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Abstract. Smart meters are widely deployed to provide fine-grained
data that correspond to tenant power consumption. These data are an-
alyzed by suppliers for personalized billing, more accurate statistics and
energy consumption predictions. Indirectly this aggregation of data can
reveal personal information of tenants such as number of persons in a
house, vacation periods and appliance preferences. To date, work in the
area has focused mainly on privacy preserving aggregate statistical func-
tions as the computation of sum. In this paper we propose a novel solu-
tion for privacy preserving unique data collection per smart meter. We
consider the operation of identifying the maximum consumption of a
smart meter as an interesting property for energy suppliers, as it can be
employed for energy forecasting to allocate in advance electricity. In our
solution we employ an order preserving encryption scheme in which the
order of numerical data is preserved in the ciphertext space. We enhance
the accuracy of maximum consumption by utilizing a delta encoding
scheme.
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1 Introduction

Smart meters are devices deployed in households to measure the energy consump-
tion in specific time intervals. They cannot only measure electricity consumption
but gas and water commodity as well. Traditionally, devices for such purposes
are known as Advanced Meter Reading (AMR). Nowadays smart meters that
enable a two way communication by sending commands to the supplier through
UHF radio waves and at the same time by sending scheduled or on demand
data, are defined as being part of an Advanced Metering Infrastructure (AMI)
that differs from AMR.

In [10], authors forecast 100 million smart meters to be deployed in Europe
by the end of 2016. The motivation for this wide deployment of smart meters is
many-fold. Suppliers can more precisely learn the time intervals in which houses
consume more energy and thus tune appropriately the billing of each customers
and predict the potential energy demand. On the other hand, home tenants can
receive energy advices and can also change their energy consumption habits. In



particular, a customer learning the period of the highest consumption may prefer
to consume in a more efficient way.

In tandem, various security concerns have been highlighted from wide de-
ployment of smart meters in households. The European Data Protection Super-
visor [21,20] has already raised potential privacy and security concerns. Frequent
smart-readings with inappropriate analysis by companies may leak private in-
formation such as the number of people that stay in a place, the time period
during which the house is empty and personal habits that can be considered
as a valuable asset for marketing retailers[15]. These concerns have not passed
unnoticed. Several states in USA have banned the usage of smart meters even
if companies provide users with incentives for the usage of them [22]. Radical
solutions that substitute electricity suppliers for home appliances with batteries
to hide electricity consumption have been proposed [16]. Albeit this mitigation,
it is still feasible to recover appliance energy consumption [18].

In this paper, we consider the problem of computing some statistics over
meterings sent by individual smart meters in a privacy preserving manner. We
assume that both the supplier and individual smart meters are interested in de-
termining the interval in which the smart meter consumes the most. Such an
operation cannot be performed by a smart meter alone because of its lack of
resources and in particular its lack of memory: The smart meter would need
an important number of values in order to find out the maximum value corre-
sponding to a “continuous” consumption. On the other hand, outsourcing these
computations to the supplier will naturally leak periodical consumptions which
definitely are very sensitive information. We therefore propose a solution where
smart meters send their periodical metering to the supplier in a privacy preserv-
ing manner while still allowing this entity to compute the maximum consump-
tion. The proposed solution is based on the use of order preserved encryption
(OPE) which by definition preserves the order of plaintext values after their
encryption without revealing any additional information. Additionally, in order
to filter out spontaneous peaks (due to some erroneous switch-on/switch-offs of
home devices for example), the smart meter also sends the differences of con-
secutive consumption values after their obfuscation in an on-the-fly approach
whereby the smart meter doesn’t need to store auxiliary information. Thanks to
the obfuscated differences the supplier is able to determine the period of max-
imum consumption that is continuous. The proposed solution is further proved
secure by reduction to the POPF-CCA assumption[4] which corresponds to the
security notion that qualifies the security of OPE.

After analyzing our requirements we precisely define the objective of our
protocol:

– Privacy preserving accurate individual data analysis without violating user
privacy.

1.1 Organization

In the next section we discuss about the related work in the area. Sections 3 and
4 describe the problem and formulate the security definitions of the proposed



protocol. An overview of the solution is presented in section 5. Section 6 presents
our solution and a fully detailed description of the protocol. The security analysis
is included in section 7, while the feasibility of the protocol in real world devices
is analyzed in section 8. Section 9 concludes the article.

2 Related Work

A very large number of privacy preserving solutions have been proposed for
smart meters. These can be classified into two categories with respect to their
building blocks (See below).
Differential privacy The authors in [17,19,13] studied privacy preserving data
collection protocols. The combination of differential privacy with non conven-
tional encryption schemes can provide an acceptable trade-off between privacy
and utility. The proposed solution is based on randomly chosen value xi by each
user ui such that

∑i
n=1 xi = 0. When a user submits its encrypted data to the

supplier it adds this random value xi to the original value di and once the in-
formation is decrypted the aggregator/supplier can only learn

∑i
n=1 di + xi =∑i

n=1 di. Each user before encryption of its data adds appropriate noise to pre-
serve differential privacy. Authors in [1] use the same technique to encrypt the
summation of the data without letting the individual data to be decrypted. The
noise added to data is chosen from a distributed-divisible Laplace distribution.
The noise is added by the users and data are sent to the supplier without the
employment of a trusted aggregator as with previous solutions.
Homomorphic encryption In [12] by proposing a solution for privacy preserv-
ing aggregation of time-series data. The efficiency of the scheme comes with a
nifty solution to compute discrete logarithms in composite order groups in which
the decision composite residuosity problem is intractable. Recently Jawurek et
al [11] presented a scheme for privacy preserving weighted sum computation.
The scheme is based on Paillier partial homomorphic scheme in which meterings
are encrypted homomorphically and a trusted party is decrypting the result of
the weighted sum. The third party is sending the result to the aggregator by
first applying a differential private function. Even if the scheme is fault tolerant
and supports dynamic leaves and joins the usage of the third party adds extra
computational and communication overhead which might not be acceptable in a
real world scenario. Also the Paillier cryptosystem doesn’t allow for fully private
computations of affine circuits as by definition one of the multipliers that are
supposed to be homomorphically evaluated should be in plaintext.In [8] the au-
thors proposed a protocol for secure aggregation of data using a modified version
of Paillier homomorphic encryption. In their solution the aggregator is able to
decrypt the sum of the encrypted energy consumption of all users only when
it has received all the encrypted values. The idea behind the scheme is that in
every time interval each participant sends to each other a random value. The
sum of the values sent by a node minus the sum of the values received is the
exponent of the Paillier second parameter used to hide the plaintext. As such
when the aggregator computes the summation of all the encrypted values the



exponent is canceled out only when all the values have been received and the
summation of the energy consumption of each user is decrypted successfully.
Dynamic leaves and joins Chan et al.[6] devised a privacy preserving scheme
to compute the sum of data of each user supporting dynamic leaves and joins of
smart meters without affecting the execution . Furthermore the scheme supports
fault tolerance when users for some reason cannot submit their values. The
solution is based on a construction of a binary tree and defines user data as
leaves of the tree. When the aggregator fails to obtain data from a specific user
it approximates the sum from the adjacent nodes of the tree. The aggregator can
still decrypt the sum of the data without learning anything else. The decrypted
sum is perturbed with geometric noise preserve individual privacy. The limitation
of the scheme comes on the fact that the aggregator has to compute a discrete
log in a group of prime order. According to the Pollard method for computing
discrete logarithms the required plaintext range should be small. The authors in
[14]presented a solution to tackle the fact that a key dealer has to re-distribute
the keys after one or more nodes join or leave the network. The solution is based
on a ring based interleaved grouping technique, in which nodes are merged into
disjoint groups. Whenever a node joins or leaves only a fraction of nodes is
affected.
Our Contributions: All existing approaches mostly focus on the problem of
aggregating private data and discovering the aggregated value only. In this paper,
we take a radically different approach whereby the supplier computes the interval
corresponding to the maximum consumption for each individual smart meter
without learning the actual meterings.We assume that the smart meters cannot
perform this operation over a long time interval because of lack of memory. The
proposed scheme does not require a third party for the computation of individual
energy consumption but is able to identify the maximum consumption time
interval through an appropriate encryption scheme.

3 Problem Definition

In this section we precisely define the problem we are trying to address and the
environment in which we envision our protocol to run.

We seek for privacy preserving unique statistics scheme (PPUS) for a set of
smart meters. The smart meters are sending their meterings to a supplier and
the supplier should identify the time interval at which each smart meter reports
the maximum consumption. The supplier learns nothing but the time period of
the maximum consumption.

3.1 Entities

1. Smart meters. We assume a set of N smart meters, each one denoted as
smi. These are deployed in separate households across a geographical region.
The smart meters are universally programmed to send energy consumption
at a fixed time interval ti starting from time t1 and ending at time te. Each



smart meter has an embedded private key in a tamper resistant hardware
module.

2. supplier. An energy supplier collects information from each smart meter
and computes the time interval corresponding to the maximum consumption
individually for each smart meter.

Table 1 describes the notations used throughout the paper.

3.2 Protocol Definitions

Definition 1 (Privacy Preserving Unique Statistics)(PPUS) A PPUS
scheme consists of 2 polynomial time algorithms EncryptTMAC, Analyze defined
as:

EncryptTMAC(p
(j)
i , ski,mki) → (c

(j)
i , {gdi,j+lii }ni=0, g

li
i , si) Each smart meter

smi encrypts its meterings p
(j)
i for time interval j using its secret encryption key

ski. It also computes the differences of consecutive meterings {di,j} while obfus-
cating them with a secret value li which is different for each smart meter. The

output of the algorithm is the ciphertext value (c
(j)
i ), the obfuscated differences

g
di,j+li
i and an integrity value si computed with a MAC key mki.

Analyze({c(j)i }, {g
dji+li
i }) → ti The supplier takes as input encrypted meter-

ings {c(j)i } and obfuscated differences {gdi,j+lii } and it outputs a tag ti for each
meter smi that specifies an interval of the maximum consumption.

Definition 2 (Correctness) A PPUS scheme is correct if for all individ-
ual smart meters smi that submit their meterings to a supplier, after running

Analyze({c(j)i }, {g
dji+li
i }) algorithm, the supplier outputs the maximum consump-

tion of smi with probability 1.

Notations

smi Smart meter i
ti Time interval i

p
(j)
i Energy consumption of smart meter i at time interval j

c
(j)
i Encrypted Energy consumption of smart meter i at time interval j
miw Maximum interval window defined by the supplier

dji Difference of p
(j)
i - p

(j−1)
i metering values

Table 1: Protocol notations

4 Privacy and Security Model

4.1 Adversary Model and Threat Assumptions

We consider a honest-but-curious adversary model: Although following the steps
of the protocol correctly, the malicious supplier will try to discover the con-



tent of the meterings sent by each smart meter. Message forgery attacks are
prevented thanks to the use of existentially unforgeable message authentication
codes (MACs).

Threat Assumptions. For the design of the protocol we take into account
the following threat assumptions:

– In our scheme we assume that smart meters are tamper resistant devices in
which the encryption and the MAC key cannot be retrieved and reused by
an intruder. This immediately eliminates key derivation attacks in which the
attacker compromises the smart meter, obtains the secret key and decrypts
all the meterings of this specific smart meter or recovers the MAC key and
submits a valid MAC for a metering.

– Any type of side channel attacks as electricity measurement by adversaries
that have access to the environment of the smart meter are not taken into
account. For instance an attacker that has access to the wires of the smart
meters can deploy a digital multimeter and measure not only the differences
of electric consumption but the actual specific electricity metering. Also side
information can be used to estimate the maximum consumption. For instance
from the web the characteristics of a house can be provided such as the
size of the house from real estate companies. Once the attacker knows the
square meters of the house it can estimate with rough approximations the
devices that are deployed in the house. All the devices have publicly available
information of watt consumptions which can be employed by an adversary
to estimate the maximum possible energy consumption in a house.

4.2 Privacy

We namely present our privacy requirement:
Third party obliviousness(TPO). We adapt the security notions of ag-

gregate obliviousness in [19] to meet define our privacy requirements: The third
party, which in our environment is the supplier, cannot learn anything more than
the time interval of maximum energy consumption. Consider an energy supplier
that receives the encryptions of each smart meter smi. The supplier can only
learn the maximum consumption of each smi and not the metering value in
plaintext.

In order to prove that our solution is privacy preserving we define a dedicated
security model with the game GameTPO, which is played between the challenger
C and the attacker A:

Challenge: The challenger sends to the attacker two differences of plaintext
values d0 = x1−x0, d1 = x3−x2, and the encryptions of one pair corresponding
to either the encryptions of x1, x0 if b = 0 or the encryptions of x3, x2 if b − 1

where b
$←{0, 1} is chosen uniformly and at random.

Guess: At the end of the game the attacker should guess with no negligi-
ble probability the value of b by outputting his guess b′. The advantage of an
adversary with respect to the aforementioned game is defined as:

AdvTPOA = Pr[GameTPOA (0) = 1]− Pr[GameTPOA (1) = 1]



Definition 3 (Third party obliviousness). Let Υ = (Setup,Encrypt,Analyze)
be a PPUS scheme with associated plaintext size M and ciphertext size N . We
say that Υ is third party oblivious if for all polynomial time adversaries A the
probability of winning the aforementioned game is negligible: AdvTPO

A ≤ neg(·)

5 Overview of PPUS

In this section we give a brief description of our solution. Our PPUS scheme
achieves data confidentiality and privacy thanks to the usage of an appropriate
encryption scheme that is an order preserving encryption scheme in which the
order of numerical items in the plaintext space is preserved in the ciphertext
space as well. Each smart meter is equipped with a tamper resistant hardware
module in which a secret key is embedded. This secret key is being used to
encrypt meterings at each time interval. Thanks to the cryptographic primitive
of order preserving functions a keyed order preserving functions chosen uniformly
and at random is indistinguishable from an ideal one. Thus nothing more than
the order is revealed to the supplier who is acting as a data analysis entity.

For the accuracy of the analysis once the supplier has identified the time
epoch in which a smart meter has consumed the maximum it can verify from
the extra information composed by the obfuscated differences between each con-
sumption, that actually there is a valid continuous maximum energy consump-
tion “around” this time epoch. If the differences converge to 0 then it has a strong
indication that the meterings around that particular epoch showed a continuous
maximum consumption.

The statistics from the process of identifying a continuous energy consump-
tion will improve the forecasts of energy consumption and will allow better en-
ergy allocation in advance from energy producers. Apart from this the infor-
mation of the maximum energy consumption interval can be sent back to the
tenants in order to move their increased energy habits into low tariff periods.
This operation cannot be performed locally at each smart meter because their
resources are not sufficient for big data analysis operations. On the other hand,
an integrity mechanism is needed in order for the supplier to be assured that the
meterings are sent from existing and authenticated smart meters.

6 Protocol

In this section we formally define our PPUS protocol. Before describing our
protocol in full details we give a brief description of what an order preserving
encryption scheme is.

6.1 Order preserving encryption (OPE)

Privacy preserving queries on databases have raised the interest for non con-
ventional symmetric encryptions[2]. Recently, in [4], Boldyreva et. al. formally



defined an Order Preserving Encryption (OPE) scheme. An OPE leaks the order
of plaintext data and ideally nothing more. An order preserving function (OPF)
is a function f such that for a < b then f(a) < f(b). A symmetric encryption
scheme is then an order preserving encryption scheme if the encryption function
Enc is an order preserving function. The construction is being based on the ob-
servation that an OPF with domain D of size M and range R of size N is a
bijection of all combinations of M out of N . The security of an OPE has been
analyzed in [5] with strict security definitions and bounds. The authors described
how an “ideal” random order preserving function (ROPF) should behave. The
new security definition employs the notion of window one wayness. That is the
probability of the adversary to successfully identify the range of a plaintext mes-
sage given many randomly chosen ciphertexts. They also introduce the notion
of distance window one wayness where the adversary is further restricted to
identify the interval r between two plaintexts given a large set of ciphertexts.

6.2 Protocol Description

The protocol consists of 2 phases. During the first phase each smart meter en-
crypts with an OPE its meterings and it sends it to the supplier along with a
MAC. Afterwards, in a second phase the supplier collects all the encrypted val-
ues from each smi and sorts them. Since the encryption uses OPE the supplier
can discover the ordering of the ciphertexts. The purpose of the protocol is for
the supplier to identify high energy consumption periods for each householder.
As such the supplier must not only recognize peaks for high electricity consump-
tions but also confirm a continuous duration of the maximum consumption. To
address this requirement along with its meterings, each smart meter smi sends
obfuscated discretized differences between consecutive meterings in such a way
that the supplier can only verify the interval where the consumption differences
equal 0 which is interpreted as a continuous maximum energy consumption.

We now describe the protocol according to the definition in section 4 :

EncryptTMAC(p
(j)
i , ski,mki)→ {c(j)i , {gdi,j+lii }ni=0, g

li
i , si} Each smi encrypts

its meterings p
(j)
i with its secret key ski using an OPE scheme. For each cipher-

text c
(j)
i for time interval j it also sends j as auxiliary information associated

with each ciphertext. For each two sequential time intervals each smart me-
ter sends {{gdi,j+li}ni=0} where gi is a group generator of Z∗pi, pi is a prime
number, and in Z∗pi the discrete logarithm problem (DLP) is intractable. Each
smart meter then applies the MAC with the MAC key mki to the encrypted

data c
(j)
i and the obfuscated discretized differences {gdi,j+lii }ni=0, g

li
i } and sends

c
(i)
j ||MACmki(c

(i)
j , {gd

j
i+li
i }ni=0, g

li
i }) to the supplier.

Analyze({c(j)i }, {gdi,j+li}ni=0, g
li) → ti : The supplier collects at each time

interval ti the encrypted smart meterings from each smi. If the computed MAC
by the supplier matches the MAC it obtained from the smi then it continues with
the execution of the protocol otherwise it halts. Since the order is preserved it
can identify the maximum energy consumption at time interval tj for each smi.



To assure a continuous duration of the maximum consumption, the supplier
verifies:

wend∏
wstart

gdi,j+li = g
∑wend

wstart
gdi,j+li ?

= (gli)n (1)

inside the miw that is specified by the supplier. The miw interval has a starting
point wstart and an end point wend. In the beginning the wend is set to tj and
wstart = tj −miw. Inside this window the analyzer checks if equation 1 holds in
order to validate a continuous maximum energy consumption around tj , where
each di defines the differences of two consecutive meterings. The differences from
the meterings are discretized in order to avoid inequalities from 0 even for small
variations. This requirement obviously captures spontaneous switch on/offs of
a high energy consumption appliance that will erroneously record maximum
consumptions. If equation 1 does not hold it continuously checks the condition
by sliding the window one position to the right until wstart = tj . By sliding the
window 1 position we mean that we advance the corresponding time frequency
by 1. That is, if the smart meter reports meterings every 1 second for instance,
miw = k and tj = 23h40m40s then the supplier will verify equation 15 for
wstart = tj−k and wend = tj and will move the interval 1 second every time the
condition does not hold. So the second iteration would be from wstart = tj−k+1
to wend = tj + 1 until wstart = tj and so on. If none of the corresponding delta
differences insidemiw does not satisfy the condition then the second maximum tj
is selected and the procedure restarts. Algorithm 1 describes the Analyze phase.

Input: Encrypted meterings C = c
(i)
j , {gdi,j+li}ni=0, g

li

Output: time interval t
(i)
j in which smart meter smi consumed the maximum

1 while C = c
(i)
j not empty: do

2 tj ← MAX(C);
3 wstart = tj −miw ;
4 wend = tj ;

5 while
∏wend

wstart
gdi,j+li = g

∑wend
wstart

g
di,j+li

6= (gli )n do

6 if wstart 6= tj then
7 wstart = tj −miw + 1 ;
8 wend = tj + 1 ;

9 else

10 C.remove(c
(i)
j );

11 goto1;

12 end

13 end
14 return tj ;

15 end

Algorithm 1: Analyze algorithm.

Correctness. The correctness follows by the order preserving encryption
scheme and by observing that if the discretized differences of plaintext meterings
are equal to 0 then:

g
∑wend

wstart
gd

j
i
+li

= (gli)n



Again, consider a smart meter smi which detects the set of plaintext values
{pj1i , p

j2
i , p

j3
i , . . . , p

jn
i }. These plaintext values after decreasing ordering form the

order set Op indexed by j which is the time interval . For every two consecutive

values pji , p
j+1
i the smi computes the difference dji = pj+1

i − pji and then sends

to the supplier along with the encrypted values {cj1i , c
j2
i , c

j3
i , . . . , c

jn
i } the dis-

cretized by a parameter φ differences [dji ]φ. Thanks to the OPE the supplier can
reconstruct the same ordered set Oc from the ciphertexts but instead of plain-
text values it obtains the corresponding for the time interval j ciphertext values.
If around the maximum time interval tj there are not big difference variations

then after discretization the differences [dji ]φ = 0 and g
∑wend

wstart
gd

j
i
+li

= (gli)n.
The advantage of this approach is that the smart meters do not have to store
the differences or the ciphertexts in order to perform the analysis but these are
computed and sent immediately on-the-fly. From the supplier perspective the
verification a maximum continuous consumption is performed in a batch way
with a single operation as analyzed in equation 1. Moreover as it will be estab-
lished in section 7, the differences do not jeopardize the privacy requirements of
the scheme.

7 Privacy Analysis

Each smart meter is sending along with the ciphertext resulting from an OPE
function, differences of consecutive meterings. It is not hard to observe that if
the differences are sent in cleartext and the attacker has a good guess for a
plaintext value that depicts energy consumption then by the difference provided
in cleartext it can recover all the subsequent values in clear. We mitigate this
attack by forcing each smart meter smi to chose a uniformly random element li
and a multiplicative group Z∗pi of prime order pi in which the discrete logarithm

problem (DLP) is intractable 1 . Finally smi sends to supplier {{gdi,j+lii }, glii }.
By knowing also gli the supplier can verify if the sum of all the differences {di,j}
is 0. This can be verified by checking

∏wend

wstart
gdi,j+li = g

∑wend
wstart

gdi,j+li ?
= (gli)n.

Recovering each di,j from gdi,j+li mainly is as hard as solving DLP.
Although we have shown that the security of the Analyze phase of the pro-

tocol is achieved thanks to the obfuscation of differences in this section we give
a stronger security definition by proving that even if from auxiliary side infor-
mation the differences can be recovered this will not affect the privacy require-
ment for Third party obliviousness(TPO), which requires that nothing more
other than the interval in which the smart meter has consumed the maximum
energy for at least miw time interval, is revealed. We assume that the OPE in
our protocol is instantiated as in [2] from the set of all possible OPE functions
fixed by the secret key of the smart meter. If the OPE acts as a pseudorandom
OPE fixed by a secret key then nothing more than the ordering is revealed.

1 DLP: Given a prime p, a generator g of Z∗
p and an element y, find x such that y = ax

mod p



Theorem 1. The PPUS scheme presented in section 6 is TPO secure.

Sketch of the proof: We provide a sketch of the proof of the aforementioned
theorem with a reduction to the POPF-CCA security definition as presented
in [4]. Namely the PPUS attacker can be utilized to break the POPF-CCA
security game. We end in a contradiction showing that an attacker by winning
the GameTPO game implies a win with non-negligible probability of the POPF-
CCA security game. That certifies a contradiction and hence attacker ATPO
cannot win the aforementioned game with non-negligible probability. In figure 1
the interaction between the games are being analyzed along with the construction
of our simulator that interacts both with the ATPO that we assume can win the
GameTPO with non-negligible probability and the challenger of the POPF-CCA
game. We now describe reductionist proof. Once the underlying OPE scheme is

POPF-CCA Challenger Simulator ATPO

1
{E(Pi)}n,i 6=0,1
←−−−−−−−−−−−

2
{Pi}n−−−−→

3
P0,P1←−−−−

4
E(Pb)−−−−→

5
d0=P2−P0−−−−−−−−→;E(Pb)

6
d1=P2−P1−−−−−−−−→;E(P2)

7
b←−

8
b←−

Fig. 1: The figure depicts the reductionist proof to the POPF-CCA security
definition.

POPF-CCA secure we will break it with the help of the attacker of our scheme
ATPO. Steps 1 and 2 of figure 2 depicts the learning phase in which our simulator
obtains valid pairs of ciphertexts and plaintexts by communicating with the
POPF-CCA challenger. At the end of the first 2 steps the Simulator that
acts as the POPF-CCA attacker and the GameTPO challenger, learns the OPE
encryption for a set of values {Pi}n. At step 3 it submits 2 plaintext values
P0, P1 that have not been presented during the learning phase in steps 1 ad 2.
The POPF-CCA challenger then generates uniformly and at random a value

b
$←− {0, 1} and it sends it to the Simulator E(Pb). The attacker of the POPF-

CCA has to guess b with non negligible probability. The simulator in steps 5 and
6 constructs the differences d0 = P2−P0 and d1 = P2−P1 and it sends them to
ATPO along with E(Pb) and E(P2) respectively. Since ATPO wins GameTPO

with non negligible probability it can guess b. This means that it can identify
which pairs of values have been encrypted. If b = 0 then it checks if P2−P1 = d0.
If this is the case it replies to the attacker of the POPF-CCA game with 0. If
b = 1 it checks if P2 − P1 = d0 and if this is true it replies back with b = 1. As



such POPF-CCA game is broken with non negligible probability and therefore
results in a contradiction which concludes our proof.

8 Feasibility

8.1 Smart Meter Computational Cost

Real-world smart meters that are deployed in houses are equipped with low-cost,
ultra-low power microcontrollers (MCU). We assume the utility of the widely
used 16-bit RISC MSP430X MCU. They consist of flash memory that can be
extended up to 256KB, read-only-memory and a distinct clock rate for their
CPU that ranges from 8MHz to 25MHz. Some of them are equipped with a radio
frequency transceiver for wireless communication. For the metering procedure
they have sensors that measure energy and an analog-to-digital converter. We
analyze the feasibility of the protocol with respect to space and time overhead
based on a 16-bit RISC MSP430 MCU, with 256 flash memory, 20 MHz clock
rate and an AES instruction set coming in the AES accelerator hardware module
that can speed up AES encryption in CTR mode up to 8 times [9].

The running time of encryption according to the estimation of the OPE
algorithm as presented in [4] is given in table 2. The consumption is considered
in a per day interval with different time slot frequencies. For the size of each
metering we assume that each meter would fit in dlog1000

2 ebits. This counts as
1 block (16 bytes) for the underlying block cipher. The energy consumption of
1000kW was obtained by a real data set. For more details about the accuracy and
the details of the house the reader can refer to[3]. Then the number of meterings
are computed in a daily basis. The space and computational cost according to
the approximation on the number of calls to the OPE function per metering is
defined.

Table 2: Per day time and space overhead
Time slot frequency (seconds) #Meterings Flash(KB) Time (seconds) Time (Mcpb)

1 86400 172.8 10.55 211
2 43200 86.4 4.99 99
3 28800 56.6 3.22 64
4 21600 43.2 2.35 47
5 17280 34.5 1.84 36
6 14400 28.8 1.51 30
7 12343 24.6 1.28 25
8 10800 21.6 1.20 22
9 9600 19.3 0.97 19
10 8640 17.2 0.86 17

.The most intensive task of the protocol which is the AES symmetric block
cipher has been computed according to results in [9] in which AES in counter



mode on an 16-bit RISC MSP430X with an AES accelerator module has been
implemented.

8.2 Server Computational Cost

The procedure that dominates the computational overhead of the server is the
sorting of the meterings. The server must first sort all per user encrypted meter-

ings in a separate data structure. Each encrypted smart metering c
(j)
i is associ-

ated with a tag which is the time interval j. We consider that the server holds
a binary search tree (BST) for each user. The BST provides an efficient way to
keep a set of elements sorted [7]. In the worst case it has O(logN) complexity
for insertions and O(logN) to find the maximum element of the BST. Thus the
computational complexity per smart meter for m metering is O(logm)

9 Conclusion

In this paper we presented a secure framework for personalized statistics in a
smart grid environment by showing that a reconciliation of privacy and utility
is achievable . The solution is based on an encryption scheme that preserves the
order of the plaintexts in the ciphertext space along with an appropriate delta
encoding scheme. We proved the privacy of the protocol with a reduction proof
to the POPF-CCA[4] assumption of the OPE. The space and computational
cost of the protocol is analyzed with real data. For the analysis we assumed real
world microcontrollers. This is the first design of a framework for unique and per-
sonal statistics of smart meters which comes in contrast with existing solutions
that compute private aggregate statistics for a large number of data producers.
Moreover the framework can be employed for profiling habitants based on the
duration of their maximum consumption as this information will classify them.
Even if throughout the description of the framework we envision energy con-
sumption meterings the scheme can be used in any sort of metering information
such as gas and water consumption.

An interesting question to answer would be the following: Can the supplier
aggregate values from all nodes and derive the maximum consumption that is
coming from all smart meters? The naive solution would be for each smart meter
to share the same secret key such that comparisons in between readings among
all meters are feasible. This is not practical enough as it implies a deployment
of a common secret key among all smart meters. Also it would increase the pos-
sible window of attacks. In contrast deriving different keys for order preserving
functions doesn’t let comparisons feasible to occur. The design of a scheme that
would let comparisons in between all meters with no common secret keys con-
stitutes a interesting research problem. The problem is also interesting in the
promising and seminal work of fully homomorphic or partial encryption schemes
in which the current solutions assure data operations only per user. That means
that the untrusted third party can apply valid operations on data that have been
encrypted under the same secret key.



References
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