
Self-Updatable Encryption: Time Constrained Access Control
with Hidden Attributes and Better Efficiency

Kwangsu Lee∗ Seung Geol Choi† Dong Hoon Lee‡ Jong Hwan Park§ Moti Yung¶

Abstract
Revocation and key evolving paradigms are central issues in cryptography, and in PKI in particular.

A novel concern related to these areas was raised in the recent work of Sahai, Seyalioglu, and Waters
(Crypto 2012) who noticed that revoking past keys should at times (e.g., the scenario of cloud stor-
age) be accompanied by revocation of past ciphertexts (to prevent unread ciphertexts from being read
by revoked users). They introduced revocable-storage attribute-based encryption (RS-ABE) as a good
access control mechanism for cloud storage. RS-ABE protects against the revoked users not only the
future data by supporting key-revocation but also the past data by supporting ciphertext-update, through
which a ciphertext at time T can be updated to a new ciphertext at time T +1 using only the public key.
Motivated by this pioneering work, we ask whether it is possible to have a modular approach, which in-
cludes a primitive for time managed ciphertext update as a primitive. We call encryption which supports
this primitive a “self-updatable encryption” (SUE). We then suggest a modular cryptosystems design
methodology based on three sub-components: a primary encryption scheme, a key-revocation mecha-
nism, and a time-evolution mechanism which controls the ciphertext self-updating via an SUE method,
coordinated with the revocation (when needed). Our goal in this is to allow the self-updating ciphertext
component to take part in the design of new and improved cryptosystems and protocols in a flexible
fashion. Specifically, we achieve the following results:

• We first introduce a new cryptographic primitive called self-updatable encryption (SUE), realizing
a time-evolution mechanism. In SUE, a ciphertext and a private key are associated with time. A
user can decrypt a ciphertext if its time is earlier than that of his private key. Additionally, anyone
(e.g., a cloud server) can update the ciphertext to a ciphertext with a newer time. We also construct
an SUE scheme and prove its full security under static assumptions.

• Following our modular approach, we present a new RS-ABE scheme with shorter ciphertexts than
that of Sahai et al. and prove its security. The length efficiency is mainly due to our SUE scheme
and the underlying modularity.

• We apply our approach to predicate encryption (PE) supporting attribute-hiding property, and ob-
tain a revocable-storage PE (RS-PE) scheme that is selectively-secure.

• We further demonstrate that SUE is of independent interest, by showing it can be used for timed-
release encryption (and its applications), and for augmenting key-insulated encryption with forward-
secure storage.

Keywords: Public-key encryption, Attribute-based encryption, Predicate encryption, Self-updatable en-
cryption, Revocation, Key evolving systems, Cloud storage.
∗Korea University, Korea. Email: guspin@korea.ac.kr. This work was partially done at Columbia University.
†US Naval Academy, USA. Email: choi@usna.edu. This work was partially done at Columbia University.
‡Korea University, Korea. Email: donghlee@korea.ac.kr.
§Korea University, Korea and Sangmyung University, Korea. Email: decartian@korea.ac.kr.
¶Google Inc. and Columbia University, USA. Email: moti@cs.columbia.edu.

1

Contents

1 Introduction 3
1.1 Our Results . 3
1.2 Our Technique . 4
1.3 Other Applications . 5
1.4 Related Work . 6

2 Preliminaries 7
2.1 Notation . 7
2.2 Full Binary Tree . 7
2.3 Subset Cover Framework . 7

3 Self-Updatable Encryption 8
3.1 Definitions . 9
3.2 Bilinear Groups of Composite Order . 12
3.3 Complexity Assumptions . 12
3.4 Design Principle . 13
3.5 Construction . 14
3.6 Correctness . 17
3.7 Security Analysis . 18
3.8 Discussions . 25

4 Revocable-Storage Attribute-Based Encryption 25
4.1 Definitions . 26
4.2 Design Principle . 28
4.3 Construction . 29
4.4 Correctness . 31
4.5 Security Analysis . 31
4.6 Discussions . 42

5 Revocable-Storage Predicate Encryption 43
5.1 Definitions . 43
5.2 Construction . 45
5.3 Security Analysis . 48
5.4 Discussions . 54

A Self-Updatable Encryption in Prime Order Groups 58
A.1 Bilinear Groups of Prime Order . 58
A.2 Complexity Assumptions . 58
A.3 Construction . 59
A.4 Security Analysis . 60

2

1 Introduction

Cloud data storage has many advantages: A virtually unlimited amount of space can be flexibly allocated
with very low costs, and storage management, including back-up and recovery, has never been easier. More
importantly, it provides great accessibility: users in any geographic location can access their data through
the Internet. However, when an organization is to store privacy-sensitive data, existing cloud services do not
seem to provide a good security guarantee yet (since the area is in its infancy). In particular, access control
is one of the greatest concerns, that is, the sensitive data items have to be protected from any illegal access,
whether it comes from outsiders or even from insiders without proper access rights.

One possible approach for this problem is to use attribute-based encryption (ABE) that provides cryp-
tographically enhanced access control functionality in encrypted data [19, 26, 41]. In ABE, each user in
the system is issued a private key from an authority that reflects their attributes (or credentials), and each
ciphertext specifies access to itself as a boolean formula over a set of attributes. A user will be able to
decrypt a ciphertext if the attributes associated with their private key satisfy the boolean formula associated
with the ciphertext. To deal with the change of user’s credentials that takes place over time, revocable ABE
(R-ABE) [3] has been suggested, in which a user’s private key can be revoked. In R-ABE, a key generation
authority uses broadcast encryption to allow legitimate users to update their keys. Therefore, a revoked user
cannot learn any partial information about the messages encrypted when the ciphertext is created after the
time of revocation (or after the user’s credential has expired).

As pointed out by Sahai, Seyalioglu, and Waters [40], R-ABE alone does not suffice in managing dy-
namic credentials for cloud storage. In fact, R-ABE cannot prevent a revoked user from accessing cipher-
texts that were created before the revocation, since the old private key of the revoked user is enough to
decrypt these ciphertexts. To overcome this, they introduced a novel revocable-storage ABE (RS-ABE)
which solves this issue by supporting not only the revocation functionality but also the ciphertext update
functionality such that a ciphertext at any arbitrary time T can be updated to a new ciphertext at time T +1
by any party just using the public key (in particular, by the cloud servers).

Key-revocation and key evolution are general sub-area in cryptosystems design, and ciphertext-update
is a new concern which may be useful elsewhere. So, in this paper, we ask natural questions:

Can we achieve key-revocation and ciphertext-update in other encryption schemes? Can we use
ciphertext-update as an underlying primitive by itself?

We note that, in contrast to our questions, the methodology that Sahai et al. [40] used to achieve ciphertext-
update is customized to the context of ABE. In particular, they first added ciphertext-delegation to ABE,
and then, they represented time as a set of attributes, and by doing so they reduced ciphertext-update to
ciphertext-delegation.

1.1 Our Results

We address the questions by taking a modular approach, that is, by actually constructing a cryptographic
component realizing each of the two functionalities: key revocation and ciphertext update. In particular, our
design approach is as follows:

• The overall system has three components: a primary encryption scheme (i.e., ABE or some other
encryption scheme), a key-revocation mechanism, and a time-evolution mechanism.

3

• We combine the components by putting the key-revocation mechanism in the center and connecting
it with the other two. This is because the revoked users need to be taken into account both in the
decryption of the primary scheme and in the time-evolution of ciphertexts.

There are a few potential benefits to this approach. First, we may be able to achieve key-revocation and time-
evolution mechanisms, independently of the primary encryption scheme. Secondly, each mechanism may
be of independent interest and be used in other interesting scenarios. Thirdly, looking at each mechanism
alone may open the door to various optimizations and flexibilities of implementations.

Time-Evolution Mechanism: Self-Updatable Encryption. We first formulate a new cryptographic prim-
itive called self-updatable encryption (SUE), realizing a time-evolution mechanism. In SUE, a ciphertext
and a private key are associated with time Tc and Tk respectively. A user who has a private key with time
Tk can decrypt the ciphertext with time Tc if Tc ≤ Tk. Additionally, anyone can update the ciphertext with
time Tc to a new ciphertext with new time T ′c such that Tc < T ′c . We construct an SUE scheme in compos-
ite order bilinear groups. In our SUE scheme, a ciphertext consists of O(logTmax) group elements, and a
private key consists of O(logTmax) group elements, where Tmax is the maximum time period in the system.
Our SUE scheme is fully secure under static assumptions by using the dual system encryption technique of
Waters [27, 45].

RS-ABE with Shorter Ciphertexts. Following the general approach above, we construct a new RS-ABE
scheme and prove that it is fully secure under static assumptions. In particular, we take the ciphertext-
policy ABE (CP-ABE) scheme of Lewko et al. [26] as the primary encryption scheme, and combine it with
our SUE scheme and a revocation mechanism. The revocation mechanism follows the design principle of
Boldyreva, Goyal, and Kumar [3] that uses the complete subtree method to securely update the keys of the
non-revoked users. Compared with the scheme of Sahai et al. [40], our scheme has a shorter ciphertext
length consisting of O(l + logTmax) groups elements where l is the size of row in the ABE access structure;
a ciphertext in their scheme consists of O(l logTmax+ log2 Tmax) group elements (reflecting the fact that time
is dealt with in a less modular fashion there, while we employ the more separated SUE component which is
length efficient).

Revocable-Storage Predicate Encryption. We apply our approach to predicate encryption (PE) and give
the first RS-PE scheme. In particular, taking the PE scheme of Park [36] as the primary encryption scheme,
we combine it with the same revocation functionality and (a variant of) our SUE scheme. The scheme
is in prime-order groups and is shown to be selectively secure (a previously used weaker notion than (full)
security, where the adversary selects the target of attack at the start). Obviously, compared with the RS-ABE
scheme, the RS-PE scheme is a PE system and, thus, additionally supports the attribute-hiding property:
even a decryptor cannot obtain information about the attributes x of a ciphertext except f (x), where f is the
predicate of its private key.

Other Systems. These are discussed below in this section.

1.2 Our Technique

To devise our SUE scheme, we use a full binary tree structure to represent time. The idea of using the
full binary tree for time was already used by Canetti et al. [10] to construct a forward-secure public-key
encryption (FSE) scheme. However, our scheme greatly differs on a technical level from their approach; in
our scheme, a ciphertext is updated from time Ti to time Tj > Ti, whereas in their scheme a private key is
updated from time Ti to time Tj > Ti. We start from the HIBE scheme of Boneh and Boyen [4], and then
construct a ciphertext delegatable encryption (CDE) scheme, by switching the structure of private keys with

4

that of ciphertexts; our goal is to support ciphertext delegation instead of private key delegation. In CDE,
each ciphertext is associated with a tree node, so is each private key. A ciphertext at a tree node vc can be
decrypted by any keys with a tree node vk where vk is a descendant (or self) of vc. We note that the CDE
scheme may be of independent interest. The ciphertext delegation property of CDE allows us to construct
an SUE scheme. An SUE ciphertext at time Ti consists of multiple CDE ciphertexts in order to support
ciphertext-update for every Tj such that Tj > Ti. We were able to reduce the number of group elements in
the SUE ciphertext by carefully reusing the randomness of CDE ciphertexts.

Our key-revocation mechanism, as mentioned above, uses a symmetric-key broadcast encryption scheme
to periodically broadcast update keys to non-revoked users. A set of non-revoked users is represented as a
node (more exactly the leaves of the subtree rooted at the node) in a tree, following the complete subset (CS)
scheme of Naor et al. [32]. So, we use two different trees in this paper, i.e., one for representing time in the
ciphertext domain, and the other for managing non-revoked users in the key domain.

In the RS-ABE/RS-PE setting, a user u who has a private key with attributes x and an update key with
a revoked set R at time T ′ can decrypt a ciphertext with a policy f and time T if the attribute satisfies the
policy (f (x) = 1) and the user is not revoked (u /∈ R), and T ≤ T ′. The main challenge in combining all the
components is protecting the overall scheme against a collusion attack, e.g., a non-revoked user with a few
attributes should not decrypt more ciphertexts than he is allowed to, given the help of a revoked user with
many attributes. To achieve this, we use a secret sharing scheme as suggested in [3]. Roughly speaking, the
overall scheme is associated with a secret key α . For each node vi in the revocation tree, this secret key α

is split into γi for ABE/PE, and α− γi for SUE, where γi is random. Initially, each user will have some tree
nodes vis according to the revocation mechanism, and get ABE/PE private keys subject to his attributes at
each of vis (associated with the ABE/PE master secret γi). In key-update at time T , only non-revoked users
receive SUE private keys with time T at a tree node v j representing a set of non-revoked users (associated
with the SUE master secret α − γ j). Now consider the collusion scenario above: A ciphertext of message
M at T of the overall scheme contains an element e(g,g)αs ·M where g is a generator, and s is random. The
non-revoked user will use a tree node v j and obtain the SUE decryption part, i.e., e(g,g)(α−γ j)s, but not the
ABE/PE part due to lack of attributes. The revoked user doesn’t have node v j (recall v j represents a set of
non-revoked users), so he obtains nothing at v j and, thus, provides no help to the non-revoked user.

1.3 Other Applications

Timed-Release Encryption. One application of SUE is timed-release encryption (TRE) and its variants
[38, 39]. TRE is a specific type of PKE such that a ciphertext specified with time T can only be decrypted
after time T . In TRE, a semi-trusted time server periodically broadcasts a time instant key (TIK) with time
T ′ to all users. A sender creates a ciphertext by specifying time T , and a receiver can decrypt the ciphertext
if he has a TIK with time T ′ such that T ′ ≥ T . TRE can be used for electronic auctions, key escrow,
on-line gaming, and press releases. TRE and its variants can be realizable by using IBE, certificateless
encryption, or forward-secure PKE (FSE) [12, 38]. If we use a FSE scheme derived from the HIBE scheme
of Boneh et al. [6] for a TRE scheme, then a ciphertext consists of O(1) group element and a TIK consists
of O(log2 Tmax) group elements. An SUE scheme can be used for a TRE scheme with augmented properties,
since a ciphertext with time T can be decrypted by a private key with time T ′ ≥ T from using the ciphertext
update functionality, and, in addition, we have flexibility of having a public ciphertext server which can tune
the ciphertext time forward before final public release. In this scheme, a ciphertext consists of O(logTmax)
and a TIK consists of O(logTmax). TRE, in turn, can help in designing synchronized protocols, like fair
exchanges in some mediated but protocol-oblivious server model.

5

Key-Insulated Encryption with Ciphertext Forward Security. SUE can be used to enhance the security
of key-insulated encryption (KIE) [14]. KIE is a type of PKE that additionally provides tolerance against
key exposures. For a component of KIE, a master secret key MK is stored on a physically secure device,
and a temporal key SKT for time T is stored on an insecure device. At a time period T , a sender encrypts
a message with the time T and the public key PK, and then a receiver who obtains SKT by interacting with
the physically secure device can decrypt the ciphertext. KIE provides the security of all time periods except
those in which the compromise of temporal keys occurred. KIE can be obtained from IBE. Though KIE
provides strong level of security, it does not provide security of ciphertexts available in compromised time
periods, even if these ciphertexts are to be read in a future time period. To enhance the security and prevent
this premature disclosure, we can build a KIE scheme with forward-secure storage by combining KIE and
SUE schemes. Having cryptosystems with key-insulated key and forward-secure storage is different from
intrusion-resilient cryptosystems [13, 20].

1.4 Related Work

Attribute-Based Encryption. As mentioned, ABE extends IBE, such that a ciphertext is associated with
an attribute x and a private key is associated with an access structure f . When a user has a private key with
f , only then he can decrypt a ciphertext with x that satisfies f (x) = 1. Sahai and Waters [41] introduced
fuzzy IBE (F-IBE) that is a special type of ABE. Goyal et al. [19] proposed a key-policy ABE (KP-ABE)
scheme that supports flexible access structures in private keys. Bethencourt et al. [2] proposed a ciphertext-
policy ABE (CP-ABE) scheme such that a ciphertext is associated with an access structure f and a private
key is associated with an attribute x. After that, numerous ABE schemes with various properties were
proposed [11, 26, 28–30, 35, 46]. Recently, an ABE scheme for general circuits was proposed [15].

Predicate Encryption. PE is also an extension of IBE that additionally provides an attribute-hiding property
in ciphertexts: A ciphertext is associated with an attribute x and a private key is associated with a predicate
f . A user who has a private key associated with f can decrypt a ciphertext with x if f (x) = 1. In this case,
the user cannot obtain information about the attribute x except the information f (x). Boneh and Waters
[9] introduced the concept of PE and proposed a hidden vector encryption (HVE) scheme that supports
conjunctive queries on encrypted data. Katz et al. [22, 23] proposed a PE scheme that supports inner-
product queries on encrypted data. After that, many PE schemes with different properties were proposed
[24, 33, 34, 36, 37, 44]. Boneh, Sahai, and Waters [8] formalized the concept of functional encryption (FE)
by generalizing ABE and PE. Recently, FE schemes for general circuits were proposed [17, 18].

Revocation. Boneh and Franklin [7] proposed a revocation method for IBE that periodically re-issues the
private key of users. That is, the identity ID of a user contains time information, and a user cannot obtain
a valid private key for new time from a key generation center if he is revoked. However, this method
requires for all users to establish secure channels to the server and prove their identities every time. To solve
this problem, Boldyreva et al. [3] proposed an R-IBE scheme by combining an F-IBE scheme and a full
binary tree structure. Libert and Vergnaud [31] proposed a fully secure R-IBE scheme. Recently, Seo and
Emura [42, 43] proposed an R-IBE scheme that is fully secure when an intermediate key that is used for
decryption is leaked and a revocable HIBE (R-HIBE) scheme that supports the functionalities of revocation,
and private key delegation.

6

2 Preliminaries

In this section, we define the notation of this paper, and define full binary trees and the subset cover frame-
work that are used for our schemes.

2.1 Notation

We let λ be a security parameter. Let [n] denote the set {1, . . . ,n} for n ∈ N. For a string L ∈ {0,1}n,
let L[i] be the ith bit of L, and L|i be the prefix of L with i-bit length. For example, if L = 010, then
L[1] = 0,L[2] = 1,L[3] = 0, and L|1 = 0,L|2 = 01,L|3 = 010. Concatenation of two strings L and L′ is
denoted by L‖L′.

2.2 Full Binary Tree

A full binary tree BT is a tree data structure where each node except the leaf nodes has two child nodes.
Let N be the number of leaf nodes in BT . The number of all nodes in BT is 2N − 1. For any index
0 ≤ i < 2N− 1, we denote by vi a node in BT . We assign the index 0 to the root node and assign other
indices to other nodes by using breadth-first search. That is, if a node v has an index i, then the index of its
left child node is 2i+1 and the index of its right child node is 2i+2, while the index of its parent node (if
any) is b i−1

2 c. The depth of a node vi is the length of the path from the root node to the node. The root node
is at depth zero. The depth of BT is the depth of a leaf node. A level of BT is a set of all nodes at given
depth. Siblings are nodes that share the same parent node.

For any node vi ∈ BT , L is defined as a label that is a fixed and unique string. The label of each node in
the tree is assigned as follows: Each edge in the tree is assigned with 0 or 1 depending on whether the edge
is connected to its left or right child node. The label L of a node vi is defined as the bitstring obtained by
reading all the labels of edges in the path from the root node to the node vi. Note that we assign a special
empty string to the root node as a label. We define ID(i) be a mapping from the index i of a node vi to
a label L. Note that there is a simple mapping between the index i and the label L of a node vi such that
i = (2d−1)+∑

d−1
j=0 2 jL[j] where d is the depth of vi. We also use ID(vi) as ID(i) if there is no ambiguity.

2.3 Subset Cover Framework

The subset cover (SC) framework introduced by Naor, Naor, and Lotspiech [32] is a general methodology
for the construction of efficient revocation systems. Naor et al. proposed efficient revocation systems such
that a center can send an encrypted message to non-revoked set of users by combining the SC framework
and symmetric-key encryption schemes [32]. The SC framework consists of the subset-assigning part and
key-assigning part for the subset. We define the SC scheme by including only the subset-assigning part.

In the SC scheme, a collection S is first defined as a set of subsets S1, . . . ,Sw for some w such that Si⊆N
whereN is the set of all users. Each user u ∈N in the system is assigned a private set PVu of subsets Si that
are associated with u. A sender finds a covering set CVR that is the partition of non-revoked usersN \R into
disjoint subsets where R is the set of revoked users. If a user u is not revoked, then he can find matching
subsets from the covering set CVR and the private set PVu. The following is the syntax of the SC scheme.

Definition 2.1 (Subset Cover). A subset cover (SC) scheme for the set N = {1, . . . ,Nmax} of users consists
of four PPT algorithms Setup, Assign, Cover, and Match, which are defined as follows:

Setup(Nmax). The setup algorithm takes as input the maximum number of users Nmax and outputs a collec-
tion S of subsets S1, . . . ,Sw where Si ⊆N .

7

Assign(S,u). The assigning algorithm takes as input the collection S and a user u ∈ N , and outputs a
private set PVu = {S j1 , . . . ,S jn} that is associated with the user u.

Cover(S,R). The covering algorithm takes as the collection S and a revoked set R ⊂ N of users, and
it outputs a covering set CVR = {Si1 . . . ,Sim} that is a partition of the non-revoked users N \R into
disjoint subsets Si1 , . . . ,Sim , that is, they are disjoint, and it holds that N \R =

⋃m
k=1 Sik .

Match(CVR,PVu). The matching algorithm takes as input a covering set CVR = {Si1 , . . . ,Sim} and a private
set PVu = {S j1 , . . . ,S jn}. It outputs (Sik ,S jk′) such that Sik ∈CVR, u ∈ Sik , and S jk′ ∈ PVu, or it outputs
⊥.

The correctness property of SC is defined as follows: For all S generated by Setup, all PVu generated by
Assign(S,u) for any u, and all CVR generated by Cover(S,R) for any R, it is required that:

• If u /∈ R, then Match(CVR,PVu) = (Sik ,S jk′) such that Sik ∈CVR, u ∈ Sik , and S jk′ ∈ PVu.

• If u ∈ R, then Match(CVR,PVu) =⊥.

We use the complete subset (CS) scheme proposed by Naor et al. [32] as a building block for our
schemes. The CS scheme uses a full binary tree BT to define the subsets Si. For any node vi ∈ BT , Ti is
defined as a subtree that is rooted at vi and Si is defined as the set of leaf nodes in Ti. For the tree BT and
a subset R of leaf nodes, ST (BT ,R) is defined as the Steiner Tree induced by the set R and the root node,
that is, the minimal subtree of BT that connects all the leaf nodes in R and the root node. we simply denote
ST (BT ,R) by ST (R). The CS scheme is described as follows:

CS.Setup(Nmax): This algorithm takes as input the maximum number of users Nmax. Let Nmax = 2d for
simplicity. It first sets a full binary tree BT of depth d. Each user is assigned to a different leaf node
in BT . The collection S of CS is {Si : vi ∈BT }. Recall that Si is the set of all the leaves in the subtree
Ti. It outputs the full binary tree BT .

CS.Assign(BT ,u): This algorithm takes as input the tree BT and a user u ∈ N . Let vu be the leaf node of
BT that is assigned to the user u. Let (v j0 ,v j1 , . . . ,v jd) be the path from the root node v j0 = v0 to the
leaf node v jn = vu. It sets PVu = {S j0 , . . . ,S jd}, and outputs the private set PVu.

CS.Cover(BT ,R): This algorithm takes as input the tree BT and a revoked set R of users. It first computes
the Steiner tree ST (R). Let Ti1 , . . .Tim be all the subtrees of BT that hang off ST (R), that is all subtrees
whose roots vi1 , . . .vim are not in ST (R) but adjacent to nodes of outdegree 1 in ST (R). It outputs a
covering set CVR = {Si1 , . . . ,Sim}.

CS.Match(CVR,PVu): This algorithm takes input as a covering set CVR = {Si1 , . . . ,Sim} and a private set
PVu = {S j0 , . . . ,S jd}. It finds a subset Sk such that Sk ∈CVR and Sk ∈ PVu. If there is such a subset, it
outputs (Sk,Sk). Otherwise, it outputs ⊥.

Lemma 2.2 ([32]). Let Nmax be the number of leaf nodes in a full binary tree and r be the size of a revoked
set. In the CS scheme, the size of a private set is O(logNmax) and the size of a covering set is at most
r log(Nmax/r).

3 Self-Updatable Encryption

In this section, we introduce the concept of SUE and propose an SUE scheme in bilinear groups.

8

3.1 Definitions

Ciphertext Delegatable Encryption (CDE). Before introducing self-updatable encryption, we first in-
troduce ciphertext delegatable encryption. Ciphertext delegatable encryption (CDE) is a special type of
public-key encryption (PKE) with the ciphertext delegation property such that a ciphertext can be easily
converted to a new ciphertext under a more restricted label string by using public values. In CDE, the pri-
vate key of a user is associated with a label string L′ and a ciphertext is also associated with a label string
L. If L is a prefix of L′, then a user who has a private key with the label string L′ can decrypt a ciphertext
with the label string L. Additionally, the CDE scheme has the ciphertext delegation algorithm that convert
a ciphertext with a label string L to a new ciphertext with a label string L′′ such that L is a prefix of L′′ by
using public parameters. The following is the syntax of CDE.

Definition 3.1 (Ciphertext Delegatable Encryption). A ciphertext delegatable encryption (CDE) scheme for
the set L of labels consists of seven PPT algorithms Init, Setup, GenKey, Encrypt, DelegateCT, RandCT,
and Decrypt, which are defined as follows:

Init(1λ). The initialization algorithm takes as input a security parameter 1λ , and it outputs a group de-
scription string GDS.

Setup(GDS,dmax). The setup algorithm takes as input a group description string GDS and the maximum
length dmax of the label strings, and it outputs public parameters PP and a master secret key MK.

GenKey(L,MK,PP). The key generation algorithm takes as input a label string L ∈ {0,1}k with k ≤ dmax,
the master secret key MK, and the public parameters PP, and it outputs a private key SKL.

Encrypt(L,PP). The encryption algorithm takes as input a label string L ∈ {0,1}d with d ≤ dmax and the
public parameters PP, and it outputs a ciphertext header CHL and a session key EK.

DelegateCT(CHL,c,PP). The ciphertext delegation algorithm takes as input a ciphertext header CHL for
a label string L ∈ {0,1}d with d < dmax, a bit value c ∈ {0,1}, and the public parameters PP, and it
outputs a delegated ciphertext header CHL′ for the label string L′ = L‖c.

RandCT(CHL,PP). The ciphertext randomization algorithm takes as input a ciphertext header CHL for a
label string L ∈ {0,1}d with d < dmax and the public parameters PP, and it outputs a re-randomized
ciphertext header CH ′L and a partial session key EK′.

Decrypt(CHL,SKL′ ,PP). The decryption algorithm takes as input a ciphertext header CHL, a private key
SKL′ , and the public parameters PP, and it outputs a session key EK or the distinguished symbol ⊥.

The correctness property of CDE is defined as follows: For all PP,MK generated by Setup, all L,L′, any
SKL′ generated by GenKey, any CHL and EK generated by Encrypt or DelegateCT, it is required that:

• If L is a prefix of L′, then Decrypt(CHL,SKL′ ,PP) = EK.

• If L is not a prefix of L′, then Decrypt(CHL,SKL′ ,PP) =⊥ with all but negligible probability.

Additionally, it requires that the ciphertext distribution of RandCT is statistically equal to that of Encrypt.

The security property of CDE can be similarly defined as the security property of PKE with an addi-
tional consideration for the ciphertext delegation property. In the security game of this security property,
an adversary is first given public parameters, and then he can adaptively obtain many private keys for label

9

strings {Li}. In the challenge step, the adversary submits a challenge label string L∗, and then he receives
a challenge ciphertext header CH∗ and a challenge session key EKb where EKb is a correct session key or
a random session key. Finally, the adversary outputs a guess for the random coin b that is used to create
the session key. If the private key queries of the adversary satisfy the non-trivial conditions and the guess is
correct, then he wins the game. The following is the formal definition of the security.

Definition 3.2 (Security). The security property for CDE schemes is defined in terms of the indistinguisha-
bility under a chosen plaintext attack (IND-CPA). The security game for this property is defined as the
following game between a challenger C and a PPT adversary A:

1. Setup: C runs Init and Setup to generate the public parameters PP and the master secret key MK,
and it gives PP to A.

2. Query 1: A may adaptively request a polynomial number of private keys for label strings L1, . . . ,Lq′ ,
and C gives the corresponding private keys SKL1 , . . . ,SKLq′ to A by running GenKey(Li,MK,PP).

3. Challenge: A outputs a challenge label string L∗ subject to the following restrictions: For all label
strings Li of private key queries, it is required that L∗ is not a prefix of Li. C chooses a random bit
b∈ {0,1} and computes a ciphertext header CH∗ and a session key EK∗ by running Encrypt(L∗,PP).
If b = 0, then it gives CH∗ and EK∗ to A. Otherwise, it gives CH∗ and a random session key to A.

4. Query 2: A may continue to request private keys for additional label strings Lq′+1, . . . ,Lq subject to
the same restrictions as before, and C gives the corresponding private keys to A.

5. Guess: Finally A outputs a bit b′.

The advantage of A is defined as AdvCDE
A (λ) =

∣∣Pr[b = b′]− 1
2

∣∣ where the probability is taken over all
the randomness of the game. A CDE scheme is fully secure under a chosen plaintext attack if for all PPT
adversaries A, the advantage of A in the above game is negligible in the security parameter λ .

Remark 3.3. In the above security game, it is not needed to explicitly describe DelegateCT since the
adversary can run DelegateCT to the challenge ciphertext header by just using PP. Note that the use of
DelegateCT does not violate the security game since the adversary only can request a private key query for
Li such that Li is not a prefix of L∗.

We can also define the selective security property of CDE schemes by weakening the above security of
CDE schemes. In the selective security game of the selective security property, an adversary should submit
a target challenge bit string L∗ before he receives public parameters.

Self-Updatable Encryption (SUE). Self-updatable encryption (SUE) is a new type of PKE with the ci-
phertext updating property such that a time is associated with private keys and ciphertexts and a ciphertext
with a time can be easily updatable to a new ciphertext with a future time. In SUE, the private key of a user
is associated with a time T ′ and a ciphertext is also associated with a time T . If T ≤ T ′, then a user who
has a private key with a time T ′ can decrypt a ciphertext with a time T . That is, a user who has a private
key for a time T ′ can decrypt any ciphertexts attached a past time T such that T ≤ T ′, but he cannot decrypt
a ciphertext attached a future time T such that T ′ < T . Additionally, the SUE scheme has the ciphertext
update algorithm that updates the time T of a ciphertext to a new time T + 1 by using public parameters.
The following is the syntax of SUE.

10

Definition 3.4 (Self-Updatable Encryption). A self-updatable encryption (SUE) scheme consists of seven
PPT algorithms Init, Setup, GenKey, Encrypt, UpdateCT, RandCT, and Decrypt, which are defined as
follows:

Init(1λ). The initialization algorithm takes as input a security parameter 1λ , and it outputs a group de-
scription string GDS.

Setup(GDS,Tmax). The setup algorithm takes as input a group description string GDS and the maximum
time Tmax, and it outputs public parameters PP and a master secret key MK.

GenKey(T,MK,PP). The key generation algorithm takes as input a time T , the master secret key MK, and
the public parameters PP, and it outputs a private key SKT .

Encrypt(T,PP). The encryption algorithm takes as input a time T and the public parameters PP, and it
outputs a ciphertext header CHT and a session key EK.

UpdateCT(CHT ,T +1,PP). The ciphertext update algorithm takes as input a ciphertext header CHT for a
time T , a next time T +1, and the public parameters PP, and it outputs an updated ciphertext header
CHT+1.

RandCT(CHT ,PP). The ciphertext randomization algorithm takes as input a ciphertext header CHT for a
time T and the public parameters PP, and it outputs an re-randomized ciphertext header CH ′T and a
partial session key EK′.

Decrypt(CHT ,SKT ′ ,PP). The decryption algorithm takes as input a ciphertext header CHT , a private key
SKT ′ , and the public parameters PP, and it outputs a session key EK or the distinguished symbol ⊥.

The correctness property of SUE is defined as follows: For all PP,MK generated by Setup, all T,T ′, any
SKT ′ generated by GenKey, and any CHT and EK generated by Encrypt or UpdateCT, it is required that:

• If T ≤ T ′, then Decrypt(CHT ,SKT ′ ,PP) = EK.

• If T > T ′, then Decrypt(CHT ,SKT ′ ,PP) =⊥ with all but negligible probability.

Additionally, it requires that the ciphertext distribution of RandCT is statistically equal to that of Encrypt.

Remark 3.5. For the definition of SUE, we follow the syntax of key encapsulation mechanisms instead of
following that of standard encryption schemes since the session key of SUE serves as the partial share of a
real session key in other schemes.

The security property of SUE can be similarly defined as the security property of PKE with additional
consideration for the ciphertext updating property. In the security game of this security property, an ad-
versary is first given public parameters, and then he can adaptively obtain many private keys for times. In
the challenge step, the adversary submits a challenge time T ∗, and then he receives a challenge ciphertext
header CH∗ and a challenge session key EKb where EKb is a correct session key or a random session key.
Finally, the adversary outputs a guess for the random coin b that is used to create the session key. If the
private key queries of the adversary satisfy the non-trivial conditions and the guess is correct, then he wins
the game. The following is the formal definition of the security.

Definition 3.6 (Security). The security property for SUE schemes is defined in terms of the indistinguisha-
bility under a chosen plaintext attack (IND-CPA). The security game for this property is defined as the
following game between a challenger C and a PPT adversary A:

11

1. Setup: C runs Init and Setup to generate the public parameters PP and the master secret key MK,
and it gives PP to A.

2. Query 1: A may adaptively request a polynomial number of private keys for times T1, . . . ,Tq′ , and C
gives the corresponding private keys SKT1 , . . . ,SKTq′ to A by running GenKey(Ti,MK,PP).

3. Challenge: A outputs a challenge time T ∗ subject to the following restriction: For all times {Ti} of
private key queries, it is required that Ti < T ∗. C chooses a random bit b ∈ {0,1} and computes a
ciphertext header CH∗ and a session key EK∗ by running Encrypt(T ∗,PP). If b = 0, then it gives
CH∗ and EK∗ to A. Otherwise, it gives CH∗ and a random session key to A.

4. Query 2: A may continue to request private keys for additional times Tq′+1, . . . ,Tq subject to the same
restriction as before, and C gives the corresponding private keys to A.

5. Guess: Finally A outputs a bit b′.

The advantage of A is defined as AdvSUE
A (λ) =

∣∣Pr[b = b′]− 1
2

∣∣ where the probability is taken over all
the randomness of the game. A SUE scheme is fully secure under a chosen plaintext attack if for all PPT
adversaries A, the advantage of A in the above game is negligible in the security parameter λ .

Remark 3.7. In the above security game, it is not needed to explicitly describe UpdateCT since the adver-
sary can run UpdateCT to the challenge ciphertext header by just using PP. Note that the use of UpdateCT
does not violate the security game since the adversary only can request a private key query for Ti such that
Ti < T ∗.

We can also define the selective security property of SUE schemes by weakening the above security of
SUE schemes. That is, an adversary in the selective security game should submit a target challenge time T ∗

before he receives public parameters.

3.2 Bilinear Groups of Composite Order

Let N = p1 p2 p3 where p1, p2, and p3 are distinct prime numbers. Let G and GT be two multiplicative cyclic
groups of same composite order n and g be a generator of G. The bilinear map e : G×G→ GT has the
following properties:

1. Bilinearity: ∀u,v ∈G and ∀a,b ∈ Zn, e(ua,vb) = e(u,v)ab.

2. Non-degeneracy: ∃g such that e(g,g) has order N, that is, e(g,g) is a generator of GT .

We say that G is a bilinear group if the group operations in G and GT as well as the bilinear map e are
all efficiently computable. Furthermore, we assume that the description of G and GT includes generators
of G and GT respectively. We use the notation Gpi to denote the subgroups of order pi of G respectively.
Similarly, we use the notation GT,pi to denote the subgroups of order pi of GT respectively.

3.3 Complexity Assumptions

We introduce three static assumptions in bilinear groups of composite order. These assumptions were intro-
duced by Lewko and Waters [27] to prove the security of their IBE and HIBE schemes by using the dual
system encryption technique, and were also used to prove the security of ABE schemes of Lewko et al. [26].

12

Assumption 1 (Subgroup Decision) Let (N,G,GT ,e) be a description of the bilinear group of composite
order N = p1 p2 p3. Let gp1 ,gp2 ,gp3 be generators of subgroups Gp1 ,Gp2 ,Gp3 respectively. The Assumption
is that if the challenge tuple

D = ((N,G,GT ,e),gp1 ,gp3) and Z,

are given, no PPT algorithmA can distinguish Z = Z0 = X1 from Z = Z1 = X1R1 with more than a negligible
advantage. The advantage of A is defined as AdvA1

A (λ) =
∣∣Pr[A(D,Z0) = 0]−Pr[A(D,Z1) = 0]

∣∣ where the
probability is taken over random choices of X1 ∈Gp1 and R1 ∈Gp2 .

Assumption 2 (General Subgroup Decision) Let (N,G,GT ,e) be a description of the bilinear group of
composite order N = p1 p2 p3. Let gp1 ,gp2 ,gp3 be generators of subgroups Gp1 ,Gp2 ,Gp3 respectively. The
Assumption is that if the challenge tuple

D = ((N,G,GT ,e),gp1 ,gp3 ,X1R1,R2Y1) and Z,

are given, no PPT algorithm A can distinguish Z = Z0 = X2Y2 from Z = Z1 = X2R3Y2 with more than a
negligible advantage. The advantage of B is defined as AdvA2

A (λ) =
∣∣Pr[A(D,Z0) = 0]−Pr[A(D,Z1) = 0]

∣∣
where the probability is taken over random choices of X1,X2 ∈Gp1 , R1,R2,R3 ∈Gp2 , and Y1,Y2 ∈Gp3 .

Assumption 3 (Composite Diffie-Hellman) Let (N,G,GT ,e) be a description of the bilinear group of
composite order N = p1 p2 p3. Let gp1 ,gp2 ,gp3 be generators of subgroups Gp1 ,Gp2 ,Gp3 respectively. The
Assumption is that if the challenge tuple

D = ((N,G,GT ,e),gp1 ,gp2 ,gp3 ,g
a
p1

R1,gb
p1

R2) and Z,

are given, no PPT algorithm A can distinguish Z = Z0 = e(gp1 ,gp1)
ab from Z = Z1 = e(gp1 ,gp1)

c with
more than a negligible advantage. The advantage of A is defined as AdvA3

A (λ) =
∣∣Pr[A(D,Z0) = 0]−

Pr[A(D,Z1) = 0]
∣∣ where the probability is taken over random choices of a,b,c ∈ ZN , and R1,R2 ∈Gp2 .

3.4 Design Principle

We use a full binary tree to represent time in our SUE scheme by assigning time periods to all tree nodes
instead of assigning time periods to leaf nodes only. The use of binary trees to construct key-evolving
schemes dates back to the work of Bellare and Miner [1], and the idea of using all tree nodes to represent
time periods was introduced by Canetti, Halevi, and Katz [10]. They used a full binary tree for private key
update in forward-secure PKE schemes, but we use the full binary tree for ciphertext update.

In the full binary tree BT , each node v (internal node or leaf node) is assigned a unique time value by
using pre-order tree traversal that recursively visits the root node, the left subtree, and the right subtree. That
is, the root node is associated with 0 value and the right most leaf node is associated with 2dmax+1−2 value
where dmax is the maximum depth of the tree. Note that we use breadth-first search for index assignment,
but we use pre-order traversal for time assignment. Let Path(v) be the set of path nodes from the root node
to a node v, RightSibling(Path(v))1 be the set of right sibling nodes of Path(v), and TimeNodes(v) be
the set of nodes that consists of v and RightSibling(Path(v)) excluding the parent’s path nodes. That is,
TimeNodes(v) = {v}∪RightSibling(Path(v)) \Path(Parent(v)). Intuitively, if we consider all subtrees
corresponding to all the times that are greater than and equal to the time T by pre-order traversal, then
TimeNode(v) contains the root of each subtrees where v is associated with T . Pre-order traversal has the

1Note that we have RightSibling(Path(v)) = RightChild(Path(Parent(v))) where RightChild(Path(v)) be the set of right
child nodes of Path(v) and Parent(v) be the parent node of v.

13

property such that if a node v is associated with time T and a node v′ is associated with time T ′, then we
have

TimeNodes(v)∩Path(v′) 6=∅ if and only if T ≤ T ′2.

Thus if a ciphertext has the delegation property such that it’s association can be changed from a node to its
child node, then a ciphertext for the time T can be easily delegated to a ciphertext for the time T ′ such that
T ≤ T ′ by providing the ciphertexts of its own and right sibling nodes of path nodes excluding path nodes.
In this case, the number of ciphertexts can be small since the number of right sibling nodes is the logarithm
of tree nodes.

For the construction of an SUE scheme that uses a full binary tree, we need a CDE scheme that has
the ciphertext delegation property in the tree such that a ciphertext associated with a node can be converted
to another ciphertext associated with its child node. Hierarchical identity-based encryption (HIBE) has the
similar delegation property in the tree, but the private keys of HIBE can be delegated [4, 16]. To construct a
CDE scheme that supports the ciphertext delegation property, we start from the HIBE scheme of Boneh and
Boyen [4, 5] and exchange the private key structure with the ciphertext structure of their HIBE scheme. To
use the structure of HIBE, we associate each node with a unique label string L ∈ {0,1}∗. That is, the root
node is assigned an empty string, and a node assigned with a label L has a left child node assigned with a
label L‖0 and a right child node assigned with a label L‖1. The ciphertext delegation property in CDE is
easily obtained from the private-key delegation property of HIBE.

To build an SUE scheme from the CDE scheme, we define a mapping function ψ that maps time T
to a label L in the tree nodes since these two scheme uses the same full binary tree. The SUE ciphertext
for time T consists of all CDE ciphertexts for all nodes in TimeNodes(v) where time T is associated with
a node v. Although the ciphertext of SUE just consists of O(logTmax) number of CDE ciphertexts, the
ciphertext of SUE can be O(log2 Tmax) group elements since the ciphertext of a naive CDE scheme from the
HIBE scheme has O(logTmax) number of group elements. To improve the efficiency of the ciphertext size,
we use the randomness reuse technique for CDE ciphertexts. In this case, we obtain an SUE scheme with
O(logTmax) group elements in ciphertexts.

3.5 Construction

Our CDE scheme is described as follows:

CDE.Init(1λ): This algorithm takes as input a security parameter 1λ . It generates a bilinear group G of
composite order N = p1 p2 p3 where p1, p2, and p3 are random primes. It chooses a random generator
g1 ∈Gp1 and outputs a group description string as GDS = ((N,G,GT ,e),g1, p1, p2, p3).

CDE.Setup(GDS,dmax): This algorithm takes as input the string GDS and the maximum length dmax of
the label strings. Let l = dmax. It chooses random elements w,{ui,0,ui,1}l

i=1,{hi,0,hi,1}l
i=1 ∈ Gp1 , a

random exponent β ∈ ZN , and a random element Y ∈ Gp3 . We define Fi,b(L) = uL
i,bhi,b where i ∈ [l]

and b ∈ {0,1}. It outputs the master secret key MK = (β ,Y) and the public parameters as

PP =
(
(N,G,GT ,e),g = g1, w, {ui,0,ui,1}l

i=1, {hi,0,hi,1}l
i=1, Λ = e(g,g)β

)
.

2This property of pre-order traversal is implicitly given by Canetti et al. [10], and it is formally stated in the Theorem 4 of Sahai
et al. [40].

14

CDE.GenKey(L,MK,PP): This algorithm takes as input a label string L ∈ {0,1}n such that n ≤ l, the
master secret key MK, and the public parameters PP. It first selects a random exponent r ∈ ZN and
random elements Y0,Y1,Y2,1, . . . ,Y2,n ∈Gp3 . It outputs a private key that implicitly includes L as

SKL =
(

K0 = gβ w−rY0, K1 = grY1, K2,1 = F1,L[1](L|1)rY2,1, . . . , K2,n = Fn,L[n](L|n)rY2,n

)
.

CDE.Encrypt(L,s,~s,PP): This algorithm takes as input a label string L ∈ {0,1}d such that d ≤ l, a random
exponent s ∈ ZN , a vector~s = (s1, . . . ,sd) ∈ Zd

N of random exponents, and the public parameters PP.
It outputs a ciphertext header that implicitly includes L as

CHL =
(

C0 = gs, C1 = ws
d

∏
i=1

Fi,L[i](L|i)si , C2,1 = g−s1 , . . . , C2,d = g−sd

)
and a session key as EK = Λs.

CDE.DelegateCT(CHL,c,PP): This algorithm takes as input a ciphertext header CHL = (C0, . . . ,C2,d) for
a label string L ∈ {0,1}d such that d < l, a bit value c ∈ {0,1}, and the public parameters PP. It
selects a random exponent sd+1 ∈ ZN and outputs a delegated ciphertext header for the new label
string L′ = L‖c as

CHL′ =
(

C0, C′1 =C1 ·Fd+1,c(L′)sd+1 , C2,1, . . . , C2,d , C′2,d+1 = g−sd+1
)
.

CDE.RandCT(CHL,s′,~s′,PP): This algorithm takes as input a ciphertext header CHL = (C0, . . . ,C2,d) for a
label string L∈{0,1}d such that d≤ l, a new random exponent s′ ∈ZN , a new vector~s′=(s′1, . . . ,s

′
d)∈

Zd
N , and the public parameters PP. It outputs a re-randomized ciphertext header as

CH ′L =
(

C′0 =C0 ·gs′ , C′1 =C1 ·ws′
d

∏
i=1

Fi,L[i](L|i)s′i , C′2,1 =C2,1 ·g−s′1 , . . . , C′2,d =C2,d ·g−s′d
)
.

and a partial session key EK′ = Λs′ that will be multiplied with the session key EK of CHL to produce
a re-randomized session key.

CDE.Decrypt(CHL,SKL′ ,PP): This algorithm takes as input a ciphertext header CHL for a label string L ∈
{0,1}d , a private key SKL′ for a label string L′ ∈ {0,1}n such that d ≤ n≤ l, and the public parameters
PP. If L is a prefix of L′, then it computes a delegated ciphertext header CH ′L′ = (C′0, . . . ,C

′
2,n) by

running DelegateCT and outputs a session key as

EK = e(C′0,K0) · e(C′1,K1) ·
n

∏
i=1

e(C′2,i,K2,i).

Otherwise, it outputs ⊥.

Remark 3.8. The syntax of Encrypt and RandCT is different with the definition of CDE since these algo-
rithms additionally take input random values instead of selecting its own randomness. This difference is
essential for the improvement of ciphertext efficiency in SUE. Because of this difference, we cannot show
that other scheme that uses the CDE scheme as a building block is secure if the underlying CDE scheme is
secure.

15

Let ψ be a mapping from time T to a label L3. Our SUE scheme that uses our CDE scheme as a building
block is described as follows:

SUE.Init(1λ): This algorithm outputs GDS by running CDE.Init(1λ).

SUE.Setup(GDS,Tmax): This algorithm outputs MK and PP by running CDE.Setup(GDS,dmax) where
Tmax = 2dmax+1−1.

SUE.GenKey(T,MK,PP): This algorithm outputs SKT by running CDE.GenKey(ψ(T),MK,PP).

SUE.Encrypt(T,s,PP): This algorithm takes as input a time T , a random exponent s ∈ ZN , and the public
parameters PP. It proceeds as follows:

1. It first sets a label string L ∈ {0,1}d by computing ψ(T). It sets an exponent vector ~s =
(s1, . . . ,sd) by selecting random exponents s1, . . . ,sd ∈ZN , and obtains CH(0) = (C0,C1,C2,1, . . . ,
C2,d) by running CDE.Encrypt(L,s,~s,PP).

2. For 1≤ j ≤ d, it sets L(j) = L|d− j‖1 and proceeds the following steps:

(a) If L(j) = L|d− j+1, then it sets CH(j) as an empty one since it is redundant or not included in
TimeNodes(v) where v is associated with T . That is, if (j = 1)∧ (L(1) = L) then CH(1) is
equal with CH(0), and if (j ≥ 2)∧ (L(j) = L|d− j+1) then v(j) ∈ Path(Parent(v)) where v(j)

is associated with L(j).
(b) Otherwise, it sets a new exponent vector ~s′ = (s′1, . . . ,s

′
d− j+1) where s′1, . . .s

′
d− j are copied

from~s and s′d− j+1 is randomly selected in ZN since L(j) and L have the same prefix string. It
obtains CH(j) =(C′0,C

′
1,C
′
2,1, . . . ,C

′
2,d− j+1) by running CDE.Encrypt(L(j),s,~s′,PP). It also

prunes the redundant elements C′0,C
′
2,1, . . . ,C

′
2,d− j from CH(j), which are already contained

in CH(0).

3. It removes all empty CH(j) and sets CHT =
(
CH(0),CH(1), . . . ,CH(d′)

)
for some d′ ≤ d that

consists of non-empty CH(j).

4. It outputs a ciphertext header that implicitly includes T as CHT and a session key as EK = Λs.
Note that CH(i) are ordered according to pre-order traversal.

SUE.UpdateCT(CHT ,T +1,PP): This algorithm takes as input a ciphertext header CHT =(CH(0), . . . ,CH(d′))
for a time T , a next time T +1, and the public parameters PP. Let L(j) be the label of CH(j). It pro-
ceeds as follows:

1. If the length d of L(0) is less than dmax, then it first obtains CHL(0)‖0 and CHL(0)‖1 by running
CDE.DelegateCT(CH(0),c,PP) for all c ∈ {0,1} since CHL(0)‖0 is the ciphertext header for the
next time T +1 by pre-order traversal. It also prunes the redundant elements in CHL(0)‖1. It out-
puts an updated ciphertext header as CHT+1 =

(
CH ′(0) = CHL(0)‖0,CH ′(1) = CHL(0)‖1,CH ′(2) =

CH(1), . . . ,CH ′(d
′+1) =CH(d′)

)
.

2. Otherwise, it copies the common elements in CH(0) to CH(1) and simply remove CH(0) since
CH(1) is the ciphertext header for the next time T + 1 by pre-order traversal. It outputs an
updated ciphertext header as CHT+1 =

(
CH ′(0) =CH(1), . . . ,CH ′(d

′−1) =CH(d′)
)
.

3In a full binary tree, each node is associated with a unique time T by pre-order traversal and a unique label L by the label
assignment. Thus there exist a unique mapping function ψ from a time T to a label L.

16

SUE.RandCT(CHT ,s′,PP): This algorithm takes as input a ciphertext header CHT = (CH(0), . . . ,CH(d′))
for a time T , a new random exponent s′ ∈ ZN , and the public parameters PP. Let L(j) be the label of
CH(j) and d(j) be the length of the label L(j). It proceeds as follows:

1. It first sets a vector ~s′ = (s′1, . . . ,s
′
d(0)) by selecting random exponents s′1, . . . ,s

′
d(0) ∈ ZN , and

obtains CH ′(0) by running CDE.RandCT(CH(0),s′,~s′,PP).

2. For 1≤ j ≤ d′, it sets a new vector~s′′ = (s′1, . . . ,s
′
d(j)) where s′1, . . .s

′
d(j)−1 are copied from~s′ and

s′d(j) is randomly chosen in ZN , and obtains CH ′(j) by running CDE.RandCT(CH(j),s′,~s′′,PP).

3. It outputs a re-randomized ciphertext header as CH ′T =
(
CH ′(0), . . . ,CH ′(d

′)
)

and a partial session
key as EK′ = Λs′ that will be multiplied with the session key EK of CHT to produce a re-
randomized session key.

SUE.Decrypt(CHT ,SKT ′ ,PP): This algorithm takes as input a ciphertext header CHT , a private key SKT ′ ,
and the public parameters PP. If T ≤ T ′, then it finds CH(j) from CHT such that L(j) is a prefix of
L′ = ψ(T ′) and outputs EK by running CDE.Decrypt(CH(j),SKT ′ ,PP). Otherwise, it outputs ⊥.

Remark 3.9. The ciphertext delegation (or update) algorithm of CDE (or SUE) just outputs a valid cipher-
text header. However, we can easily modify it to output a ciphertext header that is identically distributed
with that of the encrypt algorithm of CDE (or SUE) by applying the ciphertext randomization algorithm.

3.6 Correctness

In CDE, if the label string L of a ciphertext is a prefix of the label string L′ of a private key, then the ciphertext
can be changed to a new ciphertext for the label string L′ by using the ciphertext delegation algorithm. Thus
the correctness of CDE is easily obtained from the following equation.

e(C0,K0) · e(C1,K1) ·
n

∏
i=1

e(C2,i,K2,i)

= e(gs,gβ w−rY0) · e(ws
n

∏
i=1

Fi,L[i](L|i)si ,grY1) ·
n

∏
i=1

e(g−si ,Fi,L[i](L|i)rY2,i)

= e(gs,gβ) · e(gs,w−r) · e(ws,gr) = e(g,g)β s

The SUE ciphertext header of a time T consists of the CDE ciphertext headers CH(0),CH(1), . . . ,CH(d)

that are associated with the nodes in TimeNodes(v). If the SUE private key of a time T ′ associated with a
node v′ satisfies T ≤ T ′, then we can find a unique node v′′ such that TimeNodes(v)∩Path(v′) = v′′ since
the property of pre-order tree traversal. Let CH ′′ be the CDE ciphertext header that is associated with the
node v′′. The correctness of SUE is easily obtained from the correctness of CDE since the label string L′′ of
CH ′′ is a prefix of the label string L′ of the private key.

In CDE, the output of CDE.DelegateCT is a valid ciphertext header since the function Fd+1,c(L′) is used
with a new random exponent sd+1 for the new label string L′ with depth d+1. The output of CDE.RandCT
is statistically indistinguishable from that of CDE.Encrypt since it has a random exponent s′′ = s+ s′ and a
random vector~s′′ = (s1 + s′1, . . . ,sd + s′d) where s,s1, . . . ,sd are original values in the ciphertext header and
s′,s′1, . . . ,s

′
d are newly selected random values.

In SUE, the output of SUE.UpdateCT is a valid ciphertext header since the output of CDE.DelegateCT
is a valid ciphertext header and the CDE ciphertext headers CH(0), . . .CH(d) are still associated with the

17

nodes in TimeNodes(v) where v is a node for the time T + 1. The output of SUE.RandCT is statisti-
cally indistinguishable from that of the encryption algorithm since new random exponents s′,s′1, . . . ,s

′
d(0) are

chosen and these random exponents are reused among the CDE ciphertext headers.

3.7 Security Analysis

We prove the security of our SUE scheme under three static assumptions. Note that we don’t prove the
security of our SUE scheme under that of our CDE scheme since the SUE scheme reuses the randomness of
CDE ciphertext headers to improve the ciphertext efficiency although it uses the CDE scheme as a building
block.

Theorem 3.10. The above SUE scheme is fully secure under a chosen plaintext attack if Assumptions 1,
2, and 3 hold. That is, for any PPT adversary A, we have that AdvSUE

A (λ) ≤ AdvA1
B (λ)+ 2qAdvA2

B (λ)+
AdvA3

B (λ) where q is the maximum number of private key queries of A.

Proof. To prove the security of our SUE scheme, we use the dual system encryption technique of Lewko and
Waters [27, 45]. In dual system encryption, ciphertexts and private keys can be normal or semi-functional
type. The normal type and the semi-functional type are indistinguishable and a semi-functional ciphertext
can not be decrypted by a semi-functional private key. The whole security proof consists of hybrid games
that change the normal challenge ciphertext and the normal private keys to the semi-functional challenge
ciphertext and semi-functional private keys respectively. In the final game, the adversary given the semi-
functional private keys and the semi-functional challenge ciphertext cannot distinguish a normal session key
from a random session key.

We first define the semi-functional type of ciphertexts and private keys. For semi-functional private
keys and ciphertexts, we let g2 denote a fixed generator of the subgroup Gp2 and select random exponents
{xi,0,xi,1}l

i=1,{yi,0,yi,1}l
i=1 ∈ ZN associated with group elements {ui,0,ui,1}l

i=1,{hi,0,hi,1}l
i=1 ∈Gp1 of PP.

SUE.GenKeySF1. This algorithm first creates a normal private key SK′L = (K′0, . . . ,K
′
2,n) for L = ψ(T)

using the master key. Let fi,c(L) = xi,cL+yi,c where c∈ {0,1}. It chooses random exponents a,b∈ZN

and outputs a semi-functional private key of type 1 as

SKL =
(

K0 = K′0g−a
2 , K1 = K′1gb

2, K2,1 = K′2,1g
f1,L[1](L|1)b
2 , . . . , K2,n = K′2,ng

fn,L[n](L|n)b
2

)
.

SUE.GenKeySF2. This algorithm first creates a normal private key SK′L = (K′0, . . . ,K
′
2,n) using the master

key. It chooses a random exponent a ∈ ZN and outputs a semi-functional private key of type 2 as

SKL =
(

K0 = K′0g−a
2 , K1 = K′1, K2,1 = K′2,1, . . . , K2,n = K′2,n

)
.

SUE.EncryptSF. This algorithm first creates a normal ciphertext header CH ′T = (CH ′(0), . . . ,CH ′(d)) and a
session key EK′ where L(j) is the label string of CH ′(j) and d(j) is the length of L(j).

1. Let CH ′(0) =
(
C′0,C

′
1,C
′
2,1, . . . ,C

′
2,d(0)

)
. It chooses random exponents c,u ∈ ZN and sets an ex-

ponent vector ~y = (z1, . . . ,zd(0)) by selecting random exponents z1, . . . ,zd(0) ∈ ZN , and creates
semi-functional components CH(0) as(

C0 =C′0gc
2, C1 =C′1g

u+∑
d(0)
i=1 f

i,L(0)[i]
(L(0)|i)zi

2 , C2,1 =C′2,1g−z1
2 , . . . , C2,d(0) =C′2,d(0)g

−z
d(0)

2

)
.

18

2. For 1 ≤ j ≤ d, it sets L(j) = L|d− j‖1 and proceeds as follows: Let CH ′(j) =
(
C′1,C

′
2,d(j)

)
. If

L(j) = L|d− j+1, then it sets CH(j) as an empty one. Otherwise, it selects a random exponent
z′d(j) ∈ ZN and creates semi-functional components CH(j) as(

C1 =C′1g
u+∑

d(j)−1
i=1 f

i,L(j)[i]
(L(j)|i)zi+ f

d(j),L(j)[d(j)]
(L(j)|

d(j))z′d(j)

2 , C2,d(j) =C′2,d(j)g
−z′

d(j)

2

)
.

Note that the elements C′0,C
′
2,1, . . . ,C

′
2,d(j)−1 were pruned in the normal ciphertext header.

3. It removes all empty CH(j) and sets CHT = (CH(0), . . . ,CH(d′)) for some d′ that consists of
non-empty CH(j).

4. It outputs a semi-functional ciphertext header as CHT = (CH(0), . . . ,CH(d′)) and a session key
as EK = EK′.

Note that if a semi-functional private key of type 1 is used to decrypt a semi-functional ciphertext header,
then an additional random element e(g2,g2)

−ac+bu is left. If ac = bu, then the semi-functional decryption
algorithm succeeds. In this case, we say that the private key is nominally semi-functional.

The security proof consists of the sequence of hybrid games: The first game will be the original security
game and the last one will be a game such that the adversary has no advantage. We define the games as
follows:

Game G0. This game is the original security game. In this game, all private keys and the challenge cipher-
text header are normal.

Game G1. In the next game, all private keys are normal, but the challenge ciphertext header is semi-
functional.

Game G2. Next, we define a new game G2. In this game, all private keys are semi-functional of type 2 and
the challenge ciphertext header is semi-functional. Suppose that an adversary makes at most q private
key queries. For the security proof, we additionally define a sequence of games G1,1,1,G1,1,2, . . . ,G1,k,1,
G1,k,2, . . . ,G1,q,1,G1,q,2 where G1 = G1,0,2. In the game G1,k,1 for 1≤ k ≤ q, the challenge ciphertext
header is semi-functional, the first k− 1 private keys are semi-functional of type 2, the kth private
key is semi-functional of type 1, and the remaining private keys are normal. In the game G1,k,2
for 1 ≤ k ≤ q, the challenge ciphertext header is semi-functional, the first k private keys are semi-
functional of type 2, and the remaining private keys are normal. It is obvious that G1,q,2 = G2.

Game G3. In the final game G3, all private keys are semi-functional of type 2 and the ciphertext header is
semi-functional, but the session key is random.

Let AdvG j
A be the advantage ofA in the game G j. We easily obtain that AdvSUE

A (λ) = AdvG0
A , AdvG1

A =

AdvG1,0,2
A , AdvG2

A = AdvG1,q,2
A , and AdvG3

A = 0. Through the following four lemmas, we can obtain the
following equation

AdvSUE
A (λ)

= AdvG0
A +(AdvG1

A −AdvG1
A)+

q

∑
k=1

(
AdvG1,k,1

A −AdvG1,k,1
A +AdvG1,k,2

A −AdvG1,k,2
A

)
−AdvG3

A

≤
∣∣AdvG0

A −AdvG1
A
∣∣+ q

∑
k=1

(∣∣AdvG1,k−1,2
A −AdvG1,k,1

A
∣∣+ ∣∣AdvG1,k,1

A −AdvG1,k,2
A

∣∣)+ ∣∣AdvG2
A −AdvG3

A
∣∣

≤ AdvA1
B (λ)+2qAdvA2

B (λ)+AdvA3
B (λ).

19

This completes our proof.

Lemma 3.11. If the Assumption 1 holds, then no polynomial-time adversary can distinguish between G0
and G1 with a non-negligible advantage.

Proof. Suppose there exists an adversaryA that distinguishes between G0 and G1 with a non-negligible ad-
vantage. A simulator B that solves the Assumption 1 usingA is given: a challenge tuple D = ((N,G,GT ,e),
gp1 ,gp3) and Z where Z = Z0 = X1 ∈ Gp1 or Z = Z1 = X1R1 ∈ Gp1 p2 . Then B that interacts with A is
described as follows:

Setup: B first chooses random exponents w′,{u′i,0,u′i,1}l
i=1, {h′i,0,h′i,1}l

i=1,β ∈ ZN . Let fi,b(L) = u′i,bL+h′i,b
where b ∈ {0,1}. It sets the master secret key as MK = (β ,Y = gp3) and publishes the public parameters
PP as

g = gp1 ,w = gw′
p1
,{ui,0 = g

u′i,0
p1 ,ui,1 = g

u′i,1
p1 }l

i=1,{hi,0 = g
h′i,0
p1 ,hi,1 = g

h′i,1
p1 }l

i=1,Λ = e(gp1 ,gp1)
β .

Query 1: A adaptively request a private key for a time T . B creates a normal private key by running
SUE.GenKey since it knows the master secret key. Note that it cannot create a semi-functional private key
since it does not know gp2 .
Challenge: In the challenge step, A outputs a challenge time T ∗. B proceeds as follows:

1. It first sets a label string L∗ ∈ {0,1}d by computing ψ(T ∗). It chooses random exponents s′1, . . . ,s
′
d ∈

ZN . It implicitly sets gs to be the Gp1 part of Z and creates ciphertext components CH(0) as(
C0 = Z, C1 = Zw′

d

∏
i=1

Z fi,L∗ [i](L∗|i)s′i , C2,1 = Z−s′1 , . . . , C2,d = Z−s′d
)
.

2. For 1≤ j ≤ d, it first sets L(j) = L∗|d− j‖1 and proceeds as follows: If L(j) = L|d− j+1, it sets CH(j) as
an empty one. Otherwise, it selects s′d− j+1 ∈ ZN and creates ciphertext components CH(j) as

(
C1 = Zw′

d− j

∏
i=1

Z
f
i,L(j)[i]

(L(j)|i)s′i ·Z f
d− j+1,L(j)[d− j+1]

(L(j)|d− j+1)s′d− j+1 , C2,d− j+1 = Z−s′d− j+1

)
.

3. It removes all empty CH(j) and sets CHT =
(
CH(0), . . . ,CH(d′)

)
for some d′ that consists of non-empty

CH(j).

4. It sets the challenger ciphertext header as CHT ∗ =CHT and the session keys EK0 = e(Z,g)β . It flips a
random coin b∈ {0,1} and gives CHT ∗ and EK0 toA if b = 0. Otherwise, it gives CHT ∗ and a random
session key to A.

Query 2: Same as Query 1.
Guess: A outputs a guess b′. If b = b′, then B outputs 1. Otherwise, it outputs 0.

To finish the proof, we should show that the distribution of the simulation is correct. We first show
that the distribution using Z0 = X1 is the same as G0. Let X1 = gs

p1
. The ciphertext header is also correctly

distributed since it implicitly sets s1 ≡ ss′1 mod p1, . . . ,s j ≡ ss′j mod p1. We next show that the distribution
using Z1 = X1R1 is the same as G1. Let X1R1 = gs

p1
gc

p2
. The semi-functional ciphertext header is generated

by implicitly setting u ≡ cw′ mod p2,z1 ≡ cs′1 mod p2, . . . ,z j ≡ cs′j mod p2. The values c,u,z1, . . . ,z j

modulo p2 are not correlated with their values modulo p1 by the Chinese Remainder Theorem (CRT). Thus
this is a properly distributed semi-functional ciphertext header. This completes our proof.

20

Lemma 3.12. If the Assumption 2 holds, then no polynomial-time adversary can distinguish between
G1,k−1,2 and G1,k,1 with a non-negligible advantage.

Proof. Suppose there exists an adversary A that distinguishes between G1,k−1,2 and G1,k,1 with a non-
negligible advantage. A simulator B that solves the Assumption 2 using A is given: a challenge tuple
D = ((N,G,GT ,e),gp1 ,gp3 ,X1R1,R2Y1) and Z where Z = Z0 = X2Y2 or Z = Z1 = X2R3Y2. Then B that
interacts with A is described as follows:

Setup: B first chooses random exponents w′,{u′i,0,u′i,1}l
i=1, {h′i,0,h′i,1}l

i=1,β ∈ ZN . Let fi,b(L) = u′i,bL+h′i,b
where b ∈ {0,1}. It sets the master secret key as MK = (β ,Y = gp3) and publishes the public parameters
PP as

g = gp1 ,w = gw′
p1
,{ui,0 = g

u′i,0
p1 ,ui,1 = g

u′i,1
p1 }l

i=1,{hi,0 = g
h′i,0
p1 ,hi,1 = g

h′i,1
p1 }l

i=1,Λ = e(gp1 ,gp1)
β .

Query 1: A adaptively requests a private key for a time T such that L = ψ(T) ∈ {0,1}n. If this is a jth
private key query, then B handles this query as follows: If j < k, then it chooses random exponents r,a′ ∈ZN

and random elements Y ′0,Y
′
1,Y
′
2,1, . . . ,Y

′
2,n ∈Gp3 , and builds a semi-functional private key of type 2 as

K0 = gβ w−r(R2Y1)
−a′Y ′0, K1 = grY ′1, K2,1 = (uL|1

1,L[1]h1,L[1])
rY ′2,1, . . . , K2,n = (uL|n

n,L[n]hn,L[n])
rY ′2,n.

If j = k, then it chooses random elements Y ′0,Y
′
1,Y
′
2,1, . . . ,Y

′
2,n ∈Gp3 and builds a private key as

K0 = gβ (Z)−w′Y ′0, K1 = ZY ′1, K2,1 = (Z) f1,L[1](L|1)Y ′2,1, . . . , K2,n = (Z) fn,L[n](L|n)Y ′2,n.

If j > k, then it builds a normal private key by running SUE.GenKey since it knows the master secret key.
Challenge: In the challenge step, A outputs a challenge time T ∗. B proceeds as follows:

1. It first sets a label string L∗ ∈ {0,1}d by computing ψ(T ∗). It chooses random exponents s′1, . . . ,s
′
d ∈

ZN . It creates ciphertext components CH(0) by implicitly setting gs = X1 as

(
C0 = X1R1, C1 = (X1R1)

w′
d

∏
i=1

(X1R1)
fi,L∗ [i](L∗|i)s′i , C2,1 = (X1R1)

−s′1 , . . . , C2,d = (X1R1)
−s′d
)
.

2. For 1≤ j ≤ d, it first sets L(j) = L∗|d− j‖1 and proceeds as follows: If L(j) = L|d− j+1, it sets CH(j) an
an empty one. Otherwise, it selects s′′d− j+1 ∈ ZN and creates ciphertext components CH(j) as

(
C1 = (X1R1)

w′
d− j

∏
i=1

(X1R1)
f
i,L(j)[i]

(L(j)|i)si · (X1R1)
f
d− j+1,L(j)[d− j+1]

(L(j)|d− j+1)s′′d− j+1 , C2,d− j+1 = (X1R1)
−s′′d− j+1

)
.

3. It removes all empty CH(j) and sets CHT =
(
CH(0), . . . ,CH(d′)

)
for some d′ that consists of non-empty

CH(j).

4. It sets the challenger ciphertext header as CHT ∗ = CHT and the session keys EK0 = e(X1R1,g)β . It
flips a random coin b ∈ {0,1} and gives CHT ∗ and EK0 to A if b = 0. Otherwise, it gives CHT ∗ and a
random session key to A.

21

Query 2: Same as Query 1.
Guess: A outputs a guess b′. If b = b′, then B outputs 1. Otherwise, it outputs 0.

To finish this proof, we should show that the distribution of the simulation is correct. We first show
that the distribution using Z0 = X2Y2 is the same as G1,k−1,2. Let X2Y2 = gr

p1
Y2 and X1R1 = gs

p1
gc

p2
. The kth

private key is correctly distributed as

K0 = gβ (X2Y2)
−w′Y ′0 = gβ (g−w′

p1
)rY−w′

2 Y ′0 = gβ w−rY ′′0 ,

K1 = (X2Y2)Y ′1 = gr
p1

Y2Y ′1 = grY ′′1 ,

K2,i = (X2Y2)
fi,L[i](L|i)Y ′2,i = g

(u′i,L[i]L|i+h′i,L[i])r
p1 Y

fi,L[i](L|i)
2 Y ′2,i = (uL|i

i,L[i]hi,L[i])
rY ′′2,i.

The semi-functional challenge ciphertext header is also correctly distributed by implicitly setting si ≡ ss′i
mod p1, u≡ cw′ mod p2, zi ≡ cs′i mod p2 as

C0 = X1R1 = gs
p1

gc
p2
,

C1 = (X1R1)
w′

d

∏
i=1

(X1R1)
fi,L∗ [i](L∗|i)s′i = (gw′

p1
)s(gc

p2
)w′

d

∏
i=1

(g
(u′i,L∗ [i]L

∗|i+h′i,L∗ [i])
p1)ss′i(gc

p2
) fi,L∗ [i](L∗|i)s′i

= ws
d

∏
i=1

(uL∗|i
i,L∗[i]hi,L∗[i])

sig
u+∑

d
i=1 fi,L∗|i (L

∗|i)zi
p2 ,

C2,i = (X1R1)
−s′i = g−ss′i

p1 g−cs′i
p2 = g−sig−zi

p2
.

We next show that the distribution using Z1 = X2R3Y2 is the same as G1,k,1. Let X2R3Y2 = X2gb
p2

Y2. The only
difference between Z0 and Z1 is that Z1 additionally has R3. The kth private key components that have Z

additionally have R−w′
3 ,R3,R

f1,L[1](L|1)
3 , . . . ,R

fn,L[n](L|n)
3 respectively. If we implicitly sets a≡ bw′ mod p2, then

the kth private key is correctly distributed as the same as G1,k,1 except that it is nominally semi-functional
since ac≡ (bw′)c≡ bu mod p2.

Finally, we show that the adversary cannot distinguish the nominally semi-functional private key from
the semi-functional private key of type 1. To argue this, we use the restriction of the security model such
that the adversary cannot request a private key for a time T such that T ∗ ≤ T . Recall that L is the label
string of T , L(j) is the label string of CH(j) in CHT ∗ = (CH(0), . . . ,CH(d′)), and L(0) = L∗. For easy analysis,
we first consider CH(0) since the challenge SUE ciphertext header CHT ∗ consists of many CDE ciphertext
headers. From the restriction of the SUE security model, we have that the adversary cannot request a private
key for a label string L such that L∗ is a prefix of L. Suppose there exists an unbounded adversary. Then the
adversary can gather the values−w′b mod p2,b mod p2,{ fi,L[i](L|i) mod p2} from the kth private key for
a label string L ∈ {0,1}n and c mod p2,w′c+∑

d
i=1 fi,L∗[i](L∗|i)s′i mod p2,{s′i mod p2} from CH(0) for a

label string L∗ ∈ {0,1}d .

• If (n < d) or ((d ≤ n)∧ (L[d] 6= L∗[d])), then fd,L∗[d](L∗) mod p2 looks random to the unbounded
adversary since u′d,L∗[d] mod p2,h′d,L∗[d] mod p2 are information theoretically hidden to the adversary
by the Chinese Remainder Theorem (CRT).

• If ((d ≤ n)∧ (L[d] = L∗[d])), then fd,L∗[d](L|d) mod p2 and fd,L∗[d](L∗) mod p2 look random to the
adversary since fi,b(L) = u′i,bL+h′i,b is a pair-wise independent function, L|d 6= L∗ by the restriction of
the security model, and u′d,L∗[d] mod p2,h′d,L∗[d] mod p2 are information theoretically hidden to the
adversary.

22

Thus it is easy to show that w′c+∑
d
i=1 fi,L∗[i](L∗|i) mod p2 looks random to the unbounded adversary since

fd,L∗[d](L∗) mod p2 looks random to the adversary. We can apply the similar argument to other CDE ci-
phertext headers. This completes our proof.

Lemma 3.13. If the Assumption 2 holds, then no polynomial-time adversary can distinguish between G1,k,1
and G1,k,2 with a non-negligible advantage.

Proof. Suppose there exists an adversaryA that distinguishes between G1,k,1 and G1,k,2 with a non-negligible
advantage. A simulatorB that solves the Assumption 2 usingA is given: a challenge tuple D=((N,G,GT ,e),
gp1 ,gp3 ,X1R1,R2Y1) and Z where Z = Z0 = X2Y2 or Z = Z1 = X2R3Y2. Then B that interacts with A is de-
scribed as follows:

Setup: B first chooses random exponents w′,{u′i,0,u′i,1}l
i=1,{h′i,0,h′i,1}l

i=1,β ∈ ZN . Let fi,b(L) = u′i,bL+h′i,b
where b ∈ {0,1}. It sets the master secret key as MK = (β ,Y = gp3) and publishes the public parameters
PP as

g = gp1 ,w = gw′
p1
,{ui,0 = g

u′i,0
p1 ,ui,1 = g

u′i,1
p1 }l

i=1,{hi,0 = g
h′i,0
p1 ,hi,1 = g

h′i,1
p1 }l

i=1,Λ = e(gp1 ,gp1)
β .

Query 1: A adaptively requests a private key for a time T such that L = ψ(T) ∈ {0,1}n. If this is a jth
private key query, then B handles this query as follows: If j < k, then it chooses random exponents r,a′ ∈ZN

and random elements Y ′0,Y
′
1,Y
′
2,1, . . . ,Y

′
2,n ∈Gp3 , and builds a semi-functional private key of type 2 as

K0 = gβ w−r(R2Y1)
−a′Y ′0, K1 = grY ′1, K2,1 = (uL|1

1,L[1]h1,L[1])
rY ′2,1, . . . , K2,n = (uL|n

n,L[n]hn,L[n])
rY ′2,n.

If j = k, then it chooses random elements Y ′0,Y
′
1,Y
′
2,1, . . . ,Y

′
2,n ∈Gp3 and builds a private key as

K0 = gβ (Z)−w′(R2Y1)
−a′Y ′0, K1 = ZY ′1, K2,1 = (Z) f1,L[1](L|1)Y ′2,1, . . . , K2,n = (Z) fn,L[n](L|n)Y ′2,n.

If j > k, then it builds a normal private key by running SUE.GenKey since it knows the master secret key.
Challenge: In the challenge step, A outputs a challenge time E∗. B creates the challenge ciphertext header
CHT ∗ and the session key EK0 the same as the proof of Lemma 3.12. B flips a random coin b ∈ {0,1} and
gives CHT ∗ and EK0 to A if b = 0. Otherwise, it gives CHT ∗ and a random session key to A.
Query 2: Same as Query 1.
Guess: A outputs a guess b′. If b = b′, then B outputs 1. Otherwise, it outputs 0.

To finish this proof, we should show that the distribution of the simulation is correct. We first show that
the distribution using Z0 = X2Y2 is the same as G1,k,2. Let X2Y2 = gr

p1
Y2. The kth private key is correctly

distributed as

K0 = gβ (X2Y2)
−w′(R2Y1)

a′Y ′0 = gβ g−w′r
p1

Ra′
2 Y−w′

2 Y a′
1 Y ′0 = gβ w−rRa′

2 Y ′′0 ,

K1 = (X2Y2)Y ′1 = gr
p1

Y2Y ′1 = grY ′′1 ,

K2,i = (X2Y2)
fi,L[i](L|i)Y ′2,i = g

(u′i,L[i]L|i+h′i,L[i])r
p1 Y

fi,L[i](L|i)
2 Y ′2,i = (uL|i

i,L[i]hi,L[i])
rY ′′2,i.

We next show that the distribution using Z1 = X2R3Y2 is the same as G1,k,1. The only difference between Z0
and Z1 is that Z1 additionally has R3. It is easy to check the distribution of kth private key, but it is no longer
nominally semi-functional since an additional (R2Y1)

a′ term is added to randomize the Gp2 part of K0. Note
that we no longer have the relation ac≡ bu mod p2. This completes our proof.

23

Lemma 3.14. If the Assumption 3 holds, then no polynomial-time adversary can distinguish between G2
and G3 with a non-negligible advantage.

Proof. Suppose there exists an adversary A that distinguish G2 from G3 with a non-negligible advan-
tage. A simulator B that solves the Assumption 3 using A is given: a challenge tuple D = ((N,G,GT ,e),
gp1 ,gp2 ,gp3 ,g

a
p1

R1,gb
p1

R2) and Z where Z = Z0 = e(gp1 ,gp1)
ab or Z = Z1 = e(gp1 ,gp1)

c. Then B that interacts
with A is described as follows:

Setup: B first chooses a random exponent w′ ∈ ZN and random elements {ui,0,ui,1}l
i=1,{hi,0,hi,1}l

i=1 ∈Gp1 .
It implicitly sets β = a and publishes the public parameters PP as

g = gp1 ,w = gw′
p1
,{ui,0,ui,1}l

i=1,{hi,0,hi,1}l
i=1,Λ = e(gp1 ,g

a
p1

R1).

Query 1: A adaptively requests a private key for a time T such that L = ψ(T) ∈ {0,1}n. To response this
query, B selects a random exponent r ∈ ZN and random elements R′0 ∈ Gp2 ,Y

′
0,Y
′
1,Y
′
2,1, . . . ,Y

′
2,n ∈ Gp3 , and

creates a semi-functional private key of type 2 as

K0 = (ga
p1

R1)w−rR′0Y ′0, K1 = gr
p1

Y ′1, K2,1 = F1,L[1](L|1)rY ′2,1, . . . , K2,n = Fn,L[n](L|n)rY ′2,n.

Challenge: In the challenge step, A outputs a challenge time T ∗. B proceeds as follows:

1. It first sets a label string L∗ ∈ {0,1}d by computing ψ(T ∗). It chooses random exponents s1, . . . ,sd ∈
ZN and random elements R′1,R

′
2,1, . . . ,R

′
2,d ∈Gp2 . It creates ciphertext components CH(0) by implicitly

setting gs = gb as(
C0 = gb

p1
R2, C1 = (gb

p1
R2)

w′
d

∏
i=1

Fi,L(0)[i](L
(0)|i)siR′1, C2,1 = g−s1R′2,1, . . . , C2,d = g−sd R′2,d

)
.

2. For 1≤ j≤ d, it first sets L(j) = L∗|d− j‖1 and proceeds as follows: If L(j) = L|d− j+1, it sets CH(j) as an
empty one. Otherwise, it selects s′d− j+1 ∈ ZN , R′1,R

′
2,d− j+1 ∈Gp2 and creates ciphertext components

CH(j) as(
C1 = (gb

p1
R2)

w′
d− j

∏
i=1

Fi,L(j)[i](L
(j)|i)si ·Fd− j+1,L(j)[d j]

(L(j)|d− j+1)
s′d− j+1R′1, C2,d− j+1 = g−s′d− j+1R′2,d− j+1

)
.

3. It removes all empty CH(j) and sets CHT =
(
CH(0), . . . ,CH(d′)

)
for some d′ that consists of non-empty

CH(j).

4. It sets the challenger ciphertext header as CHT ∗ = CHT and the session keys EK = Z. It gives CHT ∗

and EK to A.

Query 2: Same as Query 1.
Guess: A outputs a guess b′. If b = b′, then B outputs 1. Otherwise, it outputs 0.

To finish the proof, we show that the distribution of the simulation is correct. The semi-functional
private keys of type 2 and the semi-functional challenge ciphertext header are correctly distributed. If
Z = Z0 = e(gp1 ,gp1)

ab, then the session key is properly distributed as the same as G2. Otherwise, the
session key is a random element as the same as G3. This completes our proof.

Corollary 3.15. The above CDE scheme is fully secure under a chosen plaintext attack if Assumptions 1,
2, and 3 hold. That is, for any PPT adversary A, we have that AdvCDE

A (λ) ≤ AdvA1
B (λ)+ 2qAdvA2

B (λ)+
AdvA3

B (λ) where q is the maximum number of private key queries of A.

We omit the proof of this since it can be easily derived from that of Theorem 3.10.

24

3.8 Discussions

Efficiency. Suppose that an SUE scheme supports the maximum time Tmax. In this case, the number of group
elements in a private key is logTmax since the private key of SUE is the same as that of CDE, and the number
of group elements in a ciphertext is at most 3 logTmax since the SUE ciphertext reuses the randomness of
other ciphertexts of CDE. The decryption algorithm of SUE requires logTmax pairing operations since it just
runs the decryption algorithm of CDE at once after finding the matching ciphertext of CDE. For example, if
we set Tmax = 220 in SUE, then the private key consists of at most 20 group elements, the ciphertext consists
of at most 60 group elements, and the decryption algorithm requires at most 20 pairing operations.

Supporting an Exponential Number of Time Periods. In our SUE scheme, the setup algorithm takes
the maximum (polynomial) number of time periods Tmax as an input. We can modify our SUE scheme to
support an exponential number of time periods by setting the maximum depth of CDE as dmax = λ since the
security loss of the reduction is independent of Tmax. In this case, this scheme can support Tmax = 2λ+1−1.

Supporting a Time Interval. In SUE, a ciphertext with a time TL can be updatable by anyone just using
a public key to any time T such that TL ≤ T . However, one may want to limit the lifetime of a ciphertext
by specifying the time interval [TL,TR] of a ciphertext for some applications where it is necessary to ensure
that a ciphertext is only decrypted within a specific time interval. If we use the technique of Kasamatsu et
al. [21] that was used to build a time-specific encryption from FSE, we expect that an SUE scheme for a
time interval [TL,TR] can be built by carefully combining two SUE schemes to prevent collusion attacks: one
is a future SUE scheme with ciphertext updating for future times such that TL ≤ T and another one is a past
SUE scheme with ciphertext updating for past times T ≤ TR.

Different Constructions. We use the HIBE structure of Boneh and Boyen [4, 5] for our SUE scheme with
private keys of O(logTmax) group elements and ciphertexts of O(logTmax) group elements by reusing the
randomness of ciphertexts. If we use other HIBE structures for SUE, then they will give an SUE scheme
with different efficiency tradeoffs. For example, if we build an SUE scheme by using the HIBE struc-
ture of Boneh, Boyen, and Goh [6], then this SUE scheme will have private keys of O(1) group elements
and ciphertexts of O(log2 Tmax) group elements. If we use the hybrid HIBE structure that combines the
Boneh-Boyen-Goh HIBE and the Boneh-Boyen HIBE, then this SUE scheme will have private keys of
O(log1/2 Tmax) group elements and ciphertexts of O(log3/2 Tmax) group elements.

Prime Order Groups. Our SUE scheme is fully secure under a chosen plaintext attack, but it is based on
composite order bilinear groups since the proof of its security uses the dual system encryption technique.
The group order of composite order bilinear groups should be at least 1024 bit to prevent the integer fac-
torization attack. To improve the efficiency of the SUE scheme, we can use prime order bilinear groups
instead of composite order bilinear groups. In Appendix A, we proposed an SUE scheme in prime order
bilinear groups, but it is only selectively secure under a chosen plaintext attack where an adversary submits
the challenge time T ∗ before he receives the public parameters.

4 Revocable-Storage Attribute-Based Encryption

In this section, we define RS-ABE and propose an RS-ABE scheme with shorter ciphertexts by combining
the ABE scheme of Lewko et al. [26] and our SUE scheme in the previous section.

25

4.1 Definitions

Revocable-storage attribute-based encryption (RS-ABE) is attribute-based encryption (ABE) that addition-
ally supports the revocation functionality and the ciphertext update functionality. The revocation functional-
ity is that a user whose private key is revealed can be revoked by preventing for the user to decrypt ciphertexts
that will be created in the future. The ciphertext update functionality is that a user who is revoked cannot
access to ciphertexts that are created in the past by updating the time of the ciphertexts. Boldyreva, Goyal,
and Kumar introduced the concept of revocable ABE (R-ABE) that provides the revocation functionality [3],
and Sahai, Seyalioglu, and Waters introduced the concept of RS-ABE that provides the ciphertext update
functionality in R-ABE [40].

In RS-ABE, each user receives a private key that is associated with a set of attributes S and a user index
u from a key generation center. After that, the key generation center periodically broadcasts an update key
for a set of non-revoked users where the update key is associated with an update time T ′ and a set of revoked
users R. To send a message to a receiver, a sender creates a ciphertext that is associated with an access
structure A and a time T . A receiver who has a private key for a set of attributes S and a user index u and
an update key for an update time T ′ and a set of revoked users R can decrypt the ciphertext by combining
the private key and the update key if the set of attributes S satisfies the access structure A, the user index u
is not contained in the set of revoked users R, and the time T in the ciphertext is less than the time T ′ in the
update key. The following is the syntax of RS-ABE.

Definition 4.1 (Revocable-Storage Attribute-Based Encryption). A revocable-storage (ciphertext-policy)
attribute-based encryption (RS-ABE) scheme consists of seven PPT algorithms Setup, GenKey, UpdateKey,
Encrypt, UpdateCT, RandCT, and Decrypt, which are defined as follows:

Setup(1λ ,U ,Tmax,Nmax). The setup algorithm takes as input a security parameter 1λ , the universe of
attributes U , the maximum time Tmax, and the maximum number of users Nmax, and it outputs public
parameters PP and a master secret key MK.

GenKey(S,u,MK,PP). The key generation algorithm takes as input a set of attributes S ⊆ U , a user index
u ∈N , the master secret key MK, and the public parameters PP, and it outputs a private key SKS,u.

UpdateKey(T,R,MK,PP). The key update algorithm takes as input a time T ≤ Tmax, a set of revoked users
R⊆N , the master secret key MK, and the public parameters PP, and it outputs an update key UKT,R.

Encrypt(A,T,M,PP). The encryption algorithm takes as input an access structure A, a time T ≤ Tmax, a
message M, and the public parameters PP, and it outputs a ciphertext CTA,T .

UpdateCT(CTA,T ,T + 1,PP). The ciphertext update algorithm takes as input a ciphertext CTA,T for an
access structure A and a time T , a new time T +1 such that T +1≤ Tmax, and the public parameters
PP, and it outputs an updated ciphertext CTA,T+1.

RandCT(CTA,T ,PP). The ciphertext randomization algorithm takes as input a ciphertext CTA,T for an
access structure A and a time T , and the public parameters PP, and it outputs a re-randomized
ciphertext CT ′A,T .

Decrypt(CTA,T ,SKS,u,UKT ′,R,PP). The decryption algorithm takes as input a ciphertext CTA,T , a private
key SKS,u, an update key UKT ′,R, and the public parameters PP, and it outputs a message M or the
distinguished symbol ⊥.

26

The correctness property of RS-ABE is defined as follows: For all PP,MK generated by Setup, all S and u,
any SKS,u generated by GenKey, all A, T , and M, any CTA,T generated by Encrypt or UpdateCT, all T ′ and
R, any UKT ′,R generated by UpdateKey, it is required that:

• If (S ∈ A)∧ (u /∈ R)∧ (T ≤ T ′), then Decrypt(CTA,T ,SKS,u,UKT ′,R,PP) = M.

• If (S /∈ A)∨ (u ∈ R)∨ (T ′ < T), then Decrypt(CTA,T ,SKS,u,UKT ′,R,PP) =⊥ with all but negligible
probability.

Additionally, it requires that the ciphertext distribution of RandCT is statistically equal to that of Encrypt.

The security property of RS-ABE can be defined by following the security property of revocable ABE
that is defined by Boldyreva et al. [3] and by Sahai et al. [40]. In the security game of this security property,
the adversary is first given public parameters, and then he can adaptively obtain many private keys for a set
of attributes S and a user index u and many update keys for a set of non-revoked users in an update time
T ′. In the challenge step, the adversary submits a challenge access structure A, a challenge time T ∗, and
two challenge message M∗0 ,M

∗
1 , and then he receives a challenge ciphertext CT ∗ that is an encryption of

the challenge message M∗b where b is a random coin used to create the challenge ciphertext. The adversary
may continue to request private keys and update keys. Finally, the adversary outputs a guess for the random
coin b. If the private keys and the update keys satisfy the non-trivial conditions of the security game and the
guess is correct, then the adversary wins the game. The following is the formal definition of the security.

Definition 4.2 (Security). The security property for RS-ABE is defined in terms of the indistinguishability
under a chosen plaintext attack (IND-CPA). The security game for this property is defined as the following
game between a challenger C and a PPT adversary A:

1. Setup: C runs Setup to generate the public parameters PP and the master secret key MK, and it gives
PP to A.

2. Query 1: A may adaptively request a polynomial number of private keys and update keys. C proceeds
as follows:

• If this is a private key query for a set of attributes S and a user index u, then it gives the corre-
sponding private key SKS,u to A by running GenKey(S,u,MK,PP). Note that the adversary is
allowed to query only one private key for each user u.

• If this is an update key query for an update time T and a set of revoked users R, then it gives
the corresponding update key UKT,R to A by running UpdateKey(T,R,MK,PP). Note that the
adversary is allowed to query only one update key for each time T .

3. Challenge: A outputs a challenge access structure A∗, a challenge time T ∗, and challenge messages
M∗0 ,M

∗
1 ∈M of equal length subject to the following restriction:

• It is required that (Si /∈ A∗)∨ (ui ∈ R j)∨ (Tj < T ∗) for all {(Si,ui)} of private key queries and
all {(Tj,R j)} of update key queries.

C chooses a random bit b and gives the ciphertext CT ∗ to A by running Encrypt(A∗,T ∗,M∗b ,PP).

4. Query 2: A may continue to request private keys and update keys subject to the same restrictions as
before, and C gives the corresponding private keys and update keys to A.

27

5. Guess: Finally A outputs a bit b′.

The advantage of A is defined as AdvRS-ABE
A (λ) =

∣∣Pr[b = b′]− 1
2

∣∣ where the probability is taken over all
the randomness of the game. A RS-ABE scheme is fully secure under a chosen plaintext attack if for all PPT
adversaries A, the advantage of A in the above game is negligible in the security parameter λ .

Remark 4.3. In the above security game, it is not needed to explicitly describe UpdateCT since the adver-
sary can run UpdateCT to the challenge ciphertext by just using PP. Note that the use of UpdateCT does
not violate the security game because of the restrictions in the game.

Remark 4.4. The restriction in the challenge step of the above security game implies that all private keys
for a set of attributes S and a user index u that satisfy S ∈ A∗ should be revoked for all update keys with
T ≥ T ∗.

4.2 Design Principle

In our construction, we take the ciphertext-policy ABE (CP-ABE) scheme of Lewko et al. [26] as the primary
encryption scheme, and combine it with our SUE scheme and a revocation mechanism. The revocation
mechanism follows the design principle of Boldyreva, Goyal, and Kumar [3] that uses the complete subtree
method to securely update the keys of the non-revoked users.

The main challenge in combining all the components is protecting the scheme against a collusion attack,
e.g., a non-revoked user with a few attributes should not decrypt more ciphertexts than he is allowed to, given
the help of a revoked user with many attributes. To prevent the collusion attack, we use the secret sharing
technique in the generation of private keys for ABE and SUE. That is, the master secret key of RS-ABE is
separated by using the secret sharing technique, and these separate secrets are served as the master secret
key for ABE and SUE respectively. The idea of using the secret sharing technique to prevent a collusion
attack and using the CS scheme to revoke a user were introduced by Boldyreva et al. [3], and this idea was
widely employed by other schemes that require the revocation functionality [31, 40, 42]4.

Our RS-ABE scheme uses one full binary tree in the SUE scheme to efficiently manage time and another
full binary tree BT to efficiently manage users in the system. Each user in the system is first assigned to a
leaf node in BT as arbitrary, and he receives private keys for ABE that are related with the path from the
root node to the leaf node in BT from the key generation center. The private keys for ABE are generated
by using a random gγi as the master key of ABE instead of the original master key gα where the random
γi is assigned to a node vi in BT . After that, the key generation center periodically broadcast private keys
for SUE as an update key to non-revoked users. The private keys of SUE are also generated by using a
random gα−γi as the master key of SUE instead of the original master key. Note that the master secret key
of ABE and the master secret key of SUE in a fixed node vi in BT are separated by using the secret sharing
technique, and these master secret key can be combined as gα = gγi ·gα−γi .

To create a ciphertext, a sender creates a ciphertext for ABE that is associated with an access structure A
and a ciphertext for SUE that is associated with a time T by using the same random exponent s to recover the
secret that are shared among private keys for ABE and private keys for SUE. A receiver who has a private
key associated with a set of attributes S and an update key associated with an update time T ′ and a set of
revoked users R can find the private key of ABE and the private key of SUE that corresponds to a common
node v in BT if he is not contained in R. Thus the receiver can decrypt the ciphertext by using the private

4The secret sharing technique of Boldyreva et al. [3] is different with that of other schemes since the scheme of Boldyreva et
al. uses a polynomial secret sharing whereas other schemes use a (2,2)-additive secret sharing. Note that we also use this simple
(2,2)-additive secret sharing.

28

key of ABE and the private key of SUE if S ∈ A and T ≤ T ′. That is, the secret sharing in the generation of
private keys and update keys and the same random exponent in the ciphertext prevent the collusion attack.

4.3 Construction

Before presenting our RS-ABE scheme, we first describe the (ciphertext-policy) ABE scheme of Lewko
et al. [26]. Note that their ABE scheme has the restriction such that the attributes are only used once in
the access structure and the size of the total attributes in the system is small, but they showed that these
restrictions can be removed.

ABE.Setup(GDS,U): This algorithm takes as input a group description string GDS and the universe of
attributes U . It chooses a random exponent a ∈ ZN and random elements {Tj} j∈U ∈ Gp1 , Y ∈ Gp3 ,
and a random exponent γ ∈ZN . It outputs the master secret key MK =(γ,Y) and the public parameters
as

PP =
(
(N,G,GT ,e),g = g1, ga, {Tj} j∈U , Λ = e(g,g)γ

)
.

ABE.GenKey(S,MK,PP): This algorithm takes as input a set of attributes S, the master secret key MK, and
the public parameters PP. It chooses a random exponent r∈ZN and random elements Y0,Y1,{Y2, j} j∈S ∈
Gp3 . It outputs a private key that implicitly includes S as

SKS =
(

K0 = gγgarY0, K1 = grY1,
{

K2, j = T r
j Y2, j

}
j∈S

)
.

ABE.Encrypt(A,s,PP): This algorithm takes as input an LSSS access structure A = (A,ρ) where A is an
l× n matrix and ρ is a map from each row A j of A to an attribute ρ(j), a random exponent s ∈ ZN ,
and the public parameters PP. It first sets a random vector ~v = (s,v2, . . . ,vn) by selecting random
exponents v2, . . . ,vn ∈ZN . It selects random exponents s1, . . . ,sl ∈ZN and outputs a ciphertext header
that implicitly includes A as

CHA =
(

C0 = gs,
{

C1, j = gaA j·~vT s j

ρ(j), C2, j = g−s j
}

1≤ j≤l

)
and a session key EK = Λs.

ABE.RandCT(CHA,s′,PP): This algorithm takes as input a ciphertext header CHA for an LSSS access
structure A = (A,ρ), a new random exponent s′ ∈ ZN , and the public parameters PP. It first sets
a new vector ~v′ = (s′,v′2, . . . ,v

′
n) by selecting random exponents v′2, . . . ,v

′
n ∈ ZN . It selects random

exponents s′1, . . . ,s
′
l ∈ ZN and outputs a ciphertext header as

CH ′A =
(

C′0 =C0 ·gs′ ,
{

C′1, j =C1, j ·gaA j·~v′T
s′j

ρ(j), C′2, j =C2, j ·g−s′j
}

1≤ j≤l

)
and a partial session key EK′ = Λs′ that will be multiplied with the session of CHA.

ABE.Decrypt(CHA,SKS,PP): This algorithm takes as input a ciphertext header CHA for an LSSS access
structure A = (A,ρ), a private key SKS for a set of attributes S, and the public parameters PP. If S
satisfies A, then it computes constants ω j ∈ Zp such that ∑ρ(j)∈S ω jA j = (1,0, . . . ,0) and outputs a
session key as

EK = e(C0,K0)/ ∏
ρ(j)∈S

(
e(C1, j,K1, j) · e(C2, j,K2, j)

)ω j .

Otherwise, it outputs ⊥.

29

LetM be GT . Our RS-ABE scheme that uses the above ABE scheme as a building block is described
as follows:

RS-ABE.Setup(1λ ,U ,Tmax,Nmax): This algorithm takes as input a security parameter 1λ , the universe of
attributes U , the maximum time Tmax, and the maximum number of users Nmax.

1. It first generates bilinear groups G,GT of composite order N = p1 p2 p3 where p1, p2, and p3 are
random primes. Let g1 be the generator of Gp1 . It sets GDS = ((N,G,GT ,e),g1, p1, p2, p3).

2. It obtains MKABE ,PPABE and MKSUE ,PPSUE by running ABE.Setup(GDS,U) and SUE.Setup
(GDS,Tmax) respectively. It also obtains BT by running CS.Setup(Nmax) and assigns a random
exponent γi ∈ ZN to each node vi in BT .

3. It selects a random exponent α ∈ ZN , and then it outputs the master secret key MK = (MKABE ,
MKSUE ,α,BT) and the public parameters as PP =

(
PPABE ,PPSUE ,g = g1,Ω = e(g,g)α

)
.

RS-ABE.GenKey(S,u,MK,PP): This algorithm takes as input a set of attributes S, a user index u, the
master secret key MK = (MKABE ,MKSUE ,α,BT), and the public parameters PP.

1. It first obtains a private set PVu = {S′j0 , . . . ,S
′
jd} by running CS.Assign(BT ,u) and retrieves

{γ j0 , . . . ,γ jd} from BT where S′jk is associated with a node v jk and γ jk is assigned to the node v jk .

2. For 0≤ k≤ d, it sets MK′ABE =(γ jk ,Y) and obtains SKABE,k by running ABE.GenKey(S,MK′ABE ,
PPABE).

3. It outputs a private key as SKS,u =
(
PVu,SKABE,0, . . . ,SKABE,d

)
.

RS-ABE.UpdateKey(T,R,MK,PP): This algorithm takes as input an update time T , a set of revoked users
R, the master secret key MK, and the public parameters PP.

1. It first obtains a covering set CVR = {S′i1 , . . . ,S
′
im} by running CS.Cover(BT ,R) and retrieves

{γi1 , . . . ,γim} from BT where S′ik is associated with a node vik and γik is assigned to the node vik .

2. For 1 ≤ k ≤ m, it sets MK′SUE = (α − γik ,Y) and obtains SKSUE,k by running SUE.GenKey(T,
MK′SUE ,PPSUE).

3. It outputs an update key that implicitly includes T and R as UKT,R =
(
CVR,SKSUE,1, . . . ,SKSUE,m

)
.

RS-ABE.Encrypt(A,T,M,PP): This algorithm takes as input an LSSS access structure A, a time T , a
message M ∈M, and the public parameters PP.

1. It selects a random exponent s ∈ ZN and obtains CHABE and CHSUE by running ABE.Encrypt
(A,s,PPABE) and SUE.Encrypt(T,s,PPSUE) respectively. Note that it ignores two partial ses-
sion keys that are returned by ABE.Encrypt and SUE.Encrypt.

2. It outputs a ciphertext that implicitly includes T as CTA,T =
(
CHABE ,CHSUE ,C = Ωs ·M

)
.

RS-ABE.UpdateCT(CTA,T ,T +1,PP): This algorithm takes as input a ciphertext CTA,T =(CHABE ,CHSUE ,C)
for an LSSS access structure A and a time T , a new time T +1, and the public parameters PP.

1. It first obtains CH ′SUE by running SUE.UpdateCT(CHSUE ,T +1,PPSUE).

2. It outputs an updated ciphertext that implicitly includes T +1 as CTA,T+1 =
(
CHABE ,CH ′SUE ,C

)
.

30

RS-ABE.RandCT(CTA,T ,PP): This algorithm takes as input a ciphertext CTA,T = (CHABE ,CHSUE ,C) and
the public parameters PP.

1. It selects a random exponent s′ ∈ ZN and obtains CH ′ABE and CH ′SUE by running ABE.RandCT
(CHABE ,s′,PPABE) and SUE.RandCT(CHSUE ,s′,PPSUE), respectively.

2. It outputs a re-randomized ciphertext as CT ′A,T =
(
CH ′ABE ,CH ′SUE ,C

′ =C ·Ωs′
)
.

RS-ABE.Decrypt(CTA,T ,SKS,u,UKT ′,R,PP): This algorithm takes as input a ciphertext CTA,T = (CHABE ,
CHSUE ,C) for an LSSS access structure A and a time T , a private key SKS,u =(PVu,SKABE,0, . . . ,SKABE,d)
for a set of attributes S and a user index u, an update key UKT ′,R = (CVR,SKSUE,1, . . . ,SKSUE,m) for an
update time T ′ and a set of revoked users R, and the public parameters PP.

1. If u /∈ R, then it obtains (Si,S j) by running CS.Match(CVR,PVu). Otherwise, it outputs ⊥.

2. If S∈A and T ≤T ′, then it obtains EKABE and EKSUE by running ABE.Decrypt(CHABE ,SKABE, j,
PPABE) and SUE.Decrypt(CHSUE ,SKSUE,i,PPSUE) respectively and outputs a message M by
computing C ·

(
EKABE ·EKSUE

)−1. Otherwise, it outputs ⊥.

Remark 4.5. The ciphertext update algorithm of our scheme just outputs a valid updated ciphertext since a
past ciphertext will be erased in most applications. However, the definition of Sahai et al. [40] requires that
the output of UpdateCT should be equally distributed with that of Encrypt. Our scheme also can meet this
strong requirement by applying RandCT to the output of UpdateCT.

4.4 Correctness

The correctness of RS-ABE easily follows from the correctness of ABE, SUE, and SC. Suppose that the
private key of a user is associated with a set of attributes S and a user index u, the update key of the user
is associated with an update time T ′ and a set of revoked users R, and the ciphertext is associated with an
access structure A and a time T . If u /∈ R, then the user can find a private key for ABE and a private key
for SUE from the correctness of the CS scheme by running CS.Match. Next, if S ∈ A, then he can obtain a
session key for ABE by running ABE.Decrypt from the correctness of ABE. If T ≤ T ′, he also can obtain
a session key for SUE by running SUE.Decrypt from the correctness of SUE. Therefore he can obtain the
correct session key from two session key since the same random exponent s was used.

The output of the ciphertext update algorithm is a valid ciphertext for RS-ABE since the output of
SUE.UpdateCT is also a valid ciphertext for SUE. The ciphertext distribution of the ciphertext randomiza-
tion algorithm is statistically equal to that of the encryption algorithm since ABE.RandCT and SUE.RandCT
outputs statistically equivalent ciphertext headers for ABE and SUE respectively.

4.5 Security Analysis

We prove the security of our RS-ABE scheme under three static assumptions. Note that we don’t prove the
security of our RS-ABE scheme based on that of SUE and ABE schemes in a black-box manner, since our
scheme merges two schemes in a non-black-box way by using secret-sharing for key generation.

Theorem 4.6. The above RS-ABE scheme is fully secure under a chosen plaintext attack if Assumptions 1, 2,
and 3 hold. That is, for any PPT adversaryA, we have that AdvRS-ABE

A (λ)≤AdvA1
B (λ)+O(q2) ·AdvA2

B (λ)+
AdvA3

B (λ) where q is the maximum number of private key and update key queries of A.

31

Proof. For semi-functional types, we let g2 denote a fixed generator of the subgroup Gp2 . The semi-
functional types of private keys, update keys, and ciphertexts are defined as follows:

RS-ABE.GenKeySF. This algorithm first creates a normal private key SK′S,u = (PVu,SK′ABE,0, . . . ,SK′ABE,d)
using the master secret key where PVu = {S j0 , . . . ,S jd} and SK′ABE,k = (K′0,K

′
1,{K′2, j}). For 0≤ k≤ d,

it generates a random exponent δk,0 ∈ ZN once for the node vk ∈ BT that is related with S jk ∈ PVu and
builds a semi-functional ABE private key as

SKABE,k =
(

K0 = K′0gδk,0
2 , K1 = K′1,

{
K2, j = K′2, j

}
j∈S

)
.

It outputs a semi-functional private key as SKS,u = (PVu,SKABE,0, . . . ,SKABE,d). Note that it uses the
same δk,0 for the node vk in BT .

RS-ABE.UpdateKeySF. This algorithm first creates a normal update key UK′T,R =(CVR,SK′SUE,1, . . . ,SK′SUE,m)
using the master secret key where CVR = {Si1 , . . . ,Sin} and SK′SUE,k = (K′0,K

′
1,K

′
2,1, . . . ,K

′
2,n). For

1 ≤ k ≤ n, it generates a random exponent δk,1 ∈ ZN once for the node vk ∈ BT that is related with
Sik ∈CVR and builds a semi-functional SUE private key as

SKSUE,k =
(

K0 = K′0gδk,1
2 , K1 = K′1, K2,1 = K′2,1, . . . , K2,n = K′2,n

)
.

It outputs a semi-functional update key as UKT,R = (CVR,SKSUE,1, . . . ,SKSUE,n). Note that it uses the
same δvk,1 for the node vk in BT .

RS-ABE.EncryptSF. This algorithm first creates a normal ciphertext CT ′ = (CH ′ABE ,CH ′SUE ,C
′) where

CH ′ABE = (C′0,{C′1, j,C′2, j}) and CH ′SUE = (CH ′(0), . . . ,CH ′(d)). It chooses a random exponent c ∈ ZN ,
a random vector ~u = (u1, . . . ,un) ∈ Zn

N , and random exponents y1, . . . ,yd ∈ ZN . It builds a semi-
functional ciphertext header for ABE as

CHABE =
(

C0 =C′0gc
2,
{

C1, j =C′1, jg
A j·~u+zρ(j)yi

2 , C2, j =C′2, jg
−y j
2

}
1≤ j≤l

)
.

It builds a semi-functional ciphertext header CHSUE for SUE as the same as Theorem 3.10 except that
the same exponent c that is used for ABE is also used here. It outputs a semi-functional ciphertext as
CT = (CHABE ,CHSUE ,C′).

Note that if we use a semi-functional private key and a semi-functional update key to decrypt a semi-
functional ciphertext, then we fail to decrypt the ciphertext since an additional random element e(g2,g2)

c(δk,0+δk,1)

is left.
In the general security proof of dual system encryption, the normal challenge ciphertext is first changed

to a semi-functional one, and then the private keys are also changed to semi-functional ones one by one
through hybrid games [26, 27, 45]. However, we cannot use this proof strategy directly since a private key
SK consists of many ABE private keys {SKABE,i} and an update key UK also consists of many SUE private
keys {SKSUE, j}. Instead we use different hybrid games that change ABE private keys (or SUE private keys)
that are related with a specified node v in BT from normal ones to semi-functional ones one by one through
hybrid games. Note that this proof strategy was introduced by Sahai et al. [40].

For the hybrid games that change ABE private keys (or SUE private keys) that are related with a node v
from normal ones to semi-functional ones, we need to state additional information of a node v in BT that is
related with an ABE private key (or an SUE private key). Note that ABE private keys in a private key and

32

SUE private keys of an update key are related with some nodes in BT since the private key and the update
key of our RS-ABE scheme are related with a private set PVu and a covering set CVR respectively. Thus
we associate an ABE private key (or an SUE private key) with a tuple of indexes (in, ic) to state additional
information about the node v that is related with the ABE private key (or the SUE private key) where in is a
node index and ic is a counter index.

Suppose that an ABE private key (or an SUE private key) is related with a node v in BT . The node
index in for ABE private keys (or SUE private keys) is assigned as follows: If the node v appears first time
in queries, then we set in as the number of distinct node v′ in previous queries plus one. If the node v already
appeared before in queries, then we set in as the value i′n of previous ABE private key (or SUE private key)
with the same node v. The counter index ic for ABE private keys is assigned as follows: If the node v appears
first time in ABE private key queries, then we set ic as one. If the node v appeared before in ABE private
key queries, then we set ic as the number of ABE private keys with the node v that appeared before plus one.
Similarly, we assigns the counter index ic for SUE private keys.

The security proof consists of a sequence of hybrid games: The first game will be the original security
game and the last one will be a game such that the adversary has no advantage. We define the games as
follows:

Game G0. This game is the original security game. In this game, all private keys, all update keys, and the
challenge ciphertext are normal.

Game G1. In this game, all private keys and update keys are normal, but the challenge ciphertext is semi-
functional.

Game G2. Next, we define a new game G2. In this game, the challenge ciphertext, all private keys,
and all update keys are semi-functional. For the security proof, we define a sequence of games
G1,1, . . . ,G1,h, . . . ,G1,qn where G1 = G1,0 and qn is the number of nodes in BT that are used in ABE
private keys of private key queries and SUE private keys of update key queries. In the game G1,h for
1 ≤ h ≤ qn, the challenge ciphertext is semi-functional, ABE private keys in private keys and SUE
private keys in update keys with in index such that in ≤ h are semi-functional, and the remaining ABE
private keys and SUE private keys with a node index in such that h < in are normal. It is obvious that
G1,qn = G2. Note that qn < qsk · logNmax+quk ·rmax logNmax from Lemma 2.2 where qsk is the number
of private key queries, quk is the number of update key queries, Nmax is the number of leaf nodes, and
rmax is the maximum number of revoked set.

Game G3. In the final game G3, all private keys, all update keys, and the ciphertext are semi-functional,
but the session key is random.

Let AdvG j
A be the advantage of A in the game G j. We easily obtain that AdvRS-ABE

A (λ) = AdvG0
A , AdvG1

A =

AdvG1,0
A , and AdvG3

A = 0. From the following Lemmas 4.7, 4.8, and 4.19, we obtain the equation

AdvRS-ABE
A (λ) = AdvG0

A +(AdvG1
A −AdvG1

A)+
qn

∑
h=1

(
AdvG1,h

A −AdvG1,h
A
)
−AdvG3

A

≤
∣∣AdvG0

A −AdvG1
A
∣∣+ qn

∑
h=1

∣∣AdvG1,h−1
A −AdvG1,h

A
∣∣+ ∣∣AdvG2

A −AdvG3
A
∣∣

≤ AdvA1
B (λ)+(4

qn

∑
h=1

(qh,abe +qh,sue)+2qn) ·AdvA2
B (λ)+AdvA3

B (λ).

This completes our proof.

33

Lemma 4.7. If the Assumption 1 holds, then no polynomial-time adversary can distinguish between G0 and
G1 with a non-negligible advantage.

Proof. Suppose there exists an adversaryA that distinguishes between G0 and G1 with a non-negligible ad-
vantage. A simulator B that solves the Assumption 1 usingA is given: a challenge tuple D = ((N,G,GT ,e),
gp1 ,gp3) and T where Z = Z0 = X1 ∈ Gp1 or Z = Z1 = X1R1 ∈ Gp1 p2 . Then B that interacts with A is
described as follows:

Setup: B first select random exponents a,{t ′i},γ ∈ ZN and sets MKABE = (γ,Y = gp3) and the public param-
eters of ABE as

PPABE =
(
(N,G,GT ,e),g = gp1 ,g

a,{Ti = gt ′i},Λ = e(g,g)γ

)
.

It sets MKSUE and PPSUE as the same as Lemma 3.11. It also obtains BT by running CS.Setup and
assigns a random exponent γi to each node vi in BT . It selects a random exponent α ∈ ZN and sets
MK = (MKABE ,MKSUE ,α,BT) and PP =

(
PPABE ,PPSUE ,g = gp1 ,Ω = e(g,g)α

)
.

Query 1: In the query step,A adaptively request private keys and update keys. If this is a private key query,
B creates a normal private key by running RS-ABE.GenKey since it knows the master secret key. If this
is an update key query, B creates a normal update key by running RS-ABE.UpdateKey since it knows the
master secret key. Note that it cannot create a semi-functional one since it does not know gp2 .
Challenge: In the challenge step, A submits a challenge access structure A∗, a challenge time T ∗, and
challenge messages M∗0 ,M

∗
1 . To make the challenge ciphertext, B implicitly sets gs to be the Gp1 part of Z.

It selects random exponents v′2, . . . ,v
′
n,s
′
1, . . . ,s

′
l ∈ ZN and sets a random vector ~v′ = (1,v′2, . . . ,v

′
n). Next, it

creates a ciphertext header for ABE by implicitly setting~v = (s,sv′2, . . . ,sv′n) and s j = ss′j as

CHABE =
(

C0 = Z, {C1, j = (Z)aA j·~v′(Z)t ′
ρ(j)s

′
j , C2, j = (Z)−s′j}1≤ j≤l

)
.

It creates a ciphertext header CHSUE as the same as Lemma 3.11 by using the same element Z of the assump-
tion. Next, it flips a random coin b ∈ {0,1} and sets the challenger ciphertext as CT ∗A∗,T ∗ = (CHABE ,CHSUE ,
C = e(Z,g)α ·M∗b). It gives the challenge ciphertext to A.
Query 2: Same as Query 1.
Guess: A outputs a guess b′. If b = b′, then B outputs 1. Otherwise, it outputs 0.

If Z ∈Gp1 , then the above challenge ciphertext is normal. If Z ∈Gp1 p2 , the above challenge ciphertext
is semi-functional by the CRT. We omit the detailed analysis since it is the same as Lemma 7 in [26] and
Lemma 3.11. This completes our proof.

Lemma 4.8. If the Assumption 2 holds, then no polynomial-time adversary can distinguish between G1,h−1
and G1,h with a non-negligible advantage.

Proof. We first divide the behavior of an adversary as two types: Type-I and Type-II. We next show that this
lemma holds for two types of the adversary. The two types of adversaries are formally defined as follows:

Type-I. An adversary is Type-I if for the ABE private key with a node index h it queries an attribute set S
such that S /∈ A∗ where A∗ is the challenge access structure of the adversary.

Type-II. An adversary is Type-II if for the SUE private key with a node index h it queries an update time T
such that T < T ∗ where T ∗ is the challenge time of the adversary.

34

Note that these two types of an adversary are not a partition since an adversary can be both Type-I and
Type-II, but these two types cover all adversaries because of the restrictions in the security model. That is,
if an adversary is neither Type-I nor Type-II, then he can easily decrypt the challenge ciphertext by querying
both an ABE private key for S ∈A∗ with the node index h and an SUE private key for T ≥ T ∗ with the same
node index h. However, this is not allowed by the restrictions of the security model in Definition 4.2.

For the Type-I adversary AI , we define hybrid games H0,2,H1,1,H1,2, . . . ,Hqh,abe,1,Hqh,abe,2 = H′qh,abe,2,

H′qh,abe,1, . . . ,H
′
1,2,H′1,1,H′0,2,H′′ where H0,2 = G1,h−1, H′′ = G1,h, and qh,abe is the number of ABE private

keys with a node index h.

Game Hhc,1. This game Hhc,1 for 1≤ hc ≤ qh,abe is almost the same as G1,h−1 except the generation of ABE
private keys with a node index h. That is, ABE private keys and SUE private keys with a node index
in such that in < h are generated as semi-functional type, ABE private keys and SUE private keys with
a node index in such that h < in are generated as normal type, and SUE private keys with a node index
in = h are generated as normal type. ABE private keys with a node index in = h and a counter index
ic are generated as follows:

• ic < hc: It first generate a normal ABE private key SK′ = (K′0,K
′
1,{K′2, j}). It selects a new

random exponent δ ∈ ZN and outputs the ABE private key as

SKABE =
(

K0 = K′0gδ
2 , K1 = K′1, {K2, j = K′2, j}

)
.

Note that this ABE private key is the same as the semi-functional private key of type 2 in [26],
but it is different with the ABE private keys in a semi-functional RS-ABE private key since a
different random δ is selected for the same node v.

• ic = hc: It first generates a normal ABE private key SK′= (K′0,K
′
1,{K′2, j}). It selects new random

exponents δ ,b ∈ ZN and outputs the ABE private keys as

SKABE =
(

K0 = K′0gδ
2 , K1 = K′1gb

2, {K2, j = K′2, jg
zρ(j)b
2 }

)
.

Note that this ABE private key is the same as the semi-functional private key of type 1 in [26].

• ic > hc: It simply builds a normal ABE private key.

Game Hhc,2. This game Hhc,2 is almost the same as Hhc,1 except that the ABE private key with a counter
index ic such that ic = hc is generated with b = 0. This corresponds to generating first hc ABE private
keys for the node index h as semi-functional type 2 in [26] and remaining ABE private keys for the
node index h as normal type.

Game H′hc,1. This game H′hc,1 is almost the same as Hhc,1 except the generation of ABE private keys with
a counter index hc. Let SK′′ABE = (K′′0 ,K

′′
1 ,{K′′2, j}) be an ABE private key with a counter index hc that

is generated from the game Hhc,1. It generates a random exponent δk,0 once for the node vk that is
related with this ABE private key and builds a new ABE private key as

SKABE =
(

K0 = K′′0 gδk,0
2 , K1 = K′′1 , {K2, j = K′′2, j}

)
.

Game H′hc,2. This game H′hc,2 is almost the same as Hhc,2 except ABE private keys with a counter index
hc. The modification is similar to the game H′hc,1. We should note that Hqh,abe,2 = H′qh,abe,2 since the

35

random element gδ
2 in each ABE private keys subsumes the additional fixed element gδk,0

2 . In the game
H′0,2, all ABE private keys with a node index h are semi-functional of type 2 where δk,0 is fixed for
the node vk that is related with the node index h, but all SUE private keys with a node index h are still
normal.

Game H′′. This game H′′ is the same as G1,h. Compared to the game H′0,2, all SUE private keys with a node
index h are changed to be semi-functional of type 2 where δk,1 is fixed for the node vk.

Let AdvH
AI

be the advantage of AI in a game H. From the following Claims 4.9, 4.10, 4.11, 4.12, and
4.13, we can obtain the following equation

AdvH0,2
AI
−AdvH ′′

AI
= AdvH0,2

AI
+

qh,abe

∑
hc=1

(
AdvHhc,1

AI
−AdvHhc,1

AI

)
+

qh,abe

∑
hc=1

(
AdvHhc,2

AI
−AdvHhc,2

AI

)
+

qh,abe

∑
hc=1

(
Adv

H ′hc,1
AI
−Adv

H ′hc,1
AI

)
+

qh,abe−1

∑
hc=0

(
Adv

H ′hc,2
AI
−Adv

H ′hc,2
AI

)
−AdvH ′′

AI

≤
qh,abe

∑
hc=1

∣∣AdvHhc−1,2
AI

−AdvHhc,1
AI

∣∣+ qh,abe

∑
hc=1

∣∣AdvHhc,1
AI
−AdvHhc,2

AI

∣∣+
qh,abe

∑
hc=1

∣∣Adv
H ′hc,2
AI
−Adv

H ′hc,1
AI

∣∣+ qh,abe

∑
hc=1

∣∣Adv
H ′hc ,1
AI
−Adv

H ′hc−1,2
AI

∣∣+ ∣∣Adv
H ′0,2
AI
−AdvH ′′

AI

∣∣
≤ (4qh,abe +1) ·AdvA2

B (λ).

For the Type-II adversary AII , we also define hybrid games I0,2,I1,1,I1,2, . . . ,Iqh,sue,1,Iqh,sue,2 = I′qh,sue,2,

I′qh,sue,1, . . . ,I
′
1,2,I′1,1,I′0,2,I′′ where I0,2 = G1,h−1,I′′ = G1,h, and qh,sue is the number of SUE private keys with

a node index h.

Game Ihc,1. This game Ihc,1 is almost the same as G1,h−1 except the generation of SUE private keys with a
node index h. That is, ABE private keys and SUE private keys with a node index in such that in < h are
generated as semi-functional type, ABE private keys and SUE private keys with a node index in such
that h < in are generated as normal type, and ABE private keys with a node index in = h are generated
as normal type. SUE private keys with a node index in = h and a counter index ic are generated as
follows:

• ic < hc: It first generate a normal SUE private key SK′ = (K′0,K
′
1,K

′
2,1, . . . ,K

′
2,n). It selects a new

random exponent δ ∈ ZN and outputs a semi-functional SUE private key of type 2 as

SKSUE =
(

K0 = K′0gδ
2 , K1 = K′1, K2,1 = K′2,1, . . . , K2,n = K′2,n

)
.

Note that this ABE private key is different with the SUE private keys in a semi-functional RS-
ABE update key since a different random δ is selected for the same node v.

• ic = hc: It first generates a normal SUE private key SK′ = (K′0,K
′
1,K

′
2,1, . . . ,K

′
2,n). It selects new

random exponents δ ,b ∈ ZN and outputs a semi-functional SUE private keys of type 1 as

SKSUE =
(

K0 = K′0gδ
2 , K1 = K′1gb

2, K2,1 = K′2,1g
f1,L[1](L|1)b
2 , . . . , K2,1 = K′2,1g

fn,L[n](L|n)b
2 ,

)
.

• ic > hc: It simply builds a normal SUE private key.

36

Game Ihc,2. This game Ihc,2 is almost the same as Ihc,1 except that the SUE private key with a counter index
ic such that ic = hc is generated with b = 0. This corresponds to generating first hc SUE private keys
for the node index h as semi-functional type 2 and remaining ABE private keys for the node index h
as normal type.

Game I′hc,1. This game I′hc,1 is almost the same as Ihc,1 except that SUE private keys with a counter index hc.
Let SK′′SUE = (K′′0 ,K

′′
1 ,K

′′
2,1, . . . ,K

′′
2,n) be an SUE private key with a counter index hc that is generated

from the game Ihc,1. It generates a random exponent δk,1 once for the node vk that is related with this
SUE private key and builds a new SUE private key as

SKSUE =
(

K0 = K′′0 gδk,1
2 , K1 = K′′1 , K2,1 = K′′2,1, . . . ,K2,n = K′′2,n

)
.

Game I′hc,2. This game I′hc,2 is almost the same as Ihc,2 except SUE private keys with a counter index hc.
The modification is similar to the game I′hc,1. We should note that Iqh,sue,2 = I′qh,sue,2 since the random

element gδ
2 in each SUE private keys subsumes the additional fixed element gδk,1

2 . In the game I′0,2, all
SUE private keys with a node index h are semi-functional of type 2 where δk,1 is fixed for the node vk
that is related with the node index h, but all ABE private keys with a node index h are still normal.

Game I′′. This game I′′ is the same as G1,h. Compared to the game I′0,2, all ABE private keys with a node
index h are changed to be semi-functional of type 2 where δk,0 is fixed for the node vk.

Let AdvI
AII

be the advantage of AII in a game I. From the following Claims 4.14, 4.15, 4.16, 4.17, and
4.18, we can easily obtain the equation AdvI0,2

AII
−AdvI′′

AII
≤ (4qh,sue +1) ·AdvA2

B (λ).
Let EI,EII be the event such that an adversary behave like the Type-I, Type-II adversary respectively. If

an adversary can be both of types, then it just selects one type arbitrary. From the above two inequalities for
two types of adversaries, we have the following inequality as

AdvG1,h−1
A −AdvG1,h

A ≤ Pr[EI] · (AdvG1,h−1
AI

−AdvG1,h
AI

)+Pr[EII] · (AdvG1,h−1
AII

−AdvG1,h
AII

)

≤ Pr[EI] · (AdvH0,2
AI
−AdvH ′′

AI
)+Pr[EII] · (AdvI0,2

AII
−AdvI′′

AII
)

≤ Pr[EI] · (4qh,abe +1) ·AdvA2
B (λ)+(1−Pr[EI]) · (4qh,sue +1) ·AdvA2

B (λ)

≤ (4(qh,abe +qh,sue)+2) ·AdvA2
B (λ).

This completes our proof.

Claim 4.9. If the Assumption 2 holds, then no polynomial-time Type-I adversary can distinguish between
Hhc−1,2 and Hhc,1 with a non-negligible advantage.

Proof. Suppose there exists an adversary AI that distinguishes between Hhc−1,2 and Hhc,1 with a non-
negligible advantage. A simulator B that solves the Assumption 2 using AI is given: a challenge tuple
D = ((N,G,GT ,e),gp1 ,gp3 ,X1R1,R2Y1) and Z where Z = Z0 = X2Y2 or Z = Z1 = X2R3Y2. Then B that
interacts with AI is described as follows:

Setup: B first select random exponents a,{t ′i},γ ∈ ZN and sets MKABE = (γ,Y = gp3) and the public param-
eters of ABE as

PPABE =
(
(N,G,GT ,e),g = gp1 ,g

a,{Ti = gt ′i},Λ = e(g,g)γ

)
.

37

It sets MKSUE and PPSUE as the same as Lemma 3.12. It also obtains BT by running CS.Setup and assigns
random exponents γi,δi,0,δi,1 ∈ ZN to each node vi in BT . It selects a random exponent α ∈ ZN and sets
MK = (MKABE ,MKSUE ,α,BT) and PP =

(
PPABE ,PPSUE ,g = gp1 ,Ω = e(g,g)α

)
.

Query 1: In the query step, AI adaptively requests ABE private keys for private keys and SUE private keys
for update keys. If this is an ABE private key (or an SUE private key) query with indexes (in, ic), then B
handles this query as follows:

• Case in < h: It first builds a normal ABE private key (or a normal SUE private key) since it knows the
master secret key and converts it to a semi-functional one by using δk,0 (or δk,1) from BT and R2Y1
from the assumption.

• Case in = h: If this is an SUE private key query, then it creates a normal SUE private key since it
knows the master secret key. If this is an ABE private key query, then it proceeds as follows:

If ic < hc, then it first builds a normal ABE private key and converts it to semi-functional one of type
2 by selecting a new random exponent δ ∈ ZN as

SKABE =
(

K0 = gγ jk garY ′0 · (R2Y1)
δ , K1 = grY ′1, {K2, j = T r

j Y ′2, j} j∈S

)
.

If ic = hc, then it chooses random elements Y ′0,Y
′
1,{Y ′2, j} ∈Gp3 and builds an ABE private key as

SKABE =
(

K0 = gγ jk (Z)aY ′0, K1 = ZY ′1, {K2, j = (Z)t ′
ρ(j)Y ′2, j} j∈S

)
.

If ic > hc, it builds a normal ABE private key since it knows the master secret key.

• Case in > h: It creates a normal ABE private key (or a normal SUE private key) since it knows the
master secret key.

Challenge: In the challenge step, A submits a challenge access structure A∗, a challenge time T ∗, and
challenge messages M∗0 ,M

∗
1 . To make the semi-functional challenge ciphertext, B implicitly sets gs = X1 and

gc
2 = R1. It selects random exponents v′2, . . . ,v

′
n,s
′
1, . . . ,s

′
l ∈ ZN and sets a random vector~v′ = (a,v′2, . . . ,v

′
n).

Next it builds a semi-functional ciphertext header CHABE by implicitly setting ~v = sa−1~v′, ~u = c~v′, and
s j = ss′j,y j = ss′j as

CHABE =
(

C0 = X1R1, {C1, j = (X1R1)
A j~v′(X1R1)

t ′
ρ(j)s

′
j , C2, j = (X1R1)

−s′j}
)
.

It builds a ciphertext header CHSUE as the same as Lemma 3.12 by using the same element X1R1 of the
assumption. Next, it flips a random coin b ∈ {0,1} and creates the challenger ciphertext as CT ∗A∗,T ∗ =
(CHABE ,CHSUE ,C = e(X1R1,g)α ·M∗b).
Query 2: Same as Query 1.
Guess: A outputs a guess b′. If b = b′, then B outputs 1. Otherwise, it outputs 0.

If Z ∈ Gp1 p3 , the above simulation is properly distributed. If Z ∈ G, the above simulation is almost
properly distributed except that the C1, j components of the challenge ABE ciphertext header are correlated
with the ABE private key with indexes (h,hc) because ~v′ = (a, . . .) is used in C1, j to solve the paradox of
dual system encryption. Though these are correlated, we must argue that this is information theoretically
hidden to the Type-I adversary. To argue this, we can use the restriction of the Type-I adversary that he can
only request any ABE private key with a node index h for the set of attributes S such that S 6∈ A∗, and the
restrictions of attributes such that the attributes are only used once in the ciphertext header for ABE. This
argument is the same as that of Lemma 8 in [26].

38

Claim 4.10. If the Assumption 2 holds, then no polynomial-time Type-I adversary can distinguish between
Hhc,1 and Hhc,2 with a non-negligible advantage.

Proof. The proof of this claim is almost the same as that of Claim 4.9. The only difference is the generation
of an ABE private key for in = h and ic = hc. This ABE private key is generated as follows:

• If in = h and ic = hc, it chooses a new random exponent δ ∈ ZN and random elements Y ′0,Y
′
1,{Y ′2, j} ∈

Gp3 , and then builds an ABE private key as

SKABE =
(

K0 = gγ jk (Z)w′Y ′0(R2Y1)
δ , K1 = ZY ′1, {K2, j = (Z)t ′

ρ(j)Y ′2, j} j∈S

)
.

Note that the ABE private key with indexes (h,hc) is no longer correlated with the challenge ABE
ciphertext header since the K0 component of the ABE private key is re-randomized by (R2Y1)

δ .

Claim 4.11. If the Assumption 2 holds, then no polynomial-time Type-I adversary can distinguish between
H′hc,1 and H′hc,2 with a non-negligible advantage.

Claim 4.12. If the Assumption 2 holds, then no polynomial-time Type-I adversary can distinguish between
H′hc,1 and H′hc,2 with a non-negligible advantage.

The proofs of Claim 4.11 and Claim 4.12 are almost the same as that of Claim 4.9 and Claim 4.10
respectively. The only difference is that each element K0 of ABE private keys with a node index h that is
generated in Claim 4.9 and Claim 4.10 respectively is additionally multiplied by (R2Y1)

δ ′k,0 where δ ′k,0 is a
fixed exponent that is related with the node vk of the ABE private key. This modification is possible since
R2Y1 is given in the assumption. In this case, ABE private keys with the node index h additionally contain

R
δ ′k,0
2 . We omit the detailed proofs of these claims.

Claim 4.13. If the Assumption 2 holds, then no polynomial-time Type-I adversary can distinguish between
H′0,2 and H′′ with a non-negligible advantage.

Proof. The proof of this claim is almost the same as that of Claim 4.9 except that the generation of ABE
private keys and SUE private keys for in = h. In the query step, ABE private keys and SUE private keys for
in = h are generated as follows:

• Case in = h: If this is an ABE private key query, then it selects random r ∈ ZN ,Y ′0,Y
′
1,{Y ′2, j} ∈ Gp3

and builds an ABE private key by selecting δ ′k,0 ∈ ZN once for this node index h as

SKABE =
(

K0 = ZgarY ′0 · (R2Y1)
δ ′k,0 , K1 = grY ′1, {K2, j = T r

j Y ′2, j} j∈S

)
.

If this is an SUE private key query, then it selects random r ∈ ZN ,Y ′0,Y
′
1,Y
′
2,1, . . . ,Y

′
2,n ∈Gp3 and builds

an SUE private key as

SKSUE =
(

K0 = gαZ−1w−rY ′0, K1 = grY ′1, {K2, j = (uL| j
j,L[j]h j,L[j])

rY ′2, j}1≤ j≤n

)
.

Let gγh be the Gp1 part of Z and gδh
2 be the Gp2 part of Z. If Z ∈Gp1 p3 , the simulation is the same as H′0,2

since the SUE private key has K0 = gα−γhwrY0. If Z ∈ G, the simulation is the same as H′′ since the ABE

private key has K0 = gγhgarY0 ·gδh
2 R

δ ′k,0
2 and the SUE private key has K0 = gα−γhwrY0g−δh

2 . Note that the Gp2

part of the ABE private key and that of the SUE private key are reused across all queries with the same node
index h. This completes our proof.

39

Claim 4.14. If the Assumption 2 holds, then no polynomial-time Type-II adversary can distinguish between
Ihc−1,2 and Ihc,1 with a non-negligible advantage.

Proof. The public parameters, ABE private keys and SUE private keys with a node index in such that in 6= h,
and the challenge ciphertext are generated as the same as Claim 4.9. The ABE private keys and SUE private
keys for the node index in = h are generated as follows: If this is an ABE private key (or an SUE private
key) query with indexes (in, ic), then B handles this query as follows:

• Case in = h: If this is an ABE private key query, then it creates a normal ABE private key since it
knows the master secret key. If this is an SUE private key query, then it proceeds as follows:

If ic < hc, then it first builds a normal SUE private key and converts it to a semi-functional one of type
2 by selecting a new random exponent δ ∈ ZN as

SKSUE =
(

K0 = gα−γ jk w−rY ′0 · (R2Y1)
δ , K1 = grY ′1, {K2, j = (uL| j

j,L[j]h j,L[j])
rY ′2, j}1≤ j≤n

)
.

If ic = hc, then it chooses random elements Y ′0,Y
′
1,Y
′
2,1, . . . ,Y

′
2,n ∈ Gp3 and builds an SUE private key

as

SKSUE =
(

K0 = gα−γ jk (Z)−w′Y ′0, K1 = ZY ′1, {K2, j = (Z) f j,L[j](L| j)Y ′2, j}1≤ j≤n

)
.

If ic > hc, it builds a normal SUE private key since it knows the master secret key.

If Z ∈ Gp1 p3 , the above simulation is properly distributed. If Z ∈ G, the above simulation is almost
properly distributed except that the C1 component of the challenge SUE ciphertext header is correlated with
the SUE private key with indexes (h,hc) because w′ is used in C1 to solve the paradox of dual system
encryption. Though these are correlated, we must argue that this is information theoretically hidden to the
Type-II adversary. To argue this, we can use the restriction of the Type-II adversary that he can only request
any SUE private key with a node index h for the update time T such that T < T ∗. This argument is the same
as that of Lemma 3.12.

Claim 4.15. If the Assumption 2 holds, then no polynomial-time Type-II adversary can distinguish between
Ihc,1 and Ihc,2 with a non-negligible advantage.

Proof. The proof of this claim is almost the same as that of Claim 4.14. The only difference is the generation
of an SUE private key for in = h and ic = hc. This SUE private key is generated as follows:

• If in = h and ic = hc, it chooses random elements δ ∈ ZN ,Y ′0,Y
′
1,Y
′
2,1, . . . ,Y

′
2,n ∈ Gp3 , and then builds

an SUE private key as

SKSUE =
(

K0 = gα−γ jk (Z)−w′Y ′0(R2Y1)
δ , K1 = ZY ′1, {K2, j = (Z) f j,L[j](L| j)Y ′2, j}1≤ j≤n

)
.

Note that the SUE private key with indexes (h,hc) is no longer correlated with the challenge SUE
ciphertext header since the K0 component of the SUE private key is re-randomized by (R2Y1)

δ .

Claim 4.16. If the Assumption 2 holds, then no polynomial-time Type-II adversary can distinguish between
I′hc−1,2 and I′hc,1 with a non-negligible advantage.

Claim 4.17. If the Assumption 2 holds, then no polynomial-time Type-II adversary can distinguish between
I′hc,1 and I′hc,2 with a non-negligible advantage.

40

The proofs of Claim 4.16 and Claim 4.17 are almost the same as that of Claim 4.14 and Claim 4.15
respectively except that each element K0 of SUE private keys with a node index h that are generated in Claim
4.14 and Claim 4.15 respectively is additionally multiplied by (R2Y1)

δ ′k,1 where δ ′k,1 is a fixed exponent that
is related with the node vk of the SUE private key. We omit the detailed proofs of these claims.

Claim 4.18. If the Assumption 2 holds, then no polynomial-time Type-II adversary can distinguish between
I′0,2 and I′′ with a non-negligible advantage.

Proof. The proof of this claim is almost the same as that of Claim 4.14 except that the generation of ABE
private keys and SUE private keys for in = h. In the query step, ABE private keys and SUE private keys for
in = h are generated as follows:

• Case in = h: If this is an SUE private key query, then it selects random r ∈ ZN ,Y ′0,Y
′
1,{Y ′2, j} ∈ Gp3

and builds an SUE private key by selecting δ ′k,1 ∈ ZN once for this node index h as

SKSUE =
(

K0 = gαZ−1w−rY ′0 · (R2Y1)
δ ′k,1 , K1 = grY ′1, {K2, j = (uL| j

j,L[j]h j,L[j])
rY ′2, j}1≤ j≤n

)
.

If this is an ABE private key query, then it selects random r ∈ZN ,Y ′0,Y
′
1,Y
′
2,1, . . . ,Y

′
2,n ∈Gp3 and builds

an ABE private key as

SKABE =
(

K0 = ZgarY ′0, K1 = grY ′1, {K2, j = T r
j Y ′2, j} j∈S

)
.

Let gγh be the Gp1 part of Z and gδh
2 be the Gp2 part of Z. If Z ∈ Gp1 p3 , the simulation is the same as

I′0,2 since the ABE private key has K0 = gγhgarY0. If Z ∈ G, the simulation is the same as I′′ since the SUE

private key has K0 = gα−γhw−rY0 · g−δh
2 R

δ ′k,1
2 and the ABE private key has K0 = gγhgarY0gδh

2 . Note that the
Gp2 part of the ABE private key and that of the SUE private key are reused across all queries with the same
node index h.

Lemma 4.19. If the Assumption 3 holds, then no polynomial-time adversary can distinguish between G2
and G3 with a non-negligible advantage.

Proof. Suppose there exists an adversary A that distinguish G2 from G3 with a non-negligible advan-
tage. A simulator B that solves the Assumption 3 using A is given: a challenge tuple D = ((N,G,GT ,e),
gp1 ,gp2 ,gp3 ,g

a
p1

R1,gb
p1

R2) and Z where Z = Z0 = e(gp1 ,gp1)
ab or Z = Z1 = e(gp1 ,gp1)

c. Then B that interacts
with A is described as follows:

Setup: B chooses random exponents a,{t ′i},γ ∈ZN and sets MKABE =(γ,Y = gp3) and the public parameters
of ABE as

PPABE =
(
(N,G,GT ,e),g = gp1 ,g

a,{Ti = gt ′i},Λ = e(g,g)γ
)
.

It sets MKSUE and PPSUE as the same as Lemma 3.14. It also obtains BT by running CS.Setup and assigns
random exponents γi,δi,0,δi,1 ∈ ZN to each node vi in BT . It implicitly sets α = a from the term ga

p1
R1 and

creates PP = (PPABE ,PPSUE ,g = g1,Ω = e(g,ga
p1

R1)).
Query 1: In the query step,A adaptively requests private keys and update keys. If this is a private key query,
then B creates a semi-functional private key since it knows {gγi ,gδi,0

2 } from BT and gp2 from the assumption.
If this is an update key query, then B creates a semi-functional update key since it knows ga

p1
R1,gp2 from the

41

assumption and {gγi ,gδi,1
2 } from BT . Note that it cannot create a normal update key since it does not know

ga
p1

.

Challenge: In the challenge step, B first selects random exponents y′2, . . . ,y
′
n and sets a random vector

~v′ = (a,y′2, . . . ,y
′
n) and creates a ciphertext header for ABE by selecting random exponents s1, . . . ,sl ∈ ZN as

CHABE =
(

C0 = gb
p1

R2, {C1, j = (gb
p1

R2)
A j·~v′(gb

p1
R2)

t ′
ρ(j)s j , C2, j = (gb

p1
R2)
−s j}1≤ j≤l

)
.

It creates a ciphertext header CHSUE as the same as Lemma 3.14. Next, it flips a random coin b ∈ {0,1} and
sets the challenger ciphertext as CT ∗A∗,T ∗ = (CHABE ,CHSUE ,C = Z ·M∗b).
Query 2: Same as Query 1.
Guess: A outputs a guess b′. If b = b′, then B outputs 1. Otherwise, it outputs 0.

If Z = e(gp1 ,gp1)
ab, the challenge ciphertext is properly distributed as a semi-functional one. Otherwise,

C is an encryption of a random message. This completes our proof.

4.6 Discussions

Efficiency. In our RS-ABE scheme, the number of group elements in a private key, an update key, and
a ciphertext is logNmax · |S|, r log(Nmax/r) · logTmax, and 2l + 3logTmax respectively where S is the set of
attributes, r is the size of a revoked set R, and l is the row size of an access structure. The decryption
algorithm of our RS-ABE scheme requires at most 2l + logTmax pairing operations. In the RS-ABE scheme
of Sahai et al. [40], the number of group elements in a ciphertext is 2 logTmax · (l + 2logTmax) since a
piecewise CP-ABE scheme was used. For instance, if we set Tmax = 220 and l = 20, then the ciphertext
of our scheme consists of just 100 group elements whereas the ciphertext of their scheme consists of 2400
group elements.

Removing Stored Exponents. In the setup algorithm of our RS-ABE scheme, each node vi in BT keeps a
random exponent γi for later use. If we use the idea of Libert and Vergnaud [31] that uses a pseudo-random
function (PRF), then we can remove this requirement. That is, the authority keeps a seed z for PRF and
deterministically generates a random exponent γi for a node vi ∈ BT when it is needed as γi = PRFz(Li)
where Li is a label string that is associated with vi. The security of this modified scheme easily follows from
the security of PRF.

Supporting an Exponential Number of Users. The setup algorithm of our RS-ABE scheme takes the
maximum (polynomial) number of users Nmax. One problem of our RS-ABE scheme is that it cannot expand
the capacity of users if the number of users exceeds Nmax. We may try to use the idea of Boldyreva et al. [3]
that combines an old binary tree and an empty binary tree into a new bigger binary tree. However, it is
not easy to broadcast the new private key components of users for the root node of the new binary tree in
RS-ABE since an attribute in a private key is shared among different users. If we consider the modified
RS-ABE scheme that uses a PRF to remove the stored exponents, then it can support an exponential number
of users by simply setting Nmax = 2λ . In this case, the setup algorithm does not need to keep the binary tree
BT in MK.

Deriving Decryption Keys. The decryption algorithm of our RS-ABE scheme uses a (long-term) private
key SK and an update key UK instead of using a (short-term) decryption key DK that can be derived from SK
and UK to directly decrypt a ciphertext. The use of decryption keys in R-IBE was introduced by Boldyreva
et al. [3], and this can be useful to protect SK by storing it in a temper-proof hardware and DK in a weakly
secure memory area. However, we should consider decryption key exposure attacks in this scenario as

42

pointed by Seo and Emura [43]. We can modify our RS-ABE scheme to support the derivation of DK by
tying the element K0 of SKABE, j ∈ SK and the element K0 of SKSUE,i ∈UK that match the same node in BT .
This modified scheme can be secure against decryption key exposure attacks since SK cannot be extracted
from DK by key re-randomization5.

Key-Policy ABE. For our RS-ABE scheme, we use the CP-ABE scheme of Lewko et al. [26] as a primary
encryption scheme where CP-ABE supports an access structure f in a ciphertext and a set of attributes S
in a private key. We expect that an RS-ABE scheme that has an access structure f in a private key and
a set of attributes S in a ciphertext can be built by using the KP-ABE scheme of Lewko et al. [26] as the
primary encryption scheme. Sahai et al. [40] also proposed an RS-ABE scheme that supports a key-policy
by employing their piecewise KP-ABE scheme.

5 Revocable-Storage Predicate Encryption

In this section, we introduce the concept of RS-PE and propose an RS-PE scheme by combining the predicate
encryption scheme of Park [36] and our SUE scheme.

5.1 Definitions

Revocable-storage predicate encryption (RS-PE) is predicate encryption (PE) that supports additionally the
revocation functionality and the ciphertext update functionality. That is, RS-PE can prevent the access of a
user whose private key is revealed to ciphertexts that will be created in the future time by revoking the user,
and it also can prevent the access of the user to ciphertexts that were created in the past time by updating
the ciphertexts. Additionally, RS-PE can hide the attribute information in ciphertexts compared to RS-ABE.
The following is the syntax of RS-PE.

Definition 5.1 (Revocable-Storage Predicate Encryption). A revocable-storage predicate encryption (RS-
PE) scheme for the class of predicates F over the set of attributes Σ consists of seven PPT algorithms
Setup, GenKey, UpdateKey, Encrypt, UpdateCT, RandCT, and Decrypt, which are defined as follows:

Setup(1λ ,Tmax,Nmax). The setup algorithm takes as input a security parameter 1λ , the maximum time Tmax,
and the maximum number of users Nmax, and it outputs public parameters PP and a master secret key
MK.

GenKey(f ,u,MK,PP). The key generation algorithm takes as input a predicate f ∈F , a user index u∈N ,
the master secret key MK, and the public parameters PP, and it outputs a private key SK f ,u.

UpdateKey(T,R,MK,PP). The key update algorithm takes as input a time T ≤ Tmax, a set of revoked users
R⊆N , the master secret key MK, and the public parameters PP, and it outputs an update key UKT,R.

Encrypt(I,T,M,PP). The encryption algorithm takes as input an attribute I ∈ Σ, a time T ≤ Tmax, a
message M ∈M, and the public parameters PP, and it outputs a ciphertext CTT .

UpdateCT(CTT ,T + 1,PP). The ciphertext update algorithm takes as input a ciphertext CTT for an at-
tribute I and a time T , a new time T + 1, and the public parameters PP, and it outputs an updated
ciphertext CTT ′ for the attribute I and the new time T +1.

5To support perfect re-randomization, we can move the element Y ∈ Gp3 in MK of ABE (or SUE) into PP since the static
assumptions always contain gp3 ∈Gp3 .

43

RandCT(CTT ,PP). The ciphertext randomization algorithm takes as input a ciphertext CTT for an attribute
I and a time T , and the public parameters PP, and it outputs a re-randomized ciphertext CT ′T .

Decrypt(CTT ,SK f ,u,UKT ′,R,PP). The decryption algorithm takes as input a ciphertext CTT , a private
key SK f ,u, an update key UKT ′,R, and the public parameters PP, and it outputs a message M or the
distinguished symbol ⊥.

The correctness property of RS-PE is defined as follows: For all PP,MK generated by Setup, all f and u,
any SK f ,u generated by GenKey, all I, T , and M, any CTT generated by Encrypt or UpdateCT, all T ′ and
R, any UKT ′,R generated by UpdateKey, it is required that:

• If (f (I) = 1)∧ (u /∈ R)∧ (T ≤ T ′), then Decrypt(CTT ,SK f ,u,UKT ′,R,PP) = M.

• If (f (I) = 0)∨ (u ∈ R)∨ (T ′ < T), then Decrypt(CTT ,SK f ,u,UKT ′,R,PP) =⊥ with all but negligible
probability.

The security property of RS-PE can be defined by combining the security property of RS-ABE in Section
4 and that of PE [22]. However, we should be careful to define the security property of RS-PE since the
security property of PE considers not only the security of messages, but also the security of attributes. In
this paper, we define a selective (revocation list) security for RS-PE such that an adversary should submits
challenge attributes I∗0 , I

∗
1 , a challenge time T ∗, and the set of revoked users R∗ at the time T ∗ before he

receives the public parameters. The following is the formal definition of the security.

Definition 5.2 (Selective Revocation List Security). The security property for RS-PE is defined in terms
of the indistinguishability under a chosen plaintext attack (IND-CPA). The selective security game for this
property is defined as the following game between a challenger C and a PPT adversary A:

1. Init: A first submits two challenge attributes I∗0 , I
∗
1 ∈ Σ, a challenge time T ∗ ≤ Tmax, and the set of

revoked users R∗ ⊆N at the time T ∗.

2. Setup: C generates the public parameters PP and the master secret key MK by running Setup(1λ),
and it gives PP to A.

3. Query 1: A may adaptively request a polynomial number of private keys and update keys. C proceeds
as follows:

• If this is a private key query for a predicate f ∈ F and a user index u ∈ N , then it gives the
corresponding private key SK f ,u toA by running GenKey(f ,u,MK,PP). Note that the adversary
is allowed to query only one private key for each user u.

• If this is an update key query for an update time T ≤ Tmax and a set of revoked users R⊆N , then
it gives the corresponding update key UKT,R to A by running UpdateKey(T,R,MK,PP). Note
that the adversary is allowed to query only one update key for each time T .

We also require that Ri ⊆ R j if Ti < Tj where Ri and R j are the sets of revoked users at the time Ti and
Tj respectively.

4. Challenge: A submits two challenge messages M∗0 ,M
∗
1 ∈M of equal length subject to the following

restrictions:

• If M∗0 6= M∗1 , it is required that (fi(I∗0) = 0)∨ (ui ∈ R j)∨ (Tj < T ∗) and (fi(I∗1) = 0)∨ (ui ∈
R j)∨ (Tj < T ∗) for all {(fi,ui)} of private key queries and all {(Tj,R j)} of update key queries.

44

• If M∗0 = M∗1 , it is required that fi(I∗0) = fi(I∗1) for all {(fi,ui)} of private key queries.

C chooses a random bit b and gives the ciphertext CT ∗ to A by running Encrypt(I∗b ,T
∗,M∗b ,PP).

5. Query 2: A may continue to request private keys and update keys subject to the same restrictions as
before, and C gives the corresponding private keys and update keys to A.

6. Guess: Finally A outputs a bit b′.

The advantage of A is defined as AdvRS-PE
A (λ) =

∣∣Pr[b = b′]− 1
2

∣∣ where the probability is taken over all the
randomness of the game. A RS-PE scheme is selectively secure under a chosen plaintext attack if for all PPT
adversaries A, the advantage of A in the above game is negligible in the security parameter λ .

Remark 5.3. In the above security model, the adversary additionally submits the set of revoked users R∗

at the time T ∗. Thus this model is weaker than the usual selective security model that the adversary only
submits the challenge attributes and a challenge time. However, Boldyreva et al. [3] already used this
weaker selective model to prove their revocable ABE scheme.

Remark 5.4. If the adversary submits M∗0 ,M
∗
1 such that M∗0 6= M∗1 in the challenge step, then the restrictions

in the challenge step implies that all private keys for a predicate f and a user index u that satisfy f (I∗b) = 1
should be revoked for all update keys with T ≥ T ∗. That is, u ∈ R∗ for all private keys with f and u such that
f (I∗b) = 1. Note that we easily have that R∗ ⊆ R j for all R j with Tj ≥ T ∗ since it is required that Ri ⊆ R j if
Ti < Tj in the security model.

5.2 Construction

We construct an RS-PE scheme in prime order groups by combining a PE scheme and the SUE scheme in
Appendix A. The basic idea of constructing an RS-PE scheme by combining the PE and SUE schemes are
the same as that of the RS-ABE scheme in Section 4.

Before presenting our RS-PE scheme, we first describe the PE scheme of Park [36] in prime order
groups. This PE scheme supports supports the class of predicates F = { f~y |~y = (y1, . . . ,yn) ∈ Zn

p} such that

f~y(~x) =
{

1 if 〈~x,~y〉= 0 mod p,
0 otherwise

and secure under standard assumptions. The PE scheme in prime order groups is described as follows:

PE.Setup(GDS,n): This algorithm takes as input a group description string GDS = ((p,G,GT ,e),g) and a
parameter n. It chooses random exponents ω,{w1,i}n

i=1,{ f1,i, f2,i}n
i=1,{t1,i}n

i=1,{h1,i,h2,i}n
i=1,u1,u2,v1,

v2,γ ∈ Zp. Next, it computes {w2,i}n
i=1,{t2,i}n

i=1 to satisfy the constraints ω = u1w2,i− u2w1,i and
ω = v1t2,i− v2t1,i. It outputs the master secret key MK = (γ,{ f1,i, f2,i,h1,i,h2,i}n

i=1) and the public
parameters as

PP =
(
(p,G,GT ,e),g, gω ,{W1,i = gw1,i ,W2,i = gw2,i ,F1,i = g f1,i ,F2,i = g f2,i}n

i=1,

{T1,i = gt1,i ,T2,i = gt2,i ,H1,i = gh1,i ,H2,i = gh2,i}n
i=1,{Ui = gui ,Vi = gvi}2

i=1,Λ = e(g,g)γ

)
.

45

PE.GenKey(~y,MK,PP): This algorithm takes as input a vector~y = (y1, . . . ,yn), the master secret key MK,
and the public parameters PP. It first selects random exponents λ1,λ2,{ri},{φi} ∈ Zp. It outputs a
private key that implicitly includes~y as

SK~y =
(

KA = gγ
n

∏
i=1

K− f1,i
1,i K− f2,i

2,i K−h1,i
3,i K−h2,i

4,i , KB =
n

∏
i=1

g−(ri+φi),{
K1,i =U−ri

2 W λ1yi
2,i , K2,i =U ri

1 W−λ1yi
1,i

}n
i=1,

{
K3,i =V−φi

2 T λ2yi
2,i , K4,i =V φi

1 T−λ2yi
1,i

}n
i=1

)
.

PE.Encrypt(~x,s,PP): This algorithm takes as input a vector ~x = (x1, . . . ,xn), a random exponent s ∈ Zp,
and the public parameters PP. It selects random exponents s1,s3,s4 ∈ Zp and outputs a ciphertext
header as

CH =
(

CA = gs,CB = gωs1 ,
{

C1, j =W s1
1,iF

s
1,iU

xis3
1 , C2,i =W s1

2,iF
s

2,iU
xis3
2

}n
i=1,{

C3,i = T s1
1,iH

s
1,iV

xis4
1 , C4,i = T s1

2,iH
s
2,iV

xis4
2

}n
i=1

)
and a session key EK = Λs.

PE.RandCT(CH,s′,PP): This algorithm takes as input a ciphertext CH, a random exponent s′ ∈ Zp, and
the public parameters PP. It selects a random exponent s′1 ∈ Zp and outputs a partially re-randomized
ciphertext header as

CH ′ =
(

C′A =CA ·gs′ ,C′B =CB ·gωs′1 ,
{

C′1,i =C1,i ·W
s′1
1,iF

s′
1,i, C′2,i =C2,i ·W

s′1
2,iF

s′
2,i
}n

i=1,{
C′3,i =C3,i ·T

s′1
1,iH

s′
1,i, C′4,i =C4,i ·T

s′1
2,iH

s′
2,i
}n

i=1

)
and a partial session key EK′ = Λs′ that will be multiplied with the session key EK of CH.

PE.Decrypt(CH,SK~y,PP): This algorithm takes as input a ciphertext header CH, a private key SK~y for a
vector~y, and the public parameters PP. It outputs a session key as

EK = e(CA,KA) · e(CB,KB) ·
n

∏
i=1

4

∏
j=1

e(C j,i,K j,i).

Note that it never returns ⊥ even when 〈~x,~y〉 6= 0.

LetM be a subset of GT such that |M| ≤ p1/2. Our RS-PE scheme that uses the above PE scheme as a
building block is described as follows:

RS-PE.Setup(1λ ,n,Tmax,Nmax): This algorithm takes as input a security parameter 1λ , the size of vectors
n, the maximum time Tmax, and the maximum number of users Nmax.

1. It first generates bilinear groups G,GT of prime order p. Let g be the generator of G. It sets
GDS = ((p,G,GT ,e),g).

2. It obtains MKPE ,PPPE and MKSUE ,PPSUE by running PE.Setup(GDS,n) and SUE.Setup(GDS,
Tmax) respectively. It also obtains BT by running CS.Setup(Nmax) and assigns a random expo-
nent γi ∈ Zp to each node vi in BT .

46

3. It selects a random exponent α ∈Zp, and the it outputs the master secret key MK =(MKPE ,MKSUE ,
α,BT) and the public parameters as PP =

(
PPPE ,PPSUE ,g,Ω = e(g,g)α

)
.

RS-PE.GenKey(~y,u,MK,PP): This algorithm takes as input a vector ~y, a user index u, the master secret
key MK = (MKPE ,MKSUE ,α,BT), and the public parameters PP.

1. It first obtains a private set PVu = {S j0 , . . . ,S jd} by running CS.Assign(BT ,u) and retrieves
random exponents {γ j0 , . . . ,γ jd} from BT where γ jk is assigned to the node v jk .

2. For 0 ≤ k ≤ d, it sets MK′PE = (γ jk ,{. . .}) by just replacing the first component γ to γ jk and
obtains SKPE,k by running PE.GenKey(~y,MK′PE ,PPPE).

3. It outputs a private key as SK~y,u =
(
PVu,SKPE,0, . . . ,SKPE,d

)
.

RS-PE.UpdateKey(T,R,MK,PP): This algorithm takes as input an update time T , a set of revoked users
R, the master secret key MK, and the public parameters PP.

1. It first obtains a covering set CVR = {Si1 , . . . ,Sim} by running CS.Cover(BT ,R).
2. For 1≤ k≤m, it sets MK′SUE =(α−γik) and obtains SKSUE,k by running SUE.GenKey(T,MK′SUE ,

PPSUE).

3. It outputs an update key that implicitly includes T and R as UKT,R =
(
CVR,SKSUE,1, . . . ,SKSUE,m

)
.

RS-PE.Encrypt(~x,T,M,PP): This algorithm takes as input a vector ~x, a time T , a message M ∈M, and
the public parameters PP.

1. It selects a random exponent s ∈ Zp and obtains CHPE and CHSUE by running PE.Encrypt(~x,s,
PPPE) and SUE.Encrypt(T,s,PPSUE), respectively. Note that it ignores two partial session keys
that are returned by PE.Encrypt and SUE.Encrypt.

2. It outputs a ciphertext that implicitly includes T as CTT =
(
CHPE ,CHSUE ,C = Ωs ·M

)
.

RS-PE.UpdateCT(CTT ,T +1,PP): This algorithm takes as input a ciphertext CTT = (CHPE ,CHSUE ,C)
for a vector~x and a time T , a new time T +1, and the public parameters PP.

1. It first obtains CH ′SUE by running SUE.UpdateCT(CHSUE ,T +1,PPSUE).

2. It outputs an updated ciphertext that implicitly includes T +1 as CTT+1 =
(
CHPE ,CH ′SUE ,C

)
.

RS-PE.RandCT(CTT ,PP): This algorithm takes as input a ciphertext CTT = (CHPE ,CHSUE ,C) and the
public parameters PP.

1. It selects a random exponent s′ ∈Zp and obtains CH ′PE and CH ′SUE by running PE.RandCT(CHPE ,
s′,PPPE) and SUE.RandCT(CHSUE ,s′,PPSUE), respectively.

2. It outputs a re-randomized ciphertext as CT ′T =
(
CH ′PE ,CH ′SUE ,C

′ =C ·Ωs′
)
.

RS-PE.Decrypt(CTT ,SK~y,u,UKT ′,R,PP): This algorithm takes as input a ciphertext CTT =(CHPE ,CHSUE ,C)
for a vector ~x and a time T , a private key SK~y,u = (PVu,SKPE,0, . . . ,SKPE,d) for a vector ~y and a user
index u, an update key UKT ′,R = (CVR,SKSUE,1, . . . ,SKSUE,m) for an update time T ′ and a revoked set
of users R, and the public parameters PP.

1. If u /∈ R, then it obtains (Si,S j) by running CS.Match(CVR,PVu). Otherwise, it outputs ⊥.

47

2. If T ≤ T ′, then it obtains EKPE and EKSUE by running PE.Decrypt(CHPE ,SKPE, j,PPPE) and
SUE.Decrypt(CHSUE ,SKSUE,i,PPSUE) respectively and obtains a message M by computing C ·(
EKPE ·EKSUE

)−1. If M ∈M, then it outputs M. Otherwise, it outputs ⊥.

The correctness of RS-PE easily follows from the correctness of PE, SUE, and SC. The proof of correct-
ness is almost similar to that of RS-ABE except that this scheme uses a limited message spaceM to check
〈~x,~y〉= 0. We omit the proof of this.

In the PE scheme of Park [36], a ciphertext cannot be perfectly re-randomized without knowing the
vector~x of the ciphertext since~x is hidden by the attribute-hiding property of PE. However, it is possible to
partially re-randomize a ciphertext, and this re-randomized ciphertext is computationally indistinguishable
from that of the encryption algorithm since the randomness that is not associated with ~x is perfectly ran-
domized and the randomness associated with ~x is computationally hidden by the attribute-hiding property.
Because of this, the output of RS-PE.UpdateCT may not be statistically close to that of RS-PE.Encrypt.

5.3 Security Analysis

One variant of PE is predicate-only PE (poPE) [22]. In poPE, a ciphertext is an encryption on a vector ~x
instead of a vector~x and a message M. The above PE scheme can be easily converted to a poPE scheme by
removing gγ from KA in the private key and removing the session key from the ciphertext. Park proved that
the poPE scheme is secure under the DLIN assumption.

Theorem 5.5 ([36]). The predicate-only PE (poPE) scheme that is derived from the above PE scheme is
selectively attribute-hiding if the DLIN assumption holds. That is, for any PPT adversary A, we have that
AdvpoPE

A (λ)≤ 1/2 ·4AdvDLIN
B (λ).

Theorem 5.6. The above RS-PE scheme is selectively secure under a chosen plaintext attack if the DBDH
and DLIN assumptions hold. That is, for any PPT adversaryA, we have that AdvRS-PE

A (λ)≤ 2AdvDLIN
B (λ)+

AdvDBDH
B (λ).

Proof. We first divide the behavior of an adversary as two types: Type-A and Type-B. The two types of
adversaries are formally defined as follows:

Type-A. An adversary is Type-A if it submits two challenge messages M∗0 ,M
∗
1 such that M∗0 = M∗1 .

Type-B. An adversary is Type-B if it submits two challenge messages M∗0 ,M
∗
1 such that M∗0 6= M∗1 .

The security proof consists of a sequence of hybrid games G0,G1,G2, and G3. We define the games as
follows:

Game G0. In this game, the challenge ciphertext CT ∗ = (CH∗PE ,CH∗SUE ,C
∗) is an encryption on the vector

~x∗0, the time T ∗, and the message M∗0 . That is, the ciphertext header CH∗PE is an encryption on the
vector~x∗0 and the ciphertext header CH∗SUE is an encryption on the time T ∗, and the component C∗ is
an encryption on the message M∗0 . Note that this game is the original security game except that the
challenge bit b is fixed to 0.

Game G1. This game is almost the same as the game G0 except that the ciphertext header CH∗PE is an
encryption on the vector~x∗1. That is, the challenge ciphertext is an encryption on~x∗1, T ∗, and M∗0 .

Game G2. Next, we define a new game G2. This game is almost identical to the game G1 except that the
component C∗ of the challenge ciphertext is replaced by an random element in GT .

48

Game G3. In the final game G3, the challenge ciphertext is an encryption on the vector~x∗1, the time T ∗, and
the message M∗1 . Note that this game is the original security game except that the challenge bit b is
fixed to 1.

Let EG j
A be an event thatA outputs 0 in the game G j. We easily obtain Pr[EG1

AA
] = Pr[EG3

AA
] since M∗0 =M∗1

for the Type-A adversary. From Lemma 5.7, we obtain the equation for the Type-A adversary as

Pr[EG0
AA

]−Pr[EG3
AA

] = Pr[EG0
AA

]−Pr[EG1
AA

]≤
∣∣Pr[EG0

AA
]−Pr[EG1

AA
]
∣∣≤ 4AdvDLIN

B (λ).

From Lemma 5.8, 5.9, and 5.10, we obtain the equation for the Type-B adversary as

Pr[EG0
AB

]−Pr[EG3
AB

] = Pr[EG0
AB

]+ (Pr[EG1
AB

]−Pr[EG1
AB

])+(Pr[EG2
AB

]−Pr[EG2
AB

])−Pr[EG3
AB

]

≤
∣∣Pr[EG0

AB
]−Pr[EG1

AB
]
∣∣+ ∣∣Pr[EG1

AB
]−Pr[EG2

AB
]
∣∣+ ∣∣Pr[EG2

AB
]−Pr[EG3

AB
]
∣∣

≤ 4AdvDLIN
B (λ)+2AdvDBDH

B (λ).

Let EA,EB be the event that an adversary behaves like the Type-A and Type-B adversary respectively. Then
we obtain the following inequality relation as

AdvRS-PE
A (λ) =

∣∣Pr[b = 0] ·Pr[b = b′|b = 0]+Pr[b = 1] ·Pr[b = b′|b = 1]− 1
2

∣∣
=
∣∣1
2
·Pr[b′ = 0|b = 0]+

1
2
· (1−Pr[b′ = 0|b = 1])− 1

2

∣∣
=

1
2
·
∣∣Pr[b′ = 0|b = 0]−Pr[b′ = 0|b = 1]

∣∣
≤ 1

2
·
∣∣Pr[EG0

A]−Pr[EG3
A]
∣∣

≤ 1
2
·
(

Pr[EA] ·
∣∣Pr[EG0

AA
]−Pr[EG3

AA
]
∣∣+Pr[EB] ·

∣∣Pr[EG0
AB

]−Pr[EG3
AB

]
∣∣)

≤ 2AdvDLIN
B (λ)+AdvDBDH

B (λ).

This completes our proof.

Lemma 5.7. If the DLIN assumption holds, then no polynomial-time Type-A adversary can distinguish
between G0 and G1 with a non-negligible advantage.

Proof. Suppose there exists a Type-A adversary AA that attacks the above RS-PE scheme with a non-
negligible advantage. A simulator B that attacks the attribute-hiding property of the predicate-only PE
(poPE) scheme is given: a challenge public parameters PPpoPE of the poPE scheme. Then B that interacts
with AA is described as follows:

Init: AA initially submits two challenge vectors~x∗0,~x
∗
1, a challenge time T ∗, and a revoked set R∗ at the time

T ∗. B also submits~x∗0,~x
∗
1 and receives PPpoPE .

Setup: B first derives GDS = ((p,G,GT ,e),g) from PPpoPE . It chooses a random exponent γ ∈ Zp and
sets PPPE = (PPpoPE ,Λ = e(g,g)γ). It obtains MKSUE ,PPSUE by running SUE.Setup(GDS,Tmax). It also
obtains BT by running CS.Setup and assigns a random exponent γi to each node vi in BT . It selects a
random exponent α ∈ Zp and publishes the public parameters PP = (PPPE ,PPSUE ,g,Ω = e(g,g)α).
Query 1: AA adaptively request private keys or update keys. B proceeds as follows:

49

• If this is a private key query for a vector~y and a user u, then it first obtains a private set PVu by running
CS.Assign(BT ,u) and retrieves random exponents {γ j0 , . . . ,γ jd} from BT . For 0≤ k ≤ d, it request
a private key for the poPE scheme and obtains SKpoPE = (KA,KB, . . .) from his private key oracle, and
then it sets SKPE,k = (gγ jk KA,KB, . . .). Notice that KA does not have gγ in poPE and gγ jk is multiplied
for secret sharing. It creates the private key SK~y,u = (PVu,SKPE,0, . . . ,SKPE,d).

• If this is an update key query for a time T and a revoked set R, then it creates the update key UKT,R

by running RS-PE.UpdateKey(T,R,MK,PP) since it knows α and MKSUE .

Challenge: AA submits two challenge messages M∗0 ,M
∗
1 such that M∗0 = M∗1 = M∗. To create the challenge

ciphertext, B obtains a challenge ciphertext header CH∗poPE = (CA,CB, . . .). Next, it creates a ciphertext
header CH∗SUE as follows:

1. It first sets a label L∗ ∈ {0,1}d by computing ψ(T ∗). It chooses random exponents s1, . . . ,sd ∈ Zp. It
implicitly sets s = c and builds ciphertext components CH(0) as

C0 =CA, C1 = (CA)
w′

d

∏
i=1

(VID−1(L(0)|i))
si , C2,1 = g−s1 , . . . , C2,d = g−sd .

2. For 1≤ j ≤ d, it first sets L(j) = L∗|d− j‖1, and proceeds as follows: If L(j) = L|d− j+1, it sets CH(j) as
an empty one. Otherwise, it selects sd j ∈ Zp and builds ciphertext components CH(j) as

C1 = (CA)
w′

d j−1

∏
i=1

(VID−1(L(j)|i))
si(VID−1(L(j)))

sd j , C2,d j = gsd j .

3. It removes all empty CH(j) and sets CHSUE =
(
CH(0), . . . ,CH(d′)

)
for some d′ that consists of non-

empty CH(j).

4. It sets the ciphertext header as CH∗SUE =CHSUE .

It sets a challenge ciphertext CT ∗ = (CH∗poPE ,CH∗SUE ,C
∗ = e(CA,g)α ·M∗) and gives CT ∗ to A.

Query 2: Same as Query 1.
Guess: A outputs a guess b′. B also outputs b′.

To finish the proof, we first show that the distribution of the simulation is correct. The private keys
are correctly distributed since SKpoPE returned from the private key oracle of poPE is correct and a ran-
dom element gγ jk is correctly multiplied. The update keys are correctly distributed since it just runs RS-
PE.UpdateKey by using the correct master secret key. The challenge ciphertext is also correctly distributed
since CH∗poPE is correctly distributed and the same element CA = gs is used for CH∗SUE . Therefore an ad-
versary for this game can be used to attack the poPE scheme of Park and this leads to attack the DLIN
assumption by Theorem 5.5. This completes our proof.

Lemma 5.8. If the DLIN assumption holds, then no polynomial-time Type-B adversary can distinguish
between G0 and G1 with a non-negligible advantage.

The proof of this lemma is the same as that of Lemma 5.7 since the challenge ciphertext of two games
is an encryption on the same message M∗0 . We omit the proof of this lemma.

50

Lemma 5.9. If the DBDH assumption holds, then no polynomial-time Type-B adversary can distinguish
between G1 and G2 with a non-negligible advantage.

Proof. To prove this lemma, we may try to combine the partitioning strategy of PE [36] and that of SUE in
Theorem A.1. These partitioning strategies only work if 〈~x∗,~y〉 6= 0 and T < T ∗ by the security definitions
of PE and SUE respectively. However, this simple combination does not work in RS-PE since an adversary
may request a private key for~y such that 〈~x∗,~y〉= 0 and an update key for T such that T ∗ ≤ T if the user is
revoked where~x∗ is a challenge vector and T ∗ is a challenge time. To solve this problem, we use the fact that
the adversary first submits a set of revoked user R∗ before he receives PP and the secret key α is split into γi

for PE and α− γi for SUE by using BT of the CS scheme. That is, if a simulator cannot use the partitioning
strategy of PE or SUE for some nodes in BT , then it just uses γi for the master secret key. Additionally, to
maintain the consistency of this secret splitting, it can use R∗ that was given by the adversary.

Suppose there exists an adversary AB that attacks the above RS-PE scheme with a non-negligible ad-
vantage. A simulator B that solves the DBDH assumption using AB is given: a challenge tuple D =
((p,G,GT ,e),g,ga,gb,gc) and Z where Z = Z0 = e(g,g)abc or Z = Z1 = e(g,g)d . Then B that interacts
with AB is described as follows:

Init: AB initially submits two challenge vectors~x∗0,~x
∗
1, a challenge time T ∗, and a set of revoked users R∗ at

the time T ∗. It obtains BT by running CS.Setup and assigns a random exponent γi ∈ Zp to each node vi in
BT . For each user ui ∈ R∗, it randomly assigns the user ui to a leaf node vui ∈ BT . Let RV ∗ be the set of
leaf nodes that are randomly assigned for R∗. Recall that Path(v) is the set of path nodes from the root node
to the leaf node v. That is, Path(v) = {v j0 , . . . ,v jd} where v j0 is the root node and v jd is the leaf node such
that v jd = v. Let RevTree(RV ∗) be the minimal subtree that connects the root node to all leaf nodes in RV ∗.
That is, RevTree(RV ∗) =

⋃
vu∈RV ∗ Path(vu).

Setup: B first chooses random exponents ω,{w1,i, f ′1,i, f ′2,i, t1,i,h
′
1,i,h

′
2,i}n

i=1,u1,u2,v1,v2 ∈Zp, and γ ∈Zp. It
computes {w2,i, t2,i} to satisfy the constrains ω = u1w2,i−u2w1,i and ω = v1t2,i−v2t1,i. Let~x∗1 = (x1, . . . ,xn).
It implicitly sets f1,i = bxiu1 + f ′1,i, f2,i = bxiu2 + f ′2,i,h1,i = bxiv1 + h′1,i,h2,i = bxiv2 + h′2,i and builds the
public parameters PPPE as

g, gω , {W1,i = gw1,i ,W2,i = gw2,i ,F1,i = (gb)xiu1g f ′1,i ,F2,i = (gb)xiu2g f ′2,i}n
i=1,

{T1,i = gt1,i ,T2,i = gt2,i ,H1,i = (gb)xiv1gh′1,i ,H2,i = (gb)xiv2gh′2,i}n
i=1, {Ui = gui ,Vi = gvi}2

i=1,

Λ = e(g,g)γ .

Next, it builds the public parameters PPSUE as the same as Theorem A.1 except that Λ = e(g,g)β by
selecting a random exponent β ∈ Zp. It implicitly sets α = ab and gives the public parameters PP =(
PPPE , PPSUE , g, Ω = e(ga,gb)

)
to A.

Query 1: A adaptively request private keys or update keys. If this is a private key query for a vector
~y = (y1, . . . ,yn) and a user u, then B proceeds as follows:

• Case u ∈ R∗: In this case, the simulator can simply creates PE private keys for path nodes since it will
use γi from BT for the master key of PE.

1. It first retrieves the leaf node vu ∈ RV ∗ that is assigned to the user u.

2. Next, it obtains Path(vu) = {v j0 , . . . ,v jd} where v jd = vu and retrieves exponents {γ j0 , . . . ,γ jd}
from BT that are associated with Path(vu).

51

3. For all v jk ∈Path(vu), it selects random exponents λ1,λ2,{ri,φi}n
i+1 ∈Zp and builds a PE private

key SKPE,k as

KA = gγ jk ·
n

∏
i=1

Fu2ri−w2,iλ1yi
1,i F−u1ri+w1,iλ1yi

2,i Hv2φi−t2,iλ2yi
1,i H−v1φi+t1,iλ2yi

2,i , KB =
n

∏
i=1

g−(ri+φi),{
K1,i =U−ri

2 W λ1yi
2,i , K2,i =U ri

1 W−λ1yi
1,i

}n
i=1,

{
K3,i =V−φi

2 T λ2yi
2,i , K4,i =V φi

1 T−λ2yi
1,i

}n
i=1.

4. It creates the private key SK~y,u =
(
PVu,SKPE,0, . . . ,SKPE,d

)
.

• Case u 6∈ R∗: In this case, the simulator can use the partitioning strategy of PE [36] for some nodes
since the adversary can only request~y such that 〈~x,~y〉 6= 0.

1. It first randomly assigns the user u to a leaf node vu in BT such that vu 6∈ RV ∗.

2. Next, it obtains Path(vu) = {v j0 , . . . ,v jd} where v jd = vu and retrieves exponents {γ j0 , . . . ,γ jd}
from BT that are associated with Path(vu).

3. For all v jk ∈ RevTree(RV ∗)∩Path(vu), it builds a PE private key SKPE,k as

KA = gγ jk ·
n

∏
i=1

Fu2ri−w2,iλ1yi
1,i F−u1ri+w1,iλ1yi

2,i Hv2φi−t2,iλ2yi
1,i H−v1φi+t1,iλ2yi

2,i , KB =
n

∏
i=1

g−(ri+φi),{
K1,i =U−ri

2 W λ1yi
2,i , K2,i =U ri

1 W−λ1yi
1,i

}n
i=1,

{
K3,i =V−φi

2 T λ2yi
2,i , K4,i =V φi

1 T−λ2yi
1,i

}n
i=1.

4. For all v jk ∈Path(vu)\(RevTree(RV ∗)∩Path(vu)), it selects random exponents λ ′1,λ
′
2,{ri,φi}n

i=1 ∈
Zp and builds a PE private key SKPE,k by implicitly setting λ1 = a/(2ωz)+λ ′1,λ2 = a/(2ωz)+
λ ′2 as

KA = g−γ jk · (gb)−ω(λ ′1+λ ′2)z
n

∏
i=1

K
− f ′1,i
1,i K

− f ′2,i
2,i K

−h′1,i
3,i K

−h′2,i
4,i , KB =

n

∏
i=1

g−(ri+φi),{
K1,i =U−ri

2 (ga)w2,iyi/(2ωz)W λ ′1yi
2,i , K2,i =U ri

1 (g
a)−w1,iyi/(2ωz)W−λ ′1yi

1,i

}n
i=1,{

K3,i =V−φi
2 (ga)t2,iyi/(2ωz)T λ2yi

2,i , K4,i =V φi
1 (ga)−t1,iyi/(2ωz)T−λ2yi

1,i

}n
i=1

where 〈~x∗1,~y〉= z 6= 0 since u 6∈ R∗ from Remark 5.4.

5. It creates the private key SK~y,u =
(
PVu,SKPE,0, . . . ,SKPE,d

)
.

If this is an update key query for a time T and a revoked set R, then B proceeds as follows:

• Case T < T ∗: In this case, the simulator can use the partitioning strategy of SUE in Theorem A.1 for
some nodes since the adversary can only request T such that T < T ∗.

1. It first obtains a label L ∈ {0,1}n by computing ψ(T).

2. Next, it obtains a covering set CVR by running CS.Cover(BT ,R). Let Cover(R) = {vi1 , . . . ,vim}
be the set of nodes that are associated with CVR.

3. For all vik ∈RevTree(RV ∗)∩Cover(R), it selects a random exponent r′ ∈Zp and builds an SUE
private key SKSUE,k by implicitly setting r =−b+ r′ as

K0 = (gb)−w′wr′ , K1 = (gb)−1gr′ ,

K2,1 = (gb)
−v′

ID−1(L|1)(VID−1(L|1))
r′ , . . . , K2,n = (gb)

−v′
ID−1(L|n)(VID−1(L|n))

r′ .

52

4. For all vik ∈ Cover(R)\ (RevTree(RV ∗)∩Cover(R)), it selects a random exponent r ∈ Zp and
builds an SUE private key SKSUE,k as

K0 = gγik ·w−r, K1 = gr, K2,1 = (VID−1(L|1))
r, . . . , K2,n = (VID−1(L|n))

r.

5. It creates the update key UKT,R = (CVR,SKSUE,1, . . . ,SKSUE,m).

• Case T ≥ T ∗: In this case, the simulator can simply create SUE private keys since it will use γi from
BT for the master key of SUE. Note that if T ≥ T ∗, then RevTree(RV ∗)∩Cover(R) = /0 since R∗ ⊆ R
from the definition of the security model.

1. It first obtains a label L ∈ {0,1}n by computing ψ(T).
2. Next, it obtains a covering set CVR by running CS.Cover(BT ,R). Let Cover(R) = {vi1 , . . . ,vim}

be the set of nodes that are associated with CVR.
3. For all vik ∈ Cover(R), it selects a random exponent r ∈ Zp and builds an SUE private key

SKSUE,k as

K0 = gγik ·w−r, K1 = gr, K2,1 = (VID−1(L|1))
r, . . . , K2,n = (VID−1(L|n))

r.

4. It creates the update key UKT,R = (CVR,SKSUE,1, . . . ,SKSUE,m).

Challenge: A submits two challenge messages M∗0 ,M
∗
1 . B first selects random exponents s1,s′3,s

′
4 ∈Zp, and

builds the ciphertext header CH∗PE by implicitly setting s = c,s3 =−bc+ s′3,s4 =−bc+ s′4 as

CA = gc, CB = (gω)s1 ,
{

C1,i =W s1
1,i(g

c) f ′1,iUxis′3
1 , C2,i =W s1

2,i(g
c) f ′2,iUxis′3

2

}n
i=1,{

C3,i = T s1
1,i(g

c)h′1,iV xis′4
1 , C4,i = T s1

2,i(g
c)h′2,iV xis′4

2

}n
i=1.

Next, it builds the ciphertext header CH∗SUE for SUE as the same as Theorem A.1 by using the element gc

given in the assumption. It finally creates the challenger ciphertext CT ∗ = (CH∗PE ,CH∗SUE ,C
∗ = Z ·M∗0) and

gives it to A.
Query 2: Same as Query 1.
Guess: A outputs a guess b′. B also outputs b′.

To finish the proof, we should show that the distribution of the simulation is correct. We first show that
private keys are correctly distributed. The PE private key for v jk ∈ RevTree(RV ∗)∩Path(vu) is correctly
distributed as

KA = gγ jk ·
n

∏
i=1

Fu2ri−w2,iλ1yi
1,i F−u1ri+w1,iλ1yi

2,i Hv2φi−t2,iλ2yi
3,i H−v1φi+t1,iλ2yi

4,i

= gγ jk ·
n

∏
i=1

g−(−u2ri+w2,iλ1yi) f1,ig−(u1ri−w1,iλ1yi) f2,ig−(−v2φi+t2,iλ2yi)h1,ig−(v1φi−t1,iλ2yi)h2,i

= gγ jk ·
n

∏
i=1

K− f1,i
1,i K− f2,i

2,i K−h1,i
3,i K−h2,i

4,i .

We next analyze the distribution of the PE private key for v jk ∈ Path(vu)\ (RevTree(RV ∗)∩Path(vu)). The
components K1,i,K2,i of the PE private key are correctly distributed as

K1,i =U−ri
2 (ga)w2,iyi/(2ωz)W λ ′1yi

2,i =U−ri
2 W (a/(2ωz)+λ ′1)yi

2,i ,

K2,i =U ri
1 (g

a)−w1,iyi/(2ωz)W−λ ′1yi
1,i =U ri

1 W−(a/(2ωz)+λ ′1)yi
1,i .

53

To analyze the distribution of KA, we first obtain the following two equations

K
−(bxiu1+ f ′1,i)
1,i K

−(bxiu2+ f ′2,i)
2,i = (U−ri

2 W (a/(2ωz)+λ ′1)yi
2,i)−(bxiu1)K

− f ′1,i
1,i · (U

ri
1 W−(a/(2ωz)+λ ′1)yi

1,i)−(bxiu2)K
− f ′2,i
2,i

= (gab)(−u1w2,i+u2w1,i)·xiyi/(2ωz)(gb)(−u1w2,i+u2w1,i)λ
′
1·xiyi ·K− f ′1,i

1,i K
− f ′2,i
2,i

= (gab)−xiyi/(2z)(gb)−ωλ ′1·xiyi ·K− f ′1,i
1,i K

− f ′2,i
2,i ,

K
−(bxiv1+h′1,i)
3,i K

−(bxiv2+h′2,i)
4,i = (gab)−xiyi/(2z)(gb)−ωλ ′2·xiyi ·K−h′1,i

3,i K
−h′2,i
4,i .

Using the above two equations and the relation 〈~x,~y〉 = z, we have that the component KA is correctly
distributed as

KA = g−γ jk ·
n

∏
i=1

(gb)−ω(λ ′1+λ ′2)·xiyiK
− f ′1,i
1,i K

− f ′2,i
2,i K

−h′1,i
3,i K

−h′2,i
4,i

= gabg−γ jk · (gab)−2∑
n
i=1 xiyi/(2z)

n

∏
i=1

(gb)−ω(λ ′1+λ ′2)·xiyiK
− f ′1,i
1,i K

− f ′2,i
2,i K

−h′1,i
3,i K

−h′2,i
4,i

= gabg−γ jk ·
n

∏
i=1

(gab)−2xiyi/(2z)(gb)−ω(λ ′1+λ ′2)·xiyiK
− f ′1,i
1,i K

− f ′2,i
2,i K

−h′1,i
3,i K

−h′2,i
4,i

= gα−γ jk ·
n

∏
i=1

K
−(bxiu1+ f ′1,i)
1,i K

−(bxiu2+ f ′2,i)
2,i K

−(bxiv1+h′1,i)
3,i K

−(bxiv2+h′2,i)
4,i .

The update keys are correctly distributed since it is the same as Theorem A.1. The challenge PE ciphertext
header is correctly distributed as

C1,i =W s1
1,i(g

c) f ′1,iUxis′3
1 =W s1

1,i((g
b)xiu1g f ′1,i)cUxi(−bc+s′3)

1 =W s1
1,iF

c
1,iU

xi(−bc+s′3)
1 ,

C3,i = T s1
1,i(g

c)h′1,iV xis′4
1 = T s1

1,i((g
b)xiv1gh′1,i)cV xis′4

1 = T s1
1,iH

c
1,iV

xi(−bc+s′4)
1 .

This completes our proof.

Lemma 5.10. If the DBDH assumption holds, then no polynomial-time Type-B adversary can distinguish
between G2 and G3 with a non-negligible advantage.

We omit the proof of this lemma since it is symmetric to the proof of Lemma 5.9.

5.4 Discussions

Achieving Full Security. Our RS-PE scheme is only selectively secure under standard assumptions since
we use the selectively secure PE scheme of Park [36] for our primary encryption scheme. To achieve full
security, we may use the fully secure PE scheme of Okamoto and Takashima [34] in the dual pairing vector
space setting. However, it is unclear whether we can obtain a fully secure SUE scheme with shorter cipher-
texts in the dual pairing vector space by applying the translation method of Lewko [25] to our composite
order SUE scheme.

Acknowledgements

We thank the anonymous reviewers of ASIACRYPT 2013 for their helpful comments.

54

References

[1] Mihir Bellare and Sara K. Miner. A forward-secure digital signature scheme. In Michael J. Wiener,
editor, CRYPTO, volume 1666 of Lecture Notes in Computer Science, pages 431–448. Springer, 1999.

[2] John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-based encryption. In
IEEE Symposium on Security and Privacy, pages 321–334. IEEE Computer Society, 2007.

[3] Alexandra Boldyreva, Vipul Goyal, and Virendra Kumar. Identity-based encryption with efficient
revocation. In Peng Ning, Paul F. Syverson, and Somesh Jha, editors, ACM Conference on Computer
and Communications Security, pages 417–426. ACM, 2008.

[4] Dan Boneh and Xavier Boyen. Efficient selective-id secure identity-based encryption without random
oracles. In Christian Cachin and Jan Camenisch, editors, EUROCRYPT, volume 3027 of Lecture Notes
in Computer Science, pages 223–238. Springer, 2004.

[5] Dan Boneh and Xavier Boyen. Efficient selective identity-based encryption without random oracles.
J. Cryptology, 24(4):659–693, 2011.

[6] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based encryption with constant
size ciphertext. In Ronald Cramer, editor, EUROCRYPT, volume 3494 of Lecture Notes in Computer
Science, pages 440–456. Springer, 2005.

[7] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the weil pairing. In Joe Kilian,
editor, CRYPTO, volume 2139 of Lecture Notes in Computer Science, pages 213–229. Springer, 2001.

[8] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and challenges. In Yuval
Ishai, editor, TCC, volume 6597 of Lecture Notes in Computer Science, pages 253–273. Springer, 2011.

[9] Dan Boneh and Brent Waters. Conjunctive, subset, and range queries on encrypted data. In Salil P.
Vadhan, editor, TCC, volume 4392 of Lecture Notes in Computer Science, pages 535–554. Springer,
2007.

[10] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key encryption scheme. In Eli
Biham, editor, EUROCRYPT, volume 2656 of Lecture Notes in Computer Science, pages 255–271.
Springer, 2003.

[11] Melissa Chase. Multi-authority attribute based encryption. In Salil P. Vadhan, editor, TCC, volume
4392 of Lecture Notes in Computer Science, pages 515–534. Springer, 2007.

[12] Sherman S. M. Chow, Volker Roth, and Eleanor G. Rieffel. General certificateless encryption and
timed-release encryption. In Rafail Ostrovsky, Roberto De Prisco, and Ivan Visconti, editors, SCN,
volume 5229 of Lecture Notes in Computer Science, pages 126–143. Springer, 2008.

[13] Yevgeniy Dodis, Matthew K. Franklin, Jonathan Katz, Atsuko Miyaji, and Moti Yung. Intrusion-
resilient public-key encryption. In Marc Joye, editor, CT-RSA, volume 2612 of Lecture Notes in Com-
puter Science, pages 19–32. Springer, 2003.

[14] Yevgeniy Dodis, Jonathan Katz, Shouhuai Xu, and Moti Yung. Key-insulated public key cryptosys-
tems. In Lars R. Knudsen, editor, EUROCRYPT, volume 2332 of Lecture Notes in Computer Science,
pages 65–82. Springer, 2002.

55

[15] Sanjam Garg, Craig Gentry, Shai Halevi, Amit Sahai, and Brent Waters. Attribute-based encryption
for circuits from multilinear maps. In Ran Canetti and Juan A. Garay, editors, CRYPTO (2), volume
8043 of Lecture Notes in Computer Science, pages 479–499. Springer, 2013.

[16] Craig Gentry and Alice Silverberg. Hierarchical id-based cryptography. In Yuliang Zheng, editor,
ASIACRYPT, volume 2501 of Lecture Notes in Computer Science, pages 548–566. Springer, 2002.

[17] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and Nickolai Zel-
dovich. Reusable garbled circuits and succinct functional encryption. In Dan Boneh, Tim Roughgar-
den, and Joan Feigenbaum, editors, STOC, pages 555–564. ACM, 2013.

[18] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption with bounded
collusions via multi-party computation. In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO,
volume 7417 of Lecture Notes in Computer Science, pages 162–179. Springer, 2012.

[19] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for fine-
grained access control of encrypted data. In Ari Juels, Rebecca N. Wright, and Sabrina De Capitani
di Vimercati, editors, ACM Conference on Computer and Communications Security, pages 89–98.
ACM, 2006.

[20] Gene Itkis and Leonid Reyzin. Sibir: Signer-base intrusion-resilient signatures. In Moti Yung, editor,
CRYPTO, volume 2442 of Lecture Notes in Computer Science, pages 499–514. Springer, 2002.

[21] Kohei Kasamatsu, Takahiro Matsuda, Keita Emura, Nuttapong Attrapadung, Goichiro Hanaoka,
and Hideki Imai. Time-specific encryption from forward-secure encryption. In Ivan Visconti and
Roberto De Prisco, editors, SCN, volume 7485 of Lecture Notes in Computer Science, pages 184–204.
Springer, 2012.

[22] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting disjunctions, polyno-
mial equations, and inner products. In Nigel P. Smart, editor, EUROCRYPT, volume 4965 of Lecture
Notes in Computer Science, pages 146–162. Springer, 2008.

[23] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting disjunctions, polyno-
mial equations, and inner products. J. Cryptology, 26(2):191–224, 2013.

[24] Kwangsu Lee and Dong Hoon Lee. Improved hidden vector encryption with short ciphertexts and
tokens. Des. Codes Cryptography, 58(3):297–319, 2011.

[25] Allison B. Lewko. Tools for simulating features of composite order bilinear groups in the prime order
setting. In David Pointcheval and Thomas Johansson, editors, EUROCRYPT, volume 7237 of Lecture
Notes in Computer Science, pages 318–335. Springer, 2012.

[26] Allison B. Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and Brent Waters. Fully
secure functional encryption: Attribute-based encryption and (hierarchical) inner product encryption.
In Henri Gilbert, editor, EUROCRYPT, volume 6110 of Lecture Notes in Computer Science, pages
62–91. Springer, 2010.

[27] Allison B. Lewko and Brent Waters. New techniques for dual system encryption and fully secure hibe
with short ciphertexts. In Daniele Micciancio, editor, TCC, volume 5978 of Lecture Notes in Computer
Science, pages 455–479. Springer, 2010.

56

[28] Allison B. Lewko and Brent Waters. Decentralizing attribute-based encryption. In Kenneth G. Pa-
terson, editor, EUROCRYPT, volume 6632 of Lecture Notes in Computer Science, pages 568–588.
Springer, 2011.

[29] Allison B. Lewko and Brent Waters. Unbounded hibe and attribute-based encryption. In Kenneth G.
Paterson, editor, EUROCRYPT, volume 6632 of Lecture Notes in Computer Science, pages 547–567.
Springer, 2011.

[30] Allison B. Lewko and Brent Waters. New proof methods for attribute-based encryption: Achieving full
security through selective techniques. In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO,
volume 7417 of Lecture Notes in Computer Science, pages 180–198. Springer, 2012.

[31] Benoı̂t Libert and Damien Vergnaud. Adaptive-id secure revocable identity-based encryption. In Marc
Fischlin, editor, CT-RSA, volume 5473 of Lecture Notes in Computer Science, pages 1–15. Springer,
2009.

[32] Dalit Naor, Moni Naor, and Jeffery Lotspiech. Revocation and tracing schemes for stateless receivers.
In Joe Kilian, editor, CRYPTO, volume 2139 of Lecture Notes in Computer Science, pages 41–62.
Springer, 2001.

[33] Tatsuaki Okamoto and Katsuyuki Takashima. Hierarchical predicate encryption for inner-products.
In Mitsuru Matsui, editor, ASIACRYPT, volume 5912 of Lecture Notes in Computer Science, pages
214–231. Springer, 2009.

[34] Tatsuaki Okamoto and Katsuyuki Takashima. Adaptively attribute-hiding (hierarchical) inner product
encryption. In David Pointcheval and Thomas Johansson, editors, EUROCRYPT, volume 7237 of
Lecture Notes in Computer Science, pages 591–608. Springer, 2012.

[35] Rafail Ostrovsky, Amit Sahai, and Brent Waters. Attribute-based encryption with non-monotonic
access structures. In Peng Ning, Sabrina De Capitani di Vimercati, and Paul F. Syverson, editors, ACM
Conference on Computer and Communications Security, pages 195–203. ACM, 2007.

[36] Jong Hwan Park. Inner-product encryption under standard assumptions. Des. Codes Cryptography,
58(3):235–257, 2011.

[37] Jong Hwan Park, Kwangsu Lee, Willy Susilo, and Dong Hoon Lee. Fully secure hidden vector en-
cryption under standard assumptions. Inf. Sci., 232:188–207, 2013.

[38] Kenneth G. Paterson and Elizabeth A. Quaglia. Time-specific encryption. In Juan A. Garay and
Roberto De Prisco, editors, SCN, volume 6280 of Lecture Notes in Computer Science, pages 1–16.
Springer, 2010.

[39] Ronald L. Rivest, Adi Shamir, and David A. Wagner. Time-lock puzzles and timed-release crypto.
Technical Report MIT/LCS/TR-684, 1996.

[40] Amit Sahai, Hakan Seyalioglu, and Brent Waters. Dynamic credentials and ciphertext delegation for
attribute-based encryption. In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO, volume 7417
of Lecture Notes in Computer Science, pages 199–217. Springer, 2012.

[41] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In Ronald Cramer, editor, EURO-
CRYPT, volume 3494 of Lecture Notes in Computer Science, pages 457–473. Springer, 2005.

57

[42] Jae Hong Seo and Keita Emura. Efficient delegation of key generation and revocation functionalities in
identity-based encryption. In Ed Dawson, editor, CT-RSA, volume 7779 of Lecture Notes in Computer
Science, pages 343–358. Springer, 2013.

[43] Jae Hong Seo and Keita Emura. Revocable identity-based encryption revisited: Security model and
construction. In Kaoru Kurosawa and Goichiro Hanaoka, editors, Public Key Cryptography, volume
7778 of Lecture Notes in Computer Science, pages 216–234. Springer, 2013.

[44] Elaine Shi and Brent Waters. Delegating capabilities in predicate encryption systems. In Luca
Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor
Walukiewicz, editors, ICALP (2), volume 5126 of Lecture Notes in Computer Science, pages 560–578.
Springer, 2008.

[45] Brent Waters. Dual system encryption: Realizing fully secure ibe and hibe under simple assumptions.
In Shai Halevi, editor, CRYPTO, volume 5677 of Lecture Notes in Computer Science, pages 619–636.
Springer, 2009.

[46] Brent Waters. Ciphertext-policy attribute-based encryption: An expressive, efficient, and provably
secure realization. In Dario Catalano, Nelly Fazio, Rosario Gennaro, and Antonio Nicolosi, editors,
Public Key Cryptography, volume 6571 of Lecture Notes in Computer Science, pages 53–70. Springer,
2011.

A Self-Updatable Encryption in Prime Order Groups

In this section, we propose an SUE scheme in prime order bilinear groups and prove its selective security.

A.1 Bilinear Groups of Prime Order

Let G and GT be two multiplicative cyclic groups of same prime order p and g be a generator of G. The
bilinear map e : G×G→GT has the following properties:

1. Bilinearity: ∀u,v ∈G and ∀a,b ∈ Zp, e(ua,vb) = e(u,v)ab.

2. Non-degeneracy: ∃g such that e(g,g) has order p, that is, e(g,g) is a generator of GT .

We say that G is a bilinear group if the group operations in G and GT as well as the bilinear map e are all
efficiently computable. Furthermore, we assume that the description of G and GT includes generators of G
and GT respectively.

A.2 Complexity Assumptions

Decisional Linear (DLIN) Let (p,G,GT ,e) be a description of the bilinear group of prime order p. Let g
be generators of subgroups G. The DLIN assumption is that if the challenge tuple

D = ((p,G,GT ,e),g,gx,gy,gxa,gyb) and Z,

are given, no PPT algorithmA can distinguish Z = Z0 = ga+b from Z = Z1 = gc with more than a negligible
advantage. The advantage of A is defined as AdvDLIN

A (λ) =
∣∣Pr[A(D,Z0) = 0]−Pr[A(D,Z1) = 0]

∣∣ where
the probability is taken over random choices of a,b,c ∈ Zp.

58

Decisional Bilinear Diffie-Hellman (DBDH) Let (p,G,GT ,e) be a description of the bilinear group of
prime order p. Let g be generators of subgroups G. The DBDH assumption is that if the challenge tuple

D = ((p,G,GT ,e),g,ga,gb,gc) and Z,

are given, no PPT algorithm A can distinguish Z = Z0 = e(g,g)abc from Z = Z1 = e(g,g)d with more than a
negligible advantage. The advantage of A is defined as AdvDBDH

A (λ) =
∣∣Pr[A(D,Z0) = 0]−Pr[A(D,Z1) =

0]
∣∣ where the probability is taken over random choices of a,b,c,d ∈ Zp.

A.3 Construction

Our CDE scheme in prime order groups is described as follows:

CDE.Init(1λ): This algorithm takes as input a security parameter 1λ . It generates bilinear groups G,GT

of prime order p. Let g be the generator of G. It outputs a group description string as GDS =(
(p,G,GT ,e), g

)
.

CDE.Setup(GDS,dmax): This algorithm takes as input the string GDS and the maximum depth dmax of a full
binary tree BT . The total number X of nodes in the tree is 2dmax+1− 1. It chooses random elements
w,V0, . . . ,VX−1 ∈G and a random exponent β ∈ Zp where a node vi is associated with the element Vi.
It outputs the master secret key MK = (β) and the public parameters as

PP =
(
(p,G,GT ,e), g, w, V0, . . . ,VX−1, Ω = e(g,g)β

)
.

CDE.GenKey(L,MK,PP): This algorithm takes as input a label L∈ {0,1}n, the master secret key MK, and
the public parameters PP. Let v be the node with the label L in BT . It selects a random exponent
r ∈ Zp and outputs a private key for the node v that implicitly includes L as

SKL =
(

K0 = gβ w−r, K1 = gr, K2,1 = (VID−1(L|1))
r, . . . , K2,n = (VID−1(L|n))

r
)
.

CDE.Encrypt(L,s,~s,PP): This algorithm takes as input a label L ∈ {0,1}d , a random exponent s ∈ Zp, a
vector ~s = (s1, . . . ,sd) ∈ Zd

p of random exponents, and the public parameters PP. Let v be the node
with the label L in BT . It outputs a ciphertext header for the node v that implicitly includes L as

CHL =
(

C0 = gs, C1 = ws
d

∏
i=1

(VID−1(L|i))
si , C2,1 = g−s1 , . . . , C2,d = g−sd

)
.

and a session key as EK = Ωs.

CDE.DelegateCT(CHL,c,PP): This algorithm takes as input a ciphertext header CHL = (C0, . . . ,C2,d) for
a label L ∈ {0,1}d , a bit value c ∈ {0,1}, and the public parameters PP. It selects a random exponent
sd+1 ∈ Zp and outputs a delegated ciphertext header for the node v′ with the label L′ = L‖c as

CHL′ =
(

C0, C′1 =C1 · (VID−1(L′))
sd+1 , C2,1, . . . , C2,d , C′2,d+1 = g−sd+1

)
.

59

CDE.RandCT(CHL,s′,~s′,PP): This algorithm takes as input a ciphertext header CHL, a random exponent
s′ ∈ Zp, a vector~s′ = (s′1, . . . ,s

′
d) ∈ Zd

p of random exponents, and the public parameters PP. It outputs
a re-randomized ciphertext header as

CH ′L =
(

C′0 =C0 ·gs′ , C′1 =C1 ·ws′
d

∏
i=1

(VID−1(L|i))
s′i , C′2,1 =C2,1 ·g−s′1 , . . . , C′2,d =C2,d ·g−s′d

)
.

and a partial session key as EK′ = Ωs′ that will be multiplied with the session key EK of CHL.

CDE.Decrypt(CHL,SKL′ ,PP): This algorithm takes as input a ciphertext header CHL for a label L∈{0,1}d ,
a private key SKL′ for a label L′ ∈ {0,1}n, and the public parameters PP. If L is a prefix of L′, then it
computes a delegated ciphertext header CH ′L′ = (C′0, . . . ,C

′
2,n) by running DelegateCT and outputs a

session key as

EK = e(C′0,K0) · e(C′1,K1) ·
n

∏
i=1

e(C′2,i,K2,i)

Otherwise, it outputs ⊥.

Our SUE scheme in prime order groups is almost the same as the SUE scheme in composite order groups
described in Section 3 except that it uses the above CDE scheme in prime order groups and selects random
exponents in Zp instead of ZN . We omit the description of our SUE scheme in prime order groups.

A.4 Security Analysis

Theorem A.1. The above SUE scheme is selectively secure under a chosen plaintext attack if the DBDH
assumption holds. That is, for any PPT adversary A, we have that AdvSUE

A (λ)≤ 1
2 AdvDBDH

B (λ).

Proof. Suppose there exists an adversary A that attacks the above SUE scheme with a non-negligible
advantage. A simulator B that solves the DBDH assumption using A is given: a challenge tuple D =
((p,G,GT ,e),g,ga,gb,gc) and Z where Z = Z0 = e(g,g)abc or Z = Z1 = e(g,g)d . Then B that interacts with
A is described as follows:

Init: A initially submits a challenge time T ∗. B first obtains a challenge node v∗ ∈ BT that is associ-
ated with the challenge time T ∗ by computing v∗ = ID−1(ψ(T ∗)). Recall that TimeNodes(v) is the set of
nodes that consists of v and the right siblings of path nodes of v that are not in the parent’s path. That is,
TimeNodes(v) = {v}∪RightSibling(Path(v))\Path(Parent(v)).
Setup: B first chooses random exponents w′,v′0, . . . ,v

′
X−1 ∈ Zp. It implicitly sets β = ab and publishes the

public parameters PP as

g, w = gagw′ , {Vi = gagv′i}vi∈TimeNodes(v∗),{Vi = gv′i}vi∈BT \TimeNodes(v∗), Λ = e(ga,gb).

Query 1: A adaptively request a private key for a time T such that T < T ∗. B first obtains a label L∈ {0,1}n

by computing ψ(T). Next, it selects a random exponent r′ ∈Zp and creates a private key by implicitly setting
r =−b+ r′ as

K0 = (gb)−w′wr′ , K1 = (gb)−1gr′ ,

K2,1 = (gb)
−v′

ID−1(L|1)(VID−1(L|1))
r′ , . . . , K2,n = (gb)

−v′
ID−1(L|n)(VID−1(L|n))

r′ .

60

Note that if T < T ∗, then it can create a private key since Path(v) ∩ TimeNodes(v∗) = /0 where v =
ID−1(ψ(T)).
Challenge: To create the challenge ciphertext for the challenge time T ∗, B proceeds as follows:

1. It first sets a label L∗ ∈ {0,1}d by computing ψ(T ∗). It chooses random exponents s1, . . . ,sd−1,s′d ∈
Zp. It implicitly sets s = c,sd =−c+ s′d and creates ciphertext components CH(0) as

C0 = gc, C1 = (gc)w′ ·
d−1

∏
i=1

(VID−1(L(0)|i))
si · (gc)

−v′
ID−1(L(0))(VID−1(L(0)))

s′d ,

C2,1 = g−s1 , . . . , C2,d−1 = g−sd−1 , C2,d = (gc)−1gs′d .

2. For 1≤ j ≤ d, it first sets L(j) = L∗|d− j‖1 and proceeds as follows: If L(j) = L|d− j+1, it sets CH(j) as
an empty one. Otherwise, it selects s′d j

∈ Zp and creates ciphertext components CH(j) as

C1 = (gc)w′ ·
d− j

∏
i=1

(VID−1(L(j)|i))
si · (gc)

−v′
ID−1(L(j))(VID−1(L(j)))

s′d− j+1 , C2,d− j+1 = (gc)−1gs′d− j+1 .

3. It removes all empty CH(j) and sets CHT =
(
CH(0), . . . ,CH(d′)

)
for some d′ that consists of non-empty

CH(j).

4. It sets the challenger ciphertext header as CHT ∗ = CHT and the session key EK = Z. It gives CHT ∗

and EK to A.

Note that it can create the challenge ciphertext for T ∗ since for all labels L(j) in the challenge ciphertext,
v j ∈ TimeNodes(v∗) where v j = ID−1(ψ(L(j))).
Query 2: Same as Query 1.
Guess: A outputs a guess b′. If b = b′, then B outputs 1. Otherwise, it outputs 0.

To finish the proof, we should show that the distribution of the simulation is correct. The private key is
correctly distributed as

K0 = (gb)−w′wr′ = gab(gagw′)−b+r′ , K1 = (gb)−1gr′ = g−b+r′ ,

K2,i = (gb)
−v′

ID−1(L|i)(VID−1(L|i))
r′ = (VID−1(L|i))

−b+r′ .

The challenge ciphertext header is also correctly distributed as

C1 = (gc)w′ ·
d−1

∏
i=1

(VID−1(L(0)|i))
si · (gc)

−v′
ID−1(L(0))(VID−1(L(0)))

s′d

= (gagw′)c ·
d−1

∏
i=1

(VID−1(L(0)|i))
si · (gag

v′
ID−1(L(0)))−c+s′d ,

C2,d = (gc)−1gs′d = g−c+s′d .

This completes our proof.

61

	Introduction
	Our Results
	Our Technique
	Other Applications
	Related Work

	Preliminaries
	Notation
	Full Binary Tree
	Subset Cover Framework

	Self-Updatable Encryption
	Definitions
	Bilinear Groups of Composite Order
	Complexity Assumptions
	Design Principle
	Construction
	Correctness
	Security Analysis
	Discussions

	Revocable-Storage Attribute-Based Encryption
	Definitions
	Design Principle
	Construction
	Correctness
	Security Analysis
	Discussions

	Revocable-Storage Predicate Encryption
	Definitions
	Construction
	Security Analysis
	Discussions

	Self-Updatable Encryption in Prime Order Groups
	Bilinear Groups of Prime Order
	Complexity Assumptions
	Construction
	Security Analysis

