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Abstract

We present a general framework that converts certain types of linear collision-resistant hash
functions into one-time signatures. Our generic construction can be instantiated based on both
general and ideal (e.g. cyclic) lattices, and the resulting signature schemes are provably secure
based on the worst-case hardness of approximating the shortest vector (and other standard
lattice problems) in the corresponding class of lattices to within a polynomial factor. When
instantiated with ideal lattices, the time complexity of the signing and verification algorithms,
as well as key and signature size is almost linear (up to poly-logarithmic factors) in the dimension
n of the underlying lattice. Since no sub-exponential (in n) time algorithm is known to solve
lattice problems in the worst case, even when restricted to ideal lattices, our construction gives
a digital signature scheme with an essentially optimal performance/security trade-off.

1 Introduction

Digital signature schemes, initially proposed in Diffie and Hellman’s seminal paper [DH76] and
later formalized by Goldwasser, Micali and Rivest, [GMR88], are among the most important and
widely used cryptographic primitives. Still, our understanding of these intriguing objects is some-
how limited. The definition of digital signatures clearly fits within the public key cryptography
framework, yet their existence can be shown to be equivalent to the existence of symmetric crypto-
graphic primitives like pseudorandom generators, one-way hash functions, private key encryption,
or even just one-way functions [NY89, Rom90].

When efficiency is taken into account, however, digital signatures seem much closer to public
key primitives than to symmetric ones. In the symmetric setting, functions are often expected
to run in time which is linear or almost linear in the security parameter k. However, essentially
all known digital signatures with a supporting proof of security are based on algebraic functions
that take at least Ω(k2) time to compute, where 2k is the conjectured hardness of the underlying
problem. For example, all factoring-based schemes must use keys of size approximately O(k3) to
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achieve k bits of security to counter the best known sub-exponential time factoring algorithms,
and modular exponentiation raises the time complexity to over ω(k4) even when restricted to small
k-bit exponents and implemented with an asymptotically fast integer multiplication algorithm.

Digital signatures based on arbitrary one-way hash functions have also been considered, due
to the much higher speed of conjectured one-way functions (e.g., instantiated with common block
ciphers as obtained from ad-hoc constructions) compared to the cost of modular squaring or ex-
ponentiation operations typical of number theoretic schemes. Still, the performance advantage of
one-way functions is often lost in the process of transforming them into digital signature schemes:
constructions of signature schemes from non-algebraic one-way functions almost invariably rely on
Lamport and Diffie’s [DH76] one-time signature scheme (and variants thereof) which requires a
number of one-way function applications essentially proportional to the security parameter. So,
even if the one-way function can be computed in linear time O(k), the complexity of the resulting
signature scheme is again at least quadratic Ω(k2).

Therefore, a question of great theoretical and practical interest, is whether digital signature
schemes can be realized at essentially the same cost as symmetric key cryptographic primitives.
While a generic construction that transforms any one-way function into a signature scheme with
similar efficiency seems unlikely, one may wonder if there are specific complexity assumptions that
allow to build more efficient digital signature schemes than currently known. Ideally, are there
digital signature schemes with O(k) complexity, which can be proved as hard to break as solving a
computational problem which is believed to require 2Ω(k) time?

1.1 Results and techniques

The main result in this paper is a construction of a provably-secure digital signature scheme with key
size and computation time almost linear (up to poly-logarithmic factors) in the security parameter.
In other words, we give a new digital signature scheme with complexity O(k logc k) which can be
proved to be as hard to break as a problem which is conjectured to require 2Ω(k) time to solve.
The signature scheme is a particular instantiation inside of a general framework that we present
for constructing one-time signatures from certain types of linear collision-resistant hash functions.

We show how to instantiate our general framework with signature scheme constructions based
on standard lattice and coding problems. The lattice problem underlying our most efficient scheme
is that of approximating the shortest vector in a lattice with “cyclic” or “ideal” structure, as already
used in [Mic07] for the construction of efficient lattice-based one-way functions, and subsequently
extended to collision resistant functions in [PR06, LM06]. As in most previous work on lattices, our
scheme can be proved secure based on the worst case complexity of the underlying lattice problems.

Since one-way functions are known to imply the existence of many other cryptographic primi-
tives (e.g., pseudorandom generators, digital signatures, private key encryption, etc.), the efficient
lattice-based one-way functions of [Mic07] immediately yield corresponding cryptographic prim-
itives based on the complexity of cyclic lattices. However, the known generic constructions of
cryptographic primitives from one-way functions are usually very inefficient. So, it was left as an
open problem in [Mic07] to find direct constructions of other cryptographic primitives from lattice
problems with performance and security guarantees similar to those of [Mic07]. For the case of colli-
sion resistant hash functions, the problem was resolved in [PR06, LM06], which showed that various
variants of the one-way function proposed in [Mic07] are indeed collision resistant. In this paper
we build on the results of [Mic07, PR06, LM06] to build an asymptotically-efficient lattice-based
digital signature scheme.
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Theorem 1.1 There exists a signature scheme such that the signature of an n-bit message is of
length Õ(k) and both the signing and verification algorithms take time Õ(n) + Õ(k). The scheme is
strongly unforgeable in the chosen message attack model, assuming the hardness of approximating
the shortest vector problem in all ideal lattices of dimension k to within a factor Õ(k2).

Our signature scheme is based on a standard transformation from one-time signatures (i.e.,
signatures that allow to securely sign a single message) to general signature schemes, together with
a novel construction of a lattice-based one-time signature. We remark that the same transformation
from one-time signatures to unrestricted signature schemes was also employed by virtually all
previous constructions of digital signatures from arbitrary one-way functions (e.g., [Mer89, NY89,
Rom90]). This transformation, which combines one-time signatures together with a tree structure,
is relatively efficient and allows one to sign messages with only a logarithmic number of applications
of a hash function and a one-time signature scheme [Szy04]. The bottleneck in one-way function
based signature schemes is the construction of one-time signatures from one-way functions. The
reason for the slowdown is that the one-way function is typically used to sign a k-bit message one
bit at a time, so that the entire signature requires k evaluations of the one-way function. In this
paper we give a direct construction of one-time signatures, where each signature just requires two
applications of the lattice-based one-way function of [Mic07, PR06, LM06]. The same lattice-based
hash function can then be used to efficiently transform the one-time signature into an unrestricted
signature scheme with only a logarithmic loss in performance.

One-time signature. The high level structure of our general framework is easily explained (see
Figure 1). The underlying hardness assumption is the collision resistance of a certain linear hash
function family mapping a subset S of Rm to Rn, where R is some ring. The linear hash function
can be represented by a matrix H ∈ Rn×m and the secret key is a matrix K ∈ Rm×k. The public
key consists of the function H and the image K̂ = HK. To sign a message m ∈ Rk, we simply
compute s = Km. To verify that s is the signature of m, the verifier checks that s is in S and that
Hs = K̂m. To make sure that the scheme is complete (i.e. valid signatures are accepted), we need
to choose the domain of the secret keys and messages so that Km is always in S.

Depending on the choice of the ring R, we obtain one-time signatures based on different com-
plexity assumptions. Choosing R = Zp results in schemes based on the SIS problem, R = Z2 gives
us a scheme based on the Small Codeword Problem, and setting R = Z[x]/(xn + 1) produces the
most efficient scheme based on the Ring-SIS problem.

Security proof. The security of our general framework relies on the assumption that for a random
H ∈ Rn×m it is hard to find two distinct elements s, s′ ∈ S such that Hs = Hs′. In the security
proof, when given a random H by the challenger, the simulator picks a valid secret key K and
outputs H, K̂ = HK as the public key. Since the simulator knows the secret key, he is able to
compute the signature, Km, of any message m. If an adversary is then able to produce a valid
signature s′ of some message m′, he will satisfy the equation Hs′ = K̂m′ = HKm′. Thus, unless
s′ = Km′, we will have found a collision for H. The main technical part of our proof (Theorem
3.2) clarifies the necessary condition so that the probability of s′ 6= Km′ is non-negligible. Towards
this end, we define a condition called (ε, δ)-Hiding and then prove that if the domains of the hash
function, key space, and message space satisfy this requirement for a constant ε and a δ close to
1, then the one-time signature scheme will be secure based on the hardness of finding collisions in
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a random H. We remark that the (ε, δ)-Hiding property is purely combinatorial, and so to prove
security of different instantiations based on SIS, Ring-SIS, or coding problems, we simply need to
show that the sets used in the instantiations of these schemes satisfy this condition.

1.2 Related work

Lamport showed the first construction of a one-time signature based on the existence of one-way
functions. In that scheme, the public key consists of the values f(x0), f(x1), where f is a one-way
function and x0, x1 are randomly chosen elements in its domain. The elements x0 and x1 are kept
secret, and in order to sign a bit i, the signer reveals xi. This construction requires one application
of the one-way function for every bit in the message. Since then, more efficient constructions have
been proposed in (e.g. [Mer87, BC92, BM84, EGM96, BM96, HM02]), but there was always an
inherent limitation in the number of bits that could be signed efficiently with one application of
the one-way function [GGKT05].

Provably secure cryptography based on lattice problems was pioneered by Ajtai in [Ajt96], and
attracted considerable attention within the complexity theory community because of a remarkable
worst-case/average-case connection: it is possible to show that breaking the cryptographic function
on the average is at least as hard as solving the lattice problem in the worst-case. Unfortu-
nately, functions related to k-dimensional lattices typically involve an k-dimensional matrix/vector
multiplication, and therefore require k2 time to compute (as well as k2 storage for keys). A fun-
damental step towards making lattice-based cryptography more attractive in practice, was taken
by Micciancio [Mic07] who proposed a variant of Ajtai’s function which is much more efficient to
compute (thanks to the use of certain lattices with a special cyclic structure) and still admits a
worst-case/average-case proof of security. The performance improvement in [Mic07] (as well as in
subsequent work [PR06, LM06],) comes at a cost: the resulting function is as hard to break as
solving the shortest vector problem in the worst case over lattices with a cyclic structure. Still,
since the best known algorithms do not perform any better on these lattices than on general ones, it
seems reasonable to conjecture that the shortest vector problem is still exponentially hard. It was
later shown in [PR06, LM06] that, while the function constructed in [Mic07] was only one-way, it is
possible to construct efficient collision-resistant hash functions based on the hardness of problems
in lattices with a similar algebraic structure.

1.3 Comparison to the proceedings version of this work

In the proceedings version of this work [LM08], we gave a direct construction of a one-time signature
scheme based on the hardness of the Ring-SIS problem. The major difference of that scheme with
the Ring-SIS scheme in this paper is the key generation algorithm. In the current work, the secret
key is simply chosen according to the uniform distribution from some set. In [LM08], however,
choosing a secret key first involved selecting a “shell” with a geometrically degrading probability
and then picking a uniformly-random element from it. The security proof in the current paper is
also much more modular. In particular, we first present an abstract framework for constructing
one-time signatures of a particular type, and then show how this framework can be satisfied with
instantiations based on various problems such as SIS, Ring-SIS over the ring Z[x]/〈xn+1〉, and the
Small Codeword Problem. Essentially, this paper is a simpler, more modular, and more general
version of [LM08].

We also showed, in the proceedings version, constructions of a Ring-SIS signature scheme that
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worked over rings Z[x]/〈f(x)〉 for an arbitrary monic, irreducible polynomial f(x). Since the main
focus of the current paper is on abstracting out the properties needed for constructions of one-time
signatures from linear collision-resistant hash functions, we choose not to complicate matters by
also presenting the various manners in which one could do these constructions based on different
forms of the Ring-SIS problem (some of which would require first presenting some background
from algebraic number theory). Below, we sketch the different manners in which one could proceed
to define and instantiate the one-time signature using different rings. The main difference lies in
the manner in which the length of polynomials is defined and the domain and range of the hash
function H.

The simplest definition of length is the “coefficient embedding”, where it is defined by taking
the norm of the vector formed by the coefficients of the polynomial. This is the approach taken
in [LM08] and involves the use of the “expansion factor” [LM06] which gives an upper bound on
the size of the norm of the product compared to the norm of the multiplicands. A different way
to define the norm of elements in Z[x]/〈f(x)〉 is the “canonical embedding”, which is the norm of
a vector formed by evaluating the polynomial on the n (complex) roots of f(x). The advantage of
this latter approach is that bounding the product of the norm is very simple, and does not depend
on the modulus f(x), because multiplication is component-wise in the canonical embedding.

If one uses the canonical embedding to define the norm, then one also has a choice as to the
domain and range of the hash function H. Instead of being restricted to the ring Z[x]/〈f(x)〉, one
may follow the approach taken in [PR07] and define collision-resistant hash functions over the ring
of integers of number fields Q(ζ) where ζ is a primitive root of f(x). In the case that f(x) is a
cyclotomic polynomial and ζ is one of its roots (i.e. some root of unity), the ring of integers of Q(ζ)
is exactly Z[x]/〈f(x)〉, but in other cases, the ring of integers may be a superset of Z[x]/〈f(x)〉 and
more “compact”. Since keys need to be sampled from the domain of H, it is important that the
ring of integers of Q(ζ) is efficiently samplable in practice - which is not known to be the case for
particularly compact choices. Another choice for the domain (and range) of H, most applicable
when f(x) is a cyclotomic polynomial, is the dual of the ring of integers (see [LPR10, LPR13]).
The idea here would be to have H and m be elements of the primal ring, while having K come
from the dual one, which is sometimes a little bit more compact.

We point out that in the case of an irreducible f(x) of the form f(x) = xn + 1, the coefficient
and canonical embeddings are simply rigid rotations (and scalings) of each other. Also, the ring of
integers of Q(ζ), where ζ is a root of xn + 1, is exactly Z[x]/〈xn + 1〉, and the dual of this ring is
the same ring scaled by an integer. Therefore if we choose to work modulo xn + 1, all the above
choices are exactly equivalent.
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2 Preliminaries

2.1 Signatures

We recall the definitions of signature schemes and what it means for a signature scheme to be
secure. In the next definition, G is called the key-generation algorithm, S is the signing algorithm,
V is the verification algorithm, and s and G(s) are, respectively, the signing and verification keys.

Definition 2.1 A signature scheme consists of a triplet of polynomial-time algorithms (G,S, V )
such that for any n-bit message m and secret key s (of length polynomial in n), we have

V (G(s),m, S(s,m)) = 1

i.e., S(s,m) is a valid signature for message m with respect to public key G(s).

Notice that, for simplicity, we have restricted our definition to signature schemes where the key
generation and signing algorithms are deterministic, given the scheme secret key as input. This is
without loss of generality because any signature scheme can be made to satisfy these properties by
using the key generation randomness as secret key, and derandomizing the signing algorithm using
a pseudorandom function.

A signature scheme is said to be strongly unforgeable (under chosen message attacks) if there
is only a negligible probability that any (efficient) adversary, after seeing any number of mes-
sage/signature pairs for adaptively chosen messages of his choice, can produce a new message/signature
pair. This is a stronger notion of unforgeability than the standard one [GMR88], which requires the
adversary to produce a signature for a new message. In this paper we focus on strong unforgeabil-
ity because this stronger property is required in some applications, and all our schemes are easily
shown to satisfy this stronger property. A one-time signature scheme is a signature scheme that is
meant to be used to sign only a single message, and is only required to satisfy the above definition
of security under properly restricted advesaries that receive only one signature/message pair. The
formal definition is given below.

Definition 2.2 A one-time signature scheme (G,S, V ) is said to be strongly unforgeable if for
every polynomial-time (possibly randomized) adversary A, the success probability of the following
experiment is negligible: choose s uniformly at random, compute v = G(s), pass the public key to the
adversary to obtain a query message m← A(v), produce a signature for the message σ = S(s,m),
pass the signature to the adversary to obtain a candidate forgery (m′, σ′)← A(v, σ), and check that
the forgery is valid, i.e., (m,σ) 6= (m′, σ′) and V (v,m′, σ′) = 1.

2.2 Lattices and the SIS Problem

An n-dimensional integer lattice L is a subgroup of Zn. A lattice L can be represented by a set of
linearly independent generating vectors, called a basis.

Definition 2.3 In the Small Integer Solution problem (SIS∞p,n,m,β), one is given a matrix H ∈
Zn×mp and is asked to find a non-zero vector s ∈ Zm such that ‖s‖∞ ≤ β and Hs = 0 (mod p).

Ajtai’s breakthrough result [Ajt96] and its subsequent improvements (e.g. [MR07]) showed
that if one can solve SIS in the average case, then one can also solve the approximate Shortest
Independent Vector Problem (SIVP) in every lattice.
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Theorem 2.4 ([MR07, GPV08, MP13]) For any β > 0, modulus p ≥ β
√
mnΩ(1) with at most

polynomially many factors less than β, solving the SIS∞p,n,m,β problem (on the average, with non-
negligible probability) is at least as hard as solving SIVPγ in the worst case on any n-dimensional
lattice within a factor γ = max{1, β2√m/p} · Õ(β

√
nm).

In particular, for any constant ε > 0, β ≤ nε, and p ≥ β
√
mnε, SIS∞p,n,m,β is hard on average

under the assumption that SIVPγ is hard in the worst case for γ = Õ(β
√
nm).

2.3 Codes and the Small Codeword problem

Definition 2.5 In the Small Codeword (SCn,m,β) problem, one is given a matrix H ∈ Zn×m2 and
a positive integer β, and is asked to find a non-zero vector s ∈ Zm2 such that ‖s‖1 ≤ β and
Hs = 0(mod 2).

In this paper we will be interested in the above problem where m is a small polynomial in n and
β = Θ(n). If β is too big (e.g n/2), then the problem is trivially solved by Gaussian elimination,
but if β < n/4, the best algorithm seems to be the Generalized Birthday attack where one only
has few samples, and so it runs in time 2Ω(n/ log logn).

2.4 Ring-SIS in the Ring Zp[x]/〈xn + 1〉

Let R be the ring Zp[x]/〈xn+1〉 where n is a power of 2. Elements in R have a natural representation

as polynomials of degree n − 1 with coefficients in the range
[
−p−1

2 , p−1
2

]
. For an element a =

a0+a1x+. . .+an−1x
n−1 ∈ R, we define ‖a‖∞ = maxi(|ai|). Similarly, for a tuple (a1, . . . ,am) ∈ Rm,

we define ‖(a1, . . . ,am)‖∞ = maxi (‖ai‖∞). Notice that ‖ · ‖∞ is not exactly a norm because
‖αa‖∞ 6= α‖a‖∞ for all integers α (because of the reduction modulo p), but it still holds true
that ‖a + b‖∞ ≤ ‖a‖∞ + ‖b‖∞ and ‖αa‖∞ ≤ α‖a‖∞. It can also be easily checked that for any
a,b ∈ R, we have ‖ab mod xn + 1‖∞ ≤ n‖a‖∞ · ‖b‖∞ and if a only had w non-zero coefficients,
then ‖ab mod xn + 1‖∞ ≤ w‖a‖∞‖b‖∞.

Definition 2.6 Let R be the ring Zp[x]/〈xn+1〉. In the Small Integer Solution over Rings problem
(Ring-SISp,n,m,β), one is given a matrix H ∈ R1×m and is asked to find a non-zero vector s ∈ Rm
such that ‖s‖∞ ≤ β and Hs = 0 (mod p).

Theorem 2.7 ([LM06]) For m > log p/ log (2β), γ = 16β ·m · n log2 n, and p ≥ γ·
√
n

4 logn , solving

the Ring-SISp,n,m,β problem in uniformly random matrices in R1×m is at least as hard as solving
SVP∞γ in any ideal in the ring Z[x]/〈xn + 1〉.
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Keys Sign(m) Verify(m, s)

Secret Key: K ∈ K
s = Km Check that s ∈ S and Hs = K̂m

Public Key: H ∈ H, K̂ = HK

Figure 1: The One-Time Singature Scheme

3 The One-Time Signature Scheme

In this section we present our one-time signature scheme. The security of the scheme is based on
the collision resistance properties of a lattice based hash function. The scheme can be instantiated
with a broad range of lattice based hash functions, leading to digital signature schemes that are
ultimately based on the worst-case hardness of approximating lattice problems in various lattice
families, ranging from arbitrary lattices, to ideal lattices.

The scheme is parametrized by

• integers m, k, n,

• a ring R

• Subsets of matrices H ⊆ Rn×m, K ⊆ Rm×k, and vectors M⊆ Rk, S ⊆ Rm.

The parameters should satisfy certain properties for the scheme to work and be secure, but
before stating the properties, we describe how the sets of matrices are used to define the one-time
signature scheme.

The scheme is defined by the following procedures (also see Figure 1):

• Setup: A random matrix H ∈ H ⊆ Rn×m is chosen and can be shared by all users. The
matrix H will be used as a hash function mapping (a subset of) Rm to Rn, and extended to
matrices in Rm×k in the obvious way.

• Key Generation: A secret key is K ∈ K ⊆ Rm×k is chosen uniformly at random. The
corresponding public key K̂ = HK ∈ K̂ = Rn×k is obtained by hashing the secret key using
H.

• Signing: Messages are represented as vectors m ∈ M ⊂ Rk. On input secret key K and
message m ∈M, the signing algorithm outputs s = Km ∈ Rm.

• Verification: The verification algorithm, on input public key K̂, message m and signature
s, checks that s ∈ S and Hs = K̂m.

The correctness and security of the scheme is based on the following three properties:

1. [Closure] Km ∈ S for all K ∈ K and m ∈M.

2. [Collision Resistance] The function family {H : S → Rn | H ∈ H} is collision resistant.
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Figure 2: (ε, δ)-Hiding Property. If DH(K,m) (respectively DH(K,m′)) is defined to be the set of
secret keys compatible with the public key HK and signature Km (respectively Km′), then we do
not want the grey region to be an overwhelming fraction of DH(K,m).

3. [(ε, δ)-Hiding] For any H ∈ H, K ∈ K and m ∈M, let

DH(K,m) = {K′ ∈ K : HK = HK′ ∧Km = K′m}

be the set of secret keys that are consistent with the public key HK and m-signature Km
associated to K. The scheme is [(ε, δ)-Hiding] if for any H ∈ H,

Pr
K∈K

[∀m 6= m′.|DH(K,m) ∩ DH(K,m′)| ≤ ε|DH(K,m)|] ≥ δ.

The [Closure] and [Collision Resistance] properties are self-explanatory, whereas the [(ε, δ)-
Hiding] one could use some motivation. Recall from our proof sketch in Section 1.1 that we can
find a collision to the challenge hash function H if the adversary returns a signature s′ of a message
m′ such that s′ 6= Km′, where K is our chosen secret key with which we signed the message m.
If the adversary is to output a signature s′ such that s′ = Km′, then K must be in the grey
intersection in Figure 2. The (ε, δ)-Hiding condition says that with probability at least δ, this grey
region will be at most an ε fraction of the set DH(K,m). Since after seeing the signature of m, the
secret key is equally likely to be anywhere in DH(K,m), it can be shown that even an all-powerful
adversary has at most an ε chance of producing a signature s′ which equals to Km′. Thus the
reduction’s probability of outputting a valid collision is 1− ε.

In the analysis of the schemes in this paper we will only use the [(ε, δ)-Hiding] property with
ε = 1/2 and δ ≈ 1. For notational simplicity, if a scheme is [(ε, δ)-Hiding] for some δ = 1− n−ω(1)

overwhelmingly close to 1, then we simply say that it is [ε-Hiding]. So, the signature schemes
analyzed in this paper can be described as being [1

2 -Hiding].

Lemma 3.1 If the [Closure] property holds, then the scheme is correct, i.e., the verification algo-
rithm always accepts signatures produced by the legitimate signer.

Proof: It immediately follows from the definition of the [Closure] property and the signature veri-
fication algorithm.

Theorem 3.2 Assume the signature scheme satisfies the [Closure] and [(ε, δ)-Hiding] properties. If
there is an adversary A that succeeds in breaking the strong unforgeability of the one-time signature
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scheme with probability γ, then there exists an algorithm that can break the [Collision Resistance]
property with probability at least (γ + δ − 1) · (1− ε)/(2− ε).

In particular, if the [Closure], [Collision Resistance] and [ε-Hiding] properties hold true for any
constant ε < 1, then the one-time signature scheme is strongly unforgeable.

Proof: Let A be an efficient forger that can break the one-time signature scheme with probability
γ. We use A to build an attacker to the collision resistance of H that works as follows:

1. Given an H ∈ H, pick a uniformly-random secret key K ∈ K.

2. Send the public key (H,HK) to A.

3. Obtain query message m← A(H,HK).

4. Check that m ∈M and send the signature s = Km to A.

5. Obtain a candidate forgery (m′, s′)← A(H,HK, s).

6. Output (Km′, s′) as a candidate collision to H.

By the [Closure] property, we may assume that s,Km′ ∈ S are valid signatures. In the rest of
the proof we assume without loss of generality that A always outputs syntactically valid messages
m,m′ ∈ M and a valid signature s′ ∈ S satisfying Hs′ = HKm′. (An adversary can always be
modified to achieve this property, while preserving the success probability of the attack, by checking
that (m′, s′) is a valid message/signature pair, and if not, output (m, s).) Under these conventions,
the collision finding algorithm always outputs a valid collision, and it is successful if an only if the
collision is nontrivial, i.e.,

Km′ 6= s′. (1)

Similarly, the forger A always outputs a valid message-signature pair and it is successful if and only
if the pair is nontrivial, i.e.,

(m, s) 6= (m′, s′). (2)

We know by assumption that Pr{(2)} = γ. We need to bound the probability of (1). To this
end, we modify the above experiment as follows: choose a random bit b ∈ {0, 1} such that b = 0
with probability (1−ε)/(2−ε) and b = 1 with probability 1/(2−ε). Then if b = 0, set K′ = K, and
otherwise choose K′ uniformly at random from DH(K,m). The output of the modified algorithm
is (K′m′, s′). Notice that the set DH(K,m) is always nonempty because it contains K. Also, by
definition of DH, the key K′ always satisfies HK′ = HK and K′m = Km.

The outputs of A only depend on H,HK,Km and its random coins, and the conditional
distribution of K given H,HK,Km is uniform overDH(K,m). So, the pair (K′m′, s′) is distributed
identically to the output of the original collision finding algorithm, and the modified experiment
has the same success probability at finding a collision as the original algorithm. In what follows,
we analyze the probability that the modified experiment finds a collision, i.e.,

K′m′ 6= s′. (3)
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In order to bound the probability of (3), we break the corresponding event into three compo-
nents:

Pr{(3)} = Pr{(3) ∧m = m′}
+ Pr{(3) ∧m 6= m′ ∧ s′ 6= Km′}
+ Pr{(3) ∧m 6= m′ ∧ s′ = Km′}.

First we consider the simple case when m = m′. Notice that if (2) ∧m = m′ holds true, then
(3) ∧m = m′ is also satisfied because K′m′ = K′m = Km = s 6= s′. Therefore

Pr{(3) ∧m = m′} ≥ Pr{(2) ∧m = m′} ≥ Pr{(2) ∧m = m′}1− ε
2− ε

.

We now move on to the case where m 6= m′ and s′ 6= Km′. (Notice that only K′ depends
on b, and therefore the event b = 0 and m 6= m′ ∧ s′ 6= Km′ are statistically independent.) If
m 6= m′ ∧ s′ 6= Km′ ∧ b = 0, then K′ = K and (3) holds true because K′m′ = Km′ 6= s′.
Therefore,

Pr{(3) ∧m 6= m′ ∧ s′ 6= Km′} ≥ Pr{m 6= m′ ∧ s′ 6= Km′ ∧ b = 0}
= Pr{b = 0} · Pr{m 6= m′ ∧ s′ 6= Km′}

=
1− ε
2− ε

· Pr{(2) ∧m 6= m′ ∧ s′ 6= Km′}

where in the last equality we have used the fact that m 6= m′ implies (2).
For the last component, we first notice that if s′ = Km′ then (3) is equivalent to K′m′ 6= Km′.

So, for all K′ such that HK′ = HK (in particular, for all K′ ∈ DH(K,m)), (3) holds if and only
if K′ /∈ DH(K,m′). Consider the set XH ⊆ K of all secret keys K such that

∀m 6= m′.|DH(K,m) ∩ DH(K,m′)| ≤ ε|DH(K,m)|.

We know that, by the [(ε, δ)-Hiding] assumption, for all H we have Pr{K ∈ XH} ≥ δ. Using the
independence of b, and a union bound, we see that the event

m 6= m′ ∧ s′ = Km′ ∧K ∈ XH ∧ b = 1. (4)

has probability

Pr{(4)} = Pr{b = 1} · Pr{m 6= m′ ∧ s′ = Km′ ∧K ∈ XH}

≥ Pr{m 6= m′ ∧ s′ = Km′} − Pr{K /∈ XH}
2− ε

≥ Pr{(2) ∧m 6= m′ ∧ s′ = Km′} − 1 + δ

2− ε
.

From the definition of XH we also have

Pr{(3) | (4)} = Pr{K′ /∈ DH(K,m′) | (4)}
= 1− Pr{K′ ∈ DH(K,m′) | (4)}

≥ 1− max
H,K∈XH,m 6=m′

|DH(K,m) ∩ DH(K,m′)|
|DH(K,m)|

≥ 1− ε.
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Therefore we have

Pr{(3) ∧m 6= m′ ∧ s′ = Km′} ≥ Pr{(3) ∧ (4)}
= Pr{(4)} · Pr{(3) | (4)}

≥ (Pr{(2) ∧m 6= m′ ∧ s′ = Km′} − 1 + δ)
1− ε
2− ε

.

Adding up the three bounds gives

Pr{(3)} ≥ (Pr{(2)} − 1 + δ)
1− ε
2− ε

= (γ − 1 + δ)(1− ε)/(2− ε).

Finally, we observe that for any δ = 1 − n−ω(1) overwhelmingly close to 1 and constant ε < 1,
we have (γ − 1 + δ)(1 − ε)/(2 − ε) = O(γ − n−ω(1)). So, if the [Closure], [ε-Hiding] and [Collision
Resistance] properties hold true, then Pr{(3)} and γ are both negligible, and the signature scheme
is secure. �

4 Instantiation With Lattices and Codes

In this section we describe instantiations of our general one-time signature scheme based on various
classes of lattices and linear codes over finite fields. All schemes are proved secure showing that they
satisfy the [Closure], [1

2 -Hiding] and [Collision Resistance] properties, and then using Theorem 3.2.
Throughout this section, λ is a statistical security parameter that can be set, for example, to
λ = 128. The following simple lemma is used in the analysis of all schemes.

Lemma 4.1 Let h : X → Y be a deterministic function where X and Y are finite sets and
|X| ≥ 2λ|Y |. If x is chosen uniformly at random from X, then with probability at least 1 − 2−λ,
there exists another x′ ∈ X such that h(x) = h(x′).

Proof: There are at most |Y | − 1 elements x in X for which there is no x′ such that h(x) = h(x′).
Therefore the probability that a randomly chosen x does have a corresponding x′ for which h(x) =
h(x′) is at least (|X| − |Y |+ 1)/|X| = 1− |Y |/|X|+ 1/|X| > 1− 2−λ.�

4.1 One-time signature as hard as SIS

The lattice based signature scheme is defined by the sets in Figure 3 parametrized by integers
n,m, k, p, w, and b which should satisfy certain relationships. The size of the message space is

(
k
w

)
,

and so we need to set k and w so that this number is large enough. The choice of k and w offers
a trade-off between security and efficiency. Specifically, the size of both secret and public keys is
linear in k, so smaller values of k result in more efficient schemes. On the other hand, larger values
of w result in stronger security assumptions. For proving the security of our scheme based on the

SIS problem, we also need to have b =
⌈
pn/m2λ/m−1

2

⌉
. For conreteness, the reader may assume

m = d(λ + n log2 p)/ log2 3e, which allows to set b = 1. In practice, larger values of b may also be
interesting, as they allow for smaller values of m. Again, this offers a trade-off between security
and efficiency, where smaller values of m result in shorter signatures, while smaller values of b give
better security guarantees.

12



R = Zp
H = Rn×m

K = {K ∈ Rm×k : ‖K‖∞ ≤ b}
M ⊆ {m ∈ {0, 1}k : ‖m‖1 = w}
S = {s ∈ Rm : ‖s‖∞ ≤ wb}.

Figure 3: Instantiation of the one-time signature scheme based on general lattices. The sets are
parametrized by the integers n,m, k, p, w, b.

Additionally, if we would like to preserve the connection between average-case SIS and the
worst-case SIVP problem from Theorem 2.4, then we will also need to have p ≥ 2wb

√
mnΩ(1).

We now proceed to show that as defined above, our scheme satisfies the [Closure], [Collision
Resistance], and [1

2 -Hiding] properties defined in Section 3.

Lemma 4.2 The [Closure] property holds.

Proof: It is clear that for any secret key K and message m, we have ‖Km‖∞ ≤ ‖K‖∞ · ‖m‖1 ≤ wb,
and therefore Km ∈ S.

Lemma 4.3 The function family {H : S → Rn | H ∈ H} satisfies the [Collision Resistance]
property based on the average-case hardness of the SIS∞n,m,p,2wb problem. Furthermore, if p ≥
2wb
√
mnΩ(1), then the property is satisfied based on the worst-case hardness of SIVPγ in n-

dimensional lattices for γ = Õ(wb
√
nm) ·max{1, 4w2b2

√
m/p}.

Proof: The first part of the claim follows simply because if one can find x 6= x′ ∈ S for a random
H from H such that Hx = Hx′, then one has that H(x − x′) = 0 and ‖x − x′‖∞ ≤ 2wb. The
connection to SIVPγ follows directly from Theorem 2.4.�

Before analyzing the [1
2 -Hiding] property, we prove a simple lemma that states that with very

high probability, for a randomly-chosen secret key K ∈ K, there are other “similar-looking” possible
secret keys K′ such that HK = HK′.

Lemma 4.4 Let b =
⌈
pn/m2λ/m−1

2

⌉
. For every H ∈ H, if K is chosen uniformly at random from

K, then with probability at least 1 − k2−λ, there exists a key K′ ∈ K such that HK = HK′ and
K′ 6= K differ in every column.

Proof: Consider H as a function mapping from domain X = {−b, . . . , b}m to range Y = Znp . Notice

that by our choice of b, we have |X| = (2b + 1)m ≥ pn2λ; and |Y | is exactly pn. By Lemma 4.1,
we know that for a randomly chosen vector x ∈ X, with probability at least 1 − 2−λ, there is
another vector x′ ∈ X such that Hx = Hx′. Thus we have that for any particular column Kj ,
with probability at least 1− 2−λ, there exists a column K′j such that HKj = HK′j and Kj 6= K′j .

Applying the union bound, we get that with probability at least 1 − k2−λ this is true for every
column j = 1, . . . , k, giving a key K′ such that HK = HK′ and Kj 6= K′j for all j.�
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Lemma 4.5 Let b =
⌈
pn/m2λ/m−1

2

⌉
as in Lemma 4.4. Then the scheme satisfies the [1

2 -Hiding]

property.

Proof: Fix a hash function H ∈ H. We know that with probability at least 1− k2−λ, a randomly-
chosen key K has the property from Lemma 4.4, i.e., there is another key K′ such that HK′ = HK
and K′j 6= Kj for every j = 1, . . . , k. We now proceed to show that for any such key K, and for
any m 6= m′, we have

|DH(K,m) ∩ DH(K,m′)| ≤ |DH(K,m) \ DH(K,m′)|, (5)

or, equivalently,

|DH(K,m) ∩ DH(K,m′)| ≤ 1

2
· |DH(K,m)|,

which proves the lemma.
In order to prove (5), we give an injective function f from DH(K,m)∩DH(K,m′) to DH(K,m)\

DH(K,m′). Since m′ 6= m, there must be a j such that the jth coefficient is 0 in m and is 1 in m′.
For any X ∈ DH(K,m) ∩ DH(K,m′), we define X′ = f(X) as follows:

1. X′i = Xi for all i 6= j

2. X′j ∈ {Kj ,K
′
j} \ {Xj}. Notice that since Kj 6= K′j , at least one of them is different from Xj .

If they are both different, then X′j can be chosen between them arbitrarily.

We need to show that X′ ∈ DH(K,m) \ DH(K,m′), and that f is injective.
For X′ ∈ DH(K,m) \ DH(K,m′), we need to verify the following three conditions: HX′ =

HK, X′m = Km and X′m′ 6= Km′, under the assumption that HX = HK, Xm = Km and
Xm′ = Km′. For each i = 1, . . . , k, we have X′i ∈ {Xi,Ki,K

′
i}. Since HX = HK and HK′ = HK

(by our choice of K′), we have HX′ = HK, proving the first condition. The second condition
X′m = Km follows from the fact that X′m = Xm (because X′ and X differ only in the jth
column and mj = 0) and Xm = Km. Similarly, the third condition X′m′ 6= Km′ follows from
the fact that X′m′ 6= Xm′ (because X′ and X differ only in the jth column and m′j = 1) and
Xm′ = Km′.

It remains to prove that f is injective. Assume for contradiction that f(X) = f(X′) for some
X 6= X′ both in DH(K,m)∩DH(K,m′). Then, by definition of f , Xi = X′i for all i 6= j. Therefore
Xj and X′j must differ. But then Xm′ 6= X′m′ because m′j = 1, and so they cannot both be in
DH(K,m′). �

Combining the previous lemmas, and Theorem 3.2, we obtain the following corollary.

Corollary 4.6 For any ε > 0, let p ≥ 2wb
√
mnε and b =

⌈
pn/m2λ/m−1

2

⌉
. Then, the one-time

signature scheme from Section 3, instantiated with the sets in Figure 3, is strongly unforgeable
under the assumption that SIVPγ is hard in the worst case for γ = Õ(wb

√
nm) max{1, 2wb/nε}.

In particular, for m = d(λ+n log2 p)/ log2 3e, b = 1 and p ≥ 2w
√
mnε, the scheme is strongly un-

forgeable under the assumption that SIVPγ is hard in the worst case for γ = Õ(w
√
nm) max{1, 2w/nε}.
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R = Zp[x]/〈xn + 1〉
H = R1×m

K = {[k1,k2] ∈ Rm×2 : ‖k1‖∞ ≤ b, ‖k2‖∞ ≤ wb}
M ⊆ {m = [m1, 1]T ∈ R2, ‖m1‖∞ ≤ 1, ‖m1‖1 ≤ w}
S = {s ∈ Rm : ‖s‖∞ ≤ 2wb}.

Figure 4: Instantiation of the one-time signature scheme based on ideal lattices.

4.2 One-time signature as hard as Ring-SIS

Our one-time signature based on the Ring-SIS problem from Definition 2.6 is parametrized by
integers n,m, p, w, and b that must satisfy certain relationships. The integer n is assumed to be a
power of 2, so that the polynomial xn + 1 is irreducible over Z[x]. The size of the message space
M is at most

∑
i≤w 2i

(
n
i

)
, and so we need to set n and w to sufficiently large integers. As usual,

the choice of n and w offers a trade-off between efficiency and security. For proving the security
of our scheme based on the Ring-SIS problem, we also need to have b = b(|M|1/n2λ/np)1/me and
p > 8wb. Notice that by choosing m large enough, one can set b = 1, but higher values of b can
offer improved efficiency at the cost of stronger security assumptions. Additionally, if we would
like to preserve the connection between average-case Ring-SIS and the worst-case SVP problem
in ideal lattices from Theorem 2.7, then we will also need to have p = ω(n1.5mwb).

The scheme is parametrized by the sets in Figure 4. The message space is set to an appropriate
subset of all vectors with entries bounded by 1 in absolute value, and at most w non-zero entries.
The setM should be chosen in such a way that messages can be efficiently encoded as elements of
M.

Lemma 4.7 The function family {H : S → R | H ∈ H} satisfies the [Collision Resistance]
property based on the average-case hardness of the Ring-SISn,m,p,4wb problem. Furthermore, for

γ = 64wbmn log2 n and p ≥ γ
√
n

4 logn , the property is satisfied based on the worst-case hardness of
SVP∞γ in all n-dimensional ideals of the ring Z[x]/〈xn + 1〉.

Proof: The first part of the claim follows simply because if one can find x 6= x′ ∈ S for a random
H from H such that Hx = Hx′, then one has that H(x − x′) = 0 and ‖x − x′‖∞ ≤ 4wb. The
connection to SVP∞γ follows directly from Theorem 2.7.�

Lemma 4.8 The [Closure] property holds true.

Proof: Notice that for any secret key K = [k1,k2] and message m = [m1, 1]T ,

‖Km‖∞ = ‖k1m1 + k2‖∞ ≤ ‖k1m1‖∞ + ‖k2‖∞ ≤ wb+ wb = 2wb.

�

Lemma 4.9 Let b = b(|M|1/n2λ/np)1/me. For every H ∈ H, if K is chosen uniformly at random
from K, then with probability at least 1− 2−λ, for every message m ∈ M there is another K′ ∈ K
such that HK = HK′ and Km = K′m.
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Proof: For any H and m, consider (H,m) as a function that maps any element K inK to the ordered
pair (HK,Km). We will first show that the domain size of this function is at least |M| · 2λ times
larger than its range. The domain size of this function is exactly |K| = (2b+1)mn · (2wb+1)mn. To
bound the size of the range, we first notice that by Lemma 4.8 we have ‖Km‖∞ ≤ 2wb. Therefore,
the number of possibilities for Km is at most (4wb+ 1)mn. We then notice that while there are p2n

possibilities for HK = [Hk1,Hk2] in general, if we have already fixed H, m, Hk1, and Km, then
Hk2 = HKm −Hk1m1 is completely determined. Thus, there are only at most (4wb + 1)mn · pn
possibilities for (HK,Km). Therefore the ratio of the sizes of the domain and range of the function
(H,m) is at least

(2b+ 1)mn · (2wb+ 1)mn

(4wb+ 1)mn · pn
>

(2b+ 1)mn · (2wb+ 1)mn

(4wb+ 2)mn · pn
=

(
(b+ 1

2)m

p

)n
.

Using b = b(|M|1/n2λ/np)1/me ≥ (|M|1/n2λ/np)1/m − 1
2 , we get that the ratio is at least |M| · 2λ.

Applying Lemma 4.1, we obtain that with probability at least 1−2−λ/|M| over the random choice
of K ∈ K, there exists another K′ ∈ K such that HK = HK′ and Km = K′m. Applying the
union bound over all messages in M concludes the proof.�

Lemma 4.10 Let b = b(|M|1/n2λ/np)1/me and p > 8wb. Then the scheme satisfies the [1
2 -Hiding]

property.

Proof: Fix H. By Lemma 4.9, we know that with probability of at least 1− 2−λ over the random
choice of K, for every message m, the size of the set DH(K,m) is at least 2. To complete the proof,
we will show that for all H,K,m 6= m′, the size of the set DH(K,m) ∩ DH(K,m′) is at most 1.

We prove that for any X,X′ ∈ DH(K,m) ∩ DH(K,m′), it must be X = X′. By the definition
of DH, we know that Xm = X′m and Xm′ = X′m′. Therefore, (X − X′)(m −m′) = 0. But
m−m′ = [m1, 1]T − [m′1, 1]T = [m1 −m′1, 0]T , and

(x1 − x′1)(m1 −m′1) = (X−X′)(m−m′) = 0 (6)

in the ring R. Now we observe that, since the product of ‖x1 − x′1‖∞ ≤ 2b and ‖m1 −m′1‖1 ≤ 2w
is at most 4wb < p/2, no reduction modulo p takes place during the multiplication of (x1 − x′1)
by (m1 − m′1), and therefore (6) holds over the ring Z[x]/〈xn + 1〉. Since Z[x]/〈xn + 1〉 is an
integral domain and m1 6= m′1, we can conclude that (6) is equivalent to x1 = x′1. This proves
that the keys X and X′ have the same first vector. But If x1 = x′1, then we also have have
x2 = Xm− x1m1 = X′m− x′1m1 = x′2, and so the two keys X,X′ are identical. �

Combining the previous lemmas, and Theorem 3.2, we obtain the following corollary.

Corollary 4.11 Let b = b(|M|1/n2λ/np)1/me and p > 8wb. Then, the one-time signature scheme
from Section 3, instantiated with the sets in Figure 4, is strongly unforgeable based on the assumed
average-case hardness of the Ring-SISn,m,p,4wb problem. Furthermore, for γ = 64wbmn log2 n and

p ≥ γ
√
n

4 logn , the scheme is secure based on the worst-case hardness of SVP∞γ in all n-dimensional
ideals of the ring Z[x]/〈xn + 1〉.

We remark that for the message space M to be superpolynomial size, we must have w =
ω(1). So, even using Ring-SIS average-case hardness assumptions, we must have p = ω(1). The
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R = Z2

H = Rn×m

K = {K ∈ Rm×k : ‖K‖1 ≤ b}
M ⊆ {m ∈ Rk : ‖m‖1 = w}
S = {s ∈ Rm : ‖s‖1 ≤ wb}

Figure 5: Code-based instantiation of the one-time signature scheme, parametrized by integers
n,m, k, w, b.

expression for b can be simplified by setting |M| = 2n and λ = n. This gives b = b(4p)1/me, which,
for m > (2 + log2 p)/(log2 3− 1) = O(log p) is just b = 1. In practice, one may want to use higher
values of b (and smaller values of m), to improve the signature size and overall efficiency of the
scheme, at the cost of making stronger security assumptions.

When basing the problem on the worst-case hardness of SVP on ideal lattices, one could set
w = O(n/ log n), b = 1, m = O(log p), modulus p = n2.5 log n, and worst-case approximation factor
γ = O(n2 log2 n).

4.3 One-time signature as hard as the Small Codeword Problem

The code-based signature scheme is defined by instantiating the abstract construction from Section 3
with the sets in Figure 5 parametrized by integers n,m, k, w, and b which should satisfy certain
relationships. The size of the message space will be

(
k
w

)
and we will prove the security of our scheme

based on the hardness of the SCn,m,2wb problem from Definition 2.5.
Unlike for the lattice scheme in the previous section, we do not have as much freedom in how

to set the parameters. This is mostly due to the fact that the ring in this scheme is fixed to Z2,
whereas in the lattice scheme, we had a the freedom to set the parameter p for R = Zp. For some
constants c, c′, we instantiate the scheme with parameters m = nc+1+cλ/n, b = n/(c log n), and
w = c′ log n. These values satisfy the relation

b∑
i=0

(
m

i

)
>

(
nc+1+cλ/n

n
c logn

)
>
(
n
c(1+λ/n) n

c logn

)
= 2n+λ,

which will be used to prove the security of the scheme based on the hardness of SCn,m,2wb. Notice

that for k = nΩ(1), the size of the message space size is |M| =
(
k
w

)
= 2Ω(c′ log2 n), which is superpoly-

nomial, but much smaller than the exponential message space size of our lattice based schemes.
Finally, for the SCn,m,2wb problem to be hard (see Lemma 4.13), we need 2wb = 2nc′/c < n/4.
Thus we require c′ < c/8.

Lemma 4.12 The [Closure] property holds

Proof: It’s clear that for any secret key K and message m, we have ‖Km‖1 ≤ wb.

Lemma 4.13 The function family {H : S → Rn | H ∈ H} satisfies the [Collision Resistance]
property based on the average-case hardness of the SCn,m,2wb problem.
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Proof: If one can find x 6= X′ ∈ S for a random H from H such that Hx = Hx′, then one has that
H(x− x′) = 0 and ‖x− x′‖1 ≤ 2wb.�

Lemma 4.14 For every H ∈ H, if K is chosen uniformly at random from K, then with probability
at least 1 − k2−λ, there exists a key K′ ∈ K such that HK = HK′ and K′ 6= K differ in every
column.

Proof: Consider H as a function mapping from domain X = {x ∈ Zm2 : ‖x‖1 ≤ b} to range Y = Zn2 .

Notice that by our setup, |X| =
b∑
i=0

(
m
i

)
≥ 2n+λ and |Y | is exactly 2n. By Lemma 4.1, we know

that for a randomly chosen vector x ∈ X, with probability at least 1− 2−λ, there is another vector
x′ ∈ X such that Hx = Hx′. Thus we have that for any particular column Kj , with probability at
least 1− 2−λ, there exists a column K′j such that HKj = HK′j and Kj 6= K′j . Applying the union

bound, we get that with probability at least 1 − k2−λ this is true for every column j = 1, . . . , k,
giving a key K′ such that HK = HK′ and Kj 6= K′j for all j.�

Lemma 4.15 The [1
2 -Hiding] property holds true.

Proof: The proof is verbatim the proof of Lemma 4.5 except that references to Lemma 4.4 should
be replaced with references to Lemma 4.14.

Combining the previous lemmas, and Theorem 3.2, we obtain the following corollary.

Corollary 4.16 Let m = nc+1+cλ/n, b = n/(c log n) and w = c′ log n for some constants c > 8c′ >
0. The one-time signature scheme from Section 3, instantiated with the set in Figure 5, is strongly
unforgeable based on the assumed average-case hardness of the SCn,m,p,2wb problem.

5 Conclusions and open problems

The main technical contribution of this work is a construction of a one-time digital signature scheme
that takes Õ(k) time to compute and has conjectured security of 2Ω(k). Since its original publication,
the techniques in this paper were used in constructions of more “advanced” lattice primitives such
as identification schemes [Lyu08, Lyu09], signature schemes (without the “one-time” restriction)
[Lyu09, Lyu12, DDLL13], and blind signature schemes [Rüc10].1

Another interesting question deals with improving the efficiency of the code-based scheme in this
paper. We show that it is possible to instantiate our general framework based on the hardness of the
Small Codeword Problem, but the resulting scheme is quite inefficient. In particular, to get super-
polynomial hardness, we are only able to sign messages of length approximately log2 k and base the
hardness of our scheme on a problem that is only 2Ω(log2 k) hard. Interestingly, the more practical
hash-and-sign code-based signature scheme of Courtois et al. [CFS01] is also asymptotically based

on the hardness of a problem that is at most 2O(log2 k) hard. Furthermore, technical reasons prevent
us from instantiating the code-based scheme based on a problem allowing for a more structured
public key, analogous to Ring-SIS. Thus, the problem of constructing efficient code-based one-time
signatures without using random oracles remains open.

It would also be interesting to see if our general framework can be instantiated using different
assumptions, such as those from multivariate cryptography.

1The digital signatures in [Lyu09, Lyu12, DDLL13, Rüc10] are proved secure in the random oracle model.
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[Rüc10] Markus Rückert. Lattice-based blind signatures. In ASIACRYPT, pages 413–430, 2010.

[Szy04] Michael Szydlo. Merkle tree traversal in log space and time. In EUROCRYPT, pages
541–554, 2004.

20


