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Abstract. Constructing S-boxes with low differential uniformity and high nonlinearity is of car-
dinal significance in cryptography. In the present paper, we show that numerous differentially
4-uniform permutations over F22k can be constructed by composing the inverse function and cy-
cles over F22k . Two sufficient conditions are given, which ensure that the differential uniformity
of the corresponding compositions equals 4. A lower bound on nonlinearity is also given for per-
mutations constructed with the method in the present paper. Moreover, up to CCZ-equivalence, a
new differentially 4-uniform permutation with the best known nonlinearity over F22k with k odd
is constructed. For some special cycles, necessary and sufficient conditions are given such that the
corresponding compositions are differentially 4-uniform.
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1 Introduction

S(ubstitution)-boxes play an important role in iterated block ciphers since they serve as the con-
fusion part and in most cases are the only nonlinear part of round functions. In some structures
of block ciphers, such as substitution permutation structure, it is necessary for an S-box to be a
permutation to decrypt a ciphertext. In real application, S-boxes are often designed as permuta-
tions over F22m for efficiency of implementations. These boxes should possess good cryptographic
properties to resist various attacks. Therefore, the problem of constructing permutations with
good cryptographic properties over F22m is of significant importance in cryptography.

Differential uniformity and nonlinearity are two primary cryptographic properties which
should be considered firstly in the design of S-boxes. They measure the resistance of S-boxes
to two main attacks on symmetric cryptography algorithms—differential attack [1] and linear
attack [27] respectively. The definition of these properties is introduced as follows.

The differential uniformity of F (x) ∈ F2n is the smallest integer δ, such that F (x)+F (x+a) =
b has at most δ solutions for all a ∈ F∗2n and b ∈ F2n [28], and F (x) is called differentially
δ-uniform. The lower bound on differential uniformity of F (x) ∈ F2n [x] is 2. Differentially
2-uniform functions are called almost perfect nonlinear (APN). Much work has been done on
constructing APN functions [2,4,7,8,9,10,11], since they provide the best resistance to differential
attacks.

For F (x) ∈ F2n [x], u, v ∈ F2n , the Walsh transform of F (x) is defined as

λF (u, v) =
∑
x∈F2n

(−1)Tr(vF (x)+ux)

and the Walsh spectrum of F (x) is {λF (u, v) : u ∈ F2n , v ∈ F∗2n}. The nonlinearity of F (x),
which is defined as the minimum distance of the components of F (x) and all affine Boolean



Function Condition Walsh spectrum Ref.

x2
i+1 n = 2k, k odd, gcd(i, n) = 2 {0,±2k+1} [20,28]

x2
2i−2i+1 n = 2k, k odd, gcd(i, n) = 2 {0,±2k+1} [21]

x2
n−2 n = 2k {−2

n
2
+1 < a ≤ 2

n
2
+1 : 4|a} [22,28]

x2
2k+2k+1 n = 4k, k odd {0,±22k,±22k+1} [3]

n = 3k, k even, 3 - k, k/2 odd,

αx2
s+1 + α2kx2

−k+2k+s

gcd(3k, s) = 2, 3|(k + s), ⊆ {0,±2n/2,±2(n+2)/2} [5]
α is a primitive element of F2n

n = 2k, F (x) is a quadratic APN

Lu(F−1(x))|Hu permutation on F2n+1 , u ∈ F∗2n+1 , ⊆ {0,±2n/2,±2(n+2)/2} [26]
Lu(x) = F (x) + F (x+ u) + F (u),
Hu = {Lu(x) | x ∈ F2n+1}

2n−3∑
i=0

xi n = 2k, k odd {−2
n
2
+1 ≤ a ≤ 2

n
2
+1 : 4|a} [32], this article

Table 1. Differentially 4-uniform permutations with the best know nonlinearity over F22k for infinitely many k

functions on n variables, is related to the Walsh transform through the following equality

NL(F ) = 2n−1 − 1

2
max

v∈F∗2n ,u∈F2n
|λF (u, v)|.

For odd n and F (x) ∈ F2n [x], NL(F ) ≤ 2n−1 − 2
n−1
2 [16]. For even n and F (x) ∈ F2n [x], the

upper bound on the nonlinearity of F (x) is still open. The best known nonlinearity is 2n−1−2
n
2

[19]. For other cryptography properties of Boolean functions and vectorial Boolean functions,
one can see [13,14] for details.

The lower of the differential uniformity and the higher of the nonlinearity of an S-box, the
better performance it possess in cryptography. APN permutations over F22m would be the best
choice for S-boxes in cryptography. However, only one APN permutation over F26 has been
found [18], and the existence of APN permutations over F22m with m ≥ 4 remains open.

Therefore, it is appropriate to choose differentially 4-uniform permutations as S-boxes of
block ciphers in real applications. For example, the S-box of AES is affine equivalent to the
inverse function over F28 . It is also difficult to construct differentially 4-uniform permutations
with the best known nonlinearity over F22m . Table 1 list permutations over F22m with differential
uniformity 4 and nonlinearity 22m−1 − 2m for infinitely many m as far as we know, and the
drawbacks of some of these permutations can be seen in [15].

A reason for few infinite classes of permutations with good cryptographic properties is
known, which is point out by Carlet in [15], is that there are no secondary construction methods.
EA-equivalence and CCZ-equivalence can be used for constructing permutations with good
cryptographic properties, since differential uniformity and nonlinearity are invariant under these
equivalence, but permutations are not. Some works are done with this idea, see [7,18,24,25,30]
for more details.

Carlet give a powerful secondary method for constructing differentially 4-uniform permu-
tations [15]. The idea is that instead of using the field structure of F2n , to use that of F2n+1 .
A differentially 4-uniform permutation with algebraic degree n − 1 over F22k is constructed in
[15]. However, this permutation does not have the highest nonlinearity. With the above idea, it
is shown that differentially 4-uniform permutations with the best known nonlinearity over F22k

can be constructed from quadratic APN permutations over F22k+1 [26]. Some constructions are
given by using Gold functions [26].
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Qu et.al give another secondary construction of differentially 4-uniform permutations, which
is changing components of the inverse function [31]. Based on the work of characterization of
permutation polynomials of the type F1(x)+Tr(G(x)) [17], they investigate how to choose R(x),
such that the composition of x+ Tr(R(x) +R(x+ 1)) and x−1 is of differential uniformity 4.

Comparing with changing components of the inverse function, it is natural to change image
values of the inverse function directly. We have given a sufficient and necessary condition for
permutations, which are constructed by exchanging two image values of the inverse function,
have differential uniformity 4 [32]. By using this idea, new differentially 4-uniform permutations
are also constructed in [33] by applying affine transformation to the inverse function on some
subfields of F22k and maintain the image values of the inverse function unchanged for other
elements. The idea of changing image values of a known function is also used in [29] to construct
functions with optimal deficiency and ambiguity.

In the present paper, we revisit the above secondary construction method of differentially
4-uniform permutations further. We investigate the composition of the inverse function and
cycles (see definition below) over F2n , which means more image values of the inverse function are
changed. It is shown that lots of new differentially 4-uniform permutations can be constructed
via this method. Furthermore, a new differentially 4-uniform permutation with the best known
nonlinearity over F22k is also given.

The paper is organized as follows. In Sect. 2, we give a description of our construction and
introduce some preliminary results. In Sect. 3, the compositional inverse and a lower bound on
nonlinearity of permutations constructed in the present paper are given. A new differentially
4-uniform permutation with the best known nonlinearity is also given. In Sect. 4, two sufficient
conditions are given such that the general constructions are differentially 4-uniform. In Sect.
5, complete characterizations for some special cycles such that the corresponding permutations
have differential uniformity 4 are given. In Sect. 6, a short conclusion is given.

2 Preliminaries

A cycle over F2n is a permutation defined as

π(x) =

{
αi+1 x = αi
x x 6∈ {αi | 0 ≤ i ≤ m},

where αi, 0 ≤ i ≤ m are pairwise different elements of F2n . The subscripts are computed in
Zm+1 throughout this paper, which means αm+1 = α0.

A cycle defined as above is denoted by π = (α0, α1, . . . , αm). m+ 1 is called the length of π.
A Cycle with length 2 is called a transposition. We call α ∈ π if α = αi for some 0 ≤ i ≤ m. It
is easy to see that α 6∈ π if and only if π(α) = α.

Let π(x)−1 denotes the composition of the inverse function and a cycle π = (α0, α1, . . . , αm)
over F2n . Then it holds

π(x)−1 =

{
α−1
i+1 x = αi
x−1 x 6∈ {αi | 0 ≤ i ≤ m}.

It is obvious that π(x)−1 is a permutation over F2n . According to Lagrange interpolation, we
have

π(x)−1 = x−1 +
m∑
i=0

((x+ αi)
2n−1 + 1)(α−1

i + α−1
i+1)

= x−1 +
m∑
i=0

(x+ αi)
2n−1(α−1

i + α−1
i+1).
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In the present paper, we show that lots of differentially 4-uniform permutations over F22k of
the type π(x)−1 can be constructed by chosing suitable cycles over F2n .

Before we present the next result, we first introduce some equivalence relationship of func-
tions over F2n . Two functions F1(x), F2(x) ∈ F2n [x] are called EA-equivalent, if there exist affine
permutations A1(x), A2(x) ∈ F2n [x] and an affine function A3(x) ∈ F2n [x], such that

F1(x) = A1(F2(A2(x))) +A3(x).

If A3(x) = 0, then F1(x) and F2(x) are called affine equivalent. A more general framework
is introduced by considering graphs of functions [12]. Two functions F1, F2 ∈ F2n [x] are called
CCZ-equivalent if there exists an affine permutation L over F2

2n , such that L(GF1) = GF2 , where
GFi = {(x, Fi(x)) | x ∈ F2n}, i = 1, 2. For F (x) ∈ F2n [x], the extended code C̃F of F (x) is the
linear code with parity check matrix  · · · 1 · · ·

· · · x · · ·
· · · F (x) · · ·

 .
For admissible maps F1(x), F2(x) ∈ F2n [x], F1(x) and F2(x) are CCZ-equivalent if and only if
C̃F1 and C̃F2 are equivalent [6].

Then we have the following result, which simplify the choice of cycles.

Lemma 1. Suppose π = (α0, . . . , αm) is a cycle over F2n. Then the following statements hold.

1. If 0 ∈ π, then π(x)−1 is affine equivalent to π1(x)−1, where π1 is a cycle over F2n of the
type (0, 1, β1, . . . , βm−1).

2. If 0 6∈ π, then π(x)−1 is affine equivalent to π1(x)−1, where π1 is a cycle over F2n of the
type (1, β1, . . . , βm).

Proof. 1. Without loss of generality, we suppose α0 = 0 since for any 1 ≤ k ≤ m, cycles
(α0, . . . , αm) and (αk, αk+1, . . . , αk−1) are equal. When α1 = 1, the proof is already completed.
When α1 6= 1, let π1(x) = α−1

1 π(α1x). Then

π1(x) =

{ αi+1

α1
x = αi

α1

x x 6∈ { αi
α1
| 0 ≤ i ≤ m}.

Hence π1(x) = (0, 1, α2
α1
, . . . , αm

α1
) is a cycle and π1(x)−1 is affine equivalent to π(x)−1 since

π1(x)−1 = α1π(α1x)−1.

2. The proof is similar as the above proof. ut

A permutation over F24 is called optimal if both of its differential uniformity and nonlinearity
equal 4. There are exactly 7 CCZ-inequivalent optimal permutations over F24 [23]. Table 2 shows
that up to CCZ-equivalence, all optimal permutations over F24 can be generated by this method.
This is done by computer searching. Based on Lemma 1, we only need to search cycles of the
type (0, 1, ∗, . . . , ∗) and (1, ∗ . . . , ∗). We start from cycles with length 2 of the above types
and check the differential uniformity, nonlinearity and CCZ-inequivalence of the corresponding
permutations. Then we goto the case of cycles with a bigger length until all 7 classes are got.
Representative cycles are listed in Table 2, where g is a root of x4 + x+ 1 = 0.

When π is a transposition over F2n , the differential uniformity of π(x)−1 is characterized in
[32].
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cycle Gi in [23] cycle Gi in [23]

(1, g3) G4 (0, 1, g) G9

(1, g3, g6) G7 (0, 1, g7, g5) G13

(1, g, g7, g2) G0 (0, 1, g, g2, g10) G14

(1, g7, g3, g) G3

Table 2. Cycles over F24 such that π(x)−1 is an optimal permutation over F24

Theorem 1. [32] Let n = 2k be an even integer. Then the following statements hold.

1. Suppose π = (0, 1) is a transposition over F2n. Then the differential uniformity of π(x)−1

equals 4 if and only if k is odd.

2. Suppose π = (1, α) is a transposition over F2n. Then the differential uniformity of π(x)−1

equals 4 if and only if Tr(α) = Tr( 1
α) = 1.

The following result is useful in the present paper.

Lemma 2. [28] Let n = 2k be an even integer. Then for any a ∈ F∗2n and b ∈ F2n, the following
statements hold.

1. x−1 + (x+ a)−1 = b has no roots in F2n if and only if Tr( 1
ab) = 1.

2. x−1 + (x+ a)−1 = b has 2 roots in F2n if and only if ab 6= 1 and Tr( 1
ab) = 0.

3. x−1 + (x + a)−1 = b has 4 roots in F2n if and only if b = a−1. Furthermore, when b = a−1

the 4 roots of the above equation in F2n are {0, a, aω, aω2}, where ω ∈ F22 \ F2.

3 On the compositional inverse and nonlinearity of π(x)−1

We first characterize the compositional inverse and the nonlinearity of π(x)−1 in this section.
The inverse function over F2n is denoted by Inv(x) = x−1 = x2n−2.

Theorem 2. Suppose π = (α0, α1, . . . , αm) is a cycle over F2n. Then the following statements
hold.

1. The compositional inverse of π(x)−1 is π1(x)−1, where π1 = (α−1
m , α−1

m−1, . . . , α
−1
0 ) is a cycle

over F2n.

2. NL(π−1) ≥ 2n−1 − 2
n
2 − (m+ 1).

Proof. 1. Notice that

π1(x)−1 =

{
αi−1 x = α−1

i

x−1 x 6∈ π1,

and

π(x)−1 =

{
α−1
i+1 x = αi
x−1 x 6∈ π,

then we have

π(π1(x)−1)−1 =

{
π(αi−1)−1 = α−1

i x = α−1
i

π(x−1) = x x 6∈ π1,

since x−1 6∈ π when x 6∈ π1. Thus π(π1(x)−1)−1 = x.
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2. According to the definition of π(x)−1, for b ∈ F∗2n and a ∈ F2n , we have

λπ−1(a, b) =
∑

x∈F2n

(−1)Tr(bπ(x)−1+ax)

=
∑
x 6∈π

(−1)Tr(bx−1+ax) +
m∑
i=0

(−1)Tr(bα−1
i+1+aαi)

=
∑

x∈F2n

(−1)Tr(bx−1+ax) +
m∑
i=0

((−1)Tr(bα−1
i+1+aαi) − (−1)Tr(bα−1

i +aαi))

= λInv(a, b) +
m∑
i=0

(−1)Tr(aαi)((−1)Tr(bα−1
i+1) − (−1)Tr(bα−1

i )).

Therefore,

|λπ−1(a, b)| ≤ |λInv(a, b)|+ |
m∑
i=0

(−1)Tr(aαi)((−1)Tr(bα−1
i+1) − (−1)Tr(bα−1

i ))|

≤ 2
n
2

+1 +
m∑
i=0
|(−1)Tr(bα−1

i+1) − (−1)Tr(bα−1
i )|

≤ 2
n
2

+1 + 2(m+ 1),

from which we get

NL(π−1) ≥ 2n−1 − 2
n
2 − (m+ 1)

and we complete the proof. ut

The above result means that the permutations constructed by compositing the inverse func-
tion and cycles over F2n have a relative high nonlinearity when cycles are chosen with small
length. The lower bound on nonlinearity can be improved for some special cycles. Furthermore,
permutations with the best known nonlinearity over F22k can be constructed as shown in the
following result.

Theorem 3. Suppose n = 2k, π = (0, 1) is a transposition over F2n. Then π(x)−1 =
2n−3∑
i=0

xi

and its nonlinearity equals 2n−1− 2
n
2 , which is the best known nonlinearity over F2n. Moreover,

its Walsh spectrum is {−2
n
2

+1 ≤ y ≤ 2
n
2

+1 | y ≡ 0 mod 4}.

Proof. According to Lagrange interpolation, we have

π(x)−1 = x2n−2 + x2n−1 + (x+ 1)2n−1 =
2n−3∑
i=0

xi,

where x0 means 1. Suppose F (x) = π(x)−1 =
2n−3∑
i=0

xi. Then according to Theorem 2, for b ∈ F∗2n ,

a ∈ F2n , we have

λF (a, b) = λInv(a, b) +

m∑
i=0

(−1)Tr(aαi)((−1)Tr(bα−1
i+1) − (−1)Tr(bα−1

i ))

= λInv(a, b) + ((−1)Tr(b) − 1) + (−1)Tr(a)(1− (−1)Tr(b))

= λInv(a, b) + ((−1)Tr(b) − 1)(1− (−1)Tr(a))

=

{
λInv(a, b) Tr(a) = 0 or Tr(b) = 0
λInv(a, b)− 4 Tr(a) = Tr(b) = 1.

6



Note that the Walsh spectrum of x−1 is ΛInv = {−2
n
2

+1 + 4 ≤ y ≤ 2
n
2

+1 | y ≡ 0 mod 4}, then
we have

ΛF ⊆ {−2
n
2

+1 ≤ y ≤ 2
n
2

+1 | y ≡ 0 mod 4},

where ΛF is the Walsh spectrum of F (x). Notice that for b ∈ F∗2n , a ∈ F2n ,

λInv(a, b) =
∑
x∈F2n

(−1)Tr(bx−1+ax) =
∑
x∈F2n

(−1)Tr(x−1+abx) = λInv(ab, 1),

then for any α ∈ ΛInv, there exists c ∈ F2n , such that λInv(c, 1) = α. Thus

λF (c, 1) = λInv(c, 1) = α

since Tr(1) = 0 when n is even. This means ΛInv ⊆ ΛF .

At last, we prove that −2
n
2

+1 is in the Walsh spectrum of π(x)−1. Similar as above, it is
easy to see that there exists d ∈ F2n , such that

λInv(d, 1) = −2
n
2

+1 + 4.

Then it must holds d 6= 0, since x−1 is a permutation and hence λInv(0, 1) = 0. Therefore,
Tr( dx) is a balanced Boolean function. Hence |{x ∈ F2n | Tr( dx) = 0}| = 2n−1. Notice that

Tr(d · 0−1) = 0, then there exists a′ ∈ F2n with Tr(a′) = 1, such that Tr( da′ ) = 1. Then we have

λF (a′,
d

a′
) = λInv(a

′,
d

a′
)− 4 = λInv(d, 1)− 4 = −2

n
2

+1.

Therefore, we have

ΛF = {−2
n
2

+1 ≤ y ≤ 2
n
2

+1 | y ≡ 0 mod 4},

and the nonlinearity of F (x) equals 2n−1 − 2
n
2 . Then we complete the proof. ut

Based on the above results and Theorem 1, we have the following result.

Corollary 1. Suppose n = 2k, k is odd and F (x) =
2n−3∑
i=0

xi. Then the following statements

hold.

1. F (x) is an involution on F2n, which means F (F (x)) = x.

2. F (x) is a differentially 4-uniform permutation over F2n.

3. NL(F ) = 2n−1 − 2
n
2 and its Walsh spectrum is {−2

n
2

+1 ≤ y ≤ 2
n
2

+1 | y ≡ 0 mod 4}.

Remark 1. With the help of Magma, it can be checked that F (x) =
2n−3∑
i=0

xi is CCZ-inequivalent

to x−1 over F26 and F210 , since their extended codes are not equivalent. The CCZ-inequivalence
of F (x) to other differentially 4-uniform permutations with the best known nonlinearity in

Table 1 is obvious, since their extended Walsh spectrum are different. Thus F (x) =
2n−3∑
i=0

xi is a

new differentially 4-uniform permutation with the best known nonlinearity over F22k . Another

interesting property of F (x) =
2n−3∑
i=0

xi is that its Walsh spectrum is symmetric, which means

if α ∈ ΛF , then −α ∈ ΛF . However, the Walsh spectrum of the inverse function does not have
this propertity.
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4 Sufficient conditions for π(x)−1 has differential uniformity 4

Suppose a ∈ F∗2n , b ∈ F2n and π = (α0, α1, . . . , αm) is a cycle over F2n . Then we have the
following equality,

π(x)−1 + π(x+ a)−1 =


α−1
i+1 + α−1

j+1 {x, x+ a} ∩ π = {αi, αj}
α−1
i+1 + (a+ αi)

−1 {x, x+ a} ∩ π = {αi}
x−1 + (x+ a)−1 {x, x+ a} ∩ π = ∅,

(1)

which is useful for characterizing the number of roots of equation

π(x)−1 + π(x+ a)−1 = b

in F2n . Let S(a, b) = {x0 ∈ F2n | π(x0)−1 + π(x0 + a)−1 = b}, which is the set of roots of the
above equation in F2n . Then S(a, b) can be partitioned to the following three sets:

Sπ(a, b) = {x0 ∈ S(a, b) | {x0, x0 + a} ⊆ π},

Sπ/2(a, b) = {x0 ∈ S(a, b) | #({x0, x0 + a} ∩ π) = 1},

and

Sπ̄(a, b) = {x0 ∈ S(a, b) | {x0, x0 + a} ∩ π = ∅}.

It is easy to see that

S(a, b) = Sπ(a, b) ∪ Sπ/2(a, b) ∪ Sπ̄(a, b)

and Sπ(a, b), Sπ/2(a, b), Sπ̄(a, b) are pairwise disjoint. Therefore, it holds

|S(a, b)| = |Sπ(a, b)|+ |Sπ/2(a, b)|+ |Sπ̄(a, b)|, (2)

which is an elementary equality for characterizing the differential uniformity of π(x)−1.

Lemma 3. Suppose n = 2k and π = (α0, α1, . . . , αm) is a cycle over F2n. Let a ∈ F∗2n, b ∈
F2n \ {π(x)−1 + π(x+ a)−1 | x ∈ π}. Then |S(a, b)| ≤ 4. Moreover, |S(a, b)| ≤ 2 when 0 ∈ π.

Proof. Notice that b 6∈ {π(x)−1 + π(x+ a)−1 | x ∈ π}, then for 0 ≤ i ≤ m, αi and αi + a do not
satisfy equation

π(x)−1 + π(x+ a)−1 = b.

Thus |Sπ(a, b)| = |Sπ/2(a, b)| = 0 and

|S(a, b)| = |Sπ(a, b)|+ |Sπ/2(a, b)|+ |Sπ̄(a, b)| = |Sπ̄(a, b)| ≤ 4,

since

x−1 + (x+ a)−1 = b

has at most 4 roots in F2n according to Lemma 2.

Moreover, according to Lemma 2, the above equation has 4 roots if and only if ab = 1.
Furthermore, the 4 roots are 0, a, aω, aω2, where ω ∈ F22 \ F2. Thus when 0 ∈ π, it holds that
0 is not a root of

π(x)−1 + π(x+ a)−1 = a−1,

since a−1 6∈ {π(x)−1 +π(x+a)−1 | x ∈ π}. This means |S(a, b)| ≤ 2 when 0 ∈ π and we complete
the proof. ut
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Lemma 3 means that if equation π(x)−1 + π(x + a)−1 = b has more than 4 roots in F22k ,
then b = π(αi)

−1 + π(αi + a)−1 for some 0 ≤ i ≤ m. Let bi(a) denotes

π(αi)
−1 + π(αi + a)−1

for a ∈ F∗2n and 0 ≤ i ≤ m. Then it holds

bi(a) =

{
α−1
i+1 + α−1

j+1 αi + a = αj ∈ π
α−1
i+1 + (a+ αi)

−1 αi + a 6∈ π. (3)

If π is chosen such that the number of roots of

π(x)−1 + π(x+ a)−1 = bi(a)

in F2n is less than or equals to 4 for all a ∈ F∗2n and 0 ≤ i ≤ m, then the differential uniformity
of π(x)−1 is not large than 4.

Lemma 4. Suppose π = (α0, α1, . . . , αn) is a cycle over F2n with the property that for 0 ≤ i <
j < l ≤ m, the system of equations{

x2 + (αi + αj)x = (αi + αj)(α
−1
i+1 + α−1

j+1)−1 + αiαj
x2 + (αi + αl)x = (αi + αl)(α

−1
i+1 + α−1

l+1)−1 + αiαl

does not has solutions in F2n. Then the following statements hold.

1. If 0 6∈ π and for 0 ≤ i < j ≤ m, α−1
i+1 + α−1

j+1 6= (αi + αj)
−1, then |Sπ/2(a, b)| ≤ 4 for

a ∈ F∗2n , b ∈ F2n.
2. If 0 ∈ π, then |Sπ/2(a, b)| ≤ 4 for a ∈ F∗2n , b ∈ F2n.

Proof. 1. Assume there exist a ∈ F∗2n , b ∈ F2n , such that |Sπ/2(a, b)| ≥ 6. Then there exist
αi1 , αi2 , αi3 ∈ π, such that αij + a 6∈ π for j = 1, 2, 3, and bi1(a) = bi2(a), bi1(a) = bi3(a).
Without loss of generality, we suppose 0 ≤ i1 < i2 < i3 ≤ m. Then according to equality (3),
we have {

α−1
i1+1 + (αi1 + a)−1 = α−1

i2+1 + (αi2 + a)−1

α−1
i1+1 + (αi1 + a)−1 = α−1

i3+1 + (αi3 + a)−1.

Notice that αi1 6= a, otherwise

α−1
i1+1 + α−1

i2+1 = (αi1 + αi2)−1,

which contradicts to α−1
i+1 + α−1

j+1 6= (αi + αj)
−1 for 0 ≤ i < j ≤ m. Similarly, we have αi2 6= a

and αi3 6= a. Then
α−1
i1+1 + (αi1 + a)−1 = α−1

i2+1 + (αi2 + a)−1

is equivalent to

α−1
i1+1 + α−1

i2+1 =
αi1 + αi2

(αi1 + a)(αi2 + a)
=

αi1 + αi2
a2 + (αi1 + αi2)a+ αi1αi2

.

Hence a satisfies equation

x2 + (αi1 + αi2)x = (αi1 + αi2)(α−1
i1+1 + α−1

i2+1)−1 + αi1αi2 ,

since αi1+1 6= αi2+1. Therefore, a is a solution of the system of equations{
x2 + (αi1 + αi2)x = (αi1 + αi2)(α−1

i1+1 + α−1
i2+1)−1 + αi1αi2

x2 + (αi1 + αi3)x = (αi1 + αi3)(α−1
i1+1 + α−1

i3+1)−1 + αi1αi3 ,
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which is a contradiction.

2. Assume there exist a ∈ F∗2n , b ∈ F2n , such that |Sπ/2(a, b)| ≥ 6. Then there exist
αi1 , αi2 , αi3 ∈ π, such that αij + a 6∈ π for j = 1, 2, 3, and bi1(a) = bi2(a), bi1(a) = bi3(a).
It is obvious that αij + a 6= 0 for j = 1, 2, 3, since 0 ∈ π. Thus the proof is same as the proof of
statement 1. ut

Theorem 4. Let n = 2k, π = (α0, α1, . . . , αm) be a cycle over F2n with 0 ∈ π and the nonzero
elements of π are linear independent over F2. Then π(x)−1 is a differentially 4-uniform permu-
tation over F2n if the following conditions are satisfied:

1. For 0 ≤ i < j < l ≤ m, it holds (α−1
i+1 + α−1

j+1 + α−1
l+1) 6= (αi + αj + αl)

−1.

2. For 0 ≤ i < j < l ≤ m, the system of equations{
x2 + (αi + αj)x = (αi + αj)(α

−1
i+1 + α−1

j+1)−1 + αiαj
x2 + (αi + αl)x = (αi + αl)(α

−1
i+1 + α−1

l+1)−1 + αiαl

does not has solutions in F2n.

3. For 0 ≤ i < j ≤ m, if a ∈ F2n is a solution of

x2 + (αi + αj)x = (αi + αj)(α
−1
i+1 + α−1

j+1)−1 + αiαj ,

with a+ αi 6∈ π and a+ αj 6∈ π, then Tr( 1
abi(a)) = 1, where bi(a) = α−1

i+1 + (a+ αi)
−1.

Proof. For a ∈ F∗2n and 0 ≤ i ≤ m, denote bi(a) = π(αi)
−1 + π(a+ αi)

−1. According to Lemma
3, we only need to prove that for a ∈ F∗2n and 0 ≤ i ≤ m, the number of solutions of equation

π(x)−1 + π(x+ a)−1 = bi(a)

in F2n is less than or equals to 4. According to equality (2), this is equivalent to prove

|S(a, bi(a))| = |Sπ(a, bi(a))|+ |Sπ/2(a, bi(a))|+ |Sπ̄(a, bi(a))| ≤ 4.

According to Lemma 2, it is easy to see that

|Sπ̄(a, bi(a))| ≤ 2

for a ∈ F∗2n , 0 ≤ i ≤ m, since 0 ∈ π.

Notice that π = (α0, . . . , αm) is a cycle over F2n and the nonzero elements of π are linear
independent over F2, then

αi1 + αj1 6= αi2 + αj2

for 0 ≤ i1, i2, j1, j2 ≤ m with {i1, j1} 6= {i2, j2}. This means

|Sπ(a, bi(a))| ≤ 2

for a ∈ F∗2n and 0 ≤ i ≤ m. Moreover, for 0 ≤ i ≤ m, a ∈ F∗2n ,

|Sπ(a, bi(a))| = 2

if and only if a = αi +αj for some 0 ≤ j ≤ m with j 6= i. Then for a ∈ F∗2n , 0 ≤ i ≤ m, we have
the following two cases:
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Case 1. |Sπ(a, bi(a))| = 2. Then a = αi + αj for some 0 ≤ j ≤ m with j 6= i. First, we prove
that

Sπ/2(a, bi(a)) = 0.

Otherwise, there exists 0 ≤ l ≤ m with l 6= i, l 6= j, such that αl + αi + αj 6∈ π and

α−1
i+1 + α−1

j+1 = bi(a) = bl(a) = α−1
l+1 + (αl + αi + αj)

−1.

This contradicts with Condition 1. Hence

|S(a, bi(a))| = |Sπ(a, bi(a))|+ |Sπ/2(a, bi(a))|+ |Sπ̄(a, bi(a))| ≤ 2 + 0 + 2 = 4

in the case.

Case 2. |Sπ(a, bi(a))| = 0. According to Lemma 4, we have |Sπ/2(a, bi(a))| ≤ 4. Next, we prove
that

Sπ̄(a, bi(a)) = 0

when |Sπ/2(a, bi(a))| = 4. Otherwise, there exists 0 < j ≤ m with j 6= i, such that
αi + a 6∈ π, αj + a 6∈ π,

α−1
i+1 + (αi + a)−1 = α−1

j+1 + (αj + a)−1

and

x−1 + (x+ a)−1 = α−1
i+1 + (αi + a)−1

has solutions in F2n . According to Condition 1 of Lemma 2, the above equation has
solutions in F2n is equivalent to Tr( 1

abi(a)) = 0. Hence a satisfies

x2 + (αi + αj)x = (αi + αj)(α
−1
i+1 + α−1

j+1)−1 + αiαj ,

αi + a, αj + a 6∈ π, and Tr( 1
abi(a)) = 0, which contradicts with Condition 3. Therefore,

it holds

S(a, bi(a)) = |Sπ(a, bi(a))|+ |Sπ/2(a, bi(a))|+ |Sπ̄(a, bi(a))|

≤
{

0 + 4 + 0 Sπ/2(a, bi(a)) = 4

0 + 2 + 2 Sπ/2(a, bi(a)) = 2

≤ 4

in the case.

Then we complete the proof. ut

Corollary 2. Let n = 2k, π = (α0, α1, . . . , αm) be a cycle over F2n with 0 ∈ π the nonzero
elements of π are linear independent over F2. Then π(x)−1 is a differentially 4-uniform permu-
tation over F2n if the following conditions are satisfied:

1. For 0 ≤ i < j < l ≤ m, it holds (α−1
i+1 + α−1

j+1 + α−1
l+1) 6= (αi + αj + αl)

−1.

2. For 0 ≤ i < j ≤ m, it holds Tr((αi + αj)
−1(α−1

i+1 + α−1
j+1)−1 +

αiαj

(αi+αj)2
) = 1.

Proof. Similarly as the proof of Theorem 4, for a ∈ F∗2n , b = bi(a), 0 ≤ i ≤ m, we have

|Sπ(a, b)| ≤ 2.
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According to Condition 1, if |Sπ(a, b)| = 2, then

|Sπ/2(a, b)| = 0.

According to Condition 2,

|Sπ/2(a, b)| ≤ 2.

Therefore,

|S(a, b)| = |Sπ(a, b)|+ |Sπ/2(a, b)|+ |Sπ̄(a, b)|

≤
{

2 + 0 + 2 = 4 |Sπ(a, b)| = 2
0 + 2 + 2 = 4 |Sπ(a, b)| = 0

≤ 4.

Then we complete the proof. ut

When 0 6∈ π, we have the following results.

Theorem 5. Let n = 2k, π = (α0, α1, . . . , αm) be a cycle over F2n with 0 6∈ π and the elements
of π are linear independent over F2. Then π(x)−1 is a differentially 4-uniform permutation over
F2n if the following conditions are satisfied:

1. For 0 ≤ i < j < l ≤ m, it holds (α−1
i+1 + α−1

j+1 + α−1
l+1) 6= (αi + αj + αl)

−1.

2. For 0 ≤ i < j < l ≤ m, the system of equations{
x2 + (αi + αj)x = (αi + αj)(α

−1
i+1 + α−1

j+1)−1 + αiαj
x2 + (αi + αl)x = (αi + αl)(α

−1
i+1 + α−1

l+1)−1 + αiαl

does not has solutions in F2n.

3. For 0 ≤ i < j ≤ m, if a ∈ F2n is a solution of

x2 + (αi + αj)x = (αi + αj)(α
−1
i+1 + α−1

j+1)−1 + αiαj ,

with a+ αi 6∈ π and a+ αj 6∈ π, then Tr( 1
abi(a)) = 1, where bi(a) = α−1

i+1 + (a+ αi)
−1.

4. For 0 ≤ i < j ≤ m, it holds (α−1
i+1 + α−1

j+1) 6= (αi + αj)
−1.

5. For 0 ≤ i ≤ m, it holds Tr(αi+1

αi
) = 1.

Proof. According to Lemma 3 and equality (2), we only need to prove that for a ∈ F∗2n and
0 ≤ i ≤ m,

|S(a, bi(a))| = |Sπ(a, bi(a))|+ |Sπ/2(a, bi(a))|+ |Sπ̄(a, bi(a))| ≤ 4,

where bi(a) = π(αi)
−1 + π(a+ αi)

−1.

First, we claim that |Sπ̄(a, bi(a))| ≤ 2 for a ∈ F∗2n , 0 ≤ i ≤ m. Otherwise, there exist a ∈ F∗2n
and some 0 ≤ i ≤ m, such that

a−1 = bi(a) = α−1
i+1 + π(αi + a)−1,

since according to Lemma 2, for b ∈ F2n , |Sπ̄(a, b)| ≤ 4 and ab = 1 if |Sπ̄(a, b)| = 4. If
αi + a = αj ∈ π for some 0 ≤ j ≤ m with j 6= i, then according to equality (3),

(αi + αj)
−1 = a−1 = α−1

i+1 + α−1
j+1,
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which contradicts with Condition 4. If αi + a 6∈ π, then according to equality (3),

a−1 = α−1
i+1 + (a+ αi)

−1.

Notice that a 6= αi, since according to the definition of cycles over F2n , αi 6= αi+1. Thus the
above equality is equivalent to

a2 + αia = αi+1αi.

Hence
Tr(

αi+1

αi
) = Tr((

a

αi
)2 +

a

αi
) = 0,

which contradicts with Condition 5. Then the claim holds.
By a similar reason as the proof of Theorem 4, for a ∈ F∗2n , 0 ≤ i ≤ m, the following results

also hold:

– According to Condition 1 and π is a cycle with 0 6∈ π and the elements of π are linear
independent over F2, we have

|Sπ(a, bi(a))| ≤ 2

and
|Sπ/2(a, bi(a))| = 0

when |Sπ(a, bi(a))| = 2.
– According to Condition 2, Condition 4 and Lemma 4, we have

|Sπ/2(a, bi(a))| ≤ 4.

– According to Condition 3, we have

|Sπ̄(a, bi(a))| = 0

when |Sπ/2(a, bi(a))| = 4.

Therefore, for a ∈ F∗2n , 0 ≤ i ≤ m, we have

|S(a, bi(a))| = |Sπ(a, bi(a))|+ |Sπ/2(a, bi(a))|+ |Sπ̄(a, bi(a))|

≤


2 + 0 + 2, |Sπ(a, bi(a))| = 2
0 + 4 + 0, |Sπ(a, bi(a))| = 0 and |Sπ/2(a, bi(a))| = 4

0 + 2 + 2, |Sπ(a, bi(a))| = 0 and |Sπ/2(a, bi(a))| = 2

≤ 4.

Then we complete the proof. ut

Similar as Corollary 2, we have the following result and we omit the proof.

Corollary 3. Let n = 2k, π = (α0, α1, . . . , αm) be a cycle permutation over F2n with 0 6∈ π
and the elements of π are linear independent over F2. Then π(x)−1 is a differentially 4-uniform
permutation over F2n if the following conditions are satisfied:

1. For 0 ≤ i < j < l ≤ m, it holds (α−1
i+1 + α−1

j+1 + α−1
l+1) 6= (αi + αj + αl)

−1.

2. For 0 ≤ i < j ≤ m, it holds (α−1
i+1 + α−1

j+1) 6= (αi + αj)
−1.

3. For 0 ≤ i ≤ m, it holds Tr(αi+1

αi
) = 1.

4. For 0 ≤ i < j ≤ m, it holds Tr(
δi+1,j+1+δi,j

αi+αj
) = 1, where δi,j =

αiαj

αi+αj
.

The conditions of Theorem 4, Corollary 2, Theorem 5 and Corollary 3 can be satisfied by
lots of elements in F2n . With the help of Magma, we list some experiment results in Table 3,
where l means the length of π. There are too many cycles over F210 satisfy the conditions of
Theorem 5 and Corollary 3, we just test a small part of those cycles due to our computational
restriction. That is why we use the symbol “≥” in the last column of table 3.
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n = 6 n = 8 n = 10
l = 3 l = 4 l = 5 l = 3 l = 4 l = 3

Theorem 4 3 14 245 12 293 33
Corollary 2 2 3 30 9 64 24
Theorem 5 7 19 89 45 1025 ≥ 790
Corollary 3 3 2 2 26 276 ≥ 281

Total 377 1375 ≥ 823

Table 3. Number of CCZ-inequivalence permutations constructed from above results

5 Some special cycles and corresponding permutations

In this section, we investigate the case of some special cycles with length 3. According to
Theorem 2, all permutations constructed in this section have nonlinearity not less than 2n−1 −
2

n
2 − 3, which is very close to the best known nonlinearity over F2n for even n.

Theorem 6. Suppose n = 2k, γ ∈ F22 \ F2, π = (0, 1, γ) is a cycle over F2n. Then π(x)−1 is a
differentially 4-uniform permutation over F2n if and only if k is odd.

Proof. “⇒” Assume k is even. Firstly, note that γ2 + γ = 1, since γ ∈ F22 \ F2. Then it can be
checked that 0, 1, γ, γ + 1 satisfy equation

π(x)−1 + π(x+ 1)−1 = (γ + 1)−1.

Furthermore, according to Lemma 2, equation x−1 + (x + 1)−1 = (γ + 1)−1 has two roots x0

and x0 + 1 in F2n , since

Tr(γ + 1) = Tr(γ) = Tr2/1(γTrn/2(1)) = 0

when k is even. It is easy to check that {x0, x0 + 1} ∩ π = ∅, then according to equality (1),
x0, x0 + 1 also satisfy

π(x)−1 + π(x+ 1)−1 = (γ + 1)−1.

Hence the differential uniformity of π(x)−1 is large than or equals to 6, since {x0, x0 + 1} ∩
{0, 1, γ, γ + 1} = ∅. This is a contradiction since the differential uniformity of π(x)−1 is 4.

“⇐” Suppose k is odd. We need to prove that the differential uniformity of π(x)−1 equals
4. Let α0 = 0, α1 = 1 and α2 = γ. Then according to Lemma 3 and equality (2), we only need
to prove that for a ∈ F∗2n , b = bi(a) = π(αi)

−1 + π(αi + a)−1, i = 0, 1, 2, it holds

|S(a, b)| = |Sπ(a, b)|+ |Sπ/2(a, b)|+ |Sπ̄(a, b)| ≤ 4.

First, we have
|Sπ(a, b)| ≤ 2,

since π = (0, 1, γ) is a cycle with length 3. According to Lemma 2, we also have

|Sπ̄(a, b)| ≤ 2,

since 0 ∈ π.
We claim that it also holds |Sπ/2(a, b)| ≤ 2. Otherwise, there exists a ∈ F∗2n , such that

a+ αi 6∈ π, a+ αj 6∈ π, and bi(a) = bj(a) for some 0 ≤ i < j ≤ 2. According to equality (3), we
have

α−1
i+1 + (a+ αi)

−1 = bi(a) = bj(a) = α−1
j+1 + (a+ αj)

−1,
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which is equivalent to

(
a

αi + αj
)2 +

a

αi + αj
= (αi + αj)

−1(α−1
i+1 + α−1

j+1)−1 +
αiαj

α2
i + α2

j

,

since a+ αi 6∈ π, a+ αj 6∈ π and αi 6= αj . Let di,j denotes the formula in the right hand of the
above equality. Then the above equality implies Tr(di,j) = 0. However, it can be checked that

Tr(d0,1) = Tr((1 + γ−1)−1) = Tr(γ + 1) = 1,

Tr(d0,2) = Tr(γ−1) = Tr(γ + 1) = 1,

and

Tr(d1,2) = Tr((γ + 1)−1γ +
γ

γ2 + 1
) = Tr(γ2) = 1,

since

Tr(γ + 1) = Tr(γ) = Tr2/1(γTrn/2(1)) = γ2 + γ = 1

when k is odd. The contradiction means the claim holds.

At last, we prove that |Sπ̄(a, b)| = 0 when |Sπ(a, b)| = 2. Suppose |Sπ(a, b)| = 2. Then
a = αi + αj for some 0 ≤ i < j ≤ 2 and b = π(αi)

−1 + π(αi + a)−1 = α−1
i+1 + α−1

j+1. Let

ei,j = (αi + αj)(α
−1
i+1 + α−1

j+1). Then it can be checked that

Tr(e−1
0,1) = Tr(

1

1 + γ−1
) = Tr(γ + 1) = 1,

Tr(e−1
0,2) = Tr(

1

γ
) = Tr(γ + 1) = 1,

and

Tr(e−1
1,2) = Tr(

γ

1 + γ
) = Tr(γ2) = 1.

Then we have

|Sπ̄(a, b)| = 0,

since x−1 + (x+ a)−1 = b has no roots in F2n according to Lemma 2.

Therefore, it holds

|S(a, b)| = |Sπ(a, b)|+ |Sπ/2(a, b)|+ |Sπ̄(a, b)|

≤
{

2 + 2 + 0 |Sπ(a, b)| = 2
0 + 2 + 2 |Sπ(a, b)| = 0

≤ 4

and the proof is completed. ut

Similar as the proof of Theorem 6, the following results can also be proved.

Corollary 4. Suppose n = 2k, γ ∈ F22 \ F2. Then for cycle π = (1, γ, γ2), π(x)−1 is a differ-
entially 4-uniform permutations over F2n if and only if k is odd.

Corollary 5. Suppose γ ∈ F22k \ F2, π = (0, 1, γ) is a cycle over F2n. If Tr( 1
γ ) = Tr( 1

γ+1) = 1,

then π(x)−1 is a differentially 4-uniform permutation over F22k .

15



Proof. When γ 6∈ F22 , it holds 1 + γ−1 6= (1 + γ)−1, which means Condition 1 of Corollary 2
is satisfied. Moreover, it can be checked that Condition 2 of Corollary 2 is also satisfied since
Tr( 1

γ ) = Tr( 1
γ+1) = 1. Then the result follows from Corollary 2.

When γ ∈ F22 \ F2, the results follows from Theorem 6, since for γ ∈ F22 \ F2, Tr(γ) = 1 if
and only if k is odd. ut

Next, we give a complete characterization of cycles of the type π = (0, 1, γ), where γ ∈ F2n ,
such that π(x)−1 is a differentially 4-uniform permutation.

Theorem 7. Suppose n = 2k, γ ∈ F2n \F22 and π = (0, 1, γ) is a cycle over F2n. Then π(x)−1

is a differentially 4-uniform permutation over F22k if and only if γ 6∈ { i2+i+1
i4+i+1

, i4+i2

i2+i+1
| i ∈ F22k}.

Proof. Let α0 = 0, α1 = 1, α2 = γ, bi(a) = π(αi)
−1 + π(αi + a)−1, i = 0, 1, 2 and

S = { i
2 + i+ 1

i4 + i+ 1
,
i4 + i2

i2 + i+ 1
| i ∈ F22k}.

“⇐” Firstly, it should be noticed that 1, γ are linear independent over F2, and Condition 1
of Theorem 4 is satisfied since 1 + γ−1 6= (γ + 1)−1 for γ 6∈ F22 .

Secondly, Condition 2 of Theorem 4 holds when γ 6∈ S. Let i = 0, j = 1, l = 2. Then the
system of equations in Condition 2 of Theorem 4 becomes{

x2 + x = (1 + γ−1)−1

x2 + γx = γ.

Adding two equations we get

x =
γ2

γ2 + 1
,

and it is the solution of the above system of equations if and only if

γ = x2 + γx =
γ4

γ4 + 1
+

γ3

γ2 + 1
=
γ5 + γ4 + γ3

γ4 + 1
,

which is equivalent to γ3 + γ2 + 1 = 0. Notice that γ 6∈ F22 , then γ2 + γ + 1 6= 0 and

γ4 + γ2

γ2 + γ + 1
=
γ3 + γ2 + γ

γ2 + γ + 1
= γ,

which means γ ∈ S.
Thirdly, we prove that Condition 3 of Theorem 4 holds when γ 6∈ S. For 0 ≤ i < j ≤ 2, let

Ai,j = {αi + α : α ∈ π} ∪ {αj + α : α ∈ π},

Si,j = {a ∈ F2n \Ai,j : a2 + (αi + αj)a = (αi + αj)(α
−1
i+1 + α−1

j+1)−1 + αiαj},

and
Γi,j = {γ ∈ F2n : Si,j 6= ∅ and Tr((abi(a))−1) = 0 for some a ∈ Si,j},

where bi(a) = α−1
i+1 + (a+ αi)

−1. Then we only need to prove that

S = Γ0,1 ∪ Γ0,2 ∪ Γ1,2.

It is easy to see that
A0,1 = A0,2 = A1,2 = {0, 1, γ, γ + 1}.

Let A = {0, 1, γ, γ + 1}. Then we characterize Γi,j for 0 ≤ i < j ≤ 2 as follows.

16



Case 1. i = 0, j = 1. Then and a ∈ S0,1 if and only if a 6∈ A and

a2 + a = (1 + γ−1)−1 =
γ

γ + 1
,

from which we get γ = a2+a
a2+a+1

. Note that γ 6∈ F22 , then it can be checked easily that

for x ∈ A, it holds x2 + x 6= γ
γ+1 . Thus,

S0,1 =

{
∅ Tr( γ

γ+1) = 1

{a, a+ 1} Tr( γ
γ+1) = 0 and γ

γ+1 = a2 + a,

Note that Tr( 1
ab0(a)) = Tr( 1

a(1+a−1)
) = Tr( 1

a+1), then Tr( 1
ab0(a)) = 0 if and only if there

exists i ∈ F2n such that 1
a+1 = i+ i2. Therefore, a = 1

i+i2
+ 1 and

γ =
a2 + a

a2 + a+ 1
=
i2 + i+ 1

i4 + i+ 1
.

Similarly, it can be proved that Tr( 1
(a+1)b0(a+1)) = 0 if and only if there exists i ∈ F2n

such that γ = i2+i+1
i4+i+1

. Thus

Γ0,1 = { i
2 + i+ 1

i4 + i+ 1
| i ∈ F2n}.

Case 2. i = 0, j = 2. Then a ∈ S0,2 if and only if a 6∈ A and

a2 + γa = γ,

from which we get 1
γ = 1

a+ 1
a2

. It also can be checked that for x ∈ A, it holds x2+γx 6= γ
since γ 6∈ F22 . Thus

S0,2 =

{
∅ Tr( 1

γ ) = 1

{1
c ,

1
c+1} Tr( 1

γ ) = 0 and 1
γ = c2 + c.

Note that Tr( 1
c−1b0(c−1)

) = Tr( c
(1+(c−1)−1)

) = Tr( c
c+1) = Tr( 1

c+1), then Tr( 1
c−1b0(c−1)

) =

0 if and only if there exists i ∈ F2n such that 1
c+1 = i2 + i. Therefore, c = 1

i2+i
+ 1 and

γ =
1

c+ c2
=

i4 + i2

i2 + i+ 1
.

Similarly, it can be proved that Tr( 1
(c+1)−1b0((c+1)−1)

) = 0 if and only if there exists

i ∈ F2n such that γ = i4+i2

i2+i+1
. Thus

Γ02 = { i4 + i2

i2 + i+ 1
| i ∈ F2n}.

Case 3. i = 1, j = 2. Then a ∈ S1,2 if and only if a 6∈ A and

a2 + (γ + 1)a = γ2,

from which we get ( a
γ+1)2 + a

γ+1 = ( γ
γ+1)2. It also can be checked that for x ∈ A, it

holds x2 + (γ + 1)x 6= γ2 since γ 6∈ F22 . Thus

S12 =

{
∅ Tr( γ

γ+1) = 1

{(γ + 1)c2, (γ + 1)(c2 + 1)} Tr( γ
γ+1) = 0 and γ

γ+1 = c2 + c.
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Note that for a ∈ S1,2, b1(a) = b2(a). Let a = (γ + 1)c2. Then

Tr(
1

ab1(a)
) = Tr(

1

ab2(a)
) = Tr(

1

a(a+ γ)−1
) = Tr(

γ

a
) = Tr(

γ

(γ + 1)c2
) = Tr(

c2 + c

c2
) = Tr(

1

c
).

Hence Tr( 1
ab2(a)) = 0 if and only if there exists i ∈ F2n such that 1

c = i+ i2 and

γ =
c2 + c

c2 + c+ 1
=
i2 + i+ 1

i4 + i+ 1
.

Similarly, it can be proved that when a = (γ + 1)(c2 + 1), Tr( 1
ab1(a)) = 0 if and only if

there exists i ∈ F2n , such that γ = i2+i+1
i4+i+1

. Thus

Γ1,2 = { i
2 + i+ 1

i4 + i+ 1
| i ∈ F2n} = Γ0,1.

Therefore, it holds S = Γ0,1 ∪ Γ0,2 ∪ Γ1,2. Hence when γ ∈ F2n \ F22 and γ 6∈ S, π(x)−1 is a
differentially 4-uniform permutation over F2n according to Theorem 4.

“⇒” Assume γ ∈ S \ F22 , then there exists i ∈ F2n such that γ = i2+i+1
i4+i+1

or γ = i4+i2

i2+i+1
.

We investigate the case of γ = i2+i+1
i4+i+1

firstly. Let a = 1
i2+i

+1. We will show that |S(a, b0(a))| ≥
6. First, it should be noticed that i 6∈ F22 and i4 + i+ 1 6= 0 since γ 6∈ F22 .

Let A = {0, 1, γ, γ + 1}. Then we have a 6∈ A. Otherwise, without loss of generality, we
assume that

i2 + i+ 1

i2 + i
= a = γ =

i2 + i+ 1

i4 + i+ 1
.

Notice that i 6∈ F22 , then i2 + i+ 1 6= 0. Thus the above equality is equivalent to

i2 + i = i4 + i+ 1,

which is equivalent to i2 + i+ 1 = 0. This contradicts with i 6∈ F22 . The cases of other elements
in A do not equal a can be proved similarly. Hence a 6∈ π and a + 1 6∈ π. Then according to
equality (3), we have

b0(a) = 1 + (
1

i2 + i
+ 1)−1 =

i4 + i+ 1

i2 + i+ 1
+ (i2 + i) = b1(a).

According to equality (1), 0, a, 1, a+ 1 satisfy equation

π(x)−1 + π(x+ a)−1 = b0(a),

which means |Sπ/2(a, b0(a))| ≥ 4. Moreover, we also have

Tr(
1

ab0(a)
) = Tr(((

1

i2 + i
+ 1)

1

i2 + i+ 1
)−1) = Tr(i2 + i) = 0,

then according to Lemma 2,

x−1 + (x+ a)−1 = b0(a)

has two roots x0, x0 + a in F2n . Next, we check that

{x0, x0 + a} ∩ π = ∅.
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Note that b0(a) = 1 + a−1, thus x0 6= 0 and x0 6= 1. If x0 = γ, then γ−1 + (γ + a)−1 = 1 + a−1

is equivalent to

(
a

γ
)2 +

a

γ
=

1

γ + 1
.

Note that a
γ = i4+i+1

i2+i
, γ + 1 = i4+i2

i4+i+1
, and i4 + i+ 1 6= 0, then the above equality is equivalent

to i2 + i = 0, which is a contradiction since i 6∈ F22 . It can be checked that x0 6= a + αi for
0 ≤ i ≤ 2 similarly.

Then according to equality (1), x0, x0 + a also satisfy equation

π(x)−1 + π(x+ a)−1 = b0(a).

Therefore,

|S(a, b0(a))| = |Sπ(a, b0(a))|+ |Sπ/2(a, b0(a))|+ |Sπ̄(a, b0(a))| ≥ 0 + 4 + 2 = 6.

This is a contradiction, since the differential uniformity of π(x)−1 is 4.

The case of γ = i4+i2

i2+i+1
is similar as above. Let a = i2+i

i2+i+1
. Then it is easy to see that a 6∈ A,

b0(a) = b2(a) and Tr( 1
ab0(a)) = 0. Similarly as above, it can be checked that {x0, x0 +a}∩π = ∅,

where x0, x0+a are two roots of equation x−1+(x+a)−1 = b0(a) in F2n . Hence |S(a, b0(a))| ≥ 6,
which is a contradiction.

Then we complete the proof. ut

Proposition 1. Let n = 2k, γ ∈ F22 \ F2 and S = { i2+i+1
i4+i+1

, i4+i2

i2+i+1
| i ∈ F22k}. Then γ ∈ S if

and only if k can be divided by 4.

Proof. Note that γ ∈ F22 \ F2, then γ2 + γ + 1 = 0. γ ∈ S if and only if there exists i ∈ F2n ,

such that γ = i2+i+1
i4+i+1

or γ = i4+i2

i2+i+1
. Let j = i2 + i. Then

γ =
i2 + i+ 1

i4 + i+ 1
=

j + 1

j2 + j + 1

is equivalent to

0 = j2 +
γ + 1

γ
j +

γ + 1

γ
= j2 + γj + γ,

since γ2 + γ + 1 = 0. Similar, γ = i4+i2

i2+i+1
= j2

j+1 is also equivalent to the above equality.

Then γ ∈ S if and only if there exists j ∈ F2n with Tr(j) = 0, such that

j2 + γj + γ = 0,

which means j is a root of equation

(
x

γ
)2 +

x

γ
+

1

γ
= 0

in F2n . Note that for γ ∈ F22 \ F2, it holds

Tr(γ) = Tr2/1(γTrn/2(1)) =

{
0 k even
1 k odd.
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Then equation (xγ )2 + x
γ + 1

γ = 0 has solutions in F2n if and only if k is even. When k is even,

there exists d1 ∈ F2n , such that 1
γ = γ + 1 = d1 + d2

1. Hence the solutions of the above equation

are d1γ and d1γ + γ. Note that γ + γ2 = 1, then d4
1 + d1 = 1 and

Tr(d1γ + γ) = Tr(d1γ) =
2k−1∑
i=0

(d1γ)2i

=
k−1∑
i=0

(d1γ)22i +
k−1∑
i=0

(d1γ)22i+1

=

k
2
−1∑
i=0

(d1γ + (d1γ)4)24i +

k
2
−1∑
i=0

(d1γ + (d1γ)4)24i+1

=

k
2
−1∑
i=0

(γ)24i +

k
2
−1∑
i=0

(γ)24i+1

=

k
2
−1∑
i=0

(γ2 + γ)24i

= k
2 mod 2.

Thus there exists j ∈ F2n with Tr(j) = 0, such that j2 + γj + γ = 0 if and only if k is divided
by 4. Then we complete the proof. ut

Base on Theorem 6, Theorem 7 and Proposition 1, we have the following result.

Corollary 6. Suppose n = 2k, γ ∈ F2n \ F2, π = (0, 1, γ) is a cycle over F2n. Let S =

{ i2+i+1
i4+i+1

, i4+i2

i2+i+1
| i ∈ F22k}. Then the following statements hold.

1. If k is odd or k can be divided by 4, then the differential uniformity of π(x)−1 equals 4 if
and only if γ 6∈ S.

2. If k can be divided by 2 but not 4, then the differential uniformity of π(x)−1 equals 4 if and
only if γ 6∈ (S ∪ F22).

At the end of this section, we characterize cycles of the type π = (1, γ, γ + 1), such that
π(x)−1 is of differential uniformity 4.

Theorem 8. Suppose n = 2k, γ ∈ F2n \ F2 and π = (1, γ, γ + 1) is a cycle over F2n. Then the
differential uniformity of π(x)−1 is 4 if and only if Tr(γ) = Tr( 1

γ ) = Tr( 1
γ+1) = 1.

Proof. The case of γ ∈ F22 \F2 follows from Corollary 4, since for γ ∈ F22 \F2, Tr(γ) = 1 if and
only if k is odd. Thus we suppose γ ∈ F2n \ F22 hereafter in the proof.

“⇒” Let α0 = 1, α1 = γ, α2 = γ + 1. Note that Tr(α2
α1

) = Tr(γ+1
γ ) = Tr( 1

γ ), then we only

need to prove that Tr(αi+1

αi
) = 1 for 0 ≤ i ≤ 2. Assume there exists 0 ≤ i ≤ 2, such that

Tr(αi+1

αi
) = 0. Then equation

(
x

αi
)2 +

x

αi
=
αi+1

αi

has 2 roots in F2n , which we denote by a0 and a0 + αi respectively. It should be noticed that 0
is not a solution of the above equation since αi 6= 0 for 0 ≤ i ≤ 2, then a0 6= 0 and a0 + αi 6= 0.
We are going to show that there exists a ∈ {a0, a0 + αi}, such that π(x)−1 + π(x+ a)−1 = a−1

has at least 6 roots in F2n .

Firstly, we prove that for a ∈ {a0, a0 + αi}, it holds

{αi, a+ αi} ⊆ Sπ/2(a, a−1)
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and hence |Sπ/2(a, a−1)| ≥ 2. Note that ( aαi
)2 + a

αi
= αi+1

αi
is equivalent to

α−1
i+1 + (αi + a)−1 = a−1,

then according to equality (1), we only need to prove that {αi, a + αi} ∩ π = {αi}, which is
equivalent to prove that for a ∈ {a0, a0 + αi}, it holds

a+ αi 6∈ π = (α0, α1, α2) = (1, γ, γ + 1).

Assume a+αi ∈ π, then we have a+αi = αi+1 or a+αi = αi−1 since a 6= 0. When a = αi+αi−1,
we have

αi+1

αi
= (

αi + αi−1

αi
)2 +

αi + αi−1

αi
= (

αi−1

αi
)2 +

αi−1

αi
,

which is a contradiction since the above equality is not hold for i = 0, 1, 2. For example, when
i = 1, the above equality becomes γ+1

γ = 1
γ2

+ 1
γ , from which we get γ = 1. This is a contradiction

since γ 6∈ F22 . The case of i = 0, 2 can be checked similarly. When a = αi + αi+1, we have

αi+1

αi
= (

αi + αi+1

αi
)2 +

αi + αi+1

αi
= (

αi+1

αi
)2 +

αi+1

αi
,

which is equivalent to αi+1 = 0 or αi = 0. This is a contradiction since 0 6∈ π.
According to Lemma 2, x−1 + (x + a)−1 = a−1 has 4 roots in F2n , which are 0, a, aω, aω2

respectively, where ω ∈ F22 \ F2. Next, we prove that there exists a ∈ {a0, a0 + αi}, such that

Sπ̄(a, a−1) = {0, a, aω, aω2}.

According to equality (1), we only need to show that there exists a ∈ {a0, a0 + αi}, such that

{0, a, aω, aω2} ∩ π = ∅.

Similar as above, for a ∈ {a0, a0 + αi}, it is easy to see that {0, a} ∩ π = ∅. Then we only
need to prove that there exists a ∈ {a0, a0 + αi}, such that

{aω, aω2} ∩ π = ∅,

where ω ∈ F22 \ F2. Assume {a0ω, a0ω
2} ∩ π 6= ∅ and {(a0 + α)ω, (a0 + αi)ω

2} ∩ π 6= ∅, then
there exist c ∈ {a0ω, a0ω

2} and d ∈ {(a0 + αi)ω, (a0 + αi)ω
2}, such that

c+ d ∈ ∆π = {x+ y | x, y ∈ π and x 6= y} = {1, γ, γ + 1} = {αj | 0 ≤ j ≤ 2}.

Then we have the following cases:

Case 1. c = a0ω, d = (a0 +αi)ω. Then c+ d = αiω. Note that ω ∈ F22 \F2, then αiω = αi+1 or
αiω = αi−1 when c+d ∈ ∆π. If αiω = αi+1 for some 0 ≤ i ≤ 2, then ω ∈ {γ, 1+ 1

γ ,
1

γ+1},
which is a contradiction since γ 6∈ F22 . Similar, αiω 6= αi−1 for 0 ≤ i ≤ 2.

Case 2. c = a0ω, d = (a0 + αi)ω
2. Then

c+ d = a0(ω + ω2) + αiω
2 = a0 + αiω

2

and we have the following subcases:
Case 2.1 c+ d = αi. Then a0 = αi(ω

2 + 1) = αiω and

αi+1

αi
= (

αiω

αi
)2 +

αiω

αi
= 1,

which is a contradiction since ai 6= αi+1 for 0 ≤ i ≤ 2.
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Case 2.2 c+ d = αi−1. Then a0 = αiω
2 + αi−1 and

αi+1

αi
= (

αiω
2 + αi−1

αi
)2 +

αiω
2 + αi−1

αi
= 1 + (

αi−1

αi
)2 +

αi−1

αi
,

which is a contradiction since it can be checked easily that the above equality is
not hold for 0 ≤ i ≤ 2.

Case 2.2 c+ d = αi+1. Then a0 = αiω
2 + αi+1 and

αi+1

αi
= (

αiω
2 + αi+1

αi
)2 +

αiω
2 + αi+1

αi
= 1 + (

αi+1

αi
)2 +

αi+1

αi
,

which is equivalent to αi+1 = αi. This is a contradiction since ai 6= αi+1 for
0 ≤ i ≤ 2.

Case 3. c = a0ω
2, d = (a0 + αi)ω. Then

c+ d = a0(ω2 + ω) + αiω = a0 + αiω

and it can be proved similarly as Case 2 that c+ d 6∈ ∆π.

Case 4. c = a0ω
2, d = (a0 + αi)ω

2. Then c + d = αiω
2 and it can be proved similarly as Case

1 that c+ d 6∈ ∆π.

Then {a0ω, a0ω
2} ∩ π 6= ∅ and {(a0 + 1)ω, (a0 + 1)ω2} ∩ π 6= ∅ can not hold simultaneously.

Choose a ∈ {a0, a0 + αi}, such that {aω, aω2} ∩ π = ∅. Then we have

|S(a, a−1)| = |Sπ(a, a−1)|+ |Sπ/2(a, a−1)|+ |Sπ̄(a, a−1)| ≥ 0 + 2 + 4 = 6,

which is a contradiction since the differential uniformity of π(x)−1 is 4.
“⇐” Let α0 = 1, α1 = γ, α2 = γ + 1 and bi(a) = π(αi)

−1 + π(αi + a)−1 for i = 0, 1, 2.
According to Lemma 3 and equality (2), we only need to prove that for a ∈ F∗2n , b = bi(a),
i = 0, 1, 2, it holds

|S(a, b)| = |Sπ(a, b)|+ |Sπ/2(a, b)|+ |Sπ̄(a, b)| ≤ 4.

Firstly, it is easy to see |Sπ(a, b)| ≤ 2, since π = (1, γ, γ + 1) is a cycle of length 3.
Secondly, we have |Sπ̄(a, b)| ≤ 2 for a ∈ F∗2n , b = bi(a), i = 0, 1, 2. The proof is similar as the

claim in the proof of Theorem 5, since Tr(αi+1

αi
) = 1 for i = 0, 1, 2 and (αi+αj)

−1 6= α−1
i+1 +α−1

j+1

for 0 ≤ i < j ≤ 2, which can be checked easily.
Thirdly, we prove that |Sπ/2(a, b)| ≤ 2 for a ∈ F∗2n , b = bi(a), i = 0, 1, 2. We only need to

show that there do not exist 0 ≤ i < j ≤ 2 and a ∈ F∗2n with a+ αi 6∈ π, a+ αj 6∈ π, such that

α−1
i+1 + (a+ αi)

−1 = bi(a) = bj(a) = α−1
j+1 + (a+ αj)

−1.

The above equality is equivalent to

(
a

αi + αj
)2 +

a

αi + αj
=

(α−1
i+1 + α−1

j+1)−1

αi + αj
+

αiαj
α2
i + α2

j

.

Let

θi,j =
(α−1

i+1 + α−1
j+1)−1

αi + αj
+

αiαj
α2
i + α2

j

=
1

αi + αj
(
αi+1αj+1

αi+1 + αj+1
+

αiαj
αi + αj

).

Then we only need to show that Tr(θi,j) = 1 for 0 ≤ i < j ≤ 2, which can be checked as follows:
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Tr(θ0,1) = Tr(
1

γ + 1
(γ2 + γ +

γ

γ + 1
)) = Tr(γ +

1

γ + 1
+

1

γ2 + 1
) = Tr(γ) = 1,

Tr(θ0,2) = Tr(
1

γ
(

γ

γ + 1
+
γ + 1

γ
)) = Tr(

1

γ + 1
+

1

γ
+

1

γ2
) = Tr(

1

γ + 1
) = 1,

and

Tr(θ1,2) = Tr(
γ + 1

γ
+ γ2 + γ) = Tr(

1

γ
) = 1.

Thus the claim holds.
At last, we show that |Sπ̄(a, b)| = 0 when |Sπ(a, b)| = 2 for a ∈ F∗2n and b = bi(a), i = 0, 1, 2.

Note that |Sπ(a, b)| = 2 if and only if there exist 0 ≤ i < j ≤ 2, such that a = αi + αj and
b = α−1

i+1 + α−1
j+1. According to Lemma 2, we only need to show that for 0 ≤ i < j ≤ 2, it holds

Tr(
1

(αi + αj)(α
−1
i+1 + α−1

j+1)
) = 1.

Let

δi,j =
1

(αi + αj)(α
−1
i+1 + α−1

j+1)
=

αi+1αj+1

(αi + αj)(αi+1 + αj+1)

for 0 ≤ i < j ≤ 2. Then it can be checked that

Tr(δ0,1) = Tr(
γ(γ + 1)

1 + γ
) = Tr(γ) = 1,

Tr(δ0,2) = Tr(
γ

γ(γ + 1)
) = Tr(

1

γ + 1
) = 1

and

Tr(δ1,2) = Tr(
γ + 1

γ
) = Tr(

1

γ
) = 1.

Thus |Sπ̄(a, b)| = 0 when |Sπ(a, b)| = 2.
Therefore, for a ∈ F∗2n and b = bi(a), i = 0, 1, 2, we have

|S(a, b)| = |Sπ(a, b)|+ |Sπ/2(a, b)|+ |Sπ̄(a, b)|

≤
{

2 + 2 + 0 |Sπ(a, b)| = 2
0 + 2 + 2 |Sπ(a, b)| = 0

≤ 4.

Then we complete the proof. ut

6 Conclusion

In the present paper, we further study a secondary construction method of differentially 4-
uniform permutations over F22k , which is composing the inverse function and cycles over F22k .
Up to CCZ-equivalence, all optimal permutations over F24 can be constructed with this method
and a new differentially 4-uniform permutation with the best known nonlinearity over F22k with
k odd is given. A lower bound on nonlinearity of permutations constructed with the method
in the present paper is given. For general cycles, two sufficient conditions are given such that
the differential uniformity of the corresponding compositions equals 4. Over small fields, it
is shown that numerous differentially 4-uniform permutation can be constructed with these
sufficient conditions. For some special cycles, sufficient and necessary conditions are given such
that corresponding permutations are differentially 4-uniform.
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