014.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random func-
tions. J. ACM, 33(4):792–807, August 1986.

[GJKS13] Vipul Goyal, Abhishek Jain, Venkata Koppula, and Amit Sahai. Functional encryption
for randomized functionalities. IACR Cryptology ePrint Archive, 2013:729, 2013.

[GKP+13] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and
Nickolai Zeldovich. Reusable garbled circuits and succinct functional encryption. In
STOC, 2013.

[GLSW14] Craig Gentry, Allison B. Lewko, Amit Sahai, and Brent Waters. Indistinguishability
obfuscation from the multilinear subgroup elimination assumption. IACR Cryptology
ePrint Archive, 2014:309, 2014.

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryp-
tion for fine-grained access control of encrypted data. In ACM Conference on Computer
and Communications Security, 2006.

[GVW12] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption
with bounded collusions via multi-party computation. In CRYPTO, 2012.

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias.
Delegatable pseudorandom functions and applications. In ACM CCS, 2013.

[KSW08] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting dis-
junctions, polynomial equations, and inner products. In EUROCRYPT, 2008.

[O’N10] Adam O’Neill. Definitional issues in functional encryption. IACR Cryptology ePrint
Archive, 2010, 2010.

[PST14] Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability obfuscation from
semantically-secure multilinear encodings. In CRYPTO, 2014.

[Sah99] Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In FOCS, pages 543–553, 1999.

[SS10] Amit Sahai and Hakan Seyalioglu. Worry-free encryption: functional encryption with
public keys. In ACM Conference on Computer and Communications Security, pages
463–472, 2010.

18

[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In EUROCRYPT,
2005.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: Deniable
encryption, and more. In STOC, 2014.

[Wat14] Brent Waters. A punctured programming approach to adaptively secure functional
encryption. IACR Cryptology ePrint Archive, 2014:588, 2014.

A Completing Proof of Theorem 4.1

Here we prove that for every i, the outputs of experiments Hi and Hi+1 (as described in Section
5.2) are computationally indistinguishable.

Lemma A.1. Assuming that iO is an indistinguishability obfuscator, hybrid experiments H0 and
H1 are computationally indistinguishable.

Proof. Note that the only difference in H0 and H1 is that in the former experiment, we output iO(Gf)
as the key corresponding to any key query f , while in the latter experiment, we output iO(Sim.Gf).
In order to prove that these two hybrids are computationally indistinguishable, we show that for
every key query f , Gf and Sim.Gf have identical input-output behavior. Then, by security of
indistinguishability obfuscation, we would have that iO(Gf) and iO(Sim.Gf) are computationally
indistinguishable, which in turn would imply H0 and H1 are computationally indistinguishable.

Observation A.2. For any input CT = (c1, c2, π, vk, σ), Gf outputs ⊥ if and only if Sim.Gf outputs
⊥.

Note that both Gf and Sim.Gf output ⊥ if and only if either the signature σ does not verify or
the proof π does not verify; that is, either Verify(σ, c1‖c2‖π, vk) = 0 or NIWI.Verify(crs, y, π) = 0
where y = (c1, c2, vk, PK1, PK2, C). Let us call an input CT = (c1, c2, π, vk, σ) valid if both the
signature σ and proof π verify. Next, we prove that both Gf in H0 and Sim.Gf in H1 have the same
functionality for all valid inputs.

Claim A.3. For any valid input CT = (c1, c2, π, vk, σ), Gf (CT) = Sim.Gf (CT).

Proof. We consider two cases : c1‖c2‖vk 6= c∗1‖c∗2‖vk∗ and c1‖c2‖vk = c∗1‖c∗2‖vk∗. For the first
case, note that by the first property of constrained PRF, it follows that Eval(K, c1‖c2‖vk) =
Eval(K ′, c1‖c2‖vk) = r. Both Gf in H0 and Sim.Gf in H1 decrypt c1 using SK1 to compute x,
and then output f(x, r).

In the second case, Gf computes r ← Eval(K, c∗1‖c∗2‖vk∗), and then computes x by decrypting
c1 and outputs y = f(x; r). On the other hand, Sim.Gf simply outputs the hard-wired value
y∗ when c1‖c2‖vk = c∗1‖c∗2‖vk∗. However, note that y∗ = y, thereby ensuring that Gf (CT∗) =
Sim.Gf (CT∗).

Using the above claims, we can now describe our reduction. Assume A2 and A3 together make
a total of ` key queries. We define hybrids H0,i, 0 ≤ i ≤ `, as follows: in H0,i, we respond to the
first `− i queries using FE.Keygen as in H0, and respond to the last i queries as in H1.

19

Claim A.4. If ∃ a PPT distinguisher A that can distinguish the outputs of H0,i and H0,i+1 with
non negligible advantage, then there exists a PPT adversary B that can break the security of iO
with non-negligible advantage.

Let C be the challenger for obfuscation. Adversary B works as follows:

1. It first honestly computes (MPK, st′,CT∗).

2. For the first (` − i − 1) key queries f , B computes the key for f using rFE.Keygen(·,MSK).
For the last i key queries f , B computes the key for f as in H1.

3. For the (` − i)’th key query for function f , B chooses a PRF key K, computes K ′ ←
Puncture(K, c∗1‖c∗2‖vk∗) and y = f(x;Eval(K, c∗1‖c∗2‖vk∗)). It then defines programs Gf ,Sim.Gf
and sends them to C, and receives an obfuscation SKf , which it passes on to the adversary.

4. B runs the rest of the experiment in the same manner as in H0 and H1.

5. Finally, B sends the output of the experiment to A and returns its output to C.

Now, if C returns obfuscation of Gf , then B perfectly simulates experiment H0,i, else it simulates
experiment H0,i+1. Thus, if A distinguishes the outputs with non negligible advantage, then clearly
B breaks the security of indistinguishability obfuscation with non negligible advantage.

Lemma A.5. Assuming (Key,Eval,Puncture) is a puncturable family of PRFs, hybrid experiments
H1 and H2 are computationally indistinguishable.

Proof. Assume A2 and A3 make a total of ` key queries. We consider ` intermediate hybrids H1,i

for 0 ≤ i ≤ ` where in H1,i, we respond to the first ` − i key queries as in H1, and the remaining
i key queries as in H2. We show that if there exists a PPT distinguisher A that can distinguish
the outputs of H1,i and H1,i+1 with non-negligible advantage, then there exists a PPT adversary B
that can break the security of puncturable PRFs with non-negligible advantage. The construction
of B is as follows :

1. B first computes MPK,MSK,CT∗ honestly.

2. For the first (` − i − 1) key queries from A3, B responds in the same manner as in H1. For
the last i key queries, B responds as in H2.

3. For the (`−i)’th key query f , B first sends (c∗1‖c∗2‖vk∗) to the challenger C and receives (K ′, r),
where K ′ = Puncture(K, c∗1‖c∗2‖vk∗) for some PRF key K and r is either Eval(K, c∗1‖c∗2‖vk∗)
or a uniformly random string in Rκ. It then defines the function Sim.Gf as before. B sends
iO(Sim.Gf) as the key for function f .

4. B runs the rest of the experiment in the same manner as in H1 and H2.

5. Finally, B sends the output of the experiment to A and returns its output to C.

Note that if r was computed as Eval(K, c∗1‖c∗2‖vk∗), then B perfectly simulates experiment H1,i, else
it simulates H1,i+1. Thus, if A can distinguish the outputs of H1,i and H1,i+1 with non-negligible
advantage, then B can break security of puncturable PRFs with non-negligible advantage.

Lemma A.6. Assuming Com is a computationally hiding commitment scheme, hybrid experiments
H2 and H3 are computationally indistinguishable.

20

Proof. Note that the only difference between experiments H2 and H3 is that C is computed as a
commitment to 0len in the former case and (c∗1‖c∗2‖vk∗) in the latter. Then, assume that ∃ PPT
distinguisher A that can distinguish the outputs of H2 and H3 with non-negligible advantage. Using
A, we can construct a PPT algorithm B that breaks the computational hiding property of Com as
follows:

1. B first runs A1 to obtain x. It then computes (PK1, SK1)← PKE.Setup(1κ), (PK2, SK2)←
PKE.Setup(1κ), crs← NIWI.Setup and (sk∗, vk∗)← Gen(1κ).

2. Next, it computes c∗1 ← PKE.Enc(x, PK1), c
∗
2 ← PKE.Enc(x, PK2) and constructs a valid

proof π∗ using the real witness. Then it signs c∗1‖c∗2‖π∗ using sk∗ to compute σ∗. It sets
CT∗ = (c∗1, c

∗
2, π
∗, vk∗, σ∗)

3. B sends 0len and (c∗1‖c∗2‖vk∗) to C, and receives C, which is either a commitment to 0len or
(c∗1‖c∗2‖vk∗).

4. B simulates the rest of the experiment as in H2 and H3.

5. Finally, B sends the output of the experiment to A and returns its output to C.

Now, if C is a commitment to 0len, then B perfectly simulates H2, else it simulates H3. Thus, if A
can distinguish the outputs of H4 and H5 with non-negligible advantage, then B breaks the hiding
of Com.

Lemma A.7. Assuming witness indistinguishability of NIWI, hybrid experiments H3 and H4 are
computationally indistinguishable.

Proof. In H3, we use the real witness for proving that c∗1 and c∗2 are encryptions of the same message,
while in H4, we use the trapdoor witness for proving that C is a commitment to (c∗1‖c∗2‖vk∗). Since
NIWI is witness indistinguishable, the two hybrids are computationally indistinguishable.

Lemma A.8. Assuming (PKE.Setup,PKE.Enc,PKE.Dec) is IND-CPA secure, hybrid experiments
H4 and H5 are computationally indistinguishable.

Proof. We show that if there exists an efficient distinguisher A that can distinguish between H4

and H5, then there exists an efficient adversary B that breaks IND-CPA security. B is defined as
follows:

1. B first receives a public key pk from IND-CPA challenger C.
2. B computes (PK1, SK1)← PKE.Setup(1κ), crs← NIWI.Setup, (sk∗, vk∗)← Gen(1κ) and sets
PK2 = pk. Next, it encrypts the challenge message x using PK1 to compute ciphertext c∗1

3. B sends (~0, x) as its challenge messages to C, and receives a ciphertext c. It sets c∗2 = c. Next,
it computes the commitment C = Com(c∗1‖c∗2‖vk∗).

4. B runs the rest of the experiment in the same manner as in H4 and H5.

5. Finally, B sends the output of the experiment to A.

6. If A outputs H4, then B outputs that c is an encryption of x. Else it outputs c is an encryption
of ~0.

21

Now, if c is an encryption of x, then B perfectly simulates experiment H4, else it simulates H5.
Then, clearly, if A’s output is correct, then so is B’s output. Hence, if A can distinguish the
outputs of the two experiments with non negligible advantage, then B can win the IND-CPA game
with the same advantage.

Lemma A.9. Assuming NIWI is statistically sound, iO is an indistinguishability obfuscator and
Com is perfectly binding, hybrid experiments H5 and H6 are computationally indistinguishable.

Proof. As in the proof of Lemma A.1, we first argue that both Sim.Gf and Sim.G′f have identical
input-output behavior.

Observation A.10. For all inputs CT = (c1, c2, π, vk, σ), Sim.Gf (CT) = ⊥ if and only if Sim.G′f (CT) =
⊥.

Both Sim.Gf and Sim.G′f output⊥ if and only if either Verify(σ, c1‖c2‖π, vk) = 0 or NIWI.Verify(crs, y, π) =
0 where y = (c1, c2, vk, PK1, PK2, C). Therefore, we only need to consider valid inputs. Next, we
show that any valid input must satisfy one of the two properties listed below.

Claim A.11. Any valid ciphertext CT = (c1, c2, π, vk, σ) should satisfy one of the following prop-
erties :
• c1 and c2 are encryptions of the same message

• c1‖c2‖vk = c∗1‖c∗2‖vk∗.7

Proof. Suppose, on the contrary, there exists a valid input such that it satisfies neither of the proper-
ties. Since NIWI is statistically sound, if the input is valid, then the statement y = (c1, c2, vk, PK1, PK2, C)
must have either a real witness or a trapdoor witness. Since c1 and c2 are encryptions of different
messages, a real witness does not exist. Therefore, for the input to be valid, there must exist
a trapdoor witness; that is, there exists an s such that C = Com(c1‖c2‖vk; s). However, since
C = Com(c∗1‖c∗2‖vk∗) and Com is perfectly binding, it follows that (c1‖c2‖vk) = (c∗1‖c∗2‖vk∗). Thus,
we have a contradiction.

Using the previous claim, we can now argue that both Sim.Gf and Sim.G′f have identical input-
output behavior.

Claim A.12. For all valid inputs CT = (c1, c2, π, vk, σ), both Sim.Gf and Sim.G′f have the same
functionality.

Proof. If both c1 and c2 are encryptions of the same message, then we have that PKE.Dec(c1, SK1) =
PKE.Dec(c2, SK2) = x. Therefore both programs Sim.Gf and Sim.G′f output f(x; r), where r ←
Eval(K, c1‖c2‖vk) = Eval(K ′, c1‖c2‖vk). If c1‖c2‖vk = c∗1‖c∗2‖vk∗, then both Sim.Gf and Sim.G′f
output y∗, where y∗ is KeyIdeal’s response to query x. Therefore, for all valid inputs, Sim.Gf and
Sim.G′f have identical input-output behavior.

We now describe our reduction. Assume A2 and A3 make a total of ` key queries. Consider
intermediate hybrids H5,i 0 ≤ i ≤ `. In H5,i, we use SK1 for the first `− i key queries, and SK2 for
the remaining i queries. Now, suppose that there exists a PPT distinguisher A that can distinguish
the outputs of H5,i and H5,i+1. Then, there ∃ an adversary B that can break the security of iO. B
is constructed as follows:

7We thank Xiang Xe for bringing to our attention the incorrect use of signatures in the proof of this lemma in a
previous version of this paper. The proof has been fixed in the revised version.

22

1. B generates MPK,CT∗ as in H5. It sets st′ = SK1, SK2,CT
∗.

2. For the first (` − i − 1) key queries by A, B responds as in H5. For the last i queries, B
responds as in H6.

3. For the (` − i)’th key query f , B queries KeyIdeal with f and receives y. Next, it chooses
a PRF Key K, computes punctured key K ′ ← Puncture(K, c∗1‖c∗2‖vk∗) and defines functions
Sim.Gf and Sim.G′f . B sends Sim.Gf and Sim.G′f to the obfuscation challenger C, receives
challenge obfuscation SKf , which it passes on to A2.

4. B runs the rest of the experiment in the same manner as in H5 and H6.

5. Finally, B sends the output of the experiment to A and forwards A’s response to C.

Now, if C returns obfuscation of Gf , then B perfectly simulates experiment H5,i, else it simulates
experiment H5,i+1. Thus, if A distinguishes the outputs with non negligible advantage, then clearly
B breaks the security of indistinguishability obfuscation with non negligible advantage.

Lemma A.13. Assuming (Gen, Sign, Verify) is a strongly unforgeable one time signature scheme,
NIWI is statistically sound and Com is perfectly binding, hybrid experiments H6 and H7 are statis-
tically indistinguishable.

Proof. As shown in claim A.11, any valid ciphertext CT = (c1, c2, π, vk, σ) is such that either c1
and c2 are encryptions of the same message or c1‖c2‖vk = c∗1‖c∗2‖vk∗. However, recall that for
decryption queries, we only require that CT 6= CT∗.

If both c1 and c2 encrypt the same value, then clearly the use of SK1 or SK2 is indistinguishable.
Then, lets consider the case where c1‖c2‖vk = c∗1‖c∗2‖vk∗, yet CT 6= CT∗. In this case, it must be
that π∗‖σ∗ 6= π‖σ. Now, if π 6= π∗, then since vk = vk∗ and (c1‖c2‖π) 6= (c∗1‖c∗2‖π∗), we have that
σ is a forgery for (c1‖c2‖π). On the other hand, if π = π∗, then it must be that σ 6= σ∗. In this
case, we have that σ is a strong forgery for (c1‖c2‖π) = (c∗1‖c∗2‖π∗). We can therefore break the
security of the strongly unforgeable one time signature scheme.

Lemma A.14. Assuming (PKE.Setup,PKE.Enc,PKE.Dec) is IND-CPA secure, hybrid experiments
H7 and H8 are computationally indistinguishable.

Proof. Same as proof for Lemma A.8.

Lemma A.15. Assuming (Gen, Sign, Verify) is a strongly unforgeable one time signature scheme,
NIWI is statistically sound and Com is perfectly binding, hybrid experiments H8 and H9 are statis-
tically indistinguishable.

Proof. Same as in proof of Lemma A.13.

Lemma A.16. Assuming (Gen, Sign, Verify) is a strongly unforgeable one time signature scheme,
NIWI is statistically sound, iO is indistinguishability obfuscator and comm is perfectly binding,
hybrid experiments H9 and H10 are computationally indistinguishable.

Proof. Same as in proof for Lemma A.9

Lemma A.17. Assuming (Key,Eval,Puncture) is a puncturable family of PRFs, hybrid experiments
H10 and H11 are computationally indistinguishable.

23

Proof. In H10, on receiving a decryption query (CT, g), we sample PRF key K and decrypt CT
using skg ← iO(Gg), where CT = (c1, c2, π, vk, σ) and Gg uses randomness r ← Eval(K, c1‖c2‖vk)
to compute the output g(x,Eval(K, c1‖c2‖vk)). On the other hand, in H11, the output is computed

as g(x, r)← DecryptIdeal(x, g) where r
$← Rκ.

If there exists an efficient adversary that can distinguish between the outputs of H10 and H11

with non negligible probability, then there exists an efficient adversary that can distinguish between
the output of Eval from a truly random string with non negligible probability, thereby breaking the
security of a pseudorandom function.

B Correctness of FE
Theorem B.1. If (Key,Puncture,Eval) is a PRF, then the proposed scheme FE satisfies correct-
ness.

Proof. We first prove this theorem for a single key. Fix any f ∈ Fκ, ~x ∈ X nκ . Consider the distribu-
tionReal1: {rFE.Dec(CTi,SKf)}ni=1, where (MPK,MSK)← rFE.Setup(1κ), CTi = (ci,1, ci,2, πi, vki, σi)←
rFE.Enc(xi,MPK) for i ∈ [n] and Kf ← rFE.Keygen(f,MSK). Similarly, consider the Ideal1 distri-
bution {f(xi, ri)}ni=1, where ri ← Rκ.

Claim B.2. Assuming Eval(·, ·) is a PRF, Real1 and Ideal1 distributions are computationally
indistinguishable.

Proof. Note that rFE.Dec(CTi,SKf) = f(xi,Eval(K, ci,1‖ci,2‖vki)). Therefore, the Real1 distribu-
tion is {f(xi,Eval(K, ci,1‖ci,2‖vki))}ni=1. Suppose there exists an adversary A that can distinguish
between the distributions Real1 and Ideal1 with non-negligible advantage. Then there exists an
adversary B that can break the PRF security of Eval(·, ·). The reduction is as follows :

1. PRF challenger C chooses a bit b← {0, 1}.
2. For i = 1 to n

(a) B sends (ci,1‖ci,2‖vki) to C, and receives r. If b = 0, r = Eval(K, ci,1‖ci,2‖vki), else
r ← Rκ.

(b) B computes yi = f(xi, r).

3. B sends ~y to A, and depending on A’s guess, B outputs 0 or 1.

Clearly, if A distinguishes between the distributions Real1 and Ideal1 with non-negligible advan-
tage, then B breaks the PRF security with non-negligible advantage.

This lemma can be extended, via a standard hybrid argument, to prove that the Real and Ideal
distributions are computationally indistinguishable.

C SIM security implies INDpre and INDpost security

We first prove that 1-SIM security implies one-message INDpre security. We actually prove the

stronger statement that 1-S̃IM security implies one-message INDpre security where in S̃IM security,
the adversary is restricted to making all of the key queries before receiving the public key. Let
x0, x1 ∈ Xκ be any two messages. Let REAL0(1κ) correspond to real world experiment in Definition

24

2.4 where the challenge ciphertext corresponds to the encryption of x0. From 1-S̃IM security, we

have that REAL0(1κ) is computationally indistinguishable to ĨDEAL
0
(1κ) where ˜IDEAL

0
(1κ) is the

corresponding ideal world in Definition 2.3. (In particular, in ˜IDEAL
1
(1κ), the simulator receives

the output of every key query f on message x0.) Now, since Definition 2.4 requires the promise

that (z, {f (x0)}) and (z, {f (x1)}) are computationally indistinguishable, we have that ˜IDEAL
0
(1κ)

is computationally indistinguishable from ĨDEAL
1
(1κ), where ˜IDEAL

1
(1κ) is defined analogously to

IDEAL0(1κ).8 Now, finally, we can invoke 1-S̃IM -security once again to argue that ˜IDEAL
1
(1κ) and

REAL1(1κ) are computationally indistinguishable. Combining the above, we have that REAL0(1κ)
and REAL1(1κ) are computationally indistinguishable, as required.

The proof that 1-SIM security implies one-message INDpost security follows in a similar manner
as above. In particular, note that in this case, we have the promise from Definition 2.6 that
(z, {f (x0)}) and (z, {f (x1)}) are statistically indistinguishable. This immediately implies that
(MPK,MSK, z, {f (x0)}) and (MPK,MSK, z, {f (x1)}) are computationally indistinguishable. The
rest of the steps of the proof follow similarly as above.

8One may note that since the simulator in our definition performs the key generation in the ideal world, we
actually require (MPK,MSK, z, {f (x0)}) and (MPK,MSK, z, {f (x1)}) to be computationally indistinguishable. This,
however, follows immediately since the key queries {f} are independent of the public key MPK.

25

	Introduction
	Our Results
	Other Applications
	Related Work
	Organization

	Functional Encryption for Randomized Functions
	Security for Functional Encryption
	Simulation Based Security
	Indistinguishability Based Security
	SIM implies IND

	Preliminaries
	Indistinguishability Obfuscation
	Puncturable Pseudorandom Functions
	Non-Interactive Witness Indistinguishable Proofs
	Commitment Schemes

	Our Construction
	Proof of Theorem 4.1
	Description of Simulator
	Indistinguishability of the Outputs

	Acknowledgements
	Completing Proof of Theorem 4.1
	Correctness of FE
	SIM security implies INDpre and INDpost security

