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Abstract

Multi-Authority Attribute-Based Encryption (MA-ABE) is an emerging cryptographic prim-
itive for enforcing fine-grained attribute-based access control on the outsourced data in cloud
storage. However, most of the previous multi-authority attribute-based systems are either
proven security in a weak model or lack of efficiency in user revocation. In this paper, we
propose a novel multi-authority attribute-based data access control system for cloud storage.
We construct a new multi-authority CP-ABE scheme with decryption outsourcing. We largely
eliminate the decryption overhead for users by outsourcing the undesirable bilinear pairing op-
erations to the cloud servers. The proposed scheme is proven adaptively secure in the standard
model and supports any monotone access policy. We also design an efficient attribute-level user
revocation approach with less computation cost. The security analysis, numeral comparisons
indicate that the proposed system is secure, efficient and scalable.

Keywords: Cloud storage; Multi-authority; CP-ABE; Decryption outsourcing; Attribute-
level revocation.

1 Introduction

Cloud storage is an promising application paradigm of cloud computing [25], which enables data
owners to conveniently share their data files via the cloud. Since a large amount of individual
data are hosted to the cloud servers, the concern about data confidentiality arises. To alleviate
this problem, one common method is to encrypt the data before uploading it to the servers. Such
approach also introduces an challenge to the access control over the encrypted data, since the cloud
servers cannot be fully trusted and may attempted to access and analyze the personal data for
illegal or financial purposes.

Attribute-based encryption [28] is an applicable cryptographic technique for clouding storage,
which simultaneously attains data confidentiality and fine-grained access control. In an ABE
scheme, the access policy is defined over various attributes. More precisely, ABE schemes can
be divided into two types: Key-policy ABE (KP-ABE) and Ciphertext-policy ABE (CP-ABE). In
KP-ABE, an access policy is associated with user’s private keys, while a set of attributes is associ-
ated with the ciphertext. In CP-ABE, the circumstance is conversed, the ciphertext is labeled with
an access policy, while user’s private keys are labeled with a set of attributes. Especially, CP-ABE
is more suitable for the data provider to define the access policy.

Recently, there are several attribute-based access control schemes in the clouds [35, 14, 30, 31].
Basing on KP-ABE [12] and proxy re-encryption [4], Yu et. al proposed a fine-grained data access
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control system in cloud computing [35]. Applying CP-ABE [3], Hur [14] proposed an attribute-based
data sharing scheme. However, in [12, 35, 3, 14, 30, 31], the attribute universe is assumed to be
managed by a single authority. This premise may not capture the practical requirement in clouds,
where user’s attributes may issued by different authorities. For instance, Alice wants to encrypt
a message under access policy (“ UNIVERSITY. MIT. GRADUATE” and “IBM. ENGINEER ”).
In this way, only the recipient who is the graduate of university MIT and now employed as an
engineer by IBM can recover the message. University MIT is responsible to issue attributes to
students, while IBM is responsible to distribute attributes to its employees.

Towards addressing this problem, several multi-authority attribute-based access control schemes
[7, 27, 33, 8, 18, 34, 22, 24] have been proposed. Nevertheless, these schemes are either proven to be
secure in the selective model [6] or lack of efficient revocation approach. For example, in [34], Yang
et. al proposed an multi-authority data access control system for cloud storage. Once an attribute
is revoked from some users, the AA has to compute a new update key for each unrevoked user. In
the worst case, when an attribute is revoked from only one user, the AA still has to calculate n− 1
update keys, where n is the number of users who possess the attribute. Such revocation approach
makes their scheme less practical. Thus, how to construct an efficient and secure multi-authority
access control system for cloud storage remains an challenge problem.

In this paper, we present a new fine-grained attribute-based access control scheme for multi-
authority cloud storage applications. Moreover, we alleviate the decryption overhead for users by
outsourcing the complicated bilinear pairing computation to the clouds. In the proposed scheme, a
data provider can define flexible access policies over descriptive attributes and encrypt the sensitive
data before uploading it to the cloud severs. A user is authorized only if he possesses proper
attributes which satisfy the access policy deployed in the data. To resisting collusion attacks from
unauthorized users, a unique global identifier (gid) is issued to each user in the system. We also
provide an efficient attribute-level revocation method for our scheme. That is, when some attribute
is revoked from a user, he will not lose all the access privileges. He can still access some other
data if his remaining attributes satisfy the access policy. Our revocation approach also achieves
two security requirements. On one hand, after some attributes have been revoked from a user, he
cannot decrypt the new encrypted data if his remaining attributes don’t satisfy the access policy
(Forward Secrecy). On the other hand, when a new user join in the system, he is not able to
decrypted the prior encrypted data even if he has the corresponding attributes (Back Secrecy). In
summary, this work makes the following contributions:

1. We present a novel fully secure multi-authority CP-ABE scheme. Our scheme is constructed
on composite order groups, and supports any monotone access policy which can be expressed by a
linear secret sharing scheme (LSSS). We prove the adaptive security of our scheme in the standard
model. Compared with the fully secure multi-authority scheme [24], the single CA in our scheme
can not decrypt any ciphertext. Thus, our scheme does not require multiple CAs and is more
efficient and acceptable for real applications.

2. We design an outsourcing paradigm to alleviate the undesirable computation cost for users.
By extending the decryption outsourcing approach [13] to the multi-authority settings, we delegate
the bilinear pairing operations to the cloud servers without leaking data contents. As a result, each
user only needs to calculate one exponent operation. Thus, decryption overhead for the users are
saved significantly.

3. We propose an efficient revocation approach for the proposed multi-authority CP-ABE
scheme. Basing on the revocation method [16], we realize efficiently immediate attribute-level
revocation while achieving both the backward and forward secrecy. Different from [16], we let
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the AAs be in charge of executing key updating for users, and the cloud server is responsible to
re-encrypt the ciphertext. Thus, our revocation paradigm is more appropriate and acceptable in
practice.

The remaining of this paper is organized as follows. Section 2 introduces the related works on
attribute-based access control systems. In Section 3, we give the overview of the system model, the
threat model and the security requirements. We discuss the definitions of access structure, LSSS
scheme and our system model in Section 4. In Section 5, we propose the detailed construction of
our scheme. In Section 6 and 7, we analyze our scheme in terms of the security and performance,
respectively. We conclude in Section 8. The Appendix describes the assumptions, the security game
and proof.

2 Related works

Attribute-based Encryption is regarded as a useful and promising cryptographical technique which
realizes secure and flexible fine-grained access control in cloud scenarios. Since Sahai and Waters
[28] first presented the notion of Attribute-based Encryption (ABE), various KP-ABE schemes
[12, 26, 7, 8] and CP-ABE schemes [3, 11, 9, 32, 21, 22, 24, 20, 29]have been proposed. However,
due to lack of efficient revocation mechanisms, these ABE schemes can not be directly employed in
cloud storage systems.

Several attribute-based access control system dealing with revocation problems have been pro-
posed. Basing on the KP-ABE scheme [12], Yu et al. [35] introduced a fine-grained data access
control system in cloud computing. In this scheme, the data provider first encrypts the sensitive
data with a data encryption key (DEK). He then encrypts the DEK by applying a KP-ABE
technique. Nevertheless, the data provider is required to be online all the time, which is not suit-
able in real applications. Their scheme also achieves the attribute-level revocation. In contrast,
user-level revocation [26, 1] is a Coarse-grained approach. Once the user is revoked, it loses all
the access privileges. In [15] and [16], the authors presented two attribute-based access control
scheme in data outsourcing systems by employing the CP-ABE technique [3]. These schemes put
the operations of key updating and ciphertext updating on the cloud server simultaneously, which
may not be appropriate for protecting the users’ privacy and the data security. In addition, these
schemes [35, 15, 16] only work in such environment where the attributes are governed by only one
authority. They can not serve for multi-authority systems.

In [27], Ruj et al. proposed a distributed access control scheme is the clouds by employing the
multi-authority CP-ABE technique [22]. When an attribute is revoke from some users, the data
provider updates the ciphertext and transmits them to the unrevoked users. The communication
overhead will be a performance bottleneck in large scale systems. In [33], Yang and Jia presented
a multi-authority attribute-based access control system in cloud storage. For each data provider,
a user has to obtain a set of private keys from the AAs. It is inflexible and inefficient in practice
applications. Furthermore, in the user revocation phase, this scheme also requires the data provider
to participate in the ciphertext updating. It implicitly means that the data provider has to always
be online. Basing on [8] and [35], Li et al. [23] proposed a scalable and secure sharing system for
personal health records. They also presented an efficient attribute-level user revocation mechanism.
However, this scheme works in the key-policy settings. Jung et al. [18] proposed a privacy preserving
CP-ABE schemes for multi-authority clouds system. In the revocation phase, the user with re-
encryption privilege has to re-define the access policy. He then recover the plaintext message
before re-encrypting. Such approach may affect the confidentiality of the data and is not suitable
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Table 1: A Comparison between current attribute-based access control schemes and ours
Schemes CP/KP Multi Security Standard Decryption Key update ciphertext

-authority Model Outsourcing by update by
[22] CP YES Adaptive NO NO \ \
[24] CP YES Adaptive Yes NO \ \
[35] KP NO Selective YES NO Provider Server
[36] CP NO Selective YES NO AA Server

[15][16] CP NO Selective NO NO Server Server
[23] KP YES Selective YES NO AA Server
[27] CP YES Selective NO NO Provider \
[33] CP YES Selective NO NO AA Provider

and Server
[18] CP YES Selective NO NO Users with \

Privilege
[34] CP YES Selective NO YES AA Server
Ours CP YES Adaptive YES YES AA Server

and efficient for clouds. In [34], Yang et al. proposed a DAC-MACS system by employing the
decryption outsourcing technique [13]. The heavy bilinear pairing operations are outsourced to the
clouds. However, their scheme caused heavy computation of the AAs in revocation and was proved
selectively secure in the random oracle model. Table 1 describes some characteristics of current
attribute-based access control schemes in the clouds and ours.

3 System Model, Threat Model and Security Requirement

In this section, we introduce the system model, threats model and security requirements of our
multi-authority access control scheme for cloud storage.

3.1 System model

Fig 1 describes the architecture of the proposed access control system which is composed of the
following 5 entities:

1. Central Authority (CA): The CA sets up its public parameters. It is in charge of issuing an
gid-related key to the user. It will not participate in any attribute-related operations.

2. Attribute Authorities (AAs): Each AA is responsible to administer a distinct attribute
domain, which is a subset of the system attribute universe. In our scheme, every attribute is
managed by a single AA, but each AA can govern an arbitrary scale of attribute domain. While
receiving the private key request from a user, it responds the attribute-related keys. Additionally,
once one or more attributes are revoked from one or more users, it also executes the key updating
process for unrevoked users.

3. Cloud Server: It is an entity which provides data storage service and decryption outsourcing
service. Moreover, it also gives service to ciphertext re-encryption.

4. Data Providers: Before transmitting the data file to the cloud server, a data provider has to
encrypt it under a DEK (Data Encryption Key). It then defines an access policy and enforces the
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Figure 1: Architecture of Multi-authority Access Control System

policy on the DEK. It can also call for the cloud server to delete the data file.
5. Users: Each user with a gid is labeled by a set of attributes. He has to request the attribute-

related keys from corresponding AAs. A user can download the encrypted data and call for decryp-
tion outsourcing service from the cloud server. But only the user who owns proper attributes can
successfully decrypt the encrypted data.

3.2 Threats model

In this work, the CA is the only one which can be fully trusted. The AAs honestly distribute the
keys and send the key updating message, but some of them may be corrupted by the adversary
which attempts to find out information of the data file as much as possible. We assume that the
AAs will never collude with any user.

As similar as the assumption in [10, 36, 23], the cloud server is assumed to be honest but
curious. That is, the cloud server will follow the presented protocol in general, but may collude
with malicious users or data providers to get illegal access privileges. However, it will not collude
with the revoked users. We assume that the cloud server mostly focuses on information of data
contents.

We assume that the users are malicious all the time. They may collude with the others and
even the cloud server, and try to access the data that they are not authorized.

3.3 Security Requirement

3.3.1 Fine-Grained Data Access Control

In practical application scenarios, an increasing number of people host their sensitive data to the
cloud and different users may own different access privileges over various types of data. In this
case, it is acceptable for the data provider himself to define a flexible access policy on his data.
Such access policy must identify that who has the access privilege. It must also be ensured that
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the unauthorized user can not access the data. Moreover, the unauthorized access from the cloud
server must also be prevented.

3.3.2 Collusion Resistance

Multiple unauthorized users may cooperate to decrypt a ciphertext that none of them can decrypt
alone. This requires our access system to secure against such collusion attacks. We do not consider
such attack that the cloud server colludes with the revoked users.

3.3.3 Back Secrecy and Forward Secrecy

Similar as defined in [19], back secrecy means that a new joint user can not decrypt the ciphertext
which is created before he joins in the system. Forward secrecy means that the revoked user can
not decrypt the ciphertext which is created after he is revoked.

4 Preliminaries and Definition

4.1 Access Structure

Definition 1. Access Structure [2]: Let P = {P1, P2, . . . , PT } denote a set of parties. A collection
A ⊆ 2{P1,P2,...,PT } is monotonic if ∀A1, A2: if A1 ∈ A and A1 ⊆ A2 then we have A2 ∈ A. An
access structure (respectively, monotone access structure) is a collection (respectively, monotone
collection) A of non-empty subsets of P. That is, A ⊆ 2{P1,P2,...,PT }\{∅}. We say that the sets in
A are the authorized sets, and the sets outside A are the unauthorized sets.

Among ABE systems, the role of the parties is replaced by the descriptive attributes. In this
way, the authorized set of attributes will be contained in the access structure A. We focus on the
monotonic access structure in this paper. To realize common access structures, one can simply
consider the negation of an attribute as a separate attribute.

4.2 Linear Secret Sharing Schemes

Here we adopt the definition of linear secret sharing schemes (LSSS) from [2, 32]:

Definition 2. Linear Secret Sharing Schemes: Let P be a set of parties, p be a prime. A secret
sharing scheme Π over P is linear (over Zp) if it has the following properties

1. The shares of a secret for each party form a vector over Zp.
2. There is a matrix A ∈ Zℓ×n

p which is called the share-generating matrix for Π. For all
i = 1, . . . , ℓ, there exists a function ρ that labels the i-th row of A with a party. (i.e. ρ ∈ F([ℓ]→ P)).
During generating the shares, we consider the column vector −→υ = (s, r2, . . . , rn)

⊤, where s ∈ Zp

is the secret to be shared, and r2, . . . , rn are randomly picked from Zp, then A−→υ is the vector of ℓ
shares of s according to Π. The shares (A−→υ )i belongs to the party ρ(i).

As shown in [2], each linear secret sharing scheme mentioned before must satisfy the linear
reconstruction requirement, defined as follows: Assume that an access structure A is denoted by
(A, ρ). Π is an LSSS for A. Let S denote an authorized set. Then let I = {i : ρ(i) ∈ S} be
the index set of rows whose labels are in S. There exist constants {ωi ∈ Zp}i∈I such that: if
{λi = (A−→υ )i} are valid shares of a secret s according to Π, then we have

∑
i∈I ωiλi = s. Moreover,
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such constants {ωi ∈ Zp}i∈I can be found in time polynomial in the size of the share-generating
matrix A. Nevertheless, if the set S is unauthorized, no such constants exist.

4.3 Definition of our multi-authority attribute-based access control scheme

Our multi-authority attribute-based access control scheme consists of the following algorithms:
GlobalSetup (λ)→ (GPK): This algorithm takes in the security parameter λ, it then outputs

the global parameters GPK for the system.
CASetup (GPK) → (CPK,CMK): The CA runs this algorithm with GPK as input to

produce its public parameter CPK and the corresponding master secret key CMK. CPK will be
used by AAs only.

AASetup (GPK, f, Uf ) → (APKf , AMKf ): Each AAf runs this algorithm with GPK and
its attribute domain Uf as input to produce the public parameter APKf and the corresponding
master secret key AMKf . For i ̸= j, we have Ui

∩
Uj = ∅.

Encrypt (M,A, GPK,
∪
APKf ) → (CT ): This algorithm takes in GPK, a message M , an

access structure A and the set of public parameters for relevant AAs. It produces a ciphertext CT .
We assume the access structure A is implicitly included in CT .

CAKeyGen (GPK, gid) → (DSKgid, CASKgid, CAPKgid): This algorithm takes in GPK
and the user’s gid. It then outputs a decryption key DSKgid, a gid-related private key CASKgid

and a gid-related public key CAPKgid, where DSKgid will be used by the user, CASKgid will be
used in pre-decrypt the ciphertext and CAPKgid will be used to generate the attribute-related keys
by the AAs.

AAKeyGen (Sgid,f , GPK,CPK, CAPKgid, AMKf ) → (ASKS,gid,f ): When a user submits
a set of attributes Sgid,f belongs to AAf to request the attribute-related key ASKgid,f , AAf

runs this algorithm with Sgid,f , GPK, CPK, CAPKgid and AMKf as input. If CAPKgid is
invalid, it outputs ⊥. Otherwise, it outputs ASKS,gid,f = {ASKATT,gid|ATT ∈ Sgid,f}. We let
ASKS,gid =

∪
UASKS,gid,f denotes the attribute-related key of Sgid, where Sgid =

∪
Sgid,f . We

assume the set Sgid is implicitly included in ASKS,gid.
Pre-Decrypt (CT,GPK,CASKgid, ASKS,gid) → (PDKEY ): This algorithm takes in CT ,

GPK, CASKgid and ASKS,gid. It outputs the pre-decryption key PDKEY of CT if and only if
Sgid satisfies A.

Decrypt (CT, PDKEY,DSKgid)→ (M): This algorithm takes in CT , PDKEY and DSKgid.
It outputs the plaintext message M .

Key-updating (gid,RLATT , ASKATT,gid)→ (ASK ′
ATT,gid): This algorithm takes in a gid, a

revocation list of an attribute RLATT and the original key ASKATT,gid. If the gid /∈ RLATT , it
outputs a new ASK ′

ATT,gid.
Re-Encrypt (CT,ATTRC) → CT ′: If a revocation operation on attribute ATTRC occurs, this

algorithm takes in the original ciphertext CT and ATTRC , it outputs a new ciphertext CT ′ which
can only be decrypt by those who have appropriate attributes and are not in RL.

5 Multi-authority Access Control Scheme in Cloud Storage

We now present the detailed construction of our scheme as follows:
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5.1 System Initialization

The system parameters are set up by the following three algorithms.
GlobalSetup: Let G and G1 be two bilinear groups with order N = p1p2p3, where p1, p2 and

p3 are 3 distinct primes. Let Gpi be the subgroup of order pi in G. Let e : G × G → G1 denote
a bilinear map. g is a random chosen element from Gp1 . X3 is a generator of Gp3 . Additionally,
choose an UF-CMA (unforgeable under adaptive chosen message attacks) secure signature system∑

sign = (KeyGen, Sign, V erify). The GPK is published as: GPK = (N, e, g,X3,
∑

sign).
CASetup: The CA runs the KenGen algorithm of

∑
sign. It obtains the sign-key CMK and

verify-key CPK. The CPK will be used by the AAs only.
AASetup: Each AAf governs its attribute universe Uf . For each i ∈ Uf , it chooses a random

exponent tf,i ∈ ZN and computes Tf,i = gtf,i . It also chooses two random exponents αf , af ∈ ZN .
Finally, the public parameter of AAf is published as: APKf = (gaf , e(g, g)αf , Tf,i∀i). the master
secret key of AAf is AMKf = (αf , af , tf,i∀i).

Additionally, each AAf also founds a binary tree TREEf as in Fig 2. In TREEf , each node j is
associated with a different key encryption key KEKf,j and each leaf node is labeled by a user (gid).
Such a tree with hight h can accommodate at most 2h users. Moreover, there is a path Pj from j
to the root node. When a new user comes to AAf for requesting the attribute-related keys, besides
generating the requested keys, AAf adds the user to the leftmost leaf node j and gives him the
path keys in the path Pj . For each attribute i ∈ Uf , AAf establishes an attribute-user group Gf,i,
which is a set composed of the users who own this attribute. We let Gnf,i denote the minimum
set of nodes whose descendant nodes cover all the users in Gf,i. For example, when the user is
added to node 11, he will obtain the path keys {KEKn11 ,KEKn5 ,KEKn2 ,KEKn1}f . If Gf,i =
{(n8, gid1), (n9, gid2), (n10, gid3), (n11, gid4), (n12, gid5), (n13, gid6)}f , then Gnf,i = {n2, n6}f .

At the beginning of system initialization, each AAf shares a unique attribute group key AKf,i ∈
ZN with the cloud server for each i ∈ Uf .

The system public parameters are published as (GPK, CPK,
∪F

f=1 APKf ), where F denotes
the total number of the AAs in the system.

5.2 Data outsourcing

Before hosting the data file to the cloud server, the data provider first encrypts the data file by a
data encryption key (DEK). e.g., a symmetric key. It then runs the Encrypt algorithm to encrypt
the DEK under the defined access policy as follows:

Encrypt: The access policy A is expressed by (A, ρ), where A is a LSSS matrix with ℓ rows
and n rows, and ρ associates each row Ax of A to attribute ρ(x). This encryption algorithm picks a
random vector −→υ = (s, υ2, . . . , υn)

⊤ ∈ Zn
N . For each x ∈ [ℓ], it selects a random exponent rx ∈ ZN .

It then computes:
C = M · (

∏
f∈FE

e(g, g)αf )s, where FE denotes the index set of AAs which administrate the
attributes in the access policy.

C0 = gs

Cx = g
∑

f∈FE
af ·Ax

−→υ
T−rx
ρ(x)

Dx = grx

The ciphertext is denoted by CT = (A, C, C0, {Cx, Dx}x∈[ℓ]).
Finally, the data provider selects an unique ID for the data file and uploads the data file onto

the cloud server in the format as shown in Table 2.
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Figure 2: Overview of a binary tree with KEKs

Table 2: Data format on the cloud server
DATA ID CT En(DATA)DEK

Once receiving the ciphertext CT uploaded by the data provider, the cloud server computes:
D′

x = grxAKx for each attribute. It then replaces CT by CT ′ = (A, C, C0, {Cx, D
′
x}x∈[ℓ]) and

stores it.

5.2.1 User registration and Key generation

When a new user joins in the system, he has to register himself and will be distributed a unique
gid. By running the CAKeyGen algorithm, the CA issues the gid-related keys to the users. Then,
each AA runs the AAKeyGen algorithm and gives the attribute-related keys to the users.

CAKeyGen: For each user, the CA first chooses two random exponent bgid, cgid ∈ ZN , two
random element Rgid, Rgid,0 ∈ Gp3 and computes CASKgid = Lgid = gbgid/cgidRgid, Lgid,0 =
g1/cgidRgid,0. After that, it uses CMK to sign on the string (CMK, gid ∥ CASKgid ∥ Lgid,0)
and gets a signature σgid. Let CAPKgid = (gid, CASKgid, Lgid,0, σgid). Finally, it sends the
DSKgid = cgid, CASKgid and CAPKgid to the user gid.

AAKeyGen: After receiving the submitted key CAPKgid, the AAf first uses the CPK
to verify whether the CAPKgid is valid. If not, it aborts. Otherwise, it issues a set of at-
tributes Sgid,f to the user in the TREEf . It randomly selects Rgid,f,0 ∈ Gp3 and computes
Kgid,f = L

αf

gid,0L
af

gidRgid,f,0 = gαf/cgidgaf bgid/cgidRgid,f . For each attribute i ∈ Sgid,f , it randomly
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picks R′
gid,f,i ∈ Gp3 and computes Kgid,f,i = L

tf,i
gidR

′
gid,f,i = T

bgid/cgid
f,i Rgid,f,i. We write Rgid,f =

Rgid,f,0R
αf

gid,0R
af

gid, Rgid,f,i = R
tf,i
gidR

′
gid,f,i. In addition, for each attribute i ∈ Sgid,f , the AAf sets

the set Gf,i and Gnf,i. It then encrypts AKf,i by KEKf,j if j ∈ Gnf,i is the ancestor node of the
leaf node which the user is associated with. It finally sends ASKS,gid,f = (Kgid,f , {Kgid,f,i}i∈Sgid,f

)
and the encrypted {AKf,i|i ∈ Sgid,f} to the user.

5.2.2 Pre-decryption and user decryption

If the user’s attribute set Sgid satisfies the access policy in the ciphertext, The message M can be
recovered by the following 2 algorithms.

Pre-Decrypt: The user first computes K ′
gid,f,i = K

1/AKf,i

gid,f,i for each attribute in the set
Sgid. Let ASK ′

S,gid,f = (Kgid,f , {K ′
gid,f,i}i∈Sgid,f

) be the current keys. The user then sends the
{ASK ′

S,gid,f} and Lgid to the cloud server and asks it to pre-decrypt the CT . After receiving these
keys, the cloud server runs the Pre-Decrypt algorithm and computes K =

∏
f∈FE

Kgid,f and
constants ωx ∈ ZN , such that

∑
ρ(x)∈Sgid

ωxAx = (1, 0, · · · , 0). It then computes:

PDKEY =
e(K,C0)∏

ρ(x)∈Sgid
(e(Cx, Lgid)e(Dx,Kρ(x)))ωx

=
e(
∏

f∈FE
gαf/cgidgaf bgid/cgidRgid,f , g

s)∏
ρ(x)∈Sgid

(e(g
∑

f∈FE
af ·Ax

−→υ
T−rx
ρ(x) , g

bgid/cgidRgid)e(grx , T
bgid/cgid
f,i Rgid,f,i))ωx

= e(g, g)
∑

f∈FE
αfs/cgid

Finally, it transmits PDKEY and C to the user.
Decrypt: Each user can recover the message M by computing M = C

PDKEY cgid .

5.2.3 User revocation

In order to achieve fine-grained and on-demand user revocation, we employ the idea from the single-
authority system [5][17] and propose an efficient attribute-level user revocation method. When some
users are revoked from Gf,i, the AAf first chooses a new attribute group key. It then encrypts it and
sends to the unrevoked users. Meanwhile, it passes the new AKf,i to the cloud server and notify
it to update the ciphertext which contains the attribute i. To distinguish from the revocation
approach [17], we assign the process of key updating for the unrevoked users to the AAs rather
than the cloud server. Thus, our method is more reasonable in real scenarios.

Key-updating: Suppose the attribute i′ ∈ Uf ′ is revoked from some users, AAf ′ randomly
picks a new AKf ′,i′ ∈ ZN . Whenever a user is about to losing an attribute i′ ∈ Uf ′ , AAf ′ transmits
a new attribute group key AK ′

f ′,i′ to the cloud server via a secure channel. Meanwhile, it also defines
a new set Guf ′,i′ which denotes the minimum set of nodes whose descendant nodes cover all the
unrevoked users. It then encrypts AK ′

f ′,i′ by KEKf ′,j for each j ∈ Guf ′,i′ . Finally, it transmits the
encrypted {AK ′

f ′,i′}KEKf,j
to the unrevoked user who is labeled by the node that is the descendant

of j. Fig 3 describes an example of user revocation. When the attribute i′ ∈ Uf ′ is revoked from
the user gid4, the AAf ′ sets Guf ′,i′ = {n4, n10, n6}. The user gid2 will obtain the new AK ′

f ′,i′

encrypted by KEKf ′,n4 .
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Figure 3: An example of attribute revocation

After receiving {AK ′
f ′,i′}KEKf,j

, the user recovers the new attribute group key AK ′
f ′,i′ and

updates his key Kgid,f ′,i′ by computing

K ′′
gid,f ′,i′ = K

1/AK′
f′,i′

gid,f ′,i′

The other key elements in ASKS,gid,f ′ will not change if these attributes are not revoked.
Re-Encrypt: After receiving the new AKf ′,i′ , the cloud server computes D′′

x′ = grxAKf′,i′ ,
where ρ(x′) = i′ ∈ Uf ′ . It then sets

CT ′′ = (A, C, C0, {Cx, D
′
x}x∈[ℓ]\{x′}, {Cx′ , D′′

x′})
It replaces CT ′ by CT ′′. It will store the latest version of the ciphertext only.

6 Security analysis

We now analyze the security of the proposed system by proving that it fulfills the security require-
ments represented in Section 3. We first prove our MA-CP-ABE scheme is adaptively secure against
chosen plaintext attack in the standard model. Security in this model means that the adversary can
not decrypt the ciphertext unless it possesses proper attributes which satisfy the intended access
structure. In addition, we show that our revocation approach achieves both the forward secrecy
and backward secrecy.
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6.1 Fine-Grained Data Access Control

Our scheme can afford fine-grained access control by enabling the data provider to define and enforce
flexible access policies over various attributes. Each user is issued different attribute-related keys.
The user whose attributes satisfy the access policy can access the data. Otherwise, he cannot get
any useful information of the data other than the bit length. In addition, each user is distributed
a random exponent cgid. Therefore, the cloud server can learn nothing about the contents of the
encrypted sensitive data. We demonstrate that the proposed scheme is proven adaptively secure in
the standard model by proving Theorem 1. It means that the unauthorized user cannot decrypt the
ciphertext. Notably, we achieve a stronger notion of security while these multi-authority systems
[7, 27, 33, 8, 18, 34] were proven secure in the selective model. The detailed formal security proof
of our system can be found in Appendix B.

Theorem 1. Suppose that the signature system is existentially unforgeable against adaptive chosen
message attack (UF-CMA) and Assumption 1,2,3 holds. Then no polynomial-time adversary A can
break our MA-CP-ABE scheme with a non-negligible advantage.

6.2 Collusion Resistance

We sketch the collusion resistance of the proposed system as follows: Like the previous multi-
authority ABE schemes [7, 8, 22, 24], every user is issued a unique gid with which all of his private
keys are linked. In our system, the private keys of each user are associated with the randomly chosen
exponents bgid and cgid. Recall that theDEK is encrypted by the key (

∏
f∈FE

e(g, g)αf )s. To recov-

er such key, the colluding users have to cancel the redundant element e(
∏

f∈FE
gaf bgid/cgidRgid,f , g

s)

in executing e(K,C0). Unfortunately, when they combine their key to recover e(
∏

f∈FE
gaf bgid/cgidRgid,f , g

s)
by computing

∏
ρ(x)∈Sgid

(e(Cx, Lgid)e(Dx,Kρ(x)))
ωx . they will fall due to the fact that bgid and cgid

are independently and random picked for each user. Actually, the collusion resistance is implicitly
proved in the security proof of the proposed system.

6.3 Back Secrecy and Forward Secrecy

Back secrecy: When a user is issued a new attributes at some point, the corresponding AKf,i

will be updated and transmitted to the valid users (including the user). Moreover, the relevant
ciphertext components are also re-encrypted under the new AKf,i by the cloud server. In this way,
the ciphertext associated with old attribute group key can not be decrypted by the private keys
labeled by new AKf,i. Therefore, back secrecy is guaranteed.

Forward secrecy: When an attribute is revoked from a user at some time instance, the corre-
sponding AKf,i will be updated and transmitted to the unrevoked users. Meanwhile, the relevant
ciphertext components are also re-encrypted under the new AKf,i by the cloud server. In this way,
the ciphertext associated with new attribute group key can not be decrypted by the private keys
labeled by old AKf,i. Thus, forward secrecy is guaranteed.

7 Performance analysis

In this section, we compare the performance of our scheme with that of adaptively secure decen-
tralizing CP-ABE scheme [22] and selectively secure multi-authority access control system [34],

12



Table 3: Notions used in numeric comparison
SU the sets of attributes held by a user
SC the sets of attributes included in the ciphertext
SD the sets of attributes used in decryption
ℓ the number of rows of the access matrix A
FU the index set of the AAs related to a user
|ϑ| the bit length of the element in Zϑ

|G| the bit length of the element in G
|G1| the bit length of the element in G1

E1 one exponent operation in G
E2 one exponent operation in G1

E3 one symmetry encryption on the AKf,i

P one bilinear map operation
m the total number of users in the system
n the number of users who possess the revoked attribute ATTf,i

r the number of users who will be revoked from Gf,i

in terms of communication overhead and computation cost. The numeric comparison results are
summarized in Table 4,5,6. The notations employed in these tables are described in Table 3.

7.1 Communication cost

In Table 4, we discuss the theoretical results of communication overhead which are mainly incurred
by key generation and ciphertext transmission. Especially, We calculate the communication over-
head in terms of the size of keys that a user can obtain from the AAs or CA and the size of ciphertext
that a data provider has to host to the cloud servers. From the table, we can see that the proposed
scheme and YJRZ’s scheme incur less communication overhead from the cloud server to users, since

only the elements C and e(g, g)
∑

f∈FE
αfs/cgid are sent. Our scheme require less number of elements

which are transmitted from the data provider to the the cloud server. LW’s scheme does not cause
any communication overhead from the user to the cloud server, but incur heavy computation cost
during decryption which will be discussed later.

In Table 5, We further compare the communication cost caused by key updating and ciphertext
updating. For each revocation execution, we assume that only one attribute is revoked from some
users. We note that LW’s scheme does not provide any user revocation approach. If r users are
revoked from Gf,i, YJRZ’s scheme needs to send (n− r)|G| bits, while our scheme requires to pass
(n− r)|ϑ| bits. Moreover, The AAs in YJRZ’s scheme has to send additional updating message to
notify the data providers that the public keys of the revoked attributes have been updated. This
will cause heavy communication overhead incurred by frequently attribute revocation. Such process
will increase the security risk of the system. However, our scheme realizes the user revocation by
updating the key AKf,i. There is no requirement to update the public keys. Thus, our scheme
requires less communication times and is more acceptable.
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Table 4: Comparison of Communication Overhead in Ordinary Executions
Communication LW’s [22] YJRZ’s [34] Ours
Overhead from
CA to User \ 2|G|+ 2|ϑ| 2|G|+ 1|ϑ|
AAs to User |SU ||G| (3|FU |+ |SU |)|G| (|FU |+ |SU |)|G|

Data Provider to Server 2ℓ|G|+ (1 + ℓ)|G1| (3ℓ+ 2)|G|+ 1|G1| (2ℓ+ 1)|G|+ 1|G1|
User to Server \ (3|FU |+ |SU |+ 1)|G| (|FU |+ |SU |+ 1)|G|
Server to User 2ℓ|G|+ (1 + ℓ)|G1| 1|G|+ 1|G1| 1|G|+ 1|G1|

Table 5: Comparison of Communication Overhead in each revocation execution
Communication Overhead from LW’s [22] YJRZ’s [34] Our scheme

AAf to data providers \ Notification \
AAf to unrevoked User \ (n− r)|G| (n− r)|ϑ|

AAf to Server \ 1|ϑ| 1|ϑ|

7.2 Computation cost

Table 6 shows the comparison results of computation cost between LW’s scheme, YJRZ’s scheme and
ours. The computation overhead is calculated in terms of the times of exponent and bilinear pairing
operation which are executed during encryption, decryption, ciphertext updating and key updating,
respectively. We calculate the computation cost of key updating per attribute which is caused by
AAf to compute the key update message for the unrevoked users. As shown in Table 6, we can find
that our scheme require less exponent operations during encrypting the DEK. In the decryption
phase, YJRZ’s scheme and ours require each user to compute the modular exponentiation only one
time. It is unrelated to the number of attributes used in decryption. Nevertheless, The computation
cost per a user in LW’s scheme is 2|SD|P + |SD|E2. In order to update the ciphertext, the cloud
server in YJRZ’s scheme and ours has to execute one time of exponent operation per attribute.
During key updating, the AAf in YJRZ’s scheme has to generate a new unique update key for
each unrevoked user. It is required to compute n − r times of modular exponentiation. However,
for all unrevoked users in our scheme, the AAf chooses only one element in ZN and encrypts it
under KEKj , where j ∈ Guf,i. It needs to execute about log m

n−r times of symmetrical encryption.
Although the bilinear pairing operations on composite order groups is more complicated than that
on prime order groups, our scheme does not add too much computation cost of decryption on the
user side since that the heavy computation is outsourced to the cloud server. Moreover, when
some attributes are revoked, there is no requirement of the AAs in our scheme to operate modular
exponentiation for the unrevoked user. Therefore, our scheme is more efficient and scalable.

8 Conclusion

In this work, we proposed an attribute-based data access control system with multiple authorities in
cloud storage. We first constructed a novel multi-authority CP-ABE scheme, which enables the data
provider to define and enforce suitable access policy. The proposed scheme was proved adaptive
security in the standard model and supports any monotone LSSS access policy. The decryption
overhead of users is alleviated by outsourcing the complicated bilinear pairing operations to the

14



Table 6: Comparison of Computation cost
Schemes LW’s [22] YJRZ’s [34] Ours

Encryption 3ℓE1 + (1 + 2ℓ)E2 (2 + 4ℓ)E1 + 1E2 (1 + 3ℓ)E1 + 1E2

Decryption 2|SD|P + |SD|E2 1E2 1E2

ciphertext-update \ 1E1 1E1

Key-update \ (n− r)E1 log m
n−rE3

clouds. We also presented an attribute-level user revocation method basing on the proxy encryption
technique. The security analysis, numeric comparisons indicated that our data access control system
is secure, scalable and efficient for cloud storage.
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Appendix A: Assumptions and Security Game

Assumption 1. Subgroup decision problem for 3 primes [21]. Given a group generator G, we
define the following distribution:

G = (N = p1p2p3, G,G1, e)
R←− G,

g
R←− Gp1 , X3

R←− Gp3 ,

D = (G, g,X3),

T1
R←− Gp1p2 , T2

R←− Gp1 .

The advantage with which an algorithm A can break Assumption 1 is defined as:

Adv1G,A = |Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]|

Definition 3. We say that G satisfies Assumption 1 if Adv1G,A is a negligible function of λ for
any PPT algorithm A.

Assumption 2. [21]. Given a group generator G, we define the following distribution:

G = (N = p1p2p3, G,G1, e)
R←− G,

g,X1
R←− Gp1 , X2, Y2

R←− Gp2 , X3, Y3
R←− Gp3 ,

D = (G, g,X1X2, X3, Y2Y3),

T1
R←− G,T2

R←− Gp1p3 .

The advantage with which an algorithm A can break Assumption 2 is defined as:

Adv2G,A = |Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]|
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Definition 4. We say that G satisfies Assumption 2 if Adv2G,A is a negligible function of λ for
any PPT algorithm A.

Assumption 3. [21]. Given a group generator G, we define the following distribution:

G = (N = p1p2p3, G,G1, e)
R←− G, α, s R←− ZN

g
R←− Gp1 , X2, Y2, Z2

R←− Gp2 , X3
R←− Gp3 ,

D = (G, g, gαX2, X3, g
sY2, Z2),

T1 = e(g, g)αs, T2
R←− G1.

The advantage with which an algorithm A can break Assumption 2 is defined as:

Adv3G,A = |Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]|

Definition 5. We say that G satisfies Assumption 3 if Adv3G,A is a negligible function of λ for
any PPT algorithm A.

We now introduce the security game run between an adversary A an a simulator B. A is
assumed to corrupt at most F − 1 AAs. We let Fc, Fuc = F\Fc denote the index set of corrupted,
uncorrupted AAs, respectively.

Setup: The simulator B runs the GlobalSetup, CASetup and AASetup algorithms. It then
transmits the system public parameters GPK, CPK, and

∪F
f=1 APKf to the adversary A. A

appoints an index set of the AAs Fc which it wants to corrupt, where F\Fc ̸= ∅. For f ∈ Fc, B
sends the master key {AMKf |f ∈ Fc} to A.

Phase 1: The adversary can make adaptive secret key queries as follows:
CAkey queries: To answer these queries, B responds by gid, DSKgid, CASKgid and CAPKgid.
AAkey queries: The adversary makes AAkey queries by submitting

∪
Sgid,f and CAPKgid to

B, where f ∈ Fuc. B returns the {ASKS,gid,f}f∈Fuc .
Challenge: The adversary declares two equal-length message M0, M1 and an challenge access

structure A∗. B first flips a random coin b ∈ {0, 1}. It then encrypts Mb under A∗ and get the
challenge ciphertext CT ∗. It gives CT ∗ to A.

Phase 2: The adversary can make adaptive secret key queries as in Phase 1.
Guess: A outputs its guess b′ of b.
We note that the adversary can not make AAkey queries on the attribute set Sgid,f such that

(
∪

f∈Fuc
Sgid,f )

∪
(
∪

f∈Fc
Uf ) can satisfy the challenge access structure A∗. The advantage of A is

defined as Pr[b′ = b]− 1
2 .

Appendix B: Security Proof

Before giving out our proof, we have to introduce the definitions of two additional structures: semi-
functional ciphertexts and keys. These structures will not be employed in the real constructions,
but are necessary in the proof. For each attribute i ∈ Uf , we picks a random exponent zf,i ∈ ZN .

Semi-functional ciphertext: A semi-functional ciphertext is formed in the following way. We
let g2 be a generator of Gp2 , c be a random chosen exponent from ZN . For each row x ∈ [ℓ], we
randomly selects γx ∈ ZN . In addition, we chooses a random vector −→y ∈ Zn

N . Then, we set:
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C0 = gsgc2
For each x ∈ [ℓ]:

Cx = g
∑

f∈FE
af ·Ax

−→υ
T−rx
ρ(x)g

Ax
−→y +γxzρ(x)

2

Dx = grxg−γx

2

Semi-functional key: For a gid, a semi-functional key will be one of the two following forms:
A semi-functional key of type 1: We picks random exponents b, df ∈ ZN and set:
Lgid = gbgid/cgidRgidg

b
2

Lgid,0 = g1/cgidRgid,0

CAPKgid = (gid, CASKgid, Lgid,0, σgid)
DSKgid = cgid

Kgid,f = gαf/cgidgaf bgid/cgidRgid,fg
df

2

Kgid,f,i = T
bgid/cgid
f,i Rgid,f,ig

bzf,i
2

A semi-functional key of type 2:
Lgid = gbgid/cgidRgid

Lgid,0 = g1/cgidRgid,0

CAPKgid = (gid, CASKgid, Lgid,0, σgid)
DSKgid = cgid

Kgid,f = gαf/cgidgaf bgid/cgidRgid,fg
df

2

Kgid,f,i = T
bgid/cgid
f,i Rgid,f,i

Remark that, if we use a semi-functional key to decrypt a normal ciphertext or a normal key
to decrypt a semi-ciphertext,

∏
f∈FE

e(g, g)αfs can be correctly computed. However, when a semi-
functional key is used to decrypt a semi-functional ciphertext, we will get an additional term:

e(g2, g2)
c
∑

f∈FE
df−by1 , where y1 is the first coordinate of −→y . A semi-functional key of type 1 is said

to be nominal if c
∑

f∈FE
df − by1 = 0. In this case, such a semi-functional key can decrypt the

correspond semi-functional ciphertext.
To prove the adaptive security of our scheme from Assumptions 1,2,3, a sequence of games are

used. The detailed definitions are given in the following:
GameReal: The first game GameReal denotes the real security game. i.e., all users’ keys and

the challenge ciphertext are normal.
Game0: In this game, all users’ keys are normal, but the challenge ciphertext is semi-functional.
We let q be the number of key queries made by the adversary A. For k from 1 to q, we consider:
Gamek,1: In this game, the first k − 1 keys are semi-functional form of type 2. The k-th key

is semi-functional form of type 1. The remaining keys are normal.
Gamek,2: In this game, the first k keys are semi-functional form of type 2. The remaining

keys are normal.
GameFinal: In this game, all the keys are semi-functional form of type 2. The challenge

ciphertext is a semi-functional encryption of a random message.
We will prove that these games are indistinguishable in the following 4 lemmas. Without loss

of generality, we assume that the adversary A can corrupt all AAs but AAf ′ . B will answer the
key queries relevant AAf ′ .

Lemma 1. Given a UF-CMA secure signature scheme, suppose that there is a PPT adversary A
such that GameRealAdvA − Game0AdvA = ϵ. Then we can construct a PPT simulator B to break
Assumption 1 with advantage ϵ.
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Proof. B is given the terms {g,X3, T}. It then simulates GameReal or Game0 with A. B sets

GPK, CPK and
∪F

f=1 APKf as in the real system. It then transmits them to the adversary along
with {AMKf}f∈Fc . B will respond the key queries from A by normal keys.

In the challenge phase, A gives B two equal-length message M0, M1 and the challenge access
structure A∗ = (A, ρ). To create the challenge ciphertext, B will set gs as the Gp1 part of T . It
implicitly means that T denotes the product of gs and possibly an element gc2 ∈ Gp2 . B then
randomly picks b ∈ {0, 1} and compute:

C = Mb · e(g
∑

f∈FE
αf , T )

C0 = T

B randomly selects
−→
δ = (1, δ2, . . . , δn)

⊤ ∈ Zn
N . For each x ∈ [ℓ], it also chooses random exponent

r′x ∈ ZN . It sets:

Cx = T
∑

f∈FE
af ·Ax

−→
δ
T−r′xtρ(x)

Dx = T r′x

In this case, B implicitly sets −→υ = s
−→
δ and rx = sr′x. If T ∈ Gp1 , CT ∗ is a correctly distributed

normal ciphertext. However, if T ∈ Gp1p2 , we implicitly set −→y = c
∑

f∈FE
af
−→
δ , γx = −cr′x and

zρ(x) = tρ(x). According to the Chinese Remainder Theorem, the values of
∑

f∈FE
af , δ2, . . ., δn, r

′
x

and tρ(x) modulo p1 are uncorrelated from those of modulo p2. Thus, CT ∗ is a correctly distributed
semi-functional ciphertext. Therefore, B can obtain advantage ϵ in breaking Assumption 1 by using
the output of A.

Lemma 2. Given a UF-CMA secure signature scheme, suppose that there is a PPT adversary A
such that Gamek−1,2AdvA − Gamek,1AdvA = ϵ. Then we can employ A to construct a PPT
simulator B to break Assumption 2 with advantage negligibly approximate to ϵ.

Proof. B is given the terms {g,X1X2, X3, Y2Y3, T}. It will play Gamek−1,2 or Gamek,1 with

A. Same as the games mentioned before, B sets GPK, CPK and
∪F

f=1 APKf and passes them to
the adversary along with {AMKf}f∈Fc .
B creates the first k − 1 semi-functional keys of type 2 as follows:
For each CAkey query, B acts as the real system.
For each AAkey query, B first sets Kgid,f ′ = gαf′/cgidgaf′bgid/cgid(Y2Y3)

bgid . For each attribute
i ∈ Sgid,f ′ , it sets Kgid,f ′,i as the real system. We remark that Kgid,f ′ is properly distributed since
that the value of bgid modulo p1 is uncorrelated to its values modulo p2 and p3.
B responds the k-th key query by a semi-functional key of type 1 in the following way:
To answer the k-th CAkey query, B chooses a gid and sets: DSKgid = cgid, CASKgid = Lgid =

T 1/cgidRgid, Lgid,0 = g1/cgidRgid,0 and CAPKgid = (gid, CASKgid, Lgid,0, σgid), where cgid ∈ ZN

and Rgid, Rgid,0 ∈ Gp3 . It means that B implicitly sets gbgid identical to the Gp1 part of T .
To answer the k-th AAkey query, B randomly selects Rgid,f ′ ∈ Gp3 and sets: Kgid,f ′ =

gαf′/cgidT af′/cgidRgid,f ′ . For each i ∈ Sgid,f ′ , B randomly picks Rgid,f ′,i ∈ Gp3 and sets Kgid,f ′,i =
T tf′,i/cgidRgid,f ′,i.

We note that if T ∈ Gp1p3 , this is a correctly distributed normal key. Otherwise, this is a
correctly distributed semi-functional key of type 1.

For the key requests > k, B acts same as in the real construction and responds by the normal
keys.

In the challenge phase, A submits two equal-length message M0, M1 and the challenge access
structure A∗ = (A, ρ) to B. To create the semi-functional ciphertext, B implicitly sets gs = X1 and

gc2 = X2. It also defines the vector
−→
ζ = (

∑
f∈FE

af , ζ2, . . . , ζn)
⊤, where ζ2, . . . , ζn are randomly

21



chosen from ZN . For each x ∈ [ℓ], it selects a random exponent r′x ∈ ZN . Finally, it sets the
ciphertext as follows:

C = Mb · e(g
∑

f∈FE
αf , X1X2)

C0 = X1X2

Cx = (X1X2)
Ax

−→
ζ (X1X2)

−r′xtρ(x)

Cx = (X1X2)
r′x

In this case, B implicitly sets −→υ = s(
∑

f∈FE
αf )

−1−→δ and −→y = c
−→
δ . It also means that B

sets rx = sr′x, γx = −cr′x. Due to the argument in [21], we have: the k-th key and the challenge
ciphertext are correctly distributed in the adversary’s view with probability approximate to 1.
Therefore, if T ∈ Gp1p3 , B has correctly simulated Gamek−1,2. If T ∈ G and the values of all
γx modulo p2 are non-zero, B has successfully simulated Gamek,1. Hence, B can get advantage
negligibly approximate to ϵ in breaking Assumption 2 by using the guess of A.

Lemma 3. Given a UF-CMA secure signature scheme, suppose that there is a PPT adversary
A such that Gamek,1AdvA − Gamek,2AdvA = ϵ. Then we can employ A to construct a PPT
simulator B to break Assumption 2 with advantage ϵ.

Proof. B is given the terms {g,X1X2, X3, Y2Y3, T}. It will play Gamek−1,2 or Gamek,1 with

A. Same as the games mentioned before, B sets GPK, CPK and
∪F

f=1 APKf and passes them to
the adversary along with {AMKf}f∈Fc .
B constructs the k − 1 semi-functional keys of type 2, the > k normal keys and the challenge

ciphertext same as in lemma 2. However, in lemma 3, we add an extra term in Kgid,f ′ . Hence,
the k-th key is no longer nominally semi-functional and is uncorrelated to the value in the Gp2 part
of the challenge ciphertext. The detailed construction of the k-th key is as follows:

To answer the k-th AAkey query, B randomly selects Rgid,f ′ ∈ Gp3 and h ∈ ZN . It then sets:
Kgid,f ′ = gαf′/cgidT af′/cgidRgid,f ′(Y2Y3)

h. For each i ∈ Sgid,f ′ , B randomly picks Rgid,f ′,i ∈ Gp3

and sets Kgid,f ′,i = T tf′,i/cgidRgid,f ′,i.
In a word, the k-th key is properly distributed and is either semi-functional of type 2 (T ∈ Gp1p3)

or semi-functional of type 1 (T ∈ G). Thus, B will get advantage ϵ in breaking Assumption 2 by
employing the guess of A.

Lemma 4. Given a UF-CMA secure signature scheme, suppose that there is a PPT adversary A
such that Gameq,2AdvA − GameFinalAdvA = ϵ. Then we can employ A to construct a PPT
simulator B to break Assumption 3 with advantage ϵ.

Proof. Given the terms {g, gαX2, X3, g
sY2, Z2, T}, B will simulate Gameq,2 or GameFinal

with A. It sets the system public parameters same as in the proofs mentioned before other than
the e(g, g)αf′ term, which is computed by e(g, g)αf′ = e(g, gαX2). The system public parameters
are send to the adversary along with {AMKf}f∈Fc .

For each CAkey query, B acts as the real system.
For each AAkey query, B responds by the semi-functional key of type 2. B sets Kgid,f ′ =

gαf′/cgidgaf′bgid/cgid(Z2)
bgidRgid,f ′ , where Rgid,f ′ is set same as the real construction. For each

i ∈ Sgid,f ′ , B randomly chooses Rgid,f ′,i ∈ Gp3
and sets Kgid,f ′,i = T tf′,i/cgidRgid,f ′,i.

After receiving two message M0, M1 and the challenge access structure A∗ = (A, ρ), B makes
the challenge ciphertext as follows:

It first randomly selects ζ2, . . . , ζn from ZN and defines the vector
−→
ζ = (

∑
f∈FE

af , ζ2, . . . , ζn)
⊤.

For each x ∈ [ℓ], it also picks a random value r′x ∈ ZN . It then sets:
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C = Mb ·
∏

f∈FE\{f ′} e(g, g)
αf · T

C0 = gsY2

Cx = (gsY2)
Ax

−→
ζ (gsY2)

−r′xtρ(x)

Cx = (gsY2)
r′x

It implicitly means that B sets −→υ = s(
∑

f∈FE
αf )

−1−→δ , −→y = c
−→
δ , rx = sr′x and γx = −cr′x.

We note that if T = e(g, g)sα, this is a correctly distributed semi-functional ciphertext of Mb.
Otherwise, this yields a correctly distributed encryption of a random message in G. Hence, B will
obtain advantage ϵ in breaking Assumption 3 by employing the guess of A.

Proof. If Assumptions 1,2 and 3 hold and the signature system
∑

sign is UF-CMA secure, we
have demonstrated via the previous 4 lemmas that the real security game is indistinguishable from
GameFinal, in which the value of b is information-theoretically hidden from the adversary. Thus,
the adversary can not gain a non-negligible advantage in breaking our scheme.
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