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Abstract

In a seminal work, Boneh, Sahai and Waters (BSW, for short) [TCC’11] showed that for functional
encryption the indistinguishability notion of security (IND-Security) is weaker than simulation-based
security (SIM-Security), and that SIM-Security is in general impossible to achieve. This has opened
up the door to a plethora of papers showing feasibility and new impossibility results. Neverthe-
less, the quest for better definitions that (1) overcome the limitations of IND-Security and (2) the
impossibility result of BSW, is still open.

In this work, we exploit efficient rewinding black-box simulators to argue security. We put forth
a new SIM-Security notion that, though it is weaker than the previous ones, it is still sufficiently
strong to not meet pathological schemes as it is the case for IND-Security (that is implied by
the new definition). This is achieved by retaining a strong simulation-based flavour but adding
more rewinding power to the simulator having care to guarantee that it can not learn more than
what the adversary would learn in any run of the experiment. Surprisingly, our new definition,
that we call rewinding simulation-based security (RSIM-Security), overcomes the BSW impossibility
result. Moreover, we show that: (1) IND-Security is equivalent to RSIM-Security for Attribute-Based
Encryption in the standard model. Previous results showed (unconditional) impossibility results in
the standard model. (2) Notwithstanding, we show that for notable class of predicates (including
Anonymous IBE, Inner-Product over Z2 and others), IND-Security is equivalent to RSIM-Security
in the standard model. Previous results showed impossibility results for the standard model and the
positive results were for the random oracle model or for more restricted settings.

Our definition shares the same spirit of an independent work of Agrawal, Agrawal, Badri-
narayanan, Kumarasubramanian, Prabhakaran and Sahai (EPRINT archive, 2013).

We think that our work makes a significant step in providing an achievable simulation-based
definition for important primitives like (Anonymous) IBE, and showing that for these primitives
there are no pathological schemes, thus it is of great theoretical and practical relevance.
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1 Introduction

Functional encryption (FE, for short) is a sophisticated type of encryption that was first proposed
by Sahai and Waters in 2005 [SW05] and formalized by Boneh, Sahai and Waters in 2011, [BSW11].
Roughly speaking, in a functional encryption system, a decryption key allows a user to learn a function of
the encrypted data. More specifically, in a functional encryption scheme for functionality F : K×X →
Σ, defined over key space K, message space X and output space Σ, for every key k ∈ K, the owner of
the master secret key Msk associated with master public key Mpk can generate a secret key Skk that
allows the computation of F (k, x) from a ciphertext of x computed under master public key Mpk. In
other words, a functional encryption scheme generalizes classical encryption schemes where the secret
key allows to compute the entire plaintext. In recent breakthroughs, functional encryption schemes for
general functionalities have been constructed by [GVW12a, GGH+13a, BCP13, ABG+13].

A notable subclass of functional encryption is that of predicate encryption (PE, for short) which are
defined for functionalities whose message space X consists of two subspaces I and M called respectively
index space and payload space. In this case, the functionality F is defined in terms of a polynomial-
time predicate P : K × I → {0, 1} as follows: F (k, (ind,m)) = m if P (k, ind) = 1, ⊥ otherwise,
where k ∈ K, ind ∈ I and m ∈ M . Those schemes are also called predicate encryption with private-
index. Examples of such schemes are Anonymous Identity-Based Encryption (AIBE, for short) [BF01,
Gen06], Inner-Product Encryption [BW07, KSW08, LOS+10, OT12] among others. On the other hand,
when the index ind is easily readable from the ciphertext those schemes are called predicate encryption
with public-index (PIPE, for short). Also for this specific subclass, the literatures provides lots of
constructions such that Identity-Based Encryption (IBE, for short) [Sha85, BF01, Coc01], Attribute-
Based Encryption (ABE, for short) [SW05, GPSW06, GGH+13b, GVW13], Functional Encryption for
Regular Languages [Wat12], among others.

A general study of the security of functional encryption did not appear initially. Instead, progres-
sively more expressive forms of FE were constructed in a series of works that adopted indistinguishability-
based (IND) notions of security, which requires that it is infeasible to distinguish encryption of any two
messages without getting a secret key that decrypts the ciphertexts to distinct values. Only recently,
papers studying simulation-based (SIM) notions of security for functional encryption were proposed
by Boneh, Sahai, and Waters [BSW11] and O’Neill [O’N10] who explored security definitions for func-
tional encryption that arise from the simulation paradigm [GM84, GMR85, GMW86]. The aim of these
simulation-based definitions was to capture the most basic intuition about security for FE, namely that
getting the secret key Skk corresponding to the key k ∈ K should only reveal F (k, x) when given an
encryption of x.

1.1 Previous Works

Public-Index AIBE All circuits

(poly, poly, poly)-IND yes [GVW13, GGH+13b] yes yes [GGH+13a, ABG+13, BCP13]

(poly, poly, poly)-SIM yes [BSW11] (RO) yes [BSW11] (RO) no [AGVW13, BSW11, BO13]

(q1, 1, 0)-SIM yes ↑ yes ↑ yes [GVW12a]

(q1, poly, 0)-SIM yes ↑ yes ↑ yes [GKP+13]

(q1, `, poly)-SIM yes ↑ yes ↑ yes [DIJ+13]

Table 1: Summary of the previous results. Results implied by results in the previous row are marked with ↑. The

first column indicates the security definition. The second, third and fourth columns indicate respectively whether the

definition is achievable for public-index predicate encryption (i.e., ABE), Anonymous Identity-based Encryption and

functional encryption for poly-size circuits. RO is the random oracle model.

Results about functional encryption now live in a high-dimensional space, where there are many
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parameters and several results ruling out or constructing schemes for certain parameters. Before pre-
senting these results, summarized in Table 1, to make things clear, following [DIJ+13] notation, we
define (q1, `, q2)-atk-Security, where q1 = q1(λ), ` = `(λ), q2 = q2(λ) are either polynomials in the se-
curity parameter λ that are fixed a priori or equal to the formal variable poly, and atk ∈ {IND, SIM},
as follows. Specifically, atk-Security holds for adversaries A that issues at most q1 non-adaptive key-
generation queries, output challenge message vectors of length at most `, and furthermore issues at
most q2 adaptive key-generation queries, and in the case that a parameter equals the formal variable
poly it is meant that there is no fixed bound (the only bound is the running time of the adversary that
is polynomial). Thus, for example, if q1 and ` are polynomials then (q1, `, poly)-SIM-Security means
that the adversary in the SIM-Security definition makes a q1(λ)-bounded number of non-adaptive key-
generation queries but an unbounded (i.e., bounded only by its running time) number of adaptive
key-generation queries, and outputs a `(λ)-bounded challenge message vector, where λ is the security
parameter. If the parameters are not specified we intend them set to poly. (IND-Security is defined
in Section 2, Definition 2.3. As reference for SIM-Security, we take the definitions of [DIJ+13] and
[BSW11], that we report, for reader convenience, in Appendix B.) We will also consider in our work
the selective security model which is a weaker security model (see, e.g., [BB11, GPSW06, AFV11]) in
which the adversary must commit to its challenge messages before seeing the public parameters. Then,
we will use the notation sel-atk to mean atk-Security in the selective model.

In the seminal work of Boneh, Sahai and Waters [BSW11], it was shown that for FE, unlike clas-
sical encryption, IND-Security is weaker than SIM-Security. Indeed, the authors show a clearly inse-
cure FE scheme that is provably IND-Secure. Moreover, in the same work Boneh et al. show that
(0, poly, 2)-SIM-Security is impossible to achieve even for a simple functionality like IBE in the non-
programmable oracle model, but prove, in the random oracle model, that (poly, poly, poly)-IND-Security
implies (poly, poly, poly)-SIM-Security for predicate encryption with public-index, and there exists an
AIBE scheme that is (poly, poly, poly)-SIM-Secure. At the same time, O’Neill [O’N10] does similar
considerations and shows that for pre-image sampleable functionalities, (poly, poly, 0)-IND-Security is
equivalent to (poly, poly, 0)-SIM-Secure. Barbosa and Farshim [BF13] extended O’Neill’s equivalence
between indistinguishability and semantic security to the adaptive setting by restricting the adversary
to issue adaptive key-generation queries for keys that are constant over the support of the message
distribution. We will not consider any of such restrictions but we stress that our positive results are
for a model that does not share these limitations. Later, Bellare and O’Neill [BO13] show that the
impossibility result of [BSW11] also extends to the standard model assuming the existence of collision
resistant hash functions. Furthermore, new definitions were introduced with the aim of overcoming
the impossibility results. Specifically, they define a new notion equivalent to IND-Security and thus
incurring in the same deficiency, and a new simulation-based definition for which a proof of security
was only shown for functionalities with key space of polynomial size (and so not including basic func-
tionalities like IBE). In 2012, Gorbunov et al. [GVW12a] presented a construction of FE for general
circuits that is (q1, poly, 0)-SIM-Secure. Following, Agrawal et al. [AGVW13] proved an impossibility
result showing that it is impossible to achieve (poly, 1, 0)-SIM-Security. Their result does not hold in
the selective security model1 and for public-index functionalities. Furthermore, in the same paper,
the authors prove that (poly, 1, poly)-IND-Security implies (poly, poly, poly)-IND-Security, and propose
a simulation-based notion of security that considers computational unbounded simulator as a way to
overcome current impossibility results, leaving many open problems about this definition. Last year,
Goldwasser et al. [GKP+13] presented an FE for general circuits with succinct ciphertexts (meaning
that the size of the ciphertext does grow only with the respect of the depth of the circuits to be evalu-
ated) provable (q1, poly, 0)-SIM-secure. Later, De Caro et al. [DIJ+13] presented a general compiler to
transform any (q1, `, poly)-IND-Secure FE scheme for circuits into one that is (q1, `, poly)-SIM-Secure

1 [AGVW13] shows that their impossibility result holds in a variant of the selective security model, called by [DIJ+13]
fully non-adaptive model, where the adversary makes simultaneous key-generation and challenge message queries before
seeing the public parameters. More details are given in the Remark G.2.
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matching the known impossibility results. Finally, in recent breakthroughs, Gorbunov et al. and Garg et
al. [GVW13, GGH+13b] proposed (poly, poly, poly)-IND-Secure constructions for predicate encryption
with public-index for general circuits, and [GGH+13a, ABG+13, BCP13] proposed the first candidate
constructions for a (poly, poly, poly)-IND-Secure2 functional encryption scheme for general circuits from
indistinguishable obfuscation and extractable obfuscation.

Concurrently and independently from our work, Agrawal et al.. [AAB+13] studied new definitions
for functional encryption. Although part of their work focuses on function privacy (another property
not addressed in our work), one of the definitions it contains, therein called RELAX-AD-SIM, is similar
in spirit to ours. Loosely speaking, in RELAX-AD-SIM, the simulator is allowed to run in unbounded
time and make more queries than the adversary but in a controlled way. See the rest of the paper for
a deeper discussion and comparison.

1.2 Our Work

Why yet another definition? Given the current state of the affair in functional encryption, as
shown in the previous section, the reader can be then tempted to ask why a new definition should be
considered in this already messy scenario. We believe then the quest for a reasonable simulation-based
security definition is still open and that connections with secure computation and zero-knowledge are
relevant to better understand, then clarify, what is happening in functional encryption.

For instance, in the context of secure computation, Backes et al. in [BMQU07] present a protocol
that can be proven secure using a rewinding simulator and that is not secure for any non-rewinding
simulator. Moreover they show that stand-alone security (where rewinding simulators are allowed) do
not coincide with the notion of security under concurrent composition whose security guarantees are
relevant in practice.

With the above in mind, in this paper, we explore the power of efficient rewinding black-box simu-
lators in the context of functional encryption as a way to overcome the known impossibility results and
nevertheless establish composition theorems to show that one-message security is equivalent to many-
message security at the least for functionalities of interest. Notice that composition when considering
rewinding simulators has been already shown to be problematic by [PRS02, Lin08, BMQU07].

Specifically, so far, all the known simulation-based security definitions for functional encryption
share a common characteristic. They all constraint the simulator to learn exactly what the adversary
learns in a single run of the experiment. This is enforced by requiring straight-line simulators and/or
by having the challenger of the experiment tracing the queries issued by the adversary and reporting
them in the output distribution of the experiment. This is true also for the BSW definition which
nevertheless allows the simulator to rewind the adversary to reconstruct its view. We, then, allow
the simulator to learn not only what the adversary learns in a single run of the experiment but also
what can be extracted by rewinding the adversary multiple times under the condition that: (1) the
simulator must be efficient, (2) the simulator can not learn more than what the adversary would learn
in any run of the experiment. All that is needed is for the simulator to present to the distinguisher,
at the end of the interaction, with a complete view of the adversary that is indistinguishable from the
view the adversary produces in a single run of the experiment. In particular, by rewinding, we mean
that the simulator runs parts of the adversary during the simulation and produces a fragment of the
conversation that has some desired property with a certain probability. For some functionalities, if the
simulator fails then it possibly gains some additional information on the challenge messages useful to
produce a successful simulation and then can rewind the adversary based on this new information.

Does the rewinding simulator learn too much information? A matter of concern regarding
rewinding strategies could be that the simulator is leaking too much information or it is trivial. If the

2Precisely, the functional encryption scheme of [GGH+13a] only achieves (poly, poly, poly)-sel-IND-Security but later
[BCP13] and [ABG+13] provided schemes that avoid the selective security model.
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simulator could rewind the adversary to its liking, we would have the undesired situation that insecure
schemes could be secure. Therefore, we have to constrain the power of the simulator: it must learn
information but in a controlled way. We make this as follows. The simulator can rewind based on the
adversary’s queries. If those queries allow the adversary to learn information on the challenge messages,
then the simulator learns this information by rewinding too. Otherwise, the simulator can simulate the
view for the adversary easily, without learning much information. We control the power of the simulator
by allowing it to ask only queries that the adversary would ask during a valid run of the experiment.
More concretely, consider the different constraints on the simulator in BSW and in our definition. In
BSW, the simulator is given direct access to the functionality oracle and so to make the definition
not trivial the list of the queries is put in the transcript (otherwise the simulator could just query
the functionality oracle on the identity function to get the challenge message and simulate perfectly
any scheme even insecure ones). Instead, in our definition, when the adversary makes a query k, the
simulator is invoked with the value F (k, x), where x is the challenge message, but the simulator can not
ever ask a query for a key k that the adversary would not ask in a run of the game. Is this sufficient?
As sanity check, we show that, although the simulator has this extra power, the new definition still
implies IND-Security. Nevertheless, it seems to not suffer from the problems of IND-Security (such as
the existence of clearly insecure schemes that satisfy such definition).

In an independent and concurrent work, Agrawal et al. [AAB+13] formulated a new definition called
RELAX-AD-SIM to the scope of bypassing the impossibility results for previous SIM-Security and of not
being vulnerable to the weakness of IND-Security. Interestingly, both our definition and RELAX-AD-SIM
share the same intuition and spirit. In RELAX-AD-SIM, the simulator can learn more information than
the adversary but this leak is controlled in the following way (this is an oversimplification for the scope
of our presentation, see their paper for details). Fix a value ε and consider the set of queries Qε that
the adversary would ask with probability greater than ε. Then, the simulator of RELAX-AD-SIM can
ask any query in Qε. Moreover, their simulator is allowed to run in time inversely proportional to 1/ε
and it is only required that the distinguisher can not have distinguishing advantage (between the real
and ideal world) greater than ε. The reader may notice that this mechanism of giving extra power to
the simulator in a constrained way is similar to ours. In fact, if our efficient simulator can learn some
extra query by means of rewinding then it means that the adversary is likely to ask such query, and
their simulator could query it as well.

Efficient simulation with non-negligible distinguishing advantage. A technical difference
between our work and [AAB+13]’s work is that [AAB+13] allows the simulator to run in time polynomial
in 1/ε and thus it would run in super-polynomial time when ε is smaller than the inverse of any
polynomial, whereas we stick to efficient simulation and impose a distinguishing advantage at most
inverse of any polynomial. Notwithstanding, in our work efficient simulation is sufficient to bypass the
impossibility result of BSW and show the achievability of practical primitives like (Anonymous) IBE,
inner-product over Z2, NC0 circuits, and monotone conjunctive Boolean formulae (see next section for
an overview of our positive results). We stress that most of our results are equivalence between IND-
Security and our RSIM-Security. This shows that for very important primitives there are no pathological
schemes, a fact that was conjectured in BSW. Instead, their work mainly concerns concrete constructions
and, moreover, function privacy whereas we do not address this further orthogonal property. We point
out that their work also contains another interesting definition that shows the achievability of a very
strong form of simulation-based security but in the generic group model.

Our Results. In Section 3, we put forth a weaker notion of simulation-based security that we call
rewinding simulation-based security (RSIM, for short), that lies between SIM-Security and IND-Security.
Our definition is a weakening of previous definitions proposed in literature (See Appendix B for these
definitions). We allow the simulator to rewind the adversary as in the original BSW definition, but
with the main difference being that we allow the simulator to learn not just what the adversary learns
in a single run of the experiment but in multiple runs. All that is needed is for the simulator to
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present to the distinguisher, at the end of the interaction, with a complete view of the adversary that
is indistinguishable from the view the adversary produces in a single run of the experiment. Meaning
that, the distinguisher will see only the transcript of a successful execution of the adversary. Indeed,
our rewinding strategy is weaker than that of BSW, that forces the simulator to learn exactly what
the adversary learns in a single run of the experiment, and let us overcome the [BSW11, BO13]’s
impossibility result (More on this in Section 3 where we introduce RSIM and discuss relations with the
other definitions).

Positive results. In Section 4 and E, we show that in the standard model for efficient rewinding
black-box simulators, (poly, poly, poly)-IND-Security implies (poly, poly, poly)-RSIM-Security, for predi-
cate encryption with public-index, for predicate encryption with private-index for specific function-
alities, namely Anonymous IBE, Inner-Product over Z2 and Monotone Conjunctive Boolean Formu-
lae. Thus, establishing equivalence between (poly, poly, poly)-IND-Security and (poly, poly, poly)-RSIM-
Security. For the above functionalities we can also show that composition holds, meaning that single-
message security implies many-massage security which is relevant in real scenarios.

Additionally, we prove, in Section E.4, that the brute-force construction of [BW07, BSW11] is
(poly, poly, poly)-RSIM-Secure in the standard model assuming only the IND-CPA security of the un-
derlying public-key encryption scheme whereas [BSW11] showed that a slightly modified variant of the
[BW07] scheme can be proven (poly, poly, poly)-SIM-Secure in the random oracle, and [BO13] proved
its (poly, poly, poly)-SIM-Security in the standard model assuming that the underlying PKE scheme is
also secure against selective opening key attack.

We recall that in all the above settings the [AGVW13]’s impossibility result does not hold.

Public-Index Private-Index All circuits

(poly, poly, poly)-RSIM yes (Section 4) yes (Section E) no [AGVW13], (Section 5)

(poly, 1, 0)-RSIM yes ↑ yes ↑ no [AGVW13]

(0, poly, poly)-RSIM yes ↑ yes ↑ no (with neg. adv.) (Section 5)

Table 2: Summary of our results. Results implied by results in the next column are marked with →. All the results

are in the standard model. The first column indicates the security definition. The second, third and fourth columns

indicate respectively whether the definition is achievable for public-index predicate encryption (in this case, we support

any predicate), predicate encryption for specific predicates (see Section E for more details on the predicates supported

that include AIBE), and functional encryption for poly-size circuits. The impossibility result of Section 5 is for (0, poly, 1)-

RSIM-Security with negligible advantage and for the auxiliary input setting. For simplicity the latter result is stated in the

table in correspondence to row (0, poly, poly)-RSIM-Security but also holds for (0, poly, 1)-RSIM-Security with negligible

advantage.

Lower Bounds. To complete our analysis of the power of rewinding simulators in functional en-
cryption, we seek for settings where rewinding simulators are of no help. Recall that, we show that
efficient rewinding simulators can be used to overcome the [BSW11, BO13]’s impossibility result and
we know that the [AGVW13]’s impossibility result does not hold in the selective setting (More on this
in Appendix G). Thus, we answer the question of whether RSIM-Security with negligible advantage is
achievable in the selective model for general functionalities in the negative. Specifically, in Section 5,
we establish a lower bound showing that (0, poly, 1)-sel-RSIM-Security with negligible advantage can
not be achieved for general functionalities3. No lower bounds were known in this setting. Our result, as
that of [BSW11, BO13], is a trade-off. It shows that RSIM-Security requires long secret keys, meaning
that the total number of bits in messages securely encrypted must be bounded by the length of a secret
key.

3Precisely, we show a stronger result that (0, poly, 1)-RSIM-Security with negligible advantage is not achievable in the
standard model in the auxiliary input setting (see Section 3). The auxiliary input setting has been already used by [BO13]
in the same context.
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2 Definitions

Notation. A negligible function neg(λ) is a function that is smaller than the inverse of any polynomial
in λ. If x1 and x2 are binary strings, we denote by x1||x2 or (x1, x2) their concatenation. If X and
Y are two ensembles of random variables indexed by the security parameter λ, we say that X ≈ε Y
if no PPT distinguisher can distinguish them with advantage greater than ε(λ). We denote by [n] the
set {1, . . . , n}. If x is a binary string we denote by |x| the bit length of x, we denote by xi the i-th
bit of x, 1 ≤ i ≤ |x|. PPT is a shorthand for Probabilistic Polynomial-Time. We denote by A(x; r)
the execution of a PPT algorithm A with input x and randomness r. Sometimes we simply write A(x)
instead of A(x; r) when it is clear from the context. If B is an algorithm and A is an algorithm with
access to an oracle then AB(·) denotes the execution of A with oracle access to B(·).

Following Boneh et al. [BSW11], we start by defining the notion of functionality and then that of
functional encryption scheme FE for functionality F .

Definition 2.1 [Functionality] A functionality F defined over (K,X) is a function F : K×X → Σ∪{⊥}
where K is the key space, X is the message space and Σ is the output space and ⊥ is a special string
not contained in Σ. Notice that the functionality is undefined for when either the key is not in the
key space or the message is not in the message space. Furthermore we require that there are efficient
procedures to check membership of a string in the message space and key space and to sample from
these spaces.

Definition 2.2 [Functional Encryption Scheme] A functional encryption (FE) scheme FE for function-
ality F is a tuple FE = (Setup,KeyGen,Enc,Eval) of 4 algorithms:

1. Setup(1λ) outputs public and master secret keys (Mpk,Msk) for security parameter λ.

2. KeyGen(Msk, k), on input a master secret key Msk and key k ∈ K outputs secret key Skk.

3. Enc(Mpk, x), on input public key Mpk and message x ∈ X outputs ciphertext Ct;

4. Eval(Mpk,Ct,Skk) outputs y ∈ Σ ∪ {⊥}.

In addition we make the following correctness requirement: for all (Mpk,Msk) ← Setup(1λ, 1n), all
k ∈ Kn and m ∈Mn, for Sk← KeyGen(Msk, k) and Ct← Enc(Mpk,m), we have that Eval(Mpk,Ct, Sk)
= F (k,m) whenever F (k,m) 6= ⊥4, except with negligible probability.

The empty key. For any functionality, we also assume that the key space contains a special empty key
ε such that F (ε, x) gives the length of x and (depending on the functionality) some intentionally leaked
information on x that can be easily extracted from an encryption of x. When ~x = (x1, . . . , x`) is a vector
of messages, for any k ∈ K∪{ε}, we denote by F (k, ~x) the vector of evaluations (F (k, x1), . . . , F (k, x`)).

Further parametrizations. In general, the key space, the message space and the functionality itself
are families of sets and functions indexed by the security parameter λ ∈ N. Specifically, a functionality
F is a family of functions F = {Fλ : Kλ×Xλ → Σλ∪{⊥}}λ where {Kλ}λ is the key space family, {Xλ}λ
is the message space family and {Σλ}λ is the output space family. It will be clear from the context
which kind of formulation of functionality we adopt, whether for families or not. Thus, if functionality
F is actually a family of functions, with a slight abuse of notation we will denote by F (k, x) the value
Fλ(k, x), where λ is the security parameter.

Secret-key length. We say that a functional encryption scheme FE = (Setup,KeyGen,Enc,Eval) has
secret-key length kl(·) if |Sk| ≤ kl(λ) for all k ∈ Kλ, X ∈ Xλ, all (Mpk,Msk) ← Setup(1λ), and all
Sk← KeyGen(Msk, k). Note that every FE scheme must have some polynomial kl(·) secret-key length
in order to be efficient.

4See [BO13, ABN10] for a discussion about this condition.
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Indistinguishability-based Security. The indistinguishability-based notion of security for func-
tional encryption scheme FE = (Setup,KeyGen,Enc,Eval) for functionality F defined over (K,X) is
formalized by means of the following game INDFE

Adv between an adversary Adv = (Adv0,Adv1) and a
challenger C.

1. C generates (Mpk,Msk)← Setup(1λ) and runs Adv0 on input Mpk;

2. Adv0, during its computation, issues q1 non-adaptive key-generation queries. C on input key k ∈ K
computes Sk = KeyGen(Msk, k) and sends it to Adv0. When Adv0 stops, it outputs two challenge
messages vectors, of length `, ~x0, ~x1 ∈ X` and its internal state st.

3. C picks b ∈ {0, 1} at random, and, for i ∈ `, computes the challenge ciphertexts Cti = Enc(Mpk, xb[i]).
Then C sends (Cti)i∈[`] to Adv1 that resumes its computation from st.

4. Adv1, during its computation, issues q2 adaptive key-generation queries. C on input key k ∈ K
computes Sk = KeyGen(Msk, k) and sends it to Adv1.

5. When Adv1 stops, it outputs b′.

6. Output: if b = b′, F (ε, ~x0) = F (ε, ~x1), and F (k, ~x0) = F (k, ~x1) for each k for which Adv has
issued a key-generation query, then output 1 else output 0.

The advantage of adversary A is: AdvFE,IND
Adv (1λ) = Prob[INDFE

Adv(1
λ) = 1]− 1/2

Definition 2.3 We say that FE is (q1, q2, `)-indistinguishably secure ((q1, q2, `)-IND-Secure, for short)
where q1 = q1(λ), q2 = q2(λ), ` = `(λ) are polynomials in the security parameter λ that are fixed a
priori, if all probabilistic polynomial-time adversaries Adv issuing at most q1 non-adaptive key queries, q2
adaptive key queries and output challenge message vectors of length and most `, have at most negligible
advantage in the above game. (Notice that, if q1 (resp. q2) is equal to poly, then the interpretation is
that there is no bound on the number of non-adaptive (resp. adaptive) key-generation queries and if
` = poly there is no bound on the length of the challenge message vector).

Predicate Encryption (PE, for short). Those schemes are defined for functionalities whose
message space X consists of two subspaces I and M called respectively index space and payload space.
In this case, the functionality F is defined in terms of a polynomial-time predicate P : K × I → {0, 1}
as follows: F (k, (ind,m)) = m if P (k, ind) = 1, ⊥ otherwise, where k ∈ K, ind ∈ I and m ∈ M . In
particular, for the ε key, we have F (ε, (ind,m)) = (|ind|, |m|). As for general functionalities, a predicate
P can be a family of predicates and in this case the functionality F defined in terms of P is a family
of functions. Indistinguishable Security for PE is defined analogously to Definition 2.3.

Anonymous IBE (AIBE, for short). Let the key space Kn = {0, 1}n, index space In = {0, 1}n
and payload space Mn = {0, 1}n the payload space for n ∈ N. The predicate family IBE = {IBEn :
Kn× In → {0, 1}}n∈N is defined so that for any k ∈ Kn, ind ∈ In, IBE(k, ind) = 1 if and only if k = ind.
We call a predicate encryption scheme (with private-index) for this predicate Anonymous IBE .

Predicate Encryption with Public-Index (a.k.a. ABE) (PIPE, for short). In this type of FE
the empty key ε explicitly reveals the index ind, namely F (ε, (ind,m)) = (ind, |m|). Indistinguishable
security is defined again analogously to Definition 2.3, with the main difference being in the adversary’s
challenge, namely it consists of two payloads m0,m1 andan index ind. An example of PIPE is Identity-
based Encryption.

3 Rewinding Simulation-based Security

In this section, we present our rewinding simulation-based security definition.
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Definition 3.1 [Rewinding Simulation-based Security] Let q1 = q1(λ), ` = `(λ), q2 = q2(λ) be specific
polynomials in the security parameter λ that are fixed a priori or be equal to the formal variable poly.
A functional encryption scheme FE = (Setup,KeyGen,Enc,Eval) for functionality F defined over (K,X)
is (q1, `, q2)-rewinding simulation-secure ((q1, `, q2)-RSIM-Secure, for short), if for any polynomial ν(λ)
there exists a PPT simulator algorithm Sim = (Sim0, Sim1) such that for all PPT adversary algorithms
Adv = (Adv0,Adv1), issuing at most q1 non-adaptive key-generation queries, q2 adaptive key-generation
queries and output challenge message vector of length and most `, no PPT distinguisher can distinguish
the outputs of the following two experiments with advantage greater than 1/ν(λ). (Note that, if q1
(resp. q2) is set to poly, then the interpretation is that there is no bound on the number of non-adaptive
(resp. adaptive) key-generation queries and if ` = poly there is no bound on the length of the challenge
message vector).

RealExpFE,Adv(1λ)

(Mpk,Msk)← Setup(1λ);

(~x, st)← Adv
KeyGen(Msk,·)
0 (Mpk);

(Cti ← Enc(Mpk, x[i]))i∈`;

α← Adv
KeyGen(Msk,·)
1 (Mpk, (Cti), st);

Output: (Mpk, ~x, α)

IdealExpFE,AdvSim (1λ)

(Mpk,Msk)← Setup(1λ);

(~x, st)← Adv
KeyGen(Msk,·)
0 (Mpk);

Let Q = (ki,Skki , F (ki, ~x))i∈[q1].

α← Sim
AdvO1 (Mpk,·,st)
0 (Mpk,Msk,Q, F (ε, ~x));

Output: (Mpk, ~x, α)

Here, the (ki ∈ K)i∈[q1]’s are the q1 keys for which Adv0 has issued a non-adaptive key-generation
query to its key-generation oracle. In the ideal experiment Adv1 is provided with a special oracle O for
adaptive key-generation queries. The oracle O takes in input a key k ∈ K and answers the query in
the following way. The oracle invokes the simulator Sim1 on input (k, F (k, ~x)). Sim1 outputs a secret
key for k that the oracle returns to Adv1. We require the simulator Sim = (Sim0,Sim1) to be stateful
and allow Sim0 and Sim1 to communicate by means of a shared memory. We remark that each time
Sim0 runs the adversary Adv1 on some input (Cti), Adv1 is executed with input (Mpk, (Cti), st) and
fresh randomness.

RSIM-Security with negligible advantage. With the obvious meaning, we say that FE is RSIM-
Secure with negligible advantage if in the above definition the two experiments are computationally
indistinguishable, i.e. whether the function ν(λ) is negligible. Moreover, the definition could be gener-
alized making it parametrized by a generic function ν(λ), but for our scopes this is not possible5. In
fact, we focus on efficient simulation, and for this reason the function ν(λ) can not be set to a negligible
function (see the paragraph ’The actual simulation’ in theorem for an explanation). Instead, if the
function ν(λ) is the inverse of an arbitrary polynomial, we can achieve efficient simulation. As said in
the introduction, simulators with non-negligible advantage are also used in [AAB+13].

Auxiliary Inputs. Our definition can be extended naturally to the auxiliary input setting, as in
Bellare and O’Neill [BO13]. An auxiliary input generator algorithm Z outputs z which is given to
the adversary and simulator, and included in the output distribution of security game. Notice that,
the simulator is not allowed to pick z. As in [BO13], the auxiliary input setting will be used in our
impossibility result in Section 5, where z will contain a key for a collision-resistant hash function.

Selective Security. The selective security model is a weaker model in which the adversary must
commit to its challenge messages before seeing the public parameters. In particular, for RSIM, in the
ideal experiment the simulator will simulate also the answers to the non-adaptive key queries. We
report the selective RSIM-Security definition in Appendix G.

5Precisely, it would be possible at the cost of non-efficient simulation.
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Relations among Definitions. Our RSIM definition stands in between SIM and IND security.
Specifically, it is easy to see that SIM implies RSIM because the RSIM simulator simply runs the SIM
simulator. Moreover, we show in Appendix C that RSIM-Security implies IND-Security.

Composition. Despite the fact that the RSIM simulator can rewind the adversary Adv1 to reconstruct
its view (this in general is problematic for composition), we can show that for the class of functionalities
for which we prove the equivalence between (poly, poly, poly)-IND-Security and (poly, poly, poly)-RSIM-
Security, single-message RSIM-Security implies multiple-message RSIM-Security, namely (poly, 1, poly)-
RSIM-Security implies (poly, poly, poly)-RSIM-Security. This is because, (poly, 1, poly)-RSIM-Security
implies (poly, 1, poly)-IND-Security (by Theorem C.1 in Appendix C) and (poly, 1, poly)-IND-Security
implies (poly, poly, poly)-IND-Security (this was shown by [GVW12b]).

Relations with BSW [BSW11] First of all, in BSW the simulator is allowed to pick its own simulated
public-key and non-adaptive secret keys, whereas in our definition this information is generated honestly.
Notice that the main aim of BSW was to prove impossibility results and such results are stronger if they
hold with respect to more powerful simulators (i.e., simulators that can also simulate the public- and
secret- keys). On the other hand, we are mainly interested to prove positive results and so our choice
of the definition (i.e. the fact that the public- and non-adaptive secret- keys are generated honestly)
makes our results stronger. To clarify the difference with the [BSW11] definition (See Appendix B for
the formal definition), we recall the [BSW11, BO13]’s impossibility result and show why it does not hold
for RSIM. Specifically, consider the following adversary Adv = (Adv0,Adv1) for the IBE functionality.
Adv0 returns as challenge messages the vector ((0, ri))i∈[`], where ` = kl(λ) + λ, kl is a polynomial
bounding the length of secret keys, 0 is the identity and ri is a random bit for each i ∈ [`]. Then, Adv1
invokes its key-generation oracle on input identity w = CRHF(Mpk||Ct1|| · · · ||Ct`) for some collision-
resistant hash function CRHF, and then asks to see a secret key for identity 0. The output of Adv1 is
the transcript of its entire computation including its inputs. Thus, the strategy of the above adversary
forces the simulator to commit to the challenge ciphertexts he has generated (through the query on
indentity w) before seeing the evaluation of IBE functionalities on the key for identity 0 and so learning
the bit ri’s. Then, the challenge ciphertexts can not be reprogrammed and by choosing the number
of encrypted bits to be larger than the length of the secret key the simulator is forced to achieve an
information theoretic compression of random bits which is in turn impossible. Notice that, even though
the simulator in BSW definition is formally allowed to rewind the adversary, the same simulator is not
allowed to learn more information than what is learnt by the adversary in a single run of experiment.
This, in turn, means that the only way for the simulator to reconstruct the view of the adversary is to
break the collision resistant hash function.

The strategy of this adversary is clearly not successful with the respect to RSIM because an RSIM
simulator once obtained the ri’s can simply generates new ciphertexts encrypting them and rewind the
adversary. In the new run, the RSIM simulator can answer all the key-generation queries by simply
generating honest secret keys.

Observe that the BSW definition forbids this kind of simulation since: (1) the simulator is given
direct access to the functionality oracle and (2) the key-generation queries issued by the simulator are
given as input to the distinguisher. So according to the BSW definition, the distinguisher would see 4
key-generation queries, and thus it could tell apart the real experiment where the adversary always asks
2 secret keys from the ideal experiment. The same holds for the [BF13] definition. On the other hand,
in RSIM the distinguisher would only see the last transcript. The definitions of [AGVW13, DIJ+13]
also forbid this kind of simulation since their simulator is straight-line.

4 An Equivalence for Public-Index Schemes

In this section, we show that for public-index schemes IND-Security is equivalent to RSIM-Security.
In Appendix C, we have already shown that RSIM-Security implies IND-Security, therefore, the main
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theorem of this section is the following.

Theorem 4.1 Let PIPE be an (poly, poly, poly)-IND-Secure PE scheme with public-index for predicate
P : K × I → {0, 1}. Then, PIPE is (poly, poly, poly)-RSIM-Secure as well.

Overview. To give some intuitions on the proof strategy, let us start by considering a weak adversary
that issues only key-generation queries for keys that can not be used to decrypt any of the challenge
ciphertexts. In such a case, the simulator will generates challenge ciphertexts for random payloads
and for the indices that the simulator gets in input (recall that we are considering public-index func-
tionalities). It is clear that under the IND-Security of the PIPE scheme the adversary can not notice
any difference given the fact that all the requested secret keys can not decrypt any of the challenge
ciphertexts. Now, let consider an adversary that issue, after having seen the challenge ciphertexts, a
key-generation query for a key that decrypts one of the these challenge ciphertexts, let say Cti (Notice
that up to this moment the simulation is perfect under the IND-Security of the PIPE scheme). Because
the challenge ciphertexts were made for random payloads, the output of the Eval algorithm will be
different from what the adversary expects, meaning that the simulation of current run is not successful.
But now notice that the simulator learns the payload corresponding to Cti, mi. Then, the simulator
can executes a new run of the adversary generating Cti for the correct payload. Notice that, from now,
no key-generation query for a key that decrypts Cti will not cause a rewind anymore.

Remark. The above is an oversimplified sketch. In fact, if the simulator follows this strategy it
produces a biased output. Anyway, henceforth, we prefer to first present the simplified simulation and
then explain why is biased and finally we proceed to fix it. We think that presenting the security
reductions in this way helps the reader in understating the need of all the details. We will follow this
approach for the rest of the work.

Proof: (Simplified simulation.) Our simulator Sim = (Sim0,Sim1) works as follows. Sim0 takes
in input the master public and secret key, the list Q = (ki, Skki , F (ki, ~x))i∈[q1], and the intentionally
leaked information about the challenge messages F (ε, ~x) = (indj , |mj |)j∈[`]. Then, for each i ∈ [q1], Sim0

checks whatever P (ki, indj) = 1 for some j ∈ [`]. If it is the case, then Sim0 learns mj . Furthermore,
let X the tuple of messages (indices with the relative payloads) learnt by Sim0. Then, for each pair in
X , Sim0 generates a normal ciphertext by invoking the encryption algorithm. For all the other indices
for which Sim0 was not able to learn the corresponding payload, Sim0 generates ciphertexts for those
indices having a random payload. Let ~x? be the resulting message vector that the simulator used to
produce the challenge ciphertexts.

Then, Sim0 executes Adv1 on input the so generated challenge ciphertexts. When Adv1 invokes its
key-generation oracle on input key k, Sim1 is asked to generate a corresponding secret key given k and
F (k, ~x). Now we have two cases:

1. P (k, indj) = 1 for some j ∈ [`]: Then, Sim learns mj . If mj was already known by Sim, it means
that the corresponding challenge ciphertext was well formed when Sim0 invoked Adv1. Then Sim1

generates the secret key for k (using the master secret key) and the simulation continues. On the
other hand, if Sim0 didn’t know mj then the ciphertext corresponding to indj was for a random
message. Therefore, Sim0 must halt Adv1 and rewinds it. Sim0 adds (indj ,mj) to X (and thus
updates ~x?) and with this new knowledge Sim0 rewinds Adv1 on input the encryption of the new
ciphertexts (i.e., the encryption of the new ~x?). The above reasoning easily extends to the case
that P (k, indj) = 1 for more than one j.

2. P (k, indj) = 0 for all j ∈ [`]: In this case, a secret key for k can not be used to decrypt any of
the challenge ciphertexts. Then, Sim1 generates the secret key for k (using the master secret key)
and the simulation continues.

10



If at some point the adversary halts giving some output the simulator outputs what the adversary
outputs. This conclude the description of the simulator Sim.

It remains to show that the simulated challenge ciphertexts does not change Adv1’s behaviour signifi-
cantly. We call a key-generation query good if the simulator can answer such query without rewinding
the adversary according to the previous rules. We call a completed execution of the adversary between
two rewinds of the adversary a run. First, notice that the number of runs, meaning the number of times
the simulator rewinds, is upper-bounded by the number of challenge messages ` that is polynomial in
the security parameter. In fact, each time that a query is not good and the simulator needs to rewind
then the simulator learn a new pair (indj ,mj), for some j ∈ [`] and the same query will never cause a
rewind anymore. In the last run, that in which all the key-generation queries are good, the view of the
adversary is indistinguishable from that in the real game. This follows from the IND-Security of PIPE.
In fact, the evaluations of the secret keys on the challenge ciphertexts in the real experiment give the
same values than the evaluation of the simulated secret keys on the simulated ciphertexts in the ideal
experiment since the secret keys are generated honestly. Therefore, the IND-Security guarantees that
in this case the view in the real experiment is indistinguishable from that in the ideal experiment.

The actual simulation. The previous simulation incurs in the following problem: the output of the
simulator could be biased. Consider for example an adversary that with probability 1/3 does not ask
any query and with probability 2/3 asks a query that triggers a rewind, and outputs its computation.
In the real experiment the transcript contains zero queries with probability 1/3 whereas the output of
the ideal experiment contains zero queries with probability larger than 1/3, thus with non-negligible
difference6. Above, we have shown that the last transcript of the simulator would be indinstiguishable
from the transcript of the adversary in the real experiment but this final output could be biased and
corresponds to different runs of the adversary. Thus, we need the following more smart strategy. First,
recall that by standard use of Chernoff’s bound we can estimate a (β, γ)-approximation of a random
variable, where the estimate is β-close with probability 1− γ. Moreover, this can be made by sampling
the random variable a number of times that is polynomial in 1/β and logarithmic in 1/γ. Let µ be some
fixed negligible function and ν be the the distinguishing advantage we wish to achieve (see Definition
3). Let i = 0 to `, the simulator makes the following. Consider the experiment Xi in which the
simulator executes the adversary in a run where the information it learnt consists of the pairs (indj ,mj)
for j = 1, . . . , i, and we assume that for i = 0 the simulator starts the run with random pairs. The run
is executed as described in the simplified simulation, where if the adversary triggers a rewind then the
simulator outputs a dummy value, otherwise the simulator outputs what the adversary outputs. We
denote by pi the probability that in experiment Xi the adversary triggers a rewind. Setting ν ′ = ν1/2/`,
the simulator computes a (ν ′, δ)-estimate p̃i for pi for some negligible function δ (the reason for setting
ν ′ to such value will be clear at the end of the analysis). If the estimate p̃i ≤ µ, then the simulator
executes the adversary in experiment Xi and if the adversary terminates without triggering a rewind,
the simulator outputs what the adversary outputs, otherwise the simulator outputs a dummy value.
Instead, if the estimate is greater than µ, then simulator increments i and proceeds to next step. Let
us compute the advantage of a PPT distinguisher in telling apart the real from the ideal experiment.
By assumption on the estimate and by construction of the simulator, the output of the simulator is the
output of the adversary in experiment X1 with probability at most w1 = (1−δ)(µ+ν ′) and is the output
of the adversary in experiment X2 with probability at most a2(1−δ)(µ+ν ′), where a2 = 1−q1 < 1, and
so forth. Therefore, the output of the simulator is the output of the adversary in experiment Xi with
probability at most (1− δ)(µ+ ν ′). If the output of the simulator equals the output of the adversary in
experiment Xi, then the distinguishing advantage is at most ν ′ up to some negligible factor. Indeed, if
the adversary does not trigger a rewind the two experiment are computationally indistinguishable by
the IND-Security and in experiment Xi the adversary triggers a rewind with probability at most µ+ ν ′

6A similar problem arises in the context of rewinding simulators for constant-round zero-knowledge as in [GK96]
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and µ is negligible. By definition of ν ′, it follows that the overall advantage is at most `ν ′2 = ν up to
a negligible factor.

5 Impossibility of RSIM for FE for General Circuits

In this section, we show that RSIM-Security with negligible advantage can not be achieved in the
adaptive setting for general circuits.

Theorem 5.1 Assuming the existence of collision resistance hash functions and pseudo-random func-
tions, there exists a family of circuits for which there are no functional encryption schemes that
are (0, poly, 1)-RSIM-Secure with negligible advantage in the auxiliary input setting (for the standard
model).

Overview. To prove the theorem, it is enough to present an adversary whose strategy is such that at
any run the simulator is forced to rewind, meaning that the information gathered in any run are useless
to successfully simulate any other run. To force the rewind, our adversary will use a [BSW11, BO13]-like
strategy. Namely, our adversary will first force the simulator to commit to the challenge ciphertexts
he has generated by using a collision resistant hash function. Then, our adversary will request to see
a secret key that extracts from the challenge ciphertexts a (psuedo-)random string whose length is
much larger then the length of the secret key itself. Because it is information-theoretical impossible
to compress such (psuedo-)random string in the space provided by the secret key, the simulator will
rewind hoping to use the information gathered so far to successfully simulate the next run.

Now notice that in the [BSW11, BO13]’s impossibility results for the IBE functionality, only the
first run can not be successfully simulated. In fact, in the the same run the simulator learns the
challenge messages, which remains the same in all the runs, and can successfully simulate the next
run. Thus, the IBE functionality is of limited use. Therefore, we have to consider a functionality that
let the adversary extracts a pseudo-random string from the challenge ciphertets, this is to invoke the
information-theoretical argument that will force the simulator to rewind, and at the same time makes
this string useless to simulate the next run, meaning that the output of the functionality crucially
depends on the challenge ciphertexts generated by the simulator. Here is where the pseudo-random
functions come in.

In more details, we consider an adversary that issues a suitable number of challenge messages, let
us say kl(λ) + λ, where kl(·) is the polynomial bounding the length of the secret keys, of the type
(s||ri)i∈[`] where s will be the seed of the pseudo-random function and ri a random value that will be
part of the input on which the pseudo-random function will be evaluated. Then the adversary, on input
Mpk and the ciphertexts (Cti)i∈[`] for the challenge messages, issues a single adaptive key-generation

query to its oracle for the circuit CPRF,w that computes the pseudo-random function on input seed s
and value r||w, where w = CRHF(Mpk||Ct1|| · · · ||Ct`) is hardwired in CPRF,w and is used to commit
the simulator to the ciphertexts it has generated. Crucial is the fact that the output of CPRF,w on the
challenge messages depends on the Cti’s.

We prove Theorem 5.1 in Appendinx F.
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A Standard Notions

A.1 Pseudo-random function family

Definition A.1 [Pseudo-random function family] A family PRF = {PRFs : s ∈ {0, 1}λ}λ∈N is called
family of (l(λ), L(λ))-pseudo- random function family if:

• Efficiently computable: For any λ ∈ N, s ∈ {0, 1}λ, PRFs : {0, 1}l(λ) → {0, 1}L(λ) is polynomial
time computable.

• Pseudo-random: For any p.p.t adversary A, it holds that:∣∣∣Prob[APRFs(1λ) = 1|s← {0, 1}λ]− Prob[AF (1λ) = 1|F ← R(l(λ), L(λ))]
∣∣∣ ≤ neg(λ) ,

where R(l(λ), L(λ)) is the space of all possible functions F : {0, 1}l(λ) → {0, 1}L(λ).

A.2 Collision-resistant hash functions

Definition A.2 A collision-resistant hash function family CRHF = {CRHFλ : {0, 1}λ ×Dλ → Rλ}λ∈N
for |Rλ| < |Dλ| is a collection of functions satisfying:

• There is a PPT algorithm K that on input 1λ outputs a random key hk ∈ {0, 1}λ.

• There is a deterministic polynomial time algorithm H that for any λ on input a key hk ∈ {0, 1}λ
and x ∈ Dλ outputs CRHF(hk, x) = CRHFλ(hk, x).

• For any PPT algorithm A,

Pr[CRHF(hk, x1) = CRHF(hk, x2) and x1 6= x2|hk← K(1λ);x1 ← Dλ;x2 ← A(hk, x1)] ,

is negligible in λ.

B [BSW11] and [DIJ+13] Simulation-Based Definitions

Notation. AB(·)[[x]] means that the algorithm A can issue a query q to its oracle, at which point
B(q, x) will be executed and output a pair (y, x′). The value y is then communicated to A as the
response to its query, and the variable x is set to x′, and this updated value is fed to the algorithm B
the next time it is queried as an oracle, and fed to any algorithms executed later in an experiment that

16



want x as an input.
Also, AB

◦(·) means that A can send a query q to its oracle, at which point B◦(q) is executed, and any
oracle queries that B makes are answered by A.

Definition B.1 [Boneh et al. [BSW11] Simulation-Based Definition] A functional encryption scheme
FE = (Setup,KeyGen,Enc,Eval) for functionality F defined over (K,X) is simulation-secure if there
exists a PPT simulator algorithm Sim = (Sim0, Sim1,Sim2) such that for all PPT adversary algorithms
Adv = (Adv0,Adv1) the outputs of the following two experiments are computationally indistinguishable.

RealExpFE,Adv(1λ)

(Mpk,Msk)← Setup(1λ);

(~x, st)← Adv
KeyGen(Msk,·)
0 (Mpk);

~Ct← Enc(Mpk, ~x);

α← Adv
KeyGen(Msk,·)
1 (Mpk, ~Ct, st);

Let y1, . . . , yq the oracle
queries made by Adv
Output: (Mpk, ~x, st, α, y1, . . . , yq)

IdealExpFE,AdvSim (1λ, 1n)

(Mpk, σ)← Sim0(1
λ);

(~x, st)← Adv
Sim1(·)[[σ]]
0 (Mpk);

α← Sim
F (·,~x),Adv◦1(Mpk,·,st)
2 (σ, F (ε, ~x));

Let y1, . . . , yq the oracle
queries to F made by Sim2

Output: (Mpk, ~x, st, α, y1, . . . , yq)

Definition B.2 [De Caro et al. [DIJ+13] Simulation-Based Definition] A functional encryption scheme
FE = (Setup,KeyGen,Enc,Eval) for functionality F defined over (K,M) is simulation-secure if there
exists a PPT simulator algorithm Sim = (Sim0, Sim1) such that for all adversary algorithms Adv =
(Adv0,Adv1) the outputs of the following two experiments are computationally indistinguishable.

RealExpFE,Adv(1λ, 1n)

(Mpk,Msk)← Setup(1λ, 1n);

(m, st)← Adv
KeyGen(Msk,·)
0 (Mpk);

Ct← Enc(Mpk,m);

α← Adv
KeyGen(Msk,·)
1 (Mpk,Ct, st);

Output: (Mpk,m, α)

IdealExpFE,AdvSim (1λ, 1n)

(Mpk,Msk)← Setup(1λ, 1n);

(m, st)← Adv
KeyGen(Msk,·)
0 (Mpk);

(Ct, st′)← Sim0(Mpk, |m|, (ki, Skki , F (ki,m)));

α← Adv
O(·)
1 (Mpk,Ct, st);

Output: (Mpk,m, α)

Here, the (ki)’s correspond to the key-generation queries of the adversary. Further, oracle O(·) is the
second stage of the simulator, namely algorithm Sim1(Msk, st′, ·, ·). Algorithm Sim1 receives as third
argument a key kj for which the adversary queries a secret key, and as fourth argument the output value
F (kj ,m). Further, note that the simulator algorithm Sim1 is stateful in that after each invocation, it
updates the state st′ which is carried over to its next invocation.

C RSIM-Security =⇒ IND-Security

Theorem C.1 Let FE be a functional encryption scheme that is RSIM-Secure, then FE is IND-Secure
as well.

Proof: Suppose towards a contradiction that there exists an adversary A = (A0,A1) that breaks the
IND-Security of FE. Consider the following adversary Bb = (Bb0,Bb1), for b ∈ {0, 1}, and distinguisher
D, for the RSIM-Security of FE.
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• Bb0, on input master public key Mpk and having oracle access to the key-
generation oracle, invokes A0 on input Mpk and emulates A0’s key-generation
oracle by using its own oracle.
When A0 stops, it outputs two challenge messages vectors, of length `, ~x0, ~x1 ∈
X` and its internal state st.
hen, Bb0 outputs (~xb, st

′ = (st, b, ~x1−b)).

• Bb1, on input master public key Mpk, challenge ciphertexts (Cti)i∈[`] and state
st′ = (st, b, ~x1−b) and having oracle access to the key-generation oracle, in-
vokes A1 on input the challenge ciphertexts and state st and emulates A1’s
key-generation oracle by using its own oracle.
At some point A1 stops giving in output a bit b′. Then, B1 outputs
(b′, b, ~x1−b,Q) as its own output, where Q = (ki) is the list of keys for which
A has issued a key-generation query.

D(Mpk, ~x, α):

• D interprets α as α = (b′, b, ~x1−b,Q) and returns 1 if b = b′ and for any k ∈ Q
F (k, ~x) = F (k, ~x1−b), 0 otherwise.

Let INDFE,b
A be an experiment identical to the IND-Security experiment except that the challenger always

encrypts challenge vector ~xb (instead of choosing one of the two challenges at random). Then, it holds
that for any function ε(λ) that is inverse of a polynomial:

INDFE,0
A = RealExpFE,B

0 ≈ε IdealExpFE,B
0

Sim = IdealExpFE,B
1

Sim ≈ε RealExpFE,B
1

Sim = INDFE,1
A .

where, more specifically:

1. INDFE,0
A = RealExpFE,B

0
(i.e., the probability that A wins in experiment INDFE,0

A equals the prob-

ability that D outputs 1 on input the output of RealExpFE,B
0
) holds by definition of B0 and

D.

2. RealExpFE,B
0 ≈ε IdealExpFE,B

0

Sim . This holds by the RSIM-Security of FE.

3. IdealExpFE,B
0

Sim = IdealExpFE,B
1

Sim holds because if A breaks the IND-Security of FE, then with all but
negligible probability, the queries issued by A (and thus by B) are such that F (k, ~x0) = F (k, ~x1)
for any key k for which A has issued a key-generation query.

4. IdealExpFE,B
1

Sim ≈ε RealExpFE,B
1

Sim holds again by the RSIM-Security of FE.

5. Finally, RealExpFE,B
1

Sim = INDFE,1
A (i.e., the probability that A wins in experiment INDFE,1

A equals

the probability that D outputs 1 on input the output of RealExpFE,B
1
) holds by definition of B1

and D.

But, if for any ε, INDFE,0
A ≈ε INDFE,1

A , then A does not break the IND-Security of FE, a contradiction.

D Pre-image samplability

We review the definition of pre-image samplability functionalities introduced by [O’N10].
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Definition D.1 [[O’N10]] Functionality F : K ×M → Σ is pre-image sampleable (PS, for short) if
there exists a sampler algorithm Sam such that for all PPT adversaries A,

Prob
[(
m, (ki)

l=poly(λ)
i=1

)
← A(1λ); m′ ← Sam(1λ, |m|, (ki, F (ki,m))li=1) :

F (ki,m) = F (ki,m
′) for i = 1, . . . , l] = 1− ν(λ)

for a negligible function ν.

In our positive results we use the following result.

Theorem D.2 [[O’N10]] The functionality inner-product over Z2
7 is PS.

E Positive Results for PE with Private-Index

In this section we go further showing equivalences for PE with private-index for several functionalities
including Anonymous IBE, inner-product over Z2, monotone conjunctive Boolean formulae, and the
existence of RSIM-Secure schemes for all classes of NC0 circuits.

As before, because in Appendix C, we show that RSIM-Security implies IND-Security, to establish
the equivalence for the functionalities we study, it is enough to prove the other direction, namely that
IND-Security implies RSIM-Security.

Abstracting the properties needed by the simulator. A closer look at the proof of theorem
4.1 hints some abstract properties that a predicate has to satisfy in order for the simulator to be able
to produce an indistinguishable view. We identify the following two properties. The execution of the
simulator is divided in runs. At run j, the simulator invokes the adversary on input a ciphertext for
message xj , whereas the adversary chose x, and keeps the invariant that xj gives the same results than
x respect to the queries asked by the adversary until that run. At some point the adversary asks a
query k for which F (k, x) 6= F (k, xj) 6= ⊥ thus the simulator is not able to answer the query in this
run. But if the functionality has the property (1) that it is easy to pre-sample a new value xj+1 that
satisfies all queries including the new one, the simulator can rewind the adversary this time on input an
encryption of value xj+1. This is still not sufficient since there is no bound on the maximum number
of rewinds needed by the simulator so we have to require the property (2) to force the simulation
progresses towards a maximum.

To give a clear example, consider how a simulator could work for Anonymous IBE. Suppose that the
adversary chooses as challenge identity crypto and the simulator chooses aaaaa as simulated identity
for the ciphertext the simulator will pass to the adversary. Then, the adversary issues a query for
identity bbbbb and the simulator learns that the predicate is not satisfied against, so the query gives the
same evaluation on both the challenge identity and the simulated identity. This is coherent with the
query, so the simulator can continue the simulation. Now, suppose that the adversary issues the query
for identity crypto. Then, the simulated identity is no more compatible with the new query and the
simulator has to rewind the adversary but, since the simulator has learnt the challenge identity crypto
and the corresponding payload exactly, in the next run the simulator is able to finish the simulation
perfectly. This simulation strategy is simplified, and as we explained in Section 4 the simulator also
need to guarantee that the output is not biased. In Section E.2, we show how to implement a more
complicated strategy for the predicate inner-product over Z2.

E.1 Equivalence for Anonymous IBE

The following theorem is an extension of Theorem 4.1.

Theorem E.1 Let AIBE be an Anonymous IBE scheme (poly, poly, poly)-IND-Secure. Then, AIBE is
(poly, poly, poly)-RSIM-Secure as well.

7O’Neill proved this result for more general fields but we only need it for Z2.
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Intuition. Notice that, in an Anonymous IBE scheme the ciphertext does not leak the identity for
which it has been generated and thus the special key ε does not provide this information as for a
public-index scheme. Despite this, when the adversary issues a key-generation query for a key k such
that F (k, x) 6=⊥, then the simulator learns that x is a message for index (or identity for the case of
AIBE) k and payload F (k, x). Thus, the simulator rewinds the adversary on input a freshly generated
ciphertext for that pair and can safely generate an honest secret key for k upon request.

Another important difference with the proof of Theorem 4.1 is that the simulator could be forced
to rewind without gaining any new knowledge and this could result in a never ending simulation. This
happens for example in the following case: Let x a challenge message chosen by the adversary and let
x? the message chosen by the simulator to simulate the ciphertext for x. Then, if the adversary issues
a key-generation query for key k such that F (k, x) =⊥ but F (k, x?) 6=⊥, then the simulator is forced to
rewind without gaining any new knowledge and this could happen indefinitely. But, the IND-Security
of AIBE scheme guarantees that such situation can happen only with negligible probability, and thus
the simulator can just abort in such cases.

Proof: (Simplified simulation.) Our simulator Sim = (Sim0,Sim1) works as follows. Sim0 takes
in input the master public and secret key, the list Q = (ki, Skki , F (ki, ~x))i∈[q1], and the intentionally
leaked information about the challenge messages F (ε, ~x) = (|indj |, |mj |)j∈[`]. Then, for each i ∈ [q1],
Sim0 checks whatever F (ki, xj) 6=⊥ for some j ∈ [`]. If it is the case, then Sim0 learns that message xj
is for identity indj = ki and payload mj = F (ki, xj).

Let X the set of tuple of the following form (j, indj ,mj) learnt by Sim0. Then, for each pair in X ,
Sim0 generates a normal ciphertext for message x?j = (ind?j ,m

?
j ), with ind?j = indj and m?

j = mj , by
invoking the encryption algorithm. For all the other positions k for which Sim0 was not able to learn
the corresponding index and payload, Sim0 generate a ciphertext for random x?k = (ind?k,m

?
k).

Then, Sim0 executes Adv1 on input the challenge ciphertexts (Ct?j )j∈[`], where Ct?j is for message x?j =
(ind?j ,m

?
j ) as described above. When Adv1 invokes its key-generation oracle on input key k, Sim1 is

asked to generate a corresponding secret key given k and F (k, ~x). Now we have the following cases:

1. If for each j ∈ [`] such that F (k, xj) 6=⊥, (j, k, F (k, xj)) ∈ X : Then we have two sub-cases:

(a) If there exists and index j ∈ [`] such that F (k, xj) =⊥ but F (k, x?j ) 6=⊥ then Sim0 aborts.
(b) Otherwise, Sim1 honestly generates a secret key Skk for key k. Notice that it holds that

F (k, x?j ) = F (k, xj) for all j ∈ [`].

2. If there exists an index j ∈ [`] such that F (k, xj) 6=⊥ but (j, k, F (k, xj)) /∈ X : Then F (k, x?j ) 6=
F (k, xj) with high probability. Thus Sim0 adds (j, k, F (k, xj)) to X and rewinds Adv1 on freshly
generated ciphertexts based on the information Sim0 has collected in X so far.

3. If for all j ∈ [`], F (k, xj) =⊥: Then we have two sub-cases:

(a) If there exists and index j ∈ [`] such that F (k, xj) =⊥ but F (k, x?j ) 6=⊥ then Sim0 aborts.
(b) Otherwise, Sim1 honestly generates a secret key Skk for key k. Notice that it holds that

F (k, x?j ) = F (k, xj) =⊥ for all j ∈ [`].

If after a query the simulator has got to rewind the adversary, we say that such query triggered a
rewind. If at some point the adversary halts giving some output, then the simulator outputs what the
adversary outputs. This conclude the description of the simulator Sim.

Let us first bound the probability that the simulator aborts during its simulation, this happens in cases
1.(a) or 3.(a). Let us focus on case 1.(a), the other one is symmetric. Notice that when case 1.(a)
happens then F (k, xj) =⊥ but F (k, x?j ) 6=⊥, meaning that indj 6= k and ind?j = k, and that all the
previous key-generation queries are good, meaning that no rewind has been triggered. Therefore, if
this event happens with non-negligible probability, Adv can be used to build another adversary B that
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distinguishes between the encryption of xj and x?j with the same probability, thus contradicting the
IND-Security of the scheme. Precisely, B simulates the view to A as described before (i.e., simulating
the interface with the simulator) and returns as its challenges two messages with indices ind0 = indj
and ind1 = ind?j , where the two indices are as before. Then, B runs Adv on some ciphertext that is
identical to that described before except that Ct?j is set to the challenge ciphertext received from the
challenger of the IND-Security game. If at some point Adv asks a query for identity ind?j , then B outputs
1 as its guess, otherwise B outputs 0 as its guess. Notice that if the challenge ciphertext for B is for
the challenge message with identity ind1 = ind?j , B perfectly simulated the view of A when interacting
with the above simulator, and thus, by hypothesis on the non-negligible probability of occurence of the
case 1.(a), B outputs 1 with non-negligible probability. On the other hand, if the challenge ciphertext
is for the challenge message with identity ind0 = indj , then the view of Adv is completely independent
from ind?j , so the probability that Adv asks a query for such identity is negligible and thus B outputs 0
with overwhelming probability.

Finally, notice that the number of runs, meaning the number of times the simulator makes a rewind (a
rewind happens when case 2. occurs), is upper-bounded by the number of challenge messages ` that is
polynomial in the security parameter. In fact, every time that a query is not good and the simulator
needs to rewind the adversary, the simulator learns a new pair (indj ,mj), for some j ∈ [`], and the same
query will never cause a rewind anymore. In the last run, that in which all the key-generation queries
are good, the view of the adversary is indistinguishable from that in the real game. This follows from
the IND-Security of AIBE by noting that the evaluations of the secret keys on the challenge ciphertexts
in the real experiment give the same values than the evaluation of the simulated secret keys on the
simulated ciphertexts in the ideal experiment since the secret keys are generated honestly. Therefore,
the IND-Security guarantees that in this case the view in the real experiment is indistinguishable from
that in the ideal experiment.

Non-biased simulation. We stress that this is a simplified simulation and the simulator also needs
to guarantee that the output is not biased. This can be made as explained in the security reduction of
theorem 4.1.

E.2 Equivalence for Inner-Product over Z2

The functionality inner-product over Z2 (IP, for short)8 is defined in the following way. It is a family of
predicates with key space Kn and index space In consisting of binary strings of length n, and for any
k ∈ Kn, x ∈ In the predicate IP(k, x) = 1 if and only if

∑
i∈[n] ki · xi = 0 mod 2.

Theorem E.2 If a predicate encryption scheme PE for IP is (poly, poly, poly)-IND-Secure then PE is
(poly, poly, poly)-RSIM-Secure as well.

Proof: (Simplified simulation.) The proof follows the lines of the Theorem 4.1. For simplicity we
assume that the adversary outputs a challenge message with the payload set to 1, i.e., the functionality
returns values in {0, 1}, but this can be easily generalized by handling the payload as in the proof
of theorem 4.1. Let x = (x1, . . . , x`) ∈ {0, 1}n·` be the challenge index 9 output by the adversary
Adv0 and let (wi)

q1
i=1 be the queries asked by Adv0 (i.e. the queries asked before seeing the challenge

ciphertexts). As usual we divide the execution of the simulator in runs and in any run the simulator
keeps an index x0 = (x01, . . . , x

0
` ) ∈ {0, 1}n·` that uses to encrypt the simulated ciphertext given to the

adversary in that run. Let Yi be a matrix in {0, 1}(q1+i−i)×n where the rows y1, . . . , yq1+i−1 of Yi are
such that the first q1 rows y1, . . . , yq1 consist of the vectors w1, . . . , wq1 (i.e., y1 = w1, . . . , yq1 = wq1)

8We remark that our inner-product is defined over Z2 so the predicate is different from that of [KSW08].
9The challenge index output by the adversary consists of a tuple (x1, . . . , x`) of vectors where each element xi ∈ {0, 1}n

for i = 1, . . . , `. For simplicity, henceforth we interpret such challenges as vectors in {0, 1}n·`.

21



and for each j = 1, . . . , i− 1 the row yq1+j of Yi corresponds to the last query asked by Adv1 in run j
(as it will be clear soon, in any run i, if the last query asked by the adversary in such run will trigger
a rewind, then only such query is put in the matrix, and not any other previous query asked by the
adversary in run i). Furthermore, for any i ≥ 1 and any j ∈ [`], let bi,j ∈ {0, 1}q1+i−1 be the column
vector such that bi,j [k] = IP(yk, xj), k = 1, . . . , q1 + i − 1. During the course of the simulation, the
simulator will guarantee the following invariant: at the beginning of any run i ≥ 1, for any j ∈ [`],
Yi ·x0j = bi,j . In the first run the simulator runs the adversary with input a ciphertext that encrypts an

index x0 = (x01, . . . , x
0
` ) ∈ {0, 1}n·` such that for any j ∈ [`], Y1 · x0j = b1,j . The simulator can efficiently

find such vector by using the PS of IP guaranteed by Theorem D.2. When in a run i ≥ 1 the adversary
makes a query for a vector y ∈ {0, 1}n we distinguish two mutually exclusive cases. executed).

1. The vector y is a linear combination of the rows of Yi. Then, by the invariant property it follows
that for any j ∈ [`], IP(y, xj) = IP(y, x0j ), and the simulator continues the simulation answering
the query as usual (i.e., by giving to the adversary Adv1 the secret key for y generated honestly).

2. The vector y is not a linear combination of the rows of Yi. Then, the simulator could not be able to
answer this query. In this case, we say that the query triggered a rewind and the simulator rewinds
the adversary Adv1 as follows. The simulator updates Yi+1 by adding the new row y to Yi and uses
the PS of IP guaranteed by theorem D.2 to efficiently find a new vector x′ = (x′1, . . . , x

′
`) ∈ {0, 1}n·`

such that for any j ∈ [`], Yi+1 · x′j = bi+1,j (i.e., the PS algorithm is invoked independently for
each equation Yi+1 ·x′j = bi+1,j). Finally, the simulator rewinds the adversary by invoking it with

input the encryption of x′ and updates x0 setting it to x′. Notice that at the beginning of run
i+ 1 the invariant is still satisfied.

At the end of the last run, the simulator outputs what the adversary outputs. It is easy to see that
the simulator executes at most n runs since in any run i > 2 the rank Yi is greater than the rank of
Yi−1 and for any i ≥ 1 the rank of Yi is at most n. Finally, notice that at the beginning of the last run
the invariant guarantees that for any query y asked by Adv0 and for any j ∈ [`] IP(y, xj) = IP(y, x0j ).
Furthermore, since in the last run no query has triggered a rewind, then any query asked by Adv1 in
the last run still satisfies this property. Therefore, by the IND-Security of the scheme, it follows that
the output of the simulator is indistinguishable from that of the adversary in the real game.

Non-biased simulation. We stress that this is a simplified simulation and the simulator also needs
to guarantee that the output is not biased. This can be made as explained in the security reduction of
theorem 4.1.

RSIM-Security for NC0 circuits. Recall that NC0 is the class of all family of Boolean circuits of
polynomial size and constant depth with AND, OR, and NOT gates of fan-in at most 2. It is a
known fact that circuits in NC0 with n-bits input and one-bit output can be expressed as multivariate
polynomials p(x1, . . . , xn) over Z2 of constant degree. Furthermore, you can encode such polynomials as
vectors in Znm2 for some constant m and evaluate them at any point using the inner-product predicate.
Therefore, it is easy to see that the previous proof implies naturally the existence of a RSIM-Secure FE
scheme for any family of circuits in NC0 but we omit the details.

Theorem E.3 If there exists predicate encryption scheme for IP that is (poly, poly, poly)-IND-Secure
then there exists a predicate encryption scheme PE for any family of circuits in NC0 that is (poly, poly, poly)-
RSIM-Secure.

Despite their weakness, NC0 circuits can be employed for many practical applications (see [BI05]).
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E.3 Equivalence for Monotone Conjunctive Boolean Formulae

The functionality Monotone Conjunctive Boolean Formulae (MCF, for short) is defined in the following
way. It is a family of predicates with key space Kn consisting of monotone (i.e., without negated
variables) conjunctive Boolean formulae over n variables (i.e., a subset of indices in [n]) and index
space In consisting of assignments to n Boolean variables (i.e., binary strings of length n), and for any
φ ∈ Kn, x ∈ In the predicate MCF(φ, x) = 1 if and only if the assigment x satisfies the formula φ. If a
formula φ ⊆ [n] contains the index i, we say that φ has the i-th formal variable set.

The reader may have noticed that PE for MCF is a special case of PE for the family of all conjunctive
Boolean formulae introduced by [BW07]. Though the monotonicity weakens the power of the primitive,
it has still interesting applications like PE for subset queries as shown by [BW07]. We point out that
the monotonicity is fundamental to implement our rewinding strategy. In fact, (under some complexity
assumption) the functionality that computes the family of all conjunctive Boolean formulae is not PS10,
so it is not clear whether an equivalence between (poly, poly, poly)-IND-Security and (poly, poly, poly)-
RSIM-Security can be established for this primitive. On the other hand, weakening the functionality
allowing only monotone formulae, we are able to prove the following theorem.

Theorem E.4 If a predicate encryption scheme PE for MCF is (poly, poly, poly)-IND-Secure then PE is
(poly, poly, poly)-RSIM-Secure as well.

Proof Sketch. (Simplified simulation.) The proof follows the lines of the previous equivalence
theorems and is only sketched outlining the differences. Let x = (x1, . . . , x`) be the challenge index
(i.e., assignment) vector chosen by the adversary Adv0 that the simulator does not know. The simulator
can easily sample an index vector x0 = (x01, . . . , x

0
` ) such that for any i ∈ [`], x0i satisfies the equations:

MCF(φ, x0i ) = MCF(φ, xi) for any query φ asked by Adv0 before seeing the challenge ciphertexts. This
can be done by the simulator in the following way just having the evaluations of the assignments on
the formulae. In full generality, fix an arbitrary set of formulae A = {φi}i∈[q] and their evaluations over
some (hidden) assignment x = (x1, . . . , x`). For any j ∈ [`] and any position k ∈ [n], the simulator sets
the k-th bit of x0j to be 1 or 0 according to the following rules. If there exists some φ ∈ A that has
the k-th formal variable set and xj satisfies φ (the simulator has this information because it knows the
evaluation of φ on xj), then the k-th bit of x0j is set to 1, otherwise (i.e., whether either the k-th formal

variable of φ is not set or xj does not satisfy φ) it is set to 0. It is easy to see that x0 satisfies the
previous equations with respect to the set of formulae A and thus is a valid pre-image of x. As usual,
we divide the execution of the simulation in runs. During the course of the simulation, the simulator
will guarantee the invariant that at the beginning of any run, the index vector x0 satisfies all equations
with respect to the (hidden) vector x and to all queries asked by the adversary. If a new query does not
satisfy such equations, then the simulator has to find a new pre-image that satisfies all the equations
including the new one. This is done as before by pre-sampling according to the above rules. Notice
that once a bit in some index x0j is set to 1, it is not longer changed. Thus, it follows that the number
of runs is upper bounded by the bit length of x. Therefore, if PE is IND-Secure, the simulator can
conclude the simulation and produce an output indistinguishable from that of the adversary as desired.

Non-biased simulation. We stress that this is a simplified simulation and the simulator also needs
to guarantee that the output is not biased. This can be made as explained in the security reduction of
Theorem 4.1. 2

E.4 Predicates with Polynomial Size Key Space

Boneh et al. [BSW11] (see also [BW07]) presented a generic construction for functional encryption for
any functionality F where the key space K has polynomial size that can be proven (poly, poly, poly)-
IND-Secure in the standard model and a modification that can be proven (poly, poly, poly)-SIM-Secure in

10The authors of [DIJ+13] proved this fact that will appear in the full version of their paper.

23



the random oracle model. Bellare and O’Neill [BO13] proved the (poly, poly, poly)-SIM-Security of their
scheme assuming that the underlying PKE scheme is secure against key-revealing selective opening
attack (SOA-K) [BDWY12]. On the other hand we prove that the construction is (poly, poly, poly)-
RSIM-Secure assuming only IND-CPA PKE that is a weaker assumption than SOA-K PKE needed in
[BO13].

The construction of Boneh et al. is the following. Let s = |K|−1 and K = (k0 = ε, k1, . . . , ks).
11 The

brute force functional encryption scheme realizing F uses a semantically secure public-key encryption
scheme E = (KeyGen,Enc,Dec) and works as follows:

1. Setup(1λ): for i = 1, . . . , s, run (E .pki, E .ski) ← E .KeyGen(1λ) and output Mpk = (E .pk1, . . . ,
E .pks) and Msk = (E .sk1, . . . , E .sks).

2. KeyGen(Msk, ki): output ski := E .ski.
3. Enc(Msk, x): output Ct := (F (ε, x), E .Enc(E .pk1, F (k1, x)), . . . , E .Enc(E .pks, F (ks, x))).

4. Dec(ski,Ct): output Ct[0] if ski = ε, and output E .Dec(E .ski,Ct[i]) otherwise.

Theorem E.5 Let FE be the above (poly, poly, poly)-IND-Secure functional encryption scheme for the
functionality F . Then, FE is (poly, poly, poly)-RSIM-Secure as well.

Proof Sketch. (Simplified simulation.) The security reduction uses the same ideas of those in
the Sections 4 and E. Roughly, the strategy of the simulator is the following. Again, we divide the
execution of the simulator in runs. Let (x1, . . . , x`) be the vector of challenge messages chosen by the
adversary and unknown to the simulator. At the beginning of the first run, the simulator executes
the adversary on input ciphertexts (Ct1, . . . ,Ct`) that encrypt dummy values. Recall that for any
i ∈ [`], Cti[j] is supposed to encrypt F (kj , xi). When the adversary issue a key-generation query kj ,
the simulator learns (F (kj , x1), . . . , F (kj , x`)). Then, the simulator rewinds the adversary executing it
with input a new tuple of ciphertexts (Ct′1, . . . ,Ct

′
n) where for each i ∈ [`], j = 1, . . . , s, Ct′i[j] encrypts

F (kj , xi). After at most s + 1 runs, the simulated ciphertext encrypts the same values as in the real
game, and the simulator terminates returning the output of the adversary. This concludes the proof.
2

FE with multi-bit output. Notice that a predicate encryption scheme for predicate P implies a
predicate encryption scheme for the same predicate where the payload is fixed to 1 (meaning that the
predicate is satisfied). This in turn implies a functional encryption for the functionality P (where the
evaluation algorithm of the FE scheme runs the evaluation algorithm of the PE scheme and outputs 0
if the PE scheme returns ⊥ and 1 otherwise). Finally, the latter implies a functional encryption scheme
for the class of circuits with multi-bit output that extends P in the obvious way. These implications
preserve the (poly, poly, poly)-RSIM- Security.

F Proof of Theorem 5.1

Proof: Le FE be a (0, 1, poly)-RSIM-Secure with negligible advantage functional encryption scheme for
circuits with secret-key length kl(·). Let PRF = {PRFλ : {0, 1}λ × {0, 1}2·m(λ) → {0, 1}}λ∈N a circuit
family of pseudo-random functions. Let CRHF be the collision resistance hash function with range m(λ)
whose key hk has been chosen by the auxiliary input generator. We omit hk in the notation just for
the sake of simplicity.

For ease of presentation, henceforth, we simply talk about RSIM-Security without specifying that it
is with respect with negligible advantage. Consider the following adversary Adv = (Adv0,Adv1) and
distinguisher D in the (0, 1, poly)-RSIM security experiment. Specifically, Adv works as follows:

11For sake of simplicity we implicitly assume that the functionality is not parametrized by the security parameter but
this can be generalized easily.
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• Adv0 returns ` = kl(λ) + λ challenge messages of the form (s||ri) for random s ∈ {0, 1}λ and
ri ∈ {0, 1}m(λ).
• Adv1, on input Mpk, (Cti)i∈[`] and st, sets w = CRHF(Mpk||Ct1|| · · · ||Ct`) and invokes the key-

generation oracle on input the circuit CPRF,w(s, r) := PRF(s, r||w) , and obtains secret key Sk for
it. Finally, Adv1 outputs α = ((Cti)i∈[`], w,Sk).

Instead, the distinguisher D does the following:

• D, on input Mpk, the challenge messages (s||ri)i∈[`] and α, interprets α as α = ((Cti)i∈[`], w,Sk) and
checks that (1) w is equal to CRHF(Mpk||Ct1|| · · · ||Ct`), and (2) Eval(Mpk,Cti, Sk) = PRF(s, ri||w)
for each i ∈ [`]. D returns 1 if all the checks passed, 0 otherwise.

Because we assumed FE to be (0, 1, poly)-RSIM-Secure, it means there exists a simulator Sim =
(Sim0, Sim1) that generates a view indistinguishable to that of Adv when it plays in the real game.
Given this simulator, we now construct an adversary A against the security of the pseudo-random
function. Specifically, A on input the security parameter 1λ and given access to oracle O does the
following:

AO(1λ):

1. A invokes the setup algorithm of FE to generate master public and secret key.
Namely, (Mpk,Msk)← Setup(1λ).

2. Let ` = kl(λ) + λ. Then A chooses random ri ∈ {0, 1}m(λ) for i ∈ [`], as Adv0
does.

3. A runs Sim0 on input (Mpk,Msk,Q, (F (ε, (s||ri)))i∈[`]), where Q is empty be-
cause Adv0 does not issue any key-generation query. When Adv1 invokes its
key-generation oracle on input circuit CPRF,w, A invokes Sim1 on input CPRF,w

and (O(ri||w))i∈[`] as input.

At some point Sim0 returns α.

4. Finally, A does the same checks as D. Namely, A interprets α as α = ((Cti)i∈[`],
w,Sk) and checks that

(a) w is equal to CRHF(Mpk||Ct1|| · · · ||Ct`), and

(b) Eval(Mpk,Cti, Sk) = O(ri||w) for each i ∈ [`].

A returns 1 if all the checks passed, 0 otherwise.

Now observe that, D outputs 1 with overwhelming probability when given the output of adversary
Adv in the (0, 1, poly)-RSIM real experiment. Moreover, by the (0, 1, poly)-RSIM-Security of FE, D
also output 1 with overwhelming probability when given the output of the simulator Sim. Then, if
O is the pseudo-random oracle for random seed s, A perfectly simulates the output of Sim in the
(0, 1, poly)-RSIM ideal experiment and thus A gives in output 1 with high probability.

Suppose now that O is a truly random oracle. Let α = ((Cti)i∈[`], w,Sk) be the output of Sim during
the execution of A (see point (3) in the description of A). We distinguish two mutually exclusive cases.

1. Adv1 has never ever issued a key-generation query for circuit CPRF,w. In this case the probability
that A outputs 1 is negligible since the output of the simulator is independent from O(ri||w) for
each i ∈ [`] and these values are random being O a truly random oracle.

2. Adv1 invoked its key-generation oracle on input the circuit CPRF,w at least one time. First, notice
that A implements the interface between Adv1 and Sim. Precisely, when Sim0 invokes its oracle
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on some input, then A invokes Adv1 on the same input. Then, when Adv1 issues a key-generation
query for a circuit CPRF,w, A sees the value w and answers such query as described above.
Let p(λ) be the running time of Sim. Therefore, the execution of Sim can be divided in at most p(λ)
runs, where for j = 1, . . . , p(λ), in the j-th run Sim0 invokes its oracle on input (Ctji )i∈[`] that corre-

sponds to a key-generation query for circuit CPRF,wj , where wj = CRHF(Mpk||Ctj1|| . . . ||Ct
j
`). Now

notice that there exists some index k ≤ p(λ) such that w = wk and k is the first index for which
w = wk. From this fact and from the fact that A checks whether w = CRHF(Mpk||Ct1|| . . . ||Ct`),
it follows that with all but negligible probability (Cti) = (Ctki ). Indeed, suppose towards a con-
tradiction that with non-negligible probability q it holds that (Cti) 6= (Ctki ). Then, Adv1 and Sim
can be used to build an adversary B for CRHF as follows. B on input the security parameter 1λ

and the hash key hk does the following:

B(hk):

(a) B invokes the setup algorithm of FE to generate master public and secret key,
namely (Mpk,Msk)← Setup(1λ), Then, B initializes a list L to empty and set
a global index j to zero. The list L is used by B to trace the invocations to
Adv1 made by Sim0.

(b) Let ` = kl(λ) + λ. Then B chooses random ri ∈ {0, 1}m(λ) for i ∈ [`], as Adv0
does.

(c) B runs Sim0 on input (Mpk,Msk,Q, (F (ε, (s||ri)))i∈[`]), where Q is empty be-
cause Adv0 does not issue any key-generation query. When Adv1 is invoked on
input ciphertexts (Ctji )i∈[`] then B put an entry in the list L corresponding to(

(Ctji )i∈[`], wj = CRHF(Mpk||Ctj1|| . . . ||Ct
j
`)
)
,

and increment the global index j by one. Then, when Adv1 invokes its key-
generation oracle on input circuit CPRF,wj , B invokes Sim1 on input CPRF,wj

and (PRF(s, ri||wj))i∈[`] as input.

At some point Sim0 returns α.
(d) At this point, B interprets α as α = ((Cti)i∈[`], w,Sk) and looks up in the list L

for the first index k such that wk = w. If B does not find this index it aborts,
otherwise B returns the pair ((Mpk||Ctk1|| . . . ||Ctk` ), (Mpk||Ct1|| . . . ||Ct`)) as its
collision.

It is easy to see that the probability that B finds a collision is exactly q.
Finally, notice that, when Sim0 invokes Adv0, its view is independent from the values O(ri||w)’s.
This is because, being O a truly random oracle, for any j < k, wj 6= wk = w and thus the values
O(ri||wj)’s are randomly and independently chosen from the values O(ri||w)’s. Thus, the tuple
of ciphertexts (Cti)i∈[`] is independent from the tuple (O(ri||w))i∈[`]: we call this Fact 1.
We now bound the probability of the following event E which is defined to be the event that for
any i ∈ [`], Eval(Mpk,Cti,Sk) = O(ri||w), where the probability is taken over the random choices
of A (and thus of Adv1 and Sim) and of the oracle O.

Pr [E ] ≤ Pr [∃ Sk : |Sk| = kl(λ) and ∀i ∈ [`] Eval(Mpk,Cti,Sk) = O(ri||w) ]

≤
∑

Sk∈{0,1}kl(λ)
Pr [∀i ∈ [`] Eval(Mpk,Cti, Sk) = O(ri||w) ] (by the union bound)

≤
∑

Sk∈{0,1}kl(λ)
2−` (since Fact 1 holds and O is a truly random oracle)

≤ 2kl(λ)−` = 2−λ (since ` = kl(λ) + λ).
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Then, it follows that when O is a truly random oracle, the probability that AO outputs 1 is negligible
in the security parameter. Therefore, AO can tell apart a pseudorandom oracle from a truly random
oracle with non-negligible probability. This concludes the proof.

G Selective Rewinding Simulation-based Security

For self-containment, we state RSIM in the selective model.

Definition G.1 [Selective Rewinding Simulation-based Security] Let q1 = q1(λ), ` = `(λ), q2 = q2(λ)
be specific polynomials in the security parameter λ that are fixed a priori or be equal to the formal
variable poly. A functional encryption scheme FE = (Setup,KeyGen,Enc,Eval) for functionality F
defined over (K,X) is (q1, `, q2)-selective rewinding simulation-secure ((q1, `, q2)-sel-RSIM-Secure, for
short), if for any polynomial ε(λ) there exists a PPT simulator algorithm Sim = (Sim0, Sim1, Sim2) such
that for all PPT adversary algorithms Adv = (Adv0,Adv1,Adv2), issuing at most q1 non-adaptive key-
generation queries, q2 adaptive key-generation queries and output challenge message vector of length
and most `, no PPT distinguisher can distinguish the outputs of the following two experiments with
advantage greater than 1/ε. (Note that, if q1 (resp. q2) is set to poly, then the interpretation is that
there is no bound on the number of non-adaptive (resp. adaptive) key-generation queries and if ` = poly
there is no bound on the length of the challenge message vector).

RealExpFE,Adv(1λ)

(~x, st)← Adv0(1
λ);

(Mpk,Msk)← Setup(1λ);

(st)← Adv
KeyGen(Msk,·)
1 (Mpk, st);

(Cti ← Enc(Mpk, x[i]))i∈`;

α← Adv
KeyGen(Msk,·)
2 (Mpk, (Cti), st);

Output: (Mpk, ~x, α)

IdealExpFE,AdvSim (1λ)

(~x, st)← Adv0(1
λ);

(Mpk,Msk)← Setup(1λ);

(st)← AdvO1 (Mpk, st);

α← Sim
AdvO

′
2 (Mpk,·,st)

1 (Mpk,Msk,Q, F (ε, ~x));
Output: (Mpk, ~x, α)

Here, F (ε, ~x) = (F (ε, x[1]), . . . , F (ε, x[`])). In the ideal experiment Adv1 and Adv2 are provided with
special oracles O and O′ for non-adaptive and adaptive key-generation queries. The oracle O takes in
input a key k ∈ K and answers the query in the following way. The oracle invokes the simulator Sim0

on input (k, F (k, ~x)). Sim0 outputs a secret key for k that the oracle returns to Adv1. The same is for
oracle O′ that invokes Sim2 instead of Sim0.

We require the simulator Sim = (Sim0,Sim1, Sim2) to be stateful and allow the simulator’s algorithms
to communicate by means of a shared memory. We remark that each time Sim1 runs the adversary
Adv2 on some input (Cti), Adv2 is executed with input (Mpk, (Cti), st) and fresh randomness.

Remark G.2 Agrawal et al. show an impossibility results for (poly, 1, 0)-SIM-Security. The result
goes like this. Assuming the existence of a family of weak pseudo-random function wPRF(·, ·), they
show thath there does not exists an FE scheme for the functionality F (k, x) = wPRF(x, k), where x
is the seed of weak-PRF and k is the input message. Now, consider the adversary that requests for q
secret keys corresponding to random inputs messages to the wPRF, k1, . . . , kq and then requests for an
encryption of a random seed x. Then, the simulated ciphertext together with the q simulated secret keys
constitute a description of the values wPRF(x, k1), . . . ,wPRF(x, kq), which is essentially a sequence of q
truly random bits via pseudo-randomness. By a standard information-theoretic argument, this means
that the length of the ciphertext plus the secret keys must grow with q. To obtain a lower bound on the
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ciphertext size, [AGVW13] exploit the fact that the simulator has to generate the secret keys before it
sees the output of wPRF(x, ·).

Now, notice that in the selective model the simulator generates the secret keys seeing the output
of wPRF(x, ·) and the [AGVW13]’s proof argument breaks down. In fact, the results of [DIJ+13] show
that for the selective setting IND-Security implies (poly, 1, 0)-SIM-Security.
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