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Abstract

Secure Multiparty Computation (MPC) is a fundamental problem in distributed cryptography. Al-
though MPC in the synchronous communication setting has received tremendous attention in security re-
search, recent interest in deploying MPC in real-life systems requires going beyond the synchronous set-
ting and working towards MPC in the weaker asynchronous communication setting. The asynchronous
setting, however, does not come without a penalty: asynchronous MPC (AMPC) protocols among n par-
ties can only tolerate up to t < n/3 active corruptions in contrast to the synchronous protocols, which
can tolerate up to t < n/2 corruptions.

In this work, we improve the resiliency bound for AMPC using non-equivocation. Non-equivocation
is a mechanism to restrict a corrupted party from making conflicting statements to different (honest)
parties, and it can be implemented using an increment-only counter, realizable with trusted hardware
modules readily available in commodity computers and smartphone devices. In particular, using non-
equivocation, we present an AMPC protocol in the asynchronous setting, tolerating t < n/2 faults.
From a practical point of view, our AMPC protocol requires fewer setup assumptions than the previous
AMPC protocol with t < n/2 by Beerliová-Trubı́niová, Hirt and Nielsen (PODC ’10): unlike their
AMPC protocol, it does not require any synchronous broadcast round at the beginning of the protocol
and avoids the threshold homomorphic encryption setup assumption. Moreover, our AMPC protocol is
also efficient and provides a gain of Θ(n) in the communication complexity per multiplication gate, over
the AMPC protocol of Beerliová-Trubı́niová et al. In the process, using non-equivocation, we also define
the first asynchronous verifiable secret sharing (AVSS) scheme with t < n/2, which is of independent
interest to threshold cryptographic protocols.
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1 Introduction

Threshold secure multi-party computation (MPC) is one of the most important primitives in distributed
cryptographic systems. Informally, in a system of n mutually distrusting parties, an MPC protocol allows
the n parties to “securely” evaluate any agreed-on function f of their private inputs, in the presence of a
centralized active adversaryA, controlling at most t out of the n parties. In the synchronous communication
model, where the message transfer delays are bounded by a known constant, the MPC problem has been
studied extensively (e.g., [4,6,10,12,18,24,29,40,47]). In the real-world settings, however, message delays
cannot always be bounded accurately without being extremely pessimistic. Thus there is growing interest in
generalizing MPC to an asynchronous communication model [9,14,17] that does not place any bound on the
communication delays. The weaker restrictions on the adversary in the asynchronous model not only worsen
the required resiliency conditions and communication complexities, but also make designing distributed
protocols a more challenging task; intuitively this is because in a completely asynchronous setting, it is not
possible to distinguish between a slow (but honest) sender (whose messages are arbitrarily delayed) and a
corrupted sender (who does not send any message at all). Due to this, at any “stage” of an asynchronous
protocol, no party can afford to wait to hear from all the parties (as this may turn out to be endless) and so
the communication from t (potentially honest) parties may be ignored [17]. Due to their complexity, only a
few asynchronous MPC (AMPC) protocols are available in the literature [5, 9, 11, 20, 31, 32, 38, 42].

In this work, we focus on an asynchronous model with a computationally bounded adversary, where the
parties are connected by pairwise authenticated links. In this setting, it is well known that AMPC protocols
are possible if and only if t < n/3 [31, 32]. This is in contrast to the synchronous world, where we can
tolerate upto t < n/2 corruptions [30]. Motivated by the problem of bridging the gap between the resilience
of synchronous and asynchronous MPC protocols, Beerliová-Trubı́niová, Hirt and Nielsen [7] showed that it
is possible to design an AMPC protocol tolerating t < n/2 corruptions in a “partial” synchronous network.
More specifically, assuming one synchronous broadcast round at the beginning of the protocol, where each
party can synchronously broadcast to every other party, they designed an AMPC protocol tolerating t <
n/2 corruptions. Due to the availability of the synchronous broadcast round, their protocol could also
ensure “input provision”, i.e. the inputs of all the (honest) parties are considered for the computation, which
otherwise is impossible to achieve in an asynchronous protocol [17]. Nevertheless, their requirement of one
synchronous broadcast round per MPC instance may not always be realizable in practice. Specifically, if we
try to implement the synchronous broadcast round over the pairwise channels using a computationally secure
broadcast protocol, then it would require Θ(t) synchronous rounds of communication for a deterministic
broadcast protocol [26] or O(1) (with a large constant) expected synchronous rounds of communication for
a randomized broadcast protocol [27,44]. It was left as an open problem in [7] to see whether one can design
an AMPC protocol with t < n/2 under other simplified assumptions.

In distributed computing research, a similar problem with asynchronous protocols has recently been
addressed by introducing a minimal trusted hardware assumption [21–23, 33, 34, 36]. In particular, it was
shown that, the resilience of asynchronous distributed computing tasks such as reliable broadcast, Byzantine
agreement, and state machine replication (SMR) can be improved using a minimal trusted hardware module
at each party. The hardware module utilized is just a trusted, increment-only local counter, which can
be realized with trusted platform module (TPM) chips [45] available in almost all computers, or ARM
TrustZone modules [46] available in smartphones and a majority of smartcard devices. Using such trusted
hardware with each party, one can design asynchronous reliable broadcast tolerating up to t < n active
faults [23], and asynchronous Byzantine agreement (ABA) and SMR protocols tolerating up to t < n/2 [21,
34, 36] active faults, all of which otherwise require t < n/3 [44].

At a conceptual level, such a trusted module makes it impossible for a corrupted party to perform equiv-
ocation, which essentially means making conflicting statements to different (honest) parties. Clement et
al. [22] generalized the results from [21,23,36] and proved that non-equivocation (i.e., making equivocation
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impossible) along with digital signatures allow treating active (or Byzantine) faults as crash failure for many
distributed computing primitives. In particular, they present a generic transformation that enables any crash-
fault tolerant distributed protocol to tolerate the same number of Byzantine faults using non-equivocation
and signatures. Nevertheless, their generic transformation considers only the basic distributed computing
requirements of safety and liveness. It does not apply to cryptographic tasks such as AMPC where confi-
dentiality (or privacy) of inputs is also required. This presents an interesting challenge to assess the utility
of non-equivocation for the secure distributed computing task of AMPC.

1.1 Our Contributions and Related Work

In this work, we study the power of non-equivocation in the context of AMPC. We demonstrate that using
a non-equivocation mechanism, one can improve the resiliency bound of AMPC from t < n/3 to t <
n/2 without requiring any synchrony assumption. In particular, we present a general MPC protocol in a
completely asynchronous communication model with n ≥ 2t + 1. Our AMPC protocol, called NeqAMPC
, improves upon the previous AMPC protocol [7] with n ≥ 2t+ 1 in the following two ways:

(a) Simplified assumptions. The NeqAMPC protocol needs a non-equivocation mechanism, but unlike [7]
neither makes any synchronous broadcast round assumption nor requires a threshold homomorphic encryp-
tion setup. Given the feasibility of realizing non-equivocation over a majority of computing devices, we
argue that on the Internet non-equivocation is a more practical assumption than the synchronous broadcast
round assumption.

(b) Efficiency. For a security parameter κ, our AMPC protocol requires an amortized communication
complexity of O(n3κ) bits per multiplication gate, which improves upon the AMPC protocol of [7] by a
factor of Θ(n).

To reduce the setup assumptions for the NeqAMPC protocol, we avoid the traditional threshold additive
homomorphic encryption based circuit evaluation approach as used in [7,31,32]. Instead, we employ a secret
sharing-based circuit evaluation approach [10,18,40], where confidentiality of the computation is maintained
via secret sharing. Nevertheless, as detailed in our protocol overview in the next section, secret-sharing
based AMPC with n = 2t+ 1 andO(n3κ) communication complexity (per multiplication) presents several
challenges and as a result the NeqAMPC protocol is significantly different than those in the literature [5, 7,
31, 32].

In the process, we also present the first computationally secure asynchronous verifiable secret sharing
(AVSS) [1,2,14,17] scheme with n ≥ 2t+1 (using non-equivocation), which otherwise requires t < n/3 [2].
Moreover, our AVSS has communication complexityO(n2κ), which improves upon the previous best AVSS
scheme of [2] by a factor of Θ(n). Our AVSS scheme has an additional useful feature—it is the first
publicly verifiable [43] AVSS scheme, as it allows any third party to publicly verify the “consistency” of
the shares. With its efficiency and public verifiability, our AVSS scheme may be of independent interest to
other cryptographic protocols.

Comparison with Existing Work. The best known computationally secure AMPC protocols are reported
in [7, 32]. The protocol in [32] considers a fully asynchronous setting with t < n/3, whereas [7] assumes
one synchronous broadcast round and can tolerate up to t < n/2 corruptions. Both the protocols require a
threshold (additive) homomorphic encryption instantiation, and incur an (amortized) communication com-
plexity of O(n2κ) and O(n4κ) bits per multiplication gate respectively.1

We do not employ a threshold encryption scheme, but rather prefer a more standard public key encryp-
tion setup with the addition of a non-equivocation mechanism. Our AMPC protocol with t < n/2 performs

1Beerliová-Trubı́niová et al. [7] focused on designing a protocol with t < n/2, and the communication complexity of O(n4κ)
of their protocol (measured by us in Appendix A) can possibly be improved.
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circuit evaluation by secret-sharing the inputs and incurs a communication complexity of O(n3κ) bits per
multiplication gate. Nevertheless, we observe that by modifying our protocol and employing a threshold
encryption scheme (coupled with a non-equivocation mechanism), we can tolerate t < n/2 faults with com-
munication complexity O(n2κ) bits per multiplication gate. However, we prefer the secret-sharing based
AMPC, as we aim to reduce the assumptions relied upon.

We note that unlike [7], our AMPC protocol could not enforce input provision: the input from t poten-
tially honest parties may be ignored for computation. As discussed earlier, this is inherent to asynchronous
protocols and presents a trade-off between our protocol and that of [7] based on which is more important:
input provision or getting rid of the synchrony assumption. Notice that, using a non-equivocation mecha-
nism, one can realize asynchronous reliable broadcast (see Section 3.3) with t < n/2 and consequently get
rid of the synchronous broadcast round required in [7]. Nevertheless, the resultant protocol will still require
the threshold homomorphic encryption setup and O(n4κ) communication complexity, and it will no longer
support input provision.

2 Overview of Our AMPC Protocol

Without loss of generality, we assume that n = 2t + 1 and so t = Θ(n). We assume that the function f to
be computed is expressed as an arithmetic circuit over the field Zp, where p > n is a κ bit prime and κ is the
security parameter. The circuit consists of two input addition (linear) and multiplication (non-linear) gates,
apart from random gates. Our AMPC protocol consists of two phases: an input phase and a computation
phase. During the input phase, the parties share their inputs, while during the computation phase, the parties
jointly evaluate f on the shared inputs and publicly reconstruct the output. Linear gates can be evaluated
locally if the underlying secret-sharing scheme is linear; thus, we use the polynomial-based (Shamir) secret-
sharing scheme with threshold t [41]. We denote a sharing of a value s by [s]. It follows that locally adding
the shares of [x] and [y] provides the shares for [x+ y].

Multiplication gates cannot be evaluated locally since multiplying the individual shares results in the
underlying sharing polynomial having degree 2t. Therefore we evaluate multiplication gates using the
standard Beaver’s circuit randomization technique [3]. This technique requires three “pre-processed” secret-
shared values, say ([u], [v], [w]), unknown to A, such that w = u · v. Given such a shared multiplication
triple, and shared inputs of a multiplication gate, say [x] and [y], the multiplication gate is securely evaluated
as follows: to have secret x · y shared, the parties use the equation [x · y] = (x − u) · (y − v) + [v] · (x −
u) + [u] · (y − v) + [u · v]. They compute the sharing of (x− u) and (y − v), and publicly reconstruct the
same. Once (x − u) and (y − v) are public, the parties can compute their shares of x · y, using the above
equation and employing the linearity property of the secret sharing. As u and v are random and unknown,
the knowledge of (x− u) and (y − v) does not violate the privacy of x and y.

2.1 Pre-processing Phase

Although the idea of our AMPC protocol is the same as the existing information theoretically secure MPC
and AMPC protocols [5,6,20,25], our major challenge lies in generating the required shared multiplication
triples with n = 2t + 1 parties; all the above protocols employ at least n > 3t parties for this purpose2.
These triplets are independent of the circuit and the inputs of the parties, and generated in an additional pre-
processing phase. Generating these triplets efficiently is the important problem we solve in our protocol,
and the protocol gains a factor of Θ(n) over the previous AMPC protocol with n = 2t+ 1 [7]. In the rest of
the section, we give an overview of how (cM + cR) shared random triples are generated, where cM and cR

2Shared multiplication triples with n = 2t+1 have been generated in the synchronous setting [4,12]; however, their adaptability
to our asynchronous setting is unclear.
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are the number of multiplication gates and random gates in the circuit. In order to do so, we first describe
how a single triple is generated (see Figure 1 for a pictorial representation of the protocols involved) and
then extend this to cM + cR triples.

Figure 1: Multiplication Triple Generation under Supervision of a Pking

Supervised Triple Generation (Section 5). The idea for generating a random shared multiplication triple
[u], [v], [w] is to compute a random sharing [v] and then combining “several” [ui]s and [ui · v]s to get [u]
and [w]. The triple generation protocol uses two sub-protocols: Sup-Sh and Sup-PreMul-Sh. Protocol
Sup-Sh allows a dealer D to compute the sharing [u] of his value u, while the Sup-PreMul-Sh proto-
col allows a dealer D to compute a sharing [u] and [u · v], given u and [v]. We can use Sup-Sh and
Sup-PreMul-Sh in the following way to generate ([u], [v], [w]): first, we ask each party Pi to act as a dealer
D and invoke an instance of Sup-Sh to share a uniformly random value, say v(i). The parties then agree on a
common subset (say Tv) of n− t = t+ 1 dealers whose Sup-Sh instances will eventually be terminated by
all the parties. We set v =

∑
Pi∈Tv v

(i). The shared value v will be random and unknown to A, as Tv has at
least one honest Pi. Next, each party Pi is asked to act as a D and invoke an instance of Sup-PreMul-Sh to
share a uniformly random value u(i) as well as u(i) · v. The parties then agree on a common subset of
n − t = t + 1 dealers, say Tu, whose instance of Sup-PreMul-Sh will eventually be terminated by all the
parties. For u =

∑
Pi∈Tu u

(i) and w =
∑

Pi∈Tu u
(i) · v, the triple (u, v, w) is a random multiplication triple.

There are, however, some important subtleties. The Sup-PreMul-Sh protocol actually needs more than
the dealer D knowing that there exists a value v shared among the parties, as a precondition; it expects D to
have encryptions of all n shares of v, encrypted under the individual keys of the respective share-holders,
where the encryption scheme is additively homomorphic (and not threshold additively homomorphic). We
call a party having these encrypted shares to be privileged. However, due to asynchronicity, the Sup-Sh pro-
tocol cannot guarantee that all the n parties are privileged with respect to each individual v(i) (corresponding
to each Pi ∈ Tv). We solve this problem by ensuring that there exists a designated (possibly corrupted) su-
pervisor Pking called king. The Sup-Sh protocol ensures that the king is a privileged party with respect to
each v(i) (corresponding to each Pi ∈ Tv). An honest Pking can then compute all the n encrypted shares
of v using the homomorphic properties of the encryption scheme, and can reliably broadcast the encrypted
shares of v. The required reliable broadcast protocol is possible for n > t using the non-equivocation mech-
anism. Once Pking (correctly) broadcasts the n encrypted shares of v, then each Pi can invoke its instance
of Sup-PreMul-Sh as a D.

The resultant wrapper protocols are called Sup-Second and Sup-FirAndThd, where Sup-Second gen-
erates [v] under the supervision of Pking and Sup-FirAndThd generates [u] and [w = u · v] under the
supervision of Pking. A combination of Sup-Second and Sup-FirAndThd leads to the protocol SupTripGen
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under the supervision of a designated Pking, which outputs a uniformly random and private multiplication
triple ([u], [v], [w]).

Preprocessing Phase Protocol (Section 6). Protocol SupTripGen may not terminate for a corrupted Pking.
So we ask each party Pi to act as a king and generate shared random multiplication triples under its super-
vision by invoking an instance of SupTripGen. As the instances of honest kings will eventually terminate,
we distribute the load of generating cM + cR shared random multiplication triples among n parties. So
each party Pi is asked to act as a king and generate cM+cR

t+1 shared multiplication triples in its instance
of SupTripGen. The parties then agree on a common subset T CORE of t + 1 kings whose instances of
SupTripGen will eventually be completed by everyone and the |T CORE| · cM+cR

t+1 = cM + cR shared triples
obtained in these instances are considered as the final output.

2.2 Important Sub-protocols for the Preprocessing Phase

We now discuss the realization of the main sub-protocols Sup-Sh and Sup-PreMul-Sh for the preprocessing
phase.

Protocol Sup-Sh (Section 4). Our Sup-Sh protocol is almost equivalent to the AVSS primitive [2, 14,
17]: it allows a dealer D to “verifiably” share a secret s, thus generating [s], and ensures that at least one
honest party is privileged to obtain all the n shares encrypted for the respective share holders. The existing
computationally secure AVSS protocols [2, 14] are designed with n = 3t + 1 and are based on sharing a
secret using a bivariate polynomial of degree t in each variable and (homomorphic) commitments. In this
paradigm, it is ensured that D has distributed “consistent” shares to n − t = 2t + 1 parties such that (at
least) n − 2t = t + 1 honest parties among them can “enable” the remaining parties to get their shares.
Unfortunately, this approach cannot be used with n = 2t + 1, as with n = 2t + 1 we can only ensure
that D has distributed consistent shares to n − t = t + 1 parties. In the worst case, there will be only one
honest party in this set, who does not have sufficient information to help the remaining t parties to complete
a sharing of a bivariate polynomial of degree t.

We solve this problem by introducing encryptions of the shares.3 Moreover, instead of using bivariate
polynomials, we employ univariate polynomials. Now each party is given a vector of n encrypted shares
as well as homomorphic commitments of those shares by D. The non-equivocation mechanism is used to
ensure that a corrupted D does not distribute different sets of encrypted and committed shares to the parties.
Now once n − t = t + 1 parties confirm that they have received “consistent” n encrypted and committed
shares, there must exist at least one honest privileged party with all n encrypted shares, who can transfer
the individual encrypted shares to the individual parties. Non-equivocation with signatures ensures that
corrupted privileged parties do not transfer incorrect encryptions.

Protocol Sup-PreMul-Sh (Section 4). The protocol takes as input an existing sharing [v] of value v un-
known to everybody includingA, such that all the parties are privileged, i.e., all the parties hold encryptions
of all shares. The protocol then allows a dealer D to verifiably share its value u as well as u · v (i.e. [u]
and [u · v]). The protocol ensures that u · v remains secure in general and u is secure for an honest D. The
idea behind the protocol is that knowing the encrypted and committed shares of v and employing the homo-
morphic properties of encryptions and commitments, D can compute the encrypted and committed shares
corresponding to u · v for his choice of u, even without knowing v. The dealer can then (non-equivocally)
distribute the encrypted and committed shares to the parties. Once it is confirmed that t + 1 parties have

3We argue that the problem is inherently not solvable for n = 2t+ 1 with only commitments usually employed in computation-
ally secure VSS protocols [2, 14], and that we have to employ encryptions which allow a single honest party to procure encrypted
shares of all the parties. Interestingly, the problem persists even when we assume the adversary A is only passive (but crashable),
not active.
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received all the n encrypted and committed shares of u · v, it is ensured that there exists a honest privileged
party, who can relay the individual encrypted shares of u · v to the respective parties.

We take a more bottom-up approach in the rest of the paper. We start our construction with subprotocols
Sup-Sh and Sup-PreMul-Sh in Section 4. We then present our supervised multiplication triple generation in
Section 5 and finally describe the complete AMPC protocol in Section 6.

3 Preliminaries

3.1 Model

We follow the standard active adversary and the asynchronous communication model [9, 17, 31, 32]. We
consider a set P = {P1, . . . , Pn} of n parties connected by pairwise authenticated channels, where n =
2t + 1. A centralized static adversary A can actively corrupt any t out of the n parties and force them
to deviate in any arbitrary manner. A party not under the control of A is called honest. The adversary
A is modeled as a probabilistic polynomial time (PPT) algorithm, with respect to a security parameter κ.
The communication channels between the parties are asynchronous with arbitrary but finite delay (i.e. the
messages reach their destinations eventually). During a protocol execution, the message delivery order is
decided by a scheduler. To capture the worst case scenario, we assume that the scheduler is controlled by
A. Nevertheless, the scheduler cannot change the “contents” of the messages exchanged between honest
parties. By [q, r] we represent the set {q, q + 1, . . . , r} ⊂ N.

Similar to [5,17,31,32], we assume that a protocol execution is preceded by an initialization function init
involving set-up tasks such as initializing the parties and setting up their cryptographic keys. An actual pro-
tocol execution is then considered as a sequence of atomic steps, where a single party is active in each such
step. A party is activated upon receiving a message, after which it performs some local computation and pos-
sibly outputs messages on its outgoing links. The scheduler controls the order of these atomic steps. At the
beginning of the execution, each party will be in a special start state. A party is said to terminate/complete
the computation if it reaches a halt state. A protocol execution is said to be complete/terminate when all
honest parties complete/terminate the protocol execution. We assume that each protocol step has a unique
publicly known identifier (label), and every message sent by a party during an execution has a publicly
known unique identity associated with it.

3.2 Definitions
Computationally Secure AMPC. We briefly review computationally secure AMPC here and refer the
readers to [31,32] for a formal definition. Informally, in an AMPC protocol ΠMPC, every party first provides
its input to the computation (in a secure fashion). Due to the asynchronous nature of communication, the
parties cannot wait to consider the inputs of all n parties, and instead they agree on inputs from a set CORE
of n − t parties. The parties then compute an “approximation” of f on the inputs from the CORE set
and assuming a default value (say 0) as the remaining t inputs. For every possible A and for all possible
inputs and random coins of the (honest) parties, we expect the following properties for a ΠMPC instance,
except with a negligible probability: (1) Termination: all the honest parties eventually terminate ΠMPC;
(2) Correctness: the honest parties obtain the correct output of the function f ; (3) Privacy: the adversary
A obtains no additional information other than what may be inferred from the inputs and outputs of the
corrupted parties.

The above properties are formalized to the standard simulation-based definition following the real-
world/ideal-world paradigm [9, 17, 31, 32].

Non-equivocation. Non-equivocation has been employed in several distributed systems [21–23, 34, 36];
however, it has not yet been formalized. We formalize non-equivocation and present an idealized definition
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as follows:

Definition 3.1 (Non-Equivocation Oracle). A non-equivocation oracle Neq supports two types of queries:
• Neq-Sign(`,m) takes a label ` ∈ {0, 1}∗ and a message m ∈ {0, 1}∗ as input. If ` ∈ L (where L is

initially empty), then return ⊥. Otherwise update L := L ∪ {`} and return σ`,m ∈ {0, 1}∗.
• Neq-Verify(`,m, σ`,m) takes a label `, a message m, and a tag σ`,m as input and outputs either 1 or

0 indicating whether there was a query Neq-Sign(`,m) returning σ`,m.
For a tag σ`,m = Neq-Sign(`,m) for a label ` and a message m, the Neq oracle satisfies the following
properties except with negligible probability:
(1) Correctness: Neq-Verify(`,m, σ`,m) = 1. (2) Statefulness: Any re-invocation of Neq-Sign for label
` ∈ L outputs ⊥; i.e., Neq-Sign(`, ·) = ⊥. (3) Unforgeability: For m′ 6= m, Neq-Verify(`,m′, σ`,m) = 0.

Practical implementations of the Neq oracle with respect to a probabilistic polynomial time (PPT) ad-
versary, which can invoke the oracle, have to satisfy the above properties with overwhelming probability.

Definition 3.2 (Secure implementation of Neq). Let N be an oracle answering the same queries as the Neq
oracle does. Let A be a PPT adversary and ExpNA (κ) the following experiment.

1. The oracle is initiated with the security parameter κ.
2. A is executed on 1κ with the oracle by sending Neq-Verify and Neq-Sign queries to it and receives

the answers.
3. A terminates outputting a tuple 〈l,m, σ〉, where σ ∈ {0, 1}Ωκ .
4. If Neq-Verify(l,m, σ) = 1 and l,m was not queried to N , output 1 otherwise output 0.

N provides a secure Neq implementation if Pr[ExpNA (κ) = 1] is negligible in κ for all PPT adversaries A.

The tag of a secure implementation has usually a size of O(κ) bits for the security parameter κ, cf.
Appendix B for instantiations.

In our protocols, we use an oracle Neqi for every party Pi ∈ P such that only Pi can send Neq-Sign
queries to the oracle Neqi, while every party can send Neq-Verify queries to Neqi,. This requires a mapping
(e.g., using identifiers) from parties to their respective oracles. In Appendix B, we discuss implementations
of non-equivocation.

For the sake of simplicity, we write P non-equivocally transfers a message m on behalf of Q to party
R, for P sending m together with the tag σ`,m made by Q’s non-equivocation oracle. Here, the label ` is
assumed to be known by R due to the step in the protocol at which m is expected to be transferred by Q
to any other party. As shorthand for P non-equivocally transferring a message m on behalf of P to some
partyR, we write that P non-equivocally sendsm toR. Similarly, we write thatR non-equivocally receives
m from P on behalf of Q, for the event that R receives m together with a tag σ`,m which is successfully
verified by R using Neq-Verify on m,σ`,m and the expected `.

3.3 Employed Primitives
Homomorphic Encryptions and Commitments. We assume a linear homomorphic encryption scheme
(Enc,Dec) which is IND-CPA secure. Every party Pi has its own key-pair (pki, ski), for which the public
key pki is known to all the parties. Given two ciphertexts cm1 = Encpki(m1, ·) and cm2 = Encpki(m2, ·), we
require that there exist operations � and� on ciphertexts such that cm1�cm2 = Encpki(m1+m2, ·) and a�
cmi = Encpki(a ·mi, ·) holds. We also assume a linear homomorphic commitment scheme (Commit,Open)
with the analogous homomorphic operations; these are denoted by ⊕ and �. Furthermore, the commitment
scheme has to provide at least the properties of computational hiding and computational binding. For the
sake of readability, we leave the randomness of encryptions and commitments implicit. For instantiating the
encryption and commitment, we propose to use the encoding-free additive El-Gamal encryption [19] and
Pedersen commitments [39].
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Zero-knowledge (ZK) Proofs. We assume the presence of the following two-party ZK protocols.
1) Zero knowledge proof of equality of encrypted and committed values. Protocol ZK-PoE does the fol-
lowing: there exists a Prover ∈ P who has computed and published a commitment Comm = Commit(m, ·)
and a ciphertext cm = Encpki(m, ·). Then using ZK-PoE, Prover can prove to any Verifier ∈ P (knowing
Comm, cm and pki) that the message encrypted in cm is also committed in Comm; i.e.,

∃m, r1, r2 : cm = Encpki(m, r1) ∧ Comm = Commit(m, r2).

2) Zero knowledge proof of correct pre-multiplication. Protocol PoCM does the following: there exist
publicly known ciphertexts cvj = Encpkj (vj) and commitments Comvj = Commit(vj) for j ∈ [1, n]. There
also exists a Prover ∈ P who has selected u and a polynomial r(·) of degree at most t with r(0) = 0. Let
rj = r(j) for j ∈ [0, n]. In addition, the Prover computed and published Comu = Commit(u),Comr =
Commit(r(0)) and {Comrj = Commit(r(j))}j∈[1,n]. Moreover, by using the linearity properties of the
commitment and encryption scheme, Prover has computed and published the encryption cu·vj+rj and com-
mitment Comu·vj+rj of u · vj + rj . Then using the protocol PoCM, Prover can prove to any Verifier ∈ P
that the values cu·vj+rj and Comu·vj+rj were generated by multiplying cvj and Comvj with u followed by
a rerandomization using the r(·) polynomial; i.e.,

∃u,r(·) : Comu = Commit(u) ∧ degree(r(·)) ≤ t ∧ r(0) = 0 ∧
Comu·vj+rj = u� Comvj ⊕ Comrj ∧ cu·vj+rj = u� cvj � Encpkj (r(j)).

Both the ZK protocols are based on standard Σ-protocols [8] and have communication complexities O(κ)
bits and O(nκ) bits respectively. See Appendix C for the instantiation based on the ZK protocols in [16].

Certificates of Claims. The concept of certificates was introduced in [32] to allow a Prover ∈ P to
publicly prove the correctness of certain claims (like real-life certificates), without revealing any additional
information. Suppose Prover wants to certify the validity of some statement m. Then Prover proves m to
every verifier Pi ∈ P by executing an instance of the appropriate zero-knowledge (ZK) protocol. A verifier
Pi, upon successful verification, sends a signature to Prover. Finally, upon obtaining (n − t) = t + 1
signatures, Prover concatenates them to construct a certificate α for the claim m. Since there exists at least
one honest party in the set of (n − t) parties who provided its signature on m only after verifying m, with
overwhelming probability m is true. Moreover, even if t corrupted parties do not provide signatures for
a true claim m, there always exist at least (n − t) honest parties who will eventually provide signatures.
Finally if Prover is honest then nothing beyond the validity of m is revealed.

We reduce the size of a certificate α toO(κ) by using a threshold signature scheme with threshold t [7].
In this case, the parties send signature shares instead of signatures and the Prover combines (n − t) such
shares into a single signature, instead of concatenating them.4 In the rest of the paper, we represent the
above abstraction as follows: let m be a claim and zkp be the corresponding two-party ZK protocol. Then
by α = certifyzkp(m), we denote the above abstraction of constructing the certificate α for m. Similarly
we say that “Pi verifies the certificate α for the claim m” to mean that that Pi verifies whether α is a valid
(threshold) signature on m. Note that the communication cost of constructing α is the same as that of
executing n instances of the corresponding ZK protocol zkp.

Asynchronous Reliable Broadcast (r-broadcast). This primitive [13,44] allows a sender Sen ∈ P to send
some message m identically to all the parties: When Sen is honest, all honest parties eventually terminate
the protocol with outputm; if Sen is corrupted and some honest party terminates withm′, then every honest
party eventually terminates with output m′. It is well-known that n ≥ 3t + 1 is necessary and sufficient

4Note that the AMPC protocols of [7, 32] also assume a threshold signature setup, and in all the three cases, it can be replaced
by a standard signature, albeit with a Θ(n) increment in the communication complexity.
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to implement r-broadcast [13, 44]. However, assuming non-equivocation, we can design an r-broadcast
protocol with n ≥ t+1 andO(n2(`+κ)) bits of communication for broadcasting an `-bit message [22,23];
see Appendix C. In the rest of the paper, “Pi broadcasts m” means that Pi as a Sen invokes an instance
of r-broadcast for m. Similarly, “Pj receives m from the broadcast of Pi” means that Pj terminates the
instance of r-broadcast invoked by Pi (as a Sen) with the output m.

Agreement on a Common Subset (ACS). This asynchronous primitive allows the parties to agree on a
common subset of (n − t) parties, who correctly invoked some protocol, say Π, satisfying the following
requirements: (a) If Π is invoked by an honest party then all the (honest) parties eventually terminate the
instance of Π; (b) If Π is invoked by a corrupted party and some honest party terminates the instance of Π,
then every other honest party eventually does the same. The idea behind ACS is to execute n instances of
an asynchronous Byzantine agreement (ABA) protocol, one on behalf of each party, to decide if it should be
included in the common subset. Assuming a non-equivocation mechanism, ABA, and hence ACS, can be
implemented with n ≥ 2t+1 [22,23]. An efficient ACS protocol with expected communication complexity
of O(n3κ) bits can be obtained by using the non-equivocation oracle in the multi-valued ABA from [15].

3.4 Secret Sharing Notations

Given a secret s ∈ Zp, let f(·) ∈ Zp[x] be a sharing polynomial of degree at most t with f(0) = s. Here, for
j ∈ [1, n], sj = f(j) is the share of s for party Pj . Let csj = Encpkj (sj) and Comj = Commit(sj) respec-
tively represent encryption and commitment of share sj , and let Coms = Commit(s). We call {csj}j∈[1,n]

the encrypted shares and {Comsj}j∈[1,n] the committed shares of s.
Privileged party: party Pi ∈ P is called a privileged party if it holds the encrypted shares {csj}j∈[1,n].
[·]-sharing: s is said to be [·]-shared, if every (honest) Pi ∈ P holds si, {Comsj}j∈[1,n] and Coms. The

information held by the (honest) parties corresponding to [·]-sharing of s is denoted as [s].
Due to the linearity of polynomial-based sharing and commitments, [·]-sharing is linear in nature: given

[a], [b] and a publicly known constant c, each party can locally compute its respective information corre-
sponding to [a+ b] and [c · a], which we denote as [a+ b] = [a] + [b] and [c · a] = c · [a].

4 Supervised Sharing Protocols

We present two protocols for generating [·]-sharings with different properties under the supervision of a king
Pking; if the protocols terminate, then an honest Pking will be a privileged party with respect to the generated
sharings.

4.1 Protocol Sup-Sh: Supervised [·]-sharing

Protocol Sup-Sh (Figure 2) allows a dealer D ∈ P to select a value s and verifiably generate [s] under the
supervision of a designated king Pking ∈ P . The verifiability ensures that if the protocol terminates, then
there exists a value, say s, which will be [·]-shared among the parties. If D is honest then s = s and s will
be unknown to A. Moreover, if Pking is honest then it will be a privileged party (thus holding the vector
of n encrypted shares). The protocol always terminates for an honest D and Pking and has communication
complexity O(n2κ). In the protocol code, a certain part is in boldface; in the next section, we will argue
that removing this part of the code leads to an AVSS scheme.

The idea behind the protocol is as follows: D first generates n (Shamir) shares {sj}j∈[1,n] of s with
threshold t and computes a commitment Comsj = Commit(sj)

5 and an encryption csj = Encpkj (sj) of

5The randomness used for computing the commitment of the shares should lie on a random degree-t polynomial (as in the
Pedersen VSS [39]); however, we abstract it out here for easy reading.
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Protocol Sup-Sh(D, Pking, s)
i. D-DEPENDENT PHASE:

SHARE COMPUTATION AND CERTIFICATE GENERATION—The following code is executed only by D:

1. On having the secret s, select a sharing polynomial f(·) of degree at most t such that f(0) = s. For j ∈ [1, n], compute the
share sj = f(j), encrypted share csj = Encpkj (sj) and committed share Comsj = Commit(sj). In addition compute the
commitment Coms = Commit(s).

2. Non-equivocally send {csj}j∈[1,n], {Comsj}j∈[1,n],Coms to each Pi and start constructing the certificate αD =
certifyZK-PoE(claimα,D) where claimα,D is the claim that “∀j ∈ [1, n], ∃sj : csj = Encpkj (sj) ∧ Comsj = Commit(sj)
and there exists a polynomial f(·) of degree at most twith sj = f(j) and Coms = Commit(f(0))”; for this, run an instance
of ZK-PoE for each sj with every party. Broadcast αD once it is constructed.

SHARE VERIFICATION AND CERTIFICATION—Every party Pi ∈ P including D and Pking executes the following code:

1. Wait to non-equivocally receive {csj}j∈[1,n], {Comsj}j∈[1,n],Coms from D. On receiving, perform the following verifica-
tions and upon successful verification, additionally broadcast the message (OK,D) if Pi = Pking:

(a) Verify whether the committed shares {Comsj}j∈[1,n] define a unique polynomial of degree at most t; for this use
Coms and the properties of Vandermonde matrices [14, 28].

(b) If the verification in the previous step is successful then participate (as a Verifier) in the instances of ZK-PoE with D to
verify the claim claimα,D and enable D to construct the certificate αD for claimα,D.

ii. D-INDEPENDENT PHASE AND TERMINATION—Every party Pi ∈ P including D and Pking executes the following code:

1. Wait to receive the certificate αD from the broadcast of D and the message (OK,D) from the broadcast of Pking. On
receiving these messages, verify αD for the claim claimα,D. Upon successful verification, do the following:

(a) If {csj}j∈[1,n], {Comsj}j∈[1,n],Coms has been non-equivocally received from D then compute the share si =
Decski(csi). In addition, non-equivocally transfer only csj and Comsj on behalf of D to party Pj for j ∈ [1, n].

(b) Else wait for csi ,Comsi to be non-equivocally transferred to Pi on behalf of D from some Pj ∈ P . Once transferred,
compute si = Decski(csi).

2. Wait to have si and Comsi and then non-equivocally transfer Comsi to every party Pj ∈ P on behalf of D.

3. Wait for t + 1 Comsj s to be non-equivocally transferred on behalf of D from t + 1 parties. Then using the properties of
Vandermonde matrices, compute {Comsj}j∈[1,n] and Coms and terminate.

Figure 2: Protocol for generating [s] under Pking

each share sj . Notice that sj is encrypted with the public key pkj of party Pj , as the share sj is intended only
for Pj . In addition, D also computes the commitment Coms = Commit(s). The next task for D would be
to send the intended shares to the individual parties and prove to them that they are indeed “valid” shares of
s. To do this, instead of sending only si to Pi, the dealer non-equivocally sends {csj}j∈[1,n], {Comsj}j∈[1,n]

and Coms to every party Pi and claims that the plaintext encrypted in csj is committed in Comsj and that the
values committed in {Comsj}j∈[1,n] constitute valid shares of the secret committed in Coms with threshold
t. Notice that sending the full vector {csj}j∈[1,n] and {Comsj}j∈[1,n] to each party is quite non-intuitive;
however, as discussed in Section 2, it is the crux of our protocol to ensure that every party eventually receives
its information corresponding to [s].

To verify the claim of D, a party Pi on (non-equivocally) receiving the information from D uses the
properties of Vandermonde matrices [14, 28] to verify whether the committed shares {Comsj}j∈[1,n] con-
stitute valid Shamir sharing of the secret committed in Coms, with threshold t. In addition, Pi engages
in n instances of ZK-PoE (one instance for each individual encrypted and committed share) with D. As
D non-equivocally sends the information to the parties, it is ensured that all participants use the same
{csj}j∈[1,n], {Comsj}j∈[1,n] and Coms. D then constructs a certificate αD to support his claim and broad-
casts this certificate. Only upon receiving a valid certificate αD from the broadcast of D does a party proceed.
Even when the dealer D is corrupted, a valid αD implies that at least one honest party, say Ph, has verified
D’s claim. Moreover, Ph will be an honest privileged party. To satisfy our requirement that even (an honest)
Pking should be a privileged party, we additionally enforce that every party should also receive an acknowl-
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edgement from Pking (apart from the certificate from D) of having verified the claim of D before proceeding
further in the protocol. All this computation and communication in the protocol constitutes what we call the
D DEPENDENT PHASE.

Now notice that even if a valid certificate αD from D and an acknowledgement from Pking arrives, it
does not ensure that every (honest) Pi holds its information corresponding to [s]. Specifically, due to the
asynchronicity or due to possible corrupted behavior of D, t honest Pis may be barred from their information
corresponding to [s]. We solve this problem by using the following two “rounds” of communication, which
we call the D INDEPENDENT PHASE, as it does not require any help from D. We first ask every privileged
party to non-equivocally transfer csj and Comsj on behalf of D to every corresponding Pj . If αD has been
generated, then there exists at least one honest privileged party Ph and so Ph can transfer csj and Comsj

to the respective Pjs, who can decrypt csj and obtain its share sj . Thus it is ensured that each honest Pj
eventually receives its share sj and also Comsj .

We next ask each Pj to non-equivocally transfer Comsj to every other party on behalf of D. Now every
party waits for t+ 1 committed shares to be non-equivocally transferred. As there exist t+ 1 honest parties
who would have received their respective Comsj at the end of first “round” of the D INDEPENDENT PHASE,
it is ensured that eventually every honest party will have t+ 1 correct committed shares transferred to them
non-equivocally. Now using the linearity property of the commitment scheme and using the properties
of Vandermonde matrices, every party can compute the remaining committed shares and also Coms, thus
possessing all the necessary information corresponding to [s]. It is important for the parties to follow the
above communication “pattern” during the D INDEPENDENT PHASE; this ensures that the communication
complexity of this phase is O(n2κ).

Note that instead of non-equivocally committing the shares, D could have non-equivocally sent the com-
mitments of the coefficients of the sharing polynomial (as done in some VSS schemes) and using the homo-
morphic property of the commitments, each (honest) privileged party could implicitly obtain commitment
of each share. Although this could have simplified the protocol, this would have increased communication
complexity of the D INDEPENDENT PHASE by Θ(n): as the non-equivocation mechanism is not homomor-
phic, the privileged parties cannot non-equivocally transfer only Comsj to Pj on the behalf of D; rather, the
privileged parties have to non-equivocally transfer the full committed coefficients vector and only then can
Pj derive the commitments of the shares.

The properties of Sup-Sh are proved in Appendix D.1. We follow the proof strategy from [7, 31, 32],
and we do not consider the real-world/ideal-world paradigm. However, we stress that using standard tech-
niques [17,24], our protocols can be easily adapted and proved secure in the more rigorous real-world/ideal-
world paradigm.

4.1.1 Designing AVSS through a Variant of Sup-Sh

A closer look at Sup-Sh reveals that if Pking is corrupted, then the protocol may not terminate even if D is
honest; this is because a corrupted Pking may not broadcast the (OK,D) message required for the termination.
As a result, Sup-Sh fails to qualify as an AVSS sharing protocol, since an AVSS sharing protocol needs to
terminate if D is honest [2, 14]. However, we can easily get rid of this problem as follows: we remove the
(additional) requirement for Pking to broadcast the (OK,D) message; as a result, every party now waits only
to receive a valid certificate from the broadcast of D during the D-INDEPENDENT PHASE. The resultant
protocol (Sh) will allow (an honest) D to generate [s], and its pseudocode can be obtained by removing the
instructions in boldface in Figure 2.

Given [s] generated using Sup-Sh and Sh, the standard reconstruction (Rec) protocol used in the existing
computationally secure VSS [2, 14, 39] will allow the parties to robustly reconstruct s. In the protocol, each
party sends its share to all the parties, which are verified with the corresponding commitment, available with
the parties (as part of [s]). Once t + 1 “correct” shares are received, the sharing polynomial, and hence s,
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Protocol Sup-PreMul-Sh(D, Pking,P, [v])

Let {cvj}j∈[1,n], {Comvj}j∈[1,n] and Comv be information corresponding to [v] that is available to all the (honest) par-
ties; each (honest) Pi will also have the share vi = fv(i) of v, where fv(·) denotes the sharing polynomial corresponding to [v].

i. GENERATING [u]:

1. On having a value u, D invokes an instance of Sup-Sh to generate [u] under the supervision of Pking. Let fu(·) be the sharing
polynomial selected by D and let {uj}j∈[1,n], {cuj}j∈[1,n], {Comuj}j∈[1,n] and Comu denote the shares, encrypted shares,
committed shares and the commitment respectively, which are computed and communicated during this instance of Sup-Sh.

2. Every party Pi ∈ P (including D and Pking) participates in the instance of Sup-Sh invoked by D and wait for its termination.

ii. GENERATING [u · v]—The following code is executed by the respective parties only upon terminating the instance of Sup-Sh:
a. D DEPENDENT PHASE

1. SHARE COMPUTATION AND CERTIFICATE GENERATION—The following code is executed only by D:

(a) Select a random masking polynomial r(·) of degree at most t with r(0) = 0. For j ∈ [1, n], compute rj = r(j) and
commitment Comrj = Commit(rj), along with the commitment Comr = Commit(r(0)).

(b) For j ∈ [1, n], using the homomorphic property of the encryption and commitment scheme, compute the new encrypted
share cu·vj+rj = u�cvj �Encpkj (rj) and the new committed share Comu·vj+rj = u�Comvj⊕Comrj . In addition,
compute the new commitment Comu·v = u� Comv ⊕ Comr .

(c) Non-equivocally send Comu, {cu·vj+rj}j∈[1,n], {Comu·vj+rj}j∈[1,n], {Comrj}j∈[1,n],Comr and Comu·v to ev-
ery Pi ∈ P and start constructing the certificate βD = certifyPoCM(claimβ,D) where claimβ,D is the claim that
“∃u, r(·) : Comu = Commit(u) ∧ degree(r(·)) ≤ t ∧ r(0) = 0 ∧ Comu·vj+rj = u � Comvj ⊕ Comrj ∧
cu·vj+rj = u� cvj � Encpkj (r(j))” by executing an instance of the ZK protocol PoCM for every party.

(d) Broadcast the certificate βD once it is constructed.

2. SHARE VERIFICATION AND CERTIFICATION—Every Pi ∈ P including D and Pking executes the following code:

(a) Wait to non-equivocally receive Comu, {cu·vj+rj}j∈[1,n], {Comu·vj+rj}j∈[1,n], {Comrj}j∈[1,n],Comr and Comu·v
from D. On receiving, perform the following verifications and upon successful verification, additionally broadcast the
message (approve,D) if you are Pking (i.e. if Pi = Pking):

i. Participate (as a Verifier) in the instances of PoCM with D to verify the claim claimβ,D and enable D to construct
the certificate βD for claimβ,D.

b. D INDEPENDENT PHASE AND TERMINATION—Every party Pi ∈ P including D and Pking executes the following code:

1. Wait to receive a valid certificate βD from the broadcast of D for the claim claimβ,D and the message (approve,D) from
the broadcast of Pking. On receiving, do the following:

(a) If {cu·vj+rj}j∈[1,n], {Comu·vj+rj}j∈[1,n] and Comu·v has been non-equivocally received from D in the previous
phase then compute the share wi = Decski(cu·vi+ri). In addition, non-equivocally transfer only cu·vj+rj and
Comu·vj+rj on behalf of D to party Pj for j ∈ [1, n].

(b) Else wait for cu·vi+ri and Comu·vi+ri to be non-equivocally transferred to Pi on behalf of D from some Pj ∈ P .
Once transferred, compute wi = Decski(cu·vi+ri).

2. Wait to have wi = u · vi + ri and Comu·vi+ri and then non-equivocally transfer Comu·vi+ri to every party Pj ∈ P on
behalf of D.

3. Wait for t + 1 Comu·vj+rj s to be non-equivocally transferred on behalf of D from t + 1 parties. Then using the properties
of Vandermonde matrices, compute {Comu·vj+rj}j∈[1,n] and Comu·v+r and terminate.

Figure 3: Protocol for generating [u] and [u · v] under Pking.

is reconstructed. As there exist at least t + 1 honest parties whose shares will eventually be communicated
among themselves, the Rec protocol eventually terminates. For the formal details, see [2,14,39]. Therefore,
the pair of protocols (Sh,Rec) constitutes an AVSS scheme with n = 2t+1 and communication complexity
O(n2κ) bits. The scheme is also publicly verifiable [43] as any third party can verify the consistency of the
shares using the valid certificate produced by D.
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4.2 Supervised Pre-multiplication Protocol

Protocol Sup-PreMul-Sh (Figure 3) takes as input a [·]-shared value v, where v is completely random and
unknown; in addition, every (honest) party is a privileged party with respect to [v] (having all the n encrypted
shares of v). The protocol allows a dealer D ∈ P to select a value u and verifiably generate [u] as well as
[u · v], under the supervision of a designated king Pking ∈ P . The verifiability ensures that if the protocol
terminates, then there exists a value, say u, such that u and u · v will be [·]-shared among the parties. During
the protocol, v and u · v remains private, and when D is honest then u = u and u is also unknown to A.
Finally if Pking is honest then it will be a privileged party with respect to [u] as well as [u · v]. The protocol
always terminates for an honest D and Pking and has communication complexity O(n2κ) bits. The protocol
works along the same lines as Sup-Sh and uses Sup-Sh as a black-box.

Let {cvj}j∈[1,n], {Comvj}j∈[1,n] and Comv be the encrypted shares, committed shares and the commit-
ment corresponding to [v] that is available to all the parties. Each Pi will also have the share vi = fv(i)
of v, where fv(·) with fv(0) = v denotes the sharing polynomial corresponding to [v]. Thus cvj =
Encpkj (vj),Comvj = Commit(vj) and Comv = Commit(v). To generate [u], D first invokes an instance of
Sup-Sh. The next task for D would be to generate [u · v] and that without knowing v. To do this, we observe
that u·fv(·) constitutes a “potential” sharing polynomial for [u·v]; this is because u·fv(·) has degree at most
t with u · v as the constant term. This also implies that {u · vj}j∈[1,n] constitute valid shares for u · v and so
using the homomorphic properties of the encryption and commitment scheme, D can compute the encrypted
shares {cu·vj = u� cvj}j∈[1,n], the committed shares {Comu·vj = u� Comvj}j∈[1,n] and the commitment
Comu·v = u � Comv, corresponding to [u · v] and distribute the same to the parties. But this violates the
privacy of u, as a corrupted Pi can easily obtain u by decrypting cu·vi ; this is because vi will be available to
Pi (as a part of [v]). Thus we use a slightly different idea; we observe that u · fv(·) + r(·) also constitutes
a sharing polynomial for u · v, provided r(·) is a polynomial (we call it a masking polynomial) of degree at
most t with 0 as the constant term. Thus {wj = u · vj + r(j)} constitutes valid shares for u · v, with {cwj =
cu·vj+r(j) = u � cvj � Encpkj (r(j))}j∈[1,n], {Comwj = Comu·vj+rj = u � Comvj ⊕ Com(r(j))}j∈[1,n]

and Comu·v = u� Comv ⊕ Com(r(0)) constituting the required information corresponding to [u · v].
The rest of the protocol now follows the same principle as Sup-Sh, except that PoCM is used instead

of ZK-PoE by D to construct the certificate that he has distributed “correct” information corresponding to
[u · v]. Intuitively as nothing about the r(j)s is revealed to the parties, u remains private; see Appendix D.2
for the details.

5 Supervised Triple Generation

We now present an asynchronous protocol SupTripGen which makes it possible to generate [·]-sharing
([u], [v], [w]) of a uniformly random multiplication triple (u, v, w), unknown to A, under the supervision
of a king Pking ∈ P with O(n3κ) communication complexity. The protocol is further designed using two
sub-protocols, namely Sup-Second and Sup-FirAndThd, based on the same principle, but with different
outputs.

5.1 Generating the Second Component of the Triple

Protocol Sup-Second generates [·]-sharing [v] of a uniformly random value v unknown to A, under the
supervision of a king Pking; additionally each (honest) party will be a privileged party (i.e. having all the
n encrypted shares) with respect to [v] (the need for this additional requirement will be clear in the next
subsection). The protocol is based on the following idea: each party Pi ∈ P is asked to act as a D and
invoke an instance Sup-Sh to generate [·]-sharing [v(i)] of a uniformly random value, under the supervision
of Pking; call this instance Sup-Shi. Now let Tking be the set of t + 1 Pks, such that Pking has locally
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terminated Sup-Shk. We set v to be v =
∑

Pk∈Tking v
(k). Then v will be random and unknown to A, as

there exists at least one honest Pk ∈ Tking and the corresponding v(k) will be random. In addition, Pking

is supposed to be a privileged party for every [v(k)] and thus Pking can compute all the n encrypted shares,
corresponding to [v]. We ask Pking to broadcast Tking and every party verifies whether they indeed have
locally terminated the instances Sup-Shks corresponding to Pks in Tking. This way every party can compute
its share of v and all the committed shares of v. What remains is to ensure that every party holds all the n
encrypted shares corresponding to [v]. However, the honest parties may not have the required information to
compute them (like the king), since corresponding to each v(k), they may be non-privileged. The way out of
this problem is that Pking has to “support” all the parties by broadcasting the n encrypted shares of v, which
costs O(n3κ) bits. However, we have to ensure that a potentially corrupted Pking indeed broadcasted the
correct encrypted shares of v. For this we also ask Pking to non-equivocally transfer the encrypted shares
corresponding to each [v(k)] to every other party; we stress that this information is communicated over the
point-to-point channels and not broadcasted. This costsO(n3κ) bits. Ideally Pking should be able to perform
the transfer as he is a privileged party during each Sup-Shk

Once this information is non-equivocally transferred to a party, it can re-compute the encrypted shares
of v and match it with what Pking has broadcasted and announce the same publicly. If at least t + 1 parties
announced “positively”, then it implies that Pking has indeed broadcasted the correct encrypted shares of
v, as there exists at least one honest party, to whom the the encrypted shares corresponding to the [v(k)]s
were non-equivocally transferred by Pking and who would have locally recomputed and verified what Pking

broadcasted as encrypted shares of v. Due to space constraints, the protocol and its properties are given in
Appendix E.1.

5.2 Generating First and Third Components of the Triple

Protocol Sup-FirAndThd takes as input a [·]-shared value v, where v is uniformly random and unknown,
such that every party is a privileged party and possesses all the n encrypted shares of v. It then generates
[·]-sharing [u] of a uniformly random value u unknown to A, along with the [·]-sharing [u · v], under the
supervision of a king Pking. The protocol follows the same principle as Sup-Second, except that each party
Pi now invokes an instance Sup-PreMul-Shi of Sup-PreMul-Sh with [v] and a uniformly random value u(i)

to generate [u(i)] and [u(i) · v]; this is possible because each Pi is now a privileged party with respect to [v],
which is a pre-condition for Sup-PreMul-Sh. Now we set u =

∑
Pk∈Tking u

k and w =
∑

Pk∈Tking u
k · v and

accordingly the parties output [u] and [w]; here Tking will be the set of n − t = (t + 1) Pks such that the
instance Sup-PreMul-Shk has been locally terminated by Pking. Note that unlike Sup-Second, we do not
demand that the parties also output all the n encrypted shares of u and w. The complete formal details can
be found in Appendix E.2.

5.3 Sup-Second+ Sup-FirAndThd =⇒ SupTripGen

Protocol SupTripGen for the supervised generation of a shared random multiplication triple consists of the
following two steps: (1). The parties execute the protocol Sup-Second and output [v]. (2). On terminating
Sup-Second, the parties execute the protocol Sup-FirAndThd and output [u] and [w] = [u · v]. The parties
then output ([u], [v], [w]) and terminate. For details, see Appendix E.3.

6 The NeqAMPC Protocol

The idea of the NeqAMPC protocol has already been discussed in Section 2. It follows a sequence of
three phases, each implemented by a sub-protocol, and in which a party proceeds to the next phase only
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after completing the current phase: the pre-processing phase generates [·]-sharing of cM + cR random
multiplication triples. This is followed by an input phase, where each party [·]-shares its private input, using
an instance of Sh; due to the asynchronicity, the parties agree on a set of (n−t) input providers and substitute
0 as the default input of the remaining t parties. Finally during the computation phase, the parties evaluate
the circuit in a shared fashion, using the idea discussed earlier. As the protocol is standard [31, 32], we
present it in Appendix F and state the following theorem.

Theorem 6.1 (The NeqAMPC Theorem). Let f : Znp → Zp be a function expressed as an arithmetic
circuit over Zp, consisting of cM multiplication gates and cR random gates. Assume a non-equivocation
oracle associated with every party. Then for every possible A and for every possible scheduler, there exists
a computationally secure AMPC protocol to securely compute f with communication complexityO(((cM +
cR) · n3 + n3)κ) bits.
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A Analysis of the AMPC Protocol of [7]

The AMPC protocol of [7] operates over ZN . The input stage consists of a synchronous broadcast round,
where every party encrypts its input and broadcasts it, along with a NIZK proof that it knows the underlying
plaintext, corresponding to the ciphertext. Thus the input stage consists of a broadcast of O(nκ) bits. The
secure evaluation of the circuit is then done using the king-slave paradigm, where every party in P acts
as a king and all the n parties (including the king) act as slaves and perform the computation on behalf of
the king, so as to enable the king to obtain the output of the function (to be computed). So in principle, the
actual circuit is evaluated n times, once on behalf of each party. We focus on the actual communication done
among the slaves to evaluate the circuit on the behalf of a single king. Due to the homomorphic property
of the encryption scheme, evaluating the addition gates required no interaction among the slaves. For a
multiplication gate, a random encrypted multiplication triple unknown to A is generated for the slaves,
under the supervision of the king. For this, the parties begin with a publicly known default encrypted
multiplication triple, which is then randomized to new encrypted triples, for t + 1 iterations, by different
slaves; the triple obtained after t+ 1th iteration is taken as the final triple. In every iteration, to perform the
randomization of an encrypted triple, the king sends a randomization request to all the n slaves. A slave,
on receiving a randomization request, performs the randomization, and to prove to the king that he has the
performed the randomization correctly, the slave provides a NIZK proof of O(κ) bits to every other slave,
so as to obtain a threshold signature. In short, in every iteration, each slave performs a randomization and
communicatesO(nκ) bits to the other slaves to prove that he has the performed the randomization correctly.
Therefore in total, each iteration involves a communication of O(n2κ) bits, and so t + 1 iterations require
a total communication of O(n3κ) bits. Thus evaluating a single multiplication gate under the king requires
a communication of O(n3κ) bits and so for cM multiplication gates, it will incur a total communication of
O(cMn

3κ) bits for a single king. Therefore, for n kings, the protocol will require an overall communication
of O(cMn

4κ) bits.
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B Non-equivocation Implementations

Chun et al. [21] observed that the fundamental distributed computing problem of “Byzantine generals” has
been proved unsolvable for three parties when one of those is corrupted [35] precisely because the corrupted
party can spread contradictory messages to the remaining two honest parties. They demonstrated that if
we can stop the corrupted party from equivocating (i.e., making conflicting statements to different honest
parties) using a small trusted module on every party, it is possible to improve the resilience of distributed
computing tasks in the asynchronous setting. They implemented non-equivocation using a (signed) trusted
log abstraction called Attested Append-Only Memory (A2M), and designed a Byzantine-tolerant state ma-
chine replication (SMR) system for n ≥ 2t+ 1.

Levin et al. [36] further simplified the trust assumption from [21] and showed that a minimal trusted
module called TrInc consisting of only a non-decreasing counter c ∈ N and a signing key-pair (pk, sk) is
sufficient to generate A2M logs and to implement SMR with n ≥ 2t + 1. Conceptually, TrInc provides
unique, once-in-a-lifetime attestations, and implements non-equivocation using the fact that the counter
cannot be decreased, and consequently for every counter value c there is at most one message signed by the
module.

Levin et al. implemented TrInc on Gemalto .NET SmartCards. It is also possible to implement TrInc
over the computers enabled with TPM chips, where its features of trusted identity, sealed storage, and remote
code attestation will be used. Although the TPM specification does not readily implement a trusted counter,
it can be achieved using a TPM-based hypervisor framework such as TrustVisor [37].

Recently, Clement el al. [22] observed that the definitional non-equivocation itself actually does not
provide any improvement to the resiliency bound; however, combining it with digital signatures provides
the improvements observed in [21, 23, 36], where the transferability of verifications provided by signatures
is a key along with non-equivocation. They further noted that this combination also provides a generic
transformation that allows a crash fault tolerant protocol to tolerate the same number of Byzantine faults.
Nevertheless, their generic transformation does not consider privacy (or confidentiality), required in the
AVSS and AMPC tasks, and we observe in this paper that encryptions and zero-knowledge proofs are
required along with signatures when privacy is required.

C Instantiation of Various Primitives

In this section we instantiate the primitives we used in our protocol construction. These are the following:
commitment scheme, encryption scheme and zero-knowledge proofs. As commitment scheme we simply
use Pedersen commitments [39], i.e., we commit to m using randomness r by computing gmhr for two
generators g, h of a suitable group. In particular, this commitment scheme has the properties we required in
section 3.3.

C.1 Encryption scheme Enc

We use the encoding-free ElGamal encryption scheme proposed in [19]. Let p, q be primes such that q | p−1
and let g be an integer of order pq modulo p2 that generates a group G = 〈g〉. Let 〈x, y〉 be the unique integer
in Zpq such that 〈x, y〉 = x mod p and 〈x, y〉 = y mod q. The class of an element of w = g〈x,y〉 ∈ G is
x. We denote the class of w as JwK. It is easy to see that Jw ·w′K = JwK+ Jw′K and that Gp := 〈g mod p〉
has order q.

Definition C.1 (Encoding-Free ElGamal [19]).

1. Setup: Let p, q be primes such that q | p− 1 and let g be a generator of Gp of order q.
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2. Key generation: The private key is a random x ∈ Zq; the public key is h = gx mod p.

3. Encryption: The encryption algorithm chooses randomly an r ∈ Zq and computes

Enc(m, r) = (gr mod p,m+ Jhr mod pK mod p)

4. Decryption: The decryption works as follows:

Dec(x, (R, c)) = c− JRx mod pK mod p

The scheme is CPA-secure under the Decisional Class Diffie-Hellman problem [19] which is defined as
the Diffie-Hellman problem under the class operation J·K. It has been shown that the Computational Class
Diffie-Hellman problem is equivalent to the Computational Diffie-Hellman problem. However, the same
result for the decisional case has not been shown.

We define two operations on encryptions in order to describe their homomorphic properties.

Definition C.2 (Homorphic operations).
Let a, b, c, d, v ∈ Zq.

• Enc(a, b) � Enc(c, d) := (gb+d mod p, (a+ c) + Jhb+d mod pK mod p)

• v � Enc(a, b) := (gvb mod p, va+ Jhvb mod pK mod p)

Note that these operations can be computed without knowing the content of the ciphertext. For the first
one this is the case because JwK+ Jw′K = Jw ·w′K. The latter operation can be done by iteratively applying
the first operation.

The encryption scheme has the properties required in section 3.3. For more details, we refer to [19].

C.2 Zero-knowledge Proof Scheme ZK-PoE

In this subsection we will present a proof scheme using the primitivies instantiated previously. The structure
of the ZK-PoE-protocol is based on Σ-protocols [8]. These protocols have been well-studied and are usually
easy to understand. Intuitively, a Σ-protocol is a proof that a party knows a witness w for a statement x such
that (x,w) ∈ R. The relationR, which can be proven, is specific for the Σ protocol.

Definition C.3 (Σ-Protocol [8]). Let R be a relation. A Sigma Protocol for a relation R is a 3-round
protocol, i.e., it consists of four algorithms (P1, P2, V1, V2) where P1, P2 is for the prover and V1, V2 is
for the verifier such that the following holds. Let x,w be bitstrings and (a, sP ) := P1(x,w), (c, sV ) :=
V1(x, a), p := P2(c, sP ) and d := V2(sV , p). Then the following holds:

1. Completeness: If (x,w) ∈ R and the prover and verifier are both honest, then the verifier always
outputs d = 1.

2. Special soundness: There is an extraction algorithm E such that for any fixed statement x and for any
two transcripts (a, c, p) and (a, c′, p′) such that the verifier outputs 1 for both and where c 6= c′ holds,
it follows that (x,E(a, c, c′, p, p′)) ∈ R.

3. Special honest verifier zero-knowledge: There is a simulator S such that for any x for which there is
a w for which (x,w) ∈ R holds, the simulator produces on input x and random input c a transcript
(a, c, p) which is computationally indistinguishable from a protocol transcript generated during the
real execution of the protocol.
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The relation for ZK-PoE we need to prove is the following:

∃m : Decski(cm) = m ∧ Open(m,Comm) = 1.

Since the corresponding prover does not know ski, we prove the first part of the statement by showing that
we know a randomness that leads to cm. Using the instantiations we get the statement:

∃m,Re, Rc : cm = Enc(m,Re) ∧ Comm = gmhRc

In more detail, for cm = (cm,1, cm,2) we want to prove cm,1 = gRe and cm,2 = m + JhReK. In order to
prove the equations for Comm and cm,1, we use the technique described in [16].

The proof scheme for these equations works as follows. For a set of generators {gi} we prove that we
know {xi} such that y =

∏
i g
xi
i by randomly choosing ri and sending t =

∏
i g
ri
i to the verifier. The

verifier then sends a challenge c and the prover computes si := ri− cxi and sends the si to the verifier. The
verifier accepts iff t = yc

∏
i g
si
i .

For the remaining part, i.e., cm,2 = m+JhreK, we give a Σ-protocol following the idea of the one above.
This is done by computing ri and si as in [16], however, the t is computed and verified differently; this is
done by computing t as rm + JhreK and verifying it to be c · cm,2 + sm + JhseK. Given this construction it
is straightforward to prove that the corresponding protocol is indeed a Σ-protocol.

Combining these two Σ-protocols we get a Σ-protocol for ZK-PoE.

C.3 Zero-knowledge Proof Scheme PoCM

As for the previous proof scheme, we will use a Σ-protocol in order to construct an interactive ZK proof
scheme. The overall statement that we show is the following.

∃u, {rj , kj}j∈[1,n] : Open(u,Comu) = 1 ∧
cu·v+r = u� cv � Encpki(r) ∧
Comu·vj+rj = u� Comvj ⊕ Com(rj , kj) ∧
degree({rj}j∈[1,n], t)∧
degree({kj}j∈[1,n], t) ∧ r0 = 0 = k0

The check for the degree can be done using the representation problem, e.g., in order to check that
variables x and y satisfy the equation 2x + 5y = 1 we can check that we know the representation of
g1 with respect to the base {g2, g5}. Consequently, we can check the degree by evaluating the (inverse)
Vandermonde matrix on the quantified values and comparing the result with constants.

However, in order to give an instantiation with respect to the previously defined instantiations of Com
and Enc we need to existentially quantify over the corresponding randomnesses as well. In addition, we
split the proof into two statements which can be combined into a proof for the conjunction using standard
techniques, i.e., using the same rx, sx for shared variables x.

The first relation can be proven using results described in [16]. We want to prove the knowledge of a
representation of the commitments — with respect to the base of the Pedersen commitments — Comu and
Comr together with an additional verification step to verify the property we require for Comu·v+r. This
additional check can be rephrased as follows:

X := Comu·v+r 	 Comr = (gvhrv)u
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Hence, we need to verify that we know the representation of X with respect to the base Comv (and that
this is the same as for the representation of Comu). Therefore we can simply use the proof scheme [16], as
for ZK-PoE, for the first part of the scheme.

For the opening part of the second proof scheme, we can use the same technique. However, it is not
obvious that we can use this technique in order to verify cu·v+r = u� cv � Encpki(r). Looking at the first
component of our instantiation of Enc leads to an equation of the form X = Y u · gRe which corresponds to
the representation knowledge, since the X is represented via the base {Y, g} using u and Re. Hence we can
use the same technique. We need to show the correspondence for the second part as well. This part looks
like

X = uY +R+Re · Z

This is a linear version of the base representation problem and the technique can be applied here as well.
The corresponding t of this equation is ru � cv � Encpki(rR, re).

C.4 Asynchronous Reliable Broadcast Using Non-equivocation

Let Sen ∈ P be a party with message m, which it wants to send identically to all the n parties; then the
protocol r-broadcast allows it to do the same. The high-level idea of the protocol is very simple: Sen first
non-equivocally sends m to all the parties; this prevents a corrupted Sen from sending different messages
to different honest parties. However, a corrupted Sen may not send the message to all the honest parties.
So to ensure that all the honest parties eventually obtain the message, we add an additional “round” of
communication. Namely if an honest party non-equivocally receives some message from Sen, then it non-
equivocally transfers the same on behalf of Sen to every other party. This ensures that if any honest party has
received the message from Sen then it will be eventually transferred to every other honest party. Moreover,
we also ensure that if some message is non-equivocally transferred (on the behalf of Sen) to some honest
party Pi from another party Pj , then Pi futher non-equivocally transfersm to every other party on the behalf
of Sen; this is because it may be possible that both Pj and Sen are corrupted and so we need to ensure that
the message received by Pi is finally available to everyone, as Pj and Sen may not send them to everyone.
Protocol r-broadcast is presented in Fig. 4.

Protocol r-broadcast

CODE FOR THE SENDER Sen (WITH INPUT m) — The following code is executed only by Sen:

1. Non-equivocally send m to every party in P .

CODE FOR THE PARTY Pi — every party in P , including Sen, executes this code:

1. Ifm is non-equivocally received from Sen, then non-equivocally transferm to every party in P on behalf of Sen,
output m and terminate.

2. If m is non-equivocally transferred from some party Pj ∈ P on behalf of Sen, then non-equivocally transfer m
to every party in P on behalf of Sen, output m and terminate.

Figure 4: Asynchronous reliable broadcast protocol using non-equivocation tolerating t < n corruptions.

The properties of the protocol are stated in Theorem C.4, which follows easily from the protocol description
and the properties of non-equivocation.

Theorem C.4. Protocol r-broadcast achieves the following for every possible A and scheduler:

(1) TERMINATION: If Sen is honest, then all the honest parties eventually terminate the protocol. More-
over, even if Sen is corrupted and some honest party terminates the protocol, then except with negligible
probability, every other honest party eventually terminates the protocol . (2) CORRECTNESS: (a) If Sen is
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honest then except with negligible probability, all honest parties output m. (b) If Sen is corrupted and some
honest party outputs m′, then except with negligible probability, all the honest parties output m′. (3) COM-
MUNICATION COMPLEXITY: The protocol incurs communication of O(n2(`+ κ)) bits, where the message
m is of size ` bits.

D Properties of the Various Supervised Sharing Protocols and Proofs

D.1 Properties of the Protocol Sup-Sh

Lemma D.1. Let s be the D’s secret. Then for every possible A and scheduler, protocol Sup-Sh achieves
the following properties: (1) TERMINATION: if D and Pking are honest then all the honest parties eventu-
ally terminate the protocol, except with negligible probability. Moreover, if some honest party terminates
the protocol, then every other honest party eventually does the same, except with negligible probability.
(2) CORRECTNESS: if some honest party terminates the protocol, then there exists a value s which will
eventually be [·]-shared among the parties, except with negligible probability. Moreover, if D is honest then
s = s. Furthermore if Pking is honest then Pking will be a privileged party. (3) PRIVACY: if D is honest
then s remains private. (4) COMMUNICATION COMPLEXITY: the protocol has communication complexity
O(n2κ) bits.

PROOF: For TERMINATION, we first consider an honest D and Pking. In this case, D will non-equivocally
send {csj ,Comsj},Coms to all parties. In particular all honest parties will eventually receive them and
start participating in the instances of ZK-PoE, where all the verifications will pass. So Pking will eventually
broadcast the (OK,D) message, which from the properties of r-broadcast will eventually reach every honest
party with high probability. Moreover, since there exist at least n− t = t+ 1 honest parties, D will be able
to construct the certificate αD and eventually broadcast the same. Therefore every honest party eventually
receives αD as well as the (OK,D) message. Moreover, Pking will be a privileged party and non-equivocally
transfers ccj and Comsj to every Pj . It now follows easily that every honest Pj will eventually receive
csj and Comsj from Pking and obtain its share sj by decrypting csj . Moreover, since every such Pj non-
equivocally transfers its Comsj to every other party and there are at least t+1 such Pjs, it follows that every
honest party will eventually have at least t + 1 committed shares with high probability, using which it will
homomorphically obtain the remaining committed shares and terminate.

Now consider a corrupted D (and possibly a corrupted Pking) and let Pi be an honest party that termi-
nates the protocol. We show that all other honest parties will eventually do the same. Since Pi terminated the
protocol, it implies that Pi received αD from the broadcast of D as well as (OK,D) from Pking’s broadcast.
From the properties of broadcast, it follows that with high probability, every other honest party will eventu-
ally receive them. In addition, since αD was constructed, at least t + 1 and hence at least one honest party,
say Ph, must have received {csj ,Comsj},Coms from D and successfully performed all the verifications.
Since Ph is a privileged party, the rest of the proof follows using the same arguments as above, except that
Ph plays the role of Pking.

CORRECTNESS: If some honest party, say Pi, has terminated the protocol, then it follows that it has re-
ceived a valid certificate αD from the broadcast of D, which implies that with high probability, there exists
at least one honest party, say Ph, who would have participated in the construction of αD. This further im-
plies that Ph must have non-equivocally received {csj ,Comsj}j∈[1,n] and Coms from D and successfully
performed the required verifications. Particularly, Ph would have verified that there exists some polynomial
of degree at most t, say f(·), such that Coms = Commit(f(0)) and Comsj = Commit(f(j)). We define s
to be f(0) and show that eventually s will be [·]-shared. Since Pi has terminated the protocol, from the ter-
mination property of the protocol, it follows that each honest party will eventually terminate with its share sj

22



and a vector of committed shares, so what remains is to show that they correspond to [f(0)]. However, this
follows from the properties of non-equivocation. Specifically, neither a corrupted D nor any corrupted party
can send or transfer any other encrypted and committed share, different from csj and Comsj respectively, to
any honest Pj . Similarly, no corrupted party Pk can transfer its committed share, different from Comsk , to
any honest party. Thus with high probability, s will be [·]-shared.

It follows easily that if D is honest then s = s, as in this case the polynomial f(·) is the same as f(·),
as selected by D. Moreover it follows easily that if Pking is honest then it will be a privilged party, since an
honest Pking will broadcast the (OK,D) message only after non-equivocally receiving {csj ,Comsj},Coms

from D and successfully verifying it.

PRIVACY: We show that for an honest dealer D, and any s, s the adversary can not distinguish whether
D shared s or s. So let Tcor be the set of corrupted parties. Hence define Kcorr := {si, ki | Pi ∈ Tcorr,
where si is the share of party Pi and ki its encryption and decryption keys} ∪{ski | ski is the signing key
of Pi}. Note that we only assumed authentic channels; therefore, it is easy to see that the view of the adver-
sary viewA(x) consists of Comx, {Comxj , cxj}j∈[1,n] as well as αD, (OK,D) and the messages during the
protocol executions of ZK-PoE.

Assume there is an adversary A that can distinguish whether x = s or x = s is shared with non-
negligible probability. We then show that there is an adversary that can distinguish Coms from Coms with
non-negligible probability. We do this in several steps; in particular, we define the following views and show
that these are indistinguishable for s and s.

• view1
A(x) := viewA(x) ∪ Kcorr

• view2
A(x) := Comx, {Comxj , cxj}j∈[1,n] and Kcorr

• view3
A(x) := Comx, {Comxj}j∈[1,n] and Kcorr

• view4
A(x) := Comx and Kcorr

• view5
A(x) := Kcorr

Next, we show for i ∈ [1, 4] that viewi
A(x) ∼ viewi+1

A (x). For each step we need to show that if for
each adversary Ai having input viewi

A(x), there is an adversary Ai+1 which has an indistinguishable output
on input viewi+1

A (x).6

1. view1
A(x) ∼ view2

A(x)

LetA1 be given,A2 internally usesA1 by computing (OK,D), computing αD and simulating the zero-
knowledge proofs ZK-PoE. The first part is trivial, the second part can be done since the message
signed in α can be deduced from view2

A(x) and A2 has access to all signing key shares. In order
to prove the last part we need to distinguish two cases: ZK-PoE executions with honest parties and
ZK-PoE executions with corrupted parties. The executions with honest parties can be computed by
A2 using the simulator of the honest-verifier zero-knowledge property, since the honest parties choose
their challenge randomly. For the corrupted parties, the adversary A2 knows their si. Consequently,
he can act as the dealer in ZK-PoE and use the adversary of the protocol execution in order to generate
these proofs.

Finally, we need to show that the output of A1 is indistinguishable from the output of A2. By con-
struction of A2 it is sufficient to show that the input given to A1 inside A2 is indistinguishable from
the input that A1 gets. For (OK,D) and α this is obvious. For the ZK proofs of honest parties, this

6Note that the adversary even knows the signing keys of the parties.
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is implied by the honest-verifier zero-knowledge. The zero-knowledge proofs of the corrupted parties
consist of messages (a, c, e). Here a has the same distribution as in view1

A(x), i.e., uniformly at ran-
dom. The part c has the same distribution since A2 internally invokes the adversary of the protocol
execution. Finally, e is completely determined by a and c. Therefore e has the same distribution as
well.

2. view2
A(x) ∼ view3

A(x)

In this step we basically remove the ciphertexts from the input of A2. We construct A3 by internally
running A2 on view3(x) and the ciphertexts computed by A3. In order to compute the ciphertexts
A3 needs to distinguish two cases, ciphertexts of corrupted and ciphtertexts of honest parties. For
corrupted parties, A3 can simply access the plaintexts using Kcorr and encrypt them as D does, hence
having indistinguishablility. The ciphertexts of honest parties are replaced by encryptions of 0s. By
the IND-CPA property, it follows that this ciphertext is indistinguishable from the original message’s
ciphertext. Therefore the input to A2 is indistinguishable to view2(x) and consequently its output as
well.

3. view3
A(x) ∼ view4

A(x)

In this step we remove all commitments except the commitment to x. The adversary A4(x) can com-
pute the set {Comxj} for the corrupted parties Pj by recomputing them. For the other commitments,
the adversaryA4 can interpolate the polynomial inside the commitments; since he has t values Comxj

and the value Comx this leads to a unique polynomial inside the commitments, i.e., {Comxj}j∈[1,n].
Then A4 invokes A3 on the computed input.

4. view4
A(x) ∼ view5

A(x)

Finally we want to remove the commitment Comx. Since there are exactly t shares si in the adver-
saries’ knowledge, any x can be used in order to determine a unique polynomial. By the computational
hiding property, committing to any random value using uniform randomness cannot be distinguished
from Comx. Therefore A5(x) computes such a commitment and runs A4 on this input.

We can conclude that viewA(s) ∼ view5
A(s) and viewA(s) ∼ view5

A(s). Since we assume that
viewA(s) is distinguishable from viewA(s), we can conclude that Kcorr(s) = view4

A(s) is distinguish-
able from Kcorr(t) = view4

A(t). However, both Kcorr(s) and Kcorr(s) consists of the adversaries keys and
— since D is honest — t values which are uniformly random. Therefore they cannot be distinguished (a
contradiction). Hence the assumption has to be wrong and privacy follows by the contraposition.

COMMUNICATION COMPLEXITY: During the D-DEPENDENT PHASE, D has to non-equivocally distribute
O(n) encryted shares and committed shares to every party, which costs O(n2κ) bits. Construction of the
certificate αD requiresO(n2κ) bits of communication, as there are n ecnrypted and committed shares and so
D needs to execute in total n2 instances of ZK-PoE. Broadcasting αD costs O(n2κ) bits of communication,
as the certificate is of size O(κ) bits. During the D-INDEPENDENT PHASE, each party just needs to send
one encrypted share and one committed share to every other party, incurring a communication of O(n2κ)
bits. 2

D.2 Properties of the Protocol Sup-PreMul-Sh

Lemma D.2. Let v be a completely random and unknown value which is [·]-shared among P and let u
be a value selected by D. Then for every possible A and scheduler, protocol Sup-PreMul-Sh achieves the
following (properties (1) and (2) up to a negligible error probability): (1) TERMINATION: if D and Pking

24



are honest then all the honest parties eventually terminate the protocol. Moreover, if some honest party
terminates the protocol, then every other honest party eventually does the same. (2) CORRECTNESS: if
some honest party terminates the protocol, then there exists a value u, such that u and u · v will eventually
be [·]-shared among the parties. If D is honest then u = u. Moreover if Pking is honest then Pking will be a
privileged party with respect to [u] as well as [u · v]. (3) PRIVACY: v and u · v remains private at the end of
the protocol. Additionally, if D is honest then u also remains private. (4) COMMUNICATION COMPLEXITY:
the protocol has communication complexity O(n2κ) bits.

Proof. 1. COMMUNICATION COMPLEXITY: The generating phase of the protocol consists of one in-
stantce of the Sup-Sh protocol which has communication complexity O(n2κ). The D independent
phase of the protocol is similar as in the Sup-Sh protocol and hence has communication complexity
O(n2κ). The same holds for the share verification and certification part of the protocol, a broadcast
from the king with complexity O(n2κ) complexity and n2 instances of PoCM (n parties running n
instances each). Hence this part has communication complexity O(n2κ) as well. Finally, in the share
communication and certificate generation part, the certificate β is broadcasted by the dealer and the
dealer takes part in all executions of PoCM. In addition the dealer sends 3 + 2n commitments and n
ciphertexts non-equivocally to every party. The broadcast and PoCM executions have communication
complexity O(n2κ) and the same holds for sending O(n) values of size O(κ) non-equivocally to
every party. Consequently the overall protocol has complexity O(n2κ).

2. TERMINATION: Termination of the generating 〈u〉 phase follows by the corresponding properties of
the Sup-Sh protocol. For the remaining phases of the protocol the termination properties follow
completely analogously to the corresponding properties of Sup-Sh since the protocol structure is
essentially the same.

3. CORRECTNESS: For correctness we have to show that in the end there is an t-sharing ū and ūv. We
have to show that for an honest D it holds that ū = u and that if the king is honest, he is priviledged
with respect to [u] and [u · v].

The correctness of the protocol Sup-Sh already implies that there is a t-sharing of ū and that an honest
D will share u = ū. In addition, the correctness of Sup-Sh implies that Pking is privileged with respect
to [u].

Therefore we only need to show that upon termination, there is a t-sharing of ū · v and that an honest
Pking is privileged with respect to this sharing. Since an honest Pking only broadcasts (approve,D)
when he has received Comu, {cu·vj+rj}j∈[1,n], {Comu·vj+rj}j∈[1,n] and Comu·v, as a subset of this
message received all necessary information to be priviledged with respect to ū · v. Finally, upon
termination, every party Pi received cū·vi+ri as well as the corresponding commitment. For the same
reason as in the proof of protocol Sup-Sh, these values correspond to the verified shares, i.e., belong
to a degree t polynomial, and by the nonequivocation property, ū = u is ensured.

4. PRIVACY: The privacy proof is threefold. First, we have to show that v remains private, i.e., commu-
nication during the protocol does not help in distinguishing the value of two different v. Second, we
have to show that u · v remains private in the same sense and third, we have to show that u is private
if the dealer D is honest.

(a) v remains private: Assume an adversary A can distinguish v from v′ after seeing the additional
information of the Sup-PreMul-Sh execution for some u. Since the execution requires that [v]
(or [v′]) is already shared, it follows that an adversary BA can internally simulate an execution
of Sup-PreMul-Sh using u and then invoke A in order to distinguish v from v′. Hence v an
adversary does not gain any additional information about v by the execution of Sup-PreMul-Sh.
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(b) u · v remains private: Assume an adversary A can distinguish w = u · v from w′ = u′ · v′. Since
D may be corrupted, D can choose u = u′ = 1. As a consequence A can now distinguish the
cases v = w from v′ = w′ contradicting the privacy of v. Hence u · v remains private as well.

(c) u remains private if D is honest: This case is more difficult than the other two cases since the
protocol leaks more information about u than the protocol Sup-Sh executed on u. However, we
can follow the privacy proof of Sup-Sh.
Assume there is an adversary A that distinguishes the protocol execution for some u and u′. In
addition to the execution of Sup-Sh on u, the adversary gets {cu·vj+rj ,Comu·vj+rj}j∈[1,n],Comu·v,
the executions of PoCM and (approve,D) as well as βD. As in the proof of privacy with respect
to the protocol Sup-Sh, the information (approve,D) and βD does not help the adversary in
distinguishing u from u′.
Since Comu·v can be computed from Comu·vj+rj , we know there is an adversary that dis-
tinguishes u from u′ without the input Comu·v. Using the zero-knowledge property we can
also simulate the proofs leading to an indistinguishable outcome of A (by definiton of zero-
knowledge). As a consequence there is an adversary that distinguishes u from u′ by seeing the
output of Sup-Sh, cu·vj+rj ,Comu·vj+rj . Since the dealer D is honest, we can use the IND-CPA
property to remove the ciphertexts cu·vj+rj as we did in the privacy proof for Sup-Sh. Also fol-
lowing the privacy proof for Sup-Sh, we can reduce the input of the adversary to Comu·v, which
finally contradicts the computational hiding property of our commitment scheme. Consequently,
there is no such adversary A.

E Protocol for Supervised Triple Generation and its Properties

Here we present our supervised triple-generation protocol; we first present the subprotocols used.

E.1 Protocol Sup-Second and Its Properties

Protocol Sup-Second (for generating the second component of the shared multiplication triple) is presented
in Fig. 5.

The properties of the protocol Sup-Second are stated in Lemma E.1.

Lemma E.1. For every possible A and every possible scheduler, the protocol Sup-Second achieves the
following properties (properties (1) and (2) up to a negligible error probability): (1) TERMINATION: if
Pking is honest, then all honest parties eventually terminate the protocol. Moreover, even if Pking is corrupted
and some honest party terminates the protocol, then every other honest party eventually does the same. (2)
CORRECTNESS: if the honest parties terminate the protocol, then the parties output [·]-sharing [v] of a value
v. Moreover, each party will be a privileged party having all the encrypted shares of v. (3) PRIVACY: the
output shared value will be random from the viewpoint of A. (4) COMMUNICATION COMPLEXITY: the
protocol has communication complexity O(n3κ) bits.

Proof. 1. TERMINATION: in order to show termination, we need to show two properties; first, if Pking is
honest, then every honest party eventually terminates and second, if any honest party terminates, all
other honest parties will do the same.

(a) Honest king leads to termination: if the king is honest, then the set Tking will eventually reach the
size t+ 1, because of Theorem D.1 and since there are t+ 1 honest dealers in the executions of
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Protocol Sup-Second(Pking)

i. SHARING RANDOM VALUES—Every party Pi ∈ P including Pking executes the following code:

1. Select a random value v(i) and invoke an instance of Sup-Sh as a D to generate [v(i)] under the supervision of Pking; let this
instance of Sup-Sh be denoted as Sup-Shi. Moreover, let fi(·), {cvi,j}j∈[1,n], {Comvi,j}j∈[1,n] and Comv(i) denote the sharing
polynomial, encrypted shares, committed shares and commitment, generated during Sup-Shi, where vi,j = fi(j) is the jth share
of v(i) and cvi,j = Encpkj (vi,j),Comvi,j = Commit(vi,j) and Comv(i) = Commit(v(i)).

2. For j ∈ [1, n], participate in the instance Sup-Shj , invoked by Pj as a D.

ii. COLLECTING AND DISTRIBUTING THE INFORMATION FOR THE FINAL OUTPUT—Only Pking executes the following code:

1. Include party Pk in an accumulative set Tking, which is initially ∅, if the instance Sup-Shk is (locally) terminated.

2. Wait till |Tking| = t+1. Then using the linearity property of the encryption scheme, compute cvj = �Pk∈Tkingcvk,j for j ∈ [1, n]
and broadcast Tking, {cvj}j∈[1,n].

3. For every Pk ∈ Tking, non-equivocally transfer the encrypted shares {cvk,j}j∈[1,n] (received as a privileged party from the dealer
Pk during the instance Sup-Shk) to every party in P on behalf of Pk.

iii. RESPONDING TO Pking AND TERMINATION—Every party Pi ∈ P including Pking executes the following code:

1. Include party Pk in an accumulative set Ti, which is initially ∅, if the instance Sup-Shk is (locally) terminated.

2. Wait to receive Tking and {cvj}j∈[1,n] from the broadcast of Pking.

3. If {cvk,j}j∈[1,n] is non-equivocally transferred by Pking on behalf of each Pk ∈ Tking, then wait till Tking ⊆ Ti. Once Tking ⊆ Ti,
broadcast the message (OK, i) only if cvj = �Pk∈Tkingcvk,j holds for every j ∈ [1, n].

4. Wait to receive the (OK, ?) message from the broadcast of at least t + 1 parties. On receiving, wait till Tking ⊆ Ti and then
compute vi =

∑
Pk∈Tking

vk,i, {Comvj = ⊕Pk∈TkingComvk,j}j∈[1,n] and Comv = ⊕Pk∈TkingComv(k) , where vk,i denotes the

share obtained at the end of the instance Sup-Shk and {Comvk,j}j∈[1,n] and Comv(k) denotes the vector of committed shares
and the commitment obtained at the end of the instance Sup-Shk. Finally, output vi, {cvj}j∈[1,n], {Comvj}j∈[1,n] and Comv

and terminate.
Figure 5: Supervised generation of [v] for a random v under the supervision of Pking; if the protocol
terminates then each party will be a privileged party and will have all n encrypted shares of v.

Sup-Sh. In particular, since the honest party Pking terminates for all executions corresponding to
Tking, all honest Pi will eventually terminate for the same instances by the termination property
of Sup-Sh. Since Pking is honest, the checks done by the honest parties in the response and
termination phase will succeed and they will broadcast (OK, ?). Thus, eventually the number of
received (OK, ?) broadcasts will reach t+ 1 and the honest parties terminate.

(b) If an honest party terminates, then all honest parties do so: let Pi be the honest party that termi-
nates. We show that if a party Pj is honest, then Pj eventually terminates. The set Ti contains
all parties for which Pi terminated the corresponding Sup-Sh when Pi terminated. By termina-
tion of the Sup-Sh protocol, it follows that eventually Ti ⊆ Tj . Since Pking broadcasts Tking all
parties will eventually receive the same Tking and the condition Tking ⊆ Tj will eventually be
satisfied. In addition, since Pi terminated, it received at least t+1 broadcasted messages (OK, ?)
which will — since these messages were broadcast — eventually arrive at Pj . Consequently,
this condition is satisfied as well. Thus Pj finally terminates.

2. CORRECTNESS: At the end of the protocol execution every party outputs vi, {cvj ,Comvj}j∈[1,n] and
Comv. There is an honest party that verifies that this message is a linear combination of the sharings
run before. Since these precomputed sharings follow the correct protocol Sup-Sh and since sharings
are linear, it follows that the parties hold a sharing of some value v when terminating.

3. PRIVACY: For all honest parties it holds that their sharing is indistinguishable for any value they
shared, by the privacy of Sup-Sh. Since the overall output is a linear combination of t+ 1 sharings, at
least one honest sharing is contained in this combination. Assuming the adversaryA could distinguish
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this for any two different values v, v′, then the adversary could use this to break the privacy of Sup-Sh,
since he can control the t other parties from the output sharing. Thus, the privacy of Sup-Sh implies
the privacy of Sup-Second.

Moreover, the honest party of which a share is contained in the linear combination chooses this share
uniformly at random. Consequently, the linear combination contains a value that is uniformly random
as well.

4. COMMUNICATION COMPLEXITY: in the Sharing random values part of the protocol, there are n
instances of the Sup-Sh protocol, i.e., a communication complexity of O(n3κ).

The collection and distribution of the information is done only by the party Pking. During the ex-
ecution of this part of the protocol, the king broadcasts Tking and {cvj}j∈[1,n] and non-equivocally
transfers {cvk,j}j∈[1,n] for all Pk ∈ Tking. The broadcast message has size O(nκ) leading to a com-
munication complexity of O(n3κ) and the non-equivocally transfered data has size O(n2κ) leading
to communication complexity O(n3κ) as well.

The final response and termination part which is executed by all parties consists only of broadcasting
(OK, i). This message has size O(1) because the identity is encoded in the broadcast protocol. How-
ever, there are n broadcasts in the worst case, leading to a communication complexity of O(n3κ).

E.2 Protocol Sup-FirAndThd and Its Properties

Protocol Sup-FirAndThd (for generating the first and third component of the shared multiplication) is pre-
sented in Figure 6.

The properties of the protocol Sup-FirAndThd are presented in Lemma E.2.

Lemma E.2. For every possible A and every possible scheduler, the protocol Sup-FirAndThd achieves the
following properties: (1) TERMINATION: if Pking is honest, then all honest parties eventually terminate.
Moreover, if one honest party terminates, then all honest parties eventually terminate. (2) CORRECTNESS:
after termination, all parties hold a sharing for [u], [w] such that [w] is a sharing of [u], [v]. (3) PRIVACY:
the execution is indistinguishable for different values of u and v. (4) COMMUNICATION COMPLEXITY: the
protocol has communication complexity O(n3κ) bits.

Proof. The proof completely follows the proof of Sup-Second, except that properties are now implied from
Sup-Sh, instead of Sup-PreMul-Sh.

E.3 The Supervised Tripled Generation Protocol SupTripGen

Protocol SupTripGen for the supervised triple generation, which is a combination of Sup-Second and
Sup-FirAndThd, is presented in Fig. 7.

The following lemma follows easily from the properties of Sup-Second and Sup-FirAndThd and the
protocol steps:

Lemma E.3. For every possible A and every possible scheduler, the protocol SupTripGen achieves the
following properties (properties (1) and (2) up to a negligible error probability): (1) TERMINATION: if
Pking is honest then all honest parties eventually terminate the protocol. Moreover, even if Pking is corrupted
and some honest party terminates the protocol, then every other honest party eventually does the same. (2)
CORRECTNESS: if the honest parties terminate the protocol, then the parties output [·]-sharing ([u], [v], [w])
of a multiplication triple (u, v, w). (3) PRIVACY: the shared multiplication triple (u, v, w) will be random
from the viewpoint ofA. (4) COMMUNICATION COMPLEXITY: the protocol has communication complexity
O(n3κ) bits.
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Protocol Sup-FirAndThd(Pking, [v])

i. SHARING RANDOM VALUES—Every party Pi ∈ P including Pking executes the following code:

1. Select a random value u(i) and invoke an instance of Sup-PreMul-Sh on [v] as a D to generate [u(i)] and [u(i) · v] =
[w(i)] under the supervision of Pking; let this instance of Sup-PreMul-Sh be denoted as Sup-PreMul-Shi. Moreover, let
{ui,j}j∈[1,n], {cui,j}j∈[1,n], {Comui,j}j∈[1,n] and Comu(i) denote the vector of shares, vector of encrypted shares, vec-
tor of committed shares and the commitment corresponding to [u(i)] generated during Sup-PreMul-Shi. Similarly, let
{wi,j}j∈[1,n], {cwi,j}j∈[1,n], {Comwi,j}j∈[1,n] and Comw(i) denote the vector of shares, vector of encrypted shares, vector
of committed shares and the commitment corresponding to [w(i)] generated during Sup-PreMul-Shi.

2. For j ∈ [1, n], participate in the instance Sup-PreMul-Shj , invoked by Pj as a D.

ii. COLLECTING AND DISTRIBUTING THE INFORMATION FOR THE FINAL OUTPUT—Only Pking executes the following code:

1. Include party Pk in an accumulative set Tking, which is initially ∅, if the instance Sup-Shk is (locally) terminated.

2. Wait till |Tking| = t+ 1. Then broadcast Tking.

iii. RESPONDING TO Pking AND TERMINATION—Every party Pi ∈ P including Pking executes the following code:

1. Include party Pk in an accumulative set Ti, which is initially ∅, if the instance Sup-Shk is (locally) terminated.

2. Wait to receive Tking from the broadcast of Pking.

3. On receiving Tking, check if it is of size t+ 1 and if so then wait till Tking ⊆ Ti.

4. Compute ui =
∑

Pk∈Tking

uk,i, {Comuj = ⊕Pk∈TkingComuk,j}j∈[1,n],Comu = ⊕Pk∈TkingComu(k) , where

uk,i, {Comuk,j}j∈[1,n] and Comu(k) is obtained at the end of Sup-PreMul-Shk, corresponding to [u(k)]. Similarly com-

pute wi =
∑

Pk∈Tking

wk,i, {Comwj = ⊕Pk∈TkingComwk,j}j∈[1,n],Comw = ⊕Pk∈TkingComw(k) , where wk,i, {Comwk,j}j∈[1,n]

and Comw(k) is obtained at the end of Sup-PreMul-Shk, corresponding to [w(k)]. Finally, output ui, {Comuj}j∈[1,n],Comu as
well as wi, {Comwj}j∈[1,n],Comw and terminate.

Figure 6: Supervised generation of [u] and [w = u · v] for a random u under the supervision of Pking,
where v is an existing [·]-shared value, with every party being a privileged party with respect to [v].

Protocol SupTripGen(Pking)

i. GENERATING THE SECOND COMPONENT OF THE TRIPLE—The parties in P execute an instance of Sup-Second(Pking) to generate
a uniformly random [·]-shared value, say [v].

ii. GENERATING THE FIRST AND THIRD COMPONENT OF THE TRIPLE—On terminating the instance of Sup-Second(Pking), the
parties execute Sup-FirAndThd(Pking, [v]) to obtain [u] and [w = u · v], output ([u], [v], [w]) and terminate.

Figure 7: Supervised generation of a uniformaly random [·]-shared multiplication triple, unknown to
A, under the supervision of Pking.

F Outline of Our AMPC Protocol

Our AMPC protocol is a sequence of the following three phases:

Preprocessing Phase. To generate cM + cR [·]-shared random multiplication triples, the preprocessing
phase protocol PreProcess performs the following steps: each party Pi ∈ P is asked to act as a king
and invoke cM+cR

t+1 parallel instances of SupTripGen to generate cM+cR
t+1 random [·]-shared multiplication

triples under its supervision. The parties then execute an instance of ACS and agree on a common subset
T CORE of (n − t) = t + 1 kings whose instances of SupTripGen (as a king) will eventually be ter-
minated by all the parties. The parties finally output the shared multiplication triples, generated during
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the instances of SupTripGen, corresponding to the kings in T CORE and terminate; thus they will obtain
|T CORE|· cM+cR

t+1 = cM+cR shared multiplication triples. As there exist at least t+1 honest parties, whose
instances of SupTripGen as a king will be eventually terminated by all the (honest) parties (see Lemma E.3),
protocol PreProcess will eventually terminate. Similarly, as the shared triples generated in the instances of
SupTripGen corresponding to each king in T CORE remain private, the output shared triples remain private.
It is easy to see that PreProcess has communication complexity O(n · cM+cR

t+1 · n3κ) = O((cM + cR)n3κ)
bits as t = Θ(n). As the protocol is quite straightforward, we skip the formal details.

Input Phase. The goal of the input phase protocol Input is to allow each individual party Pi ∈ P to generate
[·]-sharing of its private input xi for the computation. For this each party Pi ∈ P invokes an instance of
the sharing protocol Sh (see section. 4.1.1) as D to generate [xi]. To avoid indefinite waiting, the parties
execute an instance of ACS and agree on a common subset of (n− t) parties, say CORE , whose instances
of Sh (as a dealer) will eventually be terminated by all the parties. The parties finally output the sharings,
generated during the instances of Sh, corresponding to the parties in CORE ; on behalf of the remaining
parties in P \ CORE , a default [·]-sharing of 0 is considered. As there exist at least t + 1 honest parties,
whose instances of Sh as a dealer will eventually be terminated by all the (honest) parties, protocol Input will
eventually terminate. The shared inputs generated in the instances of Sh corresponding to the honest parties
in CORE remain private due to the privacy property of Sh. The Input protocol runs n instances of Sh, and
has communication complexity ofO(n·n2κ) = O(n3κ) bits. Again as the protocol is quite straight-forward,
we skip the formal details.

Computation Phase. The computation phase protocol Compute performs the shared circuit evaluation on a
gate-by-gate basis, by maintaining the following invariant for each gate of the circuit: given the [·]-sharing
of the input(s) of a gate, the protocol allows the parties to securely compute the [·]-sharing of the output
of the gate. The invariant is trivially maintained for the addition (linear) gates in the circuit, thanks to
the lineaity property of [·]-sharings. For a multiplication gate, the invariant is maintained by applying the
Beaver’s circuit randomization technique and using a [·]-shared multiplication triple from the pre-processing
stage (recall from section 2). For a random gate, a [·]-shared multiplication triple from the pre-processing
stage is considered and the first component of the triple is associated with the random gate. Finally, once
the [·]-sharing [y] of the circuit output y is generated, the parties execute the reconstruction protocol Rec,
reconstruct y and terminate. Again as the protocol is quite standard in the literature (see for example [20]),
we omit the complete details.
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