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Abstract. We show how efficient and secure cryptographic mixing functions can
be constructed from low-degree rotation-invariant φ functions rather than conven-
tional S-Boxes. These novel functions have surprising properties; many exhibit
inherent feeble (Boolean circuit) one-wayness and offer speed/area tradeoffs un-
obtainable with traditional constructs. Recent theoretical results indicate that even
if the inverse is not explicitly computed in an implementation, its degree plays a
fundamental role to the security of the iterated composition. To illustrate these
properties, we present CBEAM, a Cryptographic Sponge Permutation based on a
single 5× 1-bit Boolean function. This simple nonlinear function is used to con-
struct a 16-bit rotation-invariant φ function of Degree 4 (but with a very complex
Degree 11 inverse), which in turn is expanded into an efficient 256-bit mixing
function. In addition to flexible tradeoffs in hardware we show that efficient im-
plementation strategies exist for software platforms ranging from low-end micro-
controllers to the very latest x86-64 AVX2 instruction set. A rotational bit-sliced
software implementation offers not only comparable speeds to AES but also in-
creased security against cache side channel attacks. Our construction supports
Sponge-based Authenticated Encryption, Hashing, and PRF/PRNG modes and is
highly useful as a compact “all-in-one” primitive for pervasive security.

Keywords: CBEAM, Authenticated Encryption, Cryptographic Sponge Functions, Trap-
door φ functions, Lightweight Cryptography.

1 Introduction

The only nonlinear component of the SHA-3 algorithm KECCAK [1, 2] is not a tra-
ditional S-Box but a rotation-invariant φ function [3]. It has been widely observed [4]
that this 5 × 5 - bit function, χ, has a lower algebraic degree and circuit complexity
than its inverse χ−1 (See Figure 1). This is a desirable quality in a Sponge-based cryp-
toprimitive as computation of inverse is not required in normal operation. Boura and
Canteaut have showed that complex inverse makes the resulting iteration strong even
if it is not explicitly computed [5]. We have discovered new functions of φ type which
exhibit much more radical asymmetry than the χ function of KECCAK.



Our contributions and structure of this paper. Sponge-based constructions offer
perhaps the best route to shared-resource (combined encryption and MAC state) au-
thenticated encryption via the Duplex construction [6–10]. This motivates our investi-
gation of higher-degree φ functions as we believe that they are better suited for Sponge
constructions than traditional block cipher design methodologies that require efficient
computation in both directions.

We first give some basic observations on φ functions and their cryptanalysis in Sec-
tion 2. Inspired by our discovery of a unique, particularly strong 5-input φ function, we
propose a cryptographic permutation named CBEAM which can be used for hashing,
authenticated encryption, and other purposes. Section 3 gives a formal definition of the
CBEAM Sponge Permutation π, followed by analysis in Section 4.

This “Cryptographic Swiss Army Knife” Sponge primitive uses a fast 16 × 16 -bit
φ function of Degree 4, with 13 terms in its ANF polynomial for each output bit. Its
asymmetry is evident as its inverse has degree 11 and 13465 terms for output each bit
– see Section 4.3 and Appendix D. Based on extensive experimentation we conjecture
that these functions exhibit inherent feeble one-wayness as defined by Hiltgen for circuit
complexity. This indicates high algebraic resistance for our construct [5] and shows that
φ functions are in some ways superior to conventional designs based on S-Box lookups.

In Section 5 we describe implementations of CBEAM for x86-64 AVX2 instruction
set and for the 16-bit MSP 430 ultra-low power microcontroller. CBEAM is as fast
as fastest AES implementations (without dedicated AES hardware) on both of these
platforms, but has significantly smaller implementation footprint on both. Significant
area-speed trade-offs are possible in hardware, as demonstrated by our two reference
VHDL implementations. Our conclusions in Section 6 are followed by test vectors and
cryptanalytic tables in Appendices.

2 Rotation-Invariant φ Functions

Introduced in Daemen’s 1995 PhD Thesis [3], φ functions are rotation-invariant n-bit
invertible functions. We use a slightly different notation from Daemen who used φ to
denote non-invertible as well as invertible rotation-invariant functions.

Definition 1. Let f : {0, 1}n 7→ {0, 1}n be a function from n-bit vectors to n-bit
vectors. f is a φ function if it is bijective (uniquely invertible) and rotation-invariant:
f(x) = y ⇒ f(x≪ r) = y ≪ r for all r.

Lemma 1. Any n × n-bit φ function f is unambiguously characterized by an n × 1 -
bit function f(1) that satisfies f(1)(x) = f(x) ∧ 1.

Proof. Directly from rotation invariance. Constant 1 has Hamming weight 1. ut

Each output bit of the function may be dependent only on some subset of n input
bits. This subset is not arbitrary; we found that neighboring input bits are more likely
to yield invertible functions. In the present work φ5 is a specific 5× 1 - bit function and
φ16 is a 16× 16 - bit function defined by it as per Lemma 1.



2.1 Invertibility

It is easy to see that there are invertible n × n - bit φ functions for any n > 1 by
considering f(x) = cx (mod 2n − 1), where gcd(c, 2n − 1) = 1. Rotation invariance:
2n ≡ 1 (mod 2n − 1) and f(2kx) = 2kcx (mod 2n − 1). For invertibility f−1(x) =
c−1x (mod 2n − 1).

The inverse function f−1 can also be characterized by an n × 1 - bit function f−1(1)

(Lemma 1) since the inverse of any φ function is clearly also a φ function. It may also be
the case that f = f−1. Hummingbird-2ν is an example of a cipher that utilizes two 16-
bit φ functions which are in fact involutions [11]. The SIMON family of block ciphers
from NSA is an example of a cipher that utilizes a non-surjective rotation-invariant
function f as part of a Feistel construction [12].

It is nontrivial to characterize which one-bit f(1) functions generate invertible f
functions apart from simple properties such as bit balance:

∑2n−1
x=0 f(1)(x) = 2n−1.

Good φ functions appear to be rather hard to find – we resorted to optimized exhaustive
tabulation methods to find our implementation-friendy and “feebly asymmetric” φ5.

Fig. 1. On left, a circuit implementing KECCAK’s 5 × 5 - bit χ component, which happens
to be a rotation-invariant φ function of degree 2. On right, a circuit implementing its inverse
permutation, χ−1, which has Degree 3 with each output bit dependent on all input bits. Such
asymmetric Boolean and circuit complexity is characteristic of φ functions.



2.2 On Cryptanalysis of φ Functions

Algorithms for finding differential [13] and linear [14, 15] cryptanalytic properties of
a φ function are relatively fast and straightforward to implement. Thanks to Lemma 1,
when determining linear bounds we may assume that the input mask is a subset of the
input bits to its f(1).

For differential cryptanalysis we must consider the convolution of the input differ-
ential w.r.t. a single output bit. Due to rotation we may always by convention set the bit
at index 0 in the input differential.

Countermeasures must be taken against rotational cryptanalysis [16] due to inher-
ent rotational invariance of φ functions. Algebraically these functions have surprising
properties. See Section 4.3 and Appendix D for tables and conjectures related to φ5.

2.3 General Implementation Features

One the most useful features of φ functions is the extreme amount of implementation
trade-offs allowed. Computation of a n × n - bit φ function can take anywhere from
1 (fully unrolled) to c × n cycles (serial implementation – here c is some constant),
depending on target hardware platform. This is illustrated in Figure 3.

On software platform, φ functions allow efficient implementation of large “S-boxes”
via a Boolean sequence programming technique resembling bit-slicing [17]. Finding a
good bit-slicing Boolean description for an n× 1 - bit function is much easier than for
a generic n× n - bit S-Box.

Such straight-line code is resistant to cache-based side-channel timing attacks such
as those reported against AES implementations [18–20].
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Fig. 2. A simplified view of a generic Sponge construction. The state is first loaded with an
Initialization Vector or the final state of previous message. In CBEAM, the mixing function is
π = mx6. Then Secret Key, Nonce, and Associated Authenticated Data (AAD) are absorbed and
mixed - all represented by d words. b represents some domain separating padding mechanism.
The same π function is then be used to encrypt and decrypt data and finally to extract (“squeeze”)
out a MAC or a hash h.



3 CBEAM and its π Permutation

The design of CBEAM was driven by the following goals:

1. KISS: A simple design based on a single feebly one-way unkeyed permutation.
2. Fulfills all symmetric cryptographic needs of a communications security suite with

a single core primitive. Useable as a Pseudorandom Function, Authenticated En-
cryption Algorithm, and a Collision-resistant Hash.

3. Have high performance on high-end CPUs, yet be efficiently implementable on
low-end MCUs and lightweight hardware platforms such as RFID.

4. Have a high security level against attacks (2128).

CBEAM is based on the Sponge construction (Section 3.2) with a 256-bit state size
and 64-bit data rate; data transfer generally occurs in 64-bit increments.

3.1 Mixing Function mx

The basic building block of CBEAM is mx, which is a bijective transform on a 256-bit
state variable. Six rounds of mx make up π, the fundamental permutation of CBEAM.

The mixing function mx is composed of addition of a round constant rcr, bit matrix
transpose, linear mixing λ, and nonlinear mixing φ:

mxr(s) = (φ ◦ λ)(s⊕ rcr)T . (1)

Practical software implementation notes are presented in Section 5.2 and a test trace
of six rounds in Appendix A.

Formal definition. We index the state s interchangeably as a 16 × 16 - bit matrix
s[ 0..15 ][ 0..15 ], a vector of 16-bit words sw[ 0..15 ] with sw[ i ] =

∑15
j=0 2

js[ i ][ j ]

or as four quadwords sq[ 0..3 ] with sq[ i ] =
∑3
j=0 2

16jsw[ 4i+ j ]. All data is stored
in little-endian format.

In the following description modulo 16 arithmetic in indexing is equivalent to log-
ical masking with 0xF; a mod 16 is always in the range 0, 1, · · · , 15. To evaluate
π = mx6 we compute six rounds r = 0 . . . 5 of the following three steps:

1. Round Constant rcr. Let the individual round bits be r = 4r2 +2r1 + r0. We have
s′[ i ][ j ] = s[ i ][ j ] for all 0 ≤ i, j ≤ 15 except the following:

s′[ 0 ][ 0 ] = s[ 0 ][ 0 ]⊕ (r0 ∧ ¬r1)
s′[ 1 ][ 0 ] = s[ 1 ][ 0 ]⊕ (r0 ∧ r2)
s′[ 3 ][ 0 ] = s[ 3 ][ 0 ]⊕ r0
s′[ 4 ][ 1 ] = s[ 4 ][ 1 ]⊕ r0
s′[ 5 ][ 1 ] = s[ 5 ][ 1 ]⊕ (r0 ∧ ¬r1)
s′[ 6 ][ 1 ] = s[ 6 ][ 1 ]⊕ (r0 ∧ r2)

s′[ 8 ][ 2 ] = s[ 8 ][ 2 ]⊕ (r0 ∧ r1)
s′[ 10 ][ 2 ] = s[ 10 ][ 2 ]⊕ r0
s′[ 11 ][ 2 ] = s[ 11 ][ 2 ]⊕ (r0 ∧ r2)
s′[ 13 ][ 3 ] = s[ 13 ][ 3 ]⊕ r0
s′[ 14 ][ 3 ] = s[ 14 ][ 3 ]⊕ (r0 ∧ r1)
s′[ 15 ][ 3 ] = s[ 15 ][ 3 ]⊕ (r0 ∧ r2).

Observe that the round constants are active only on odd rounds (r0 = 1).



Table 1. Truth table for φ5 (Equation 4.)

x4 x3 x2 x1 x0 φ5

0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 1
0 0 0 1 1 1
0 0 1 0 0 0
0 0 1 0 1 0
0 0 1 1 0 1
0 0 1 1 1 1

x4 x3 x2 x1 x0 φ5

0 1 0 0 0 1
0 1 0 0 1 0
0 1 0 1 0 1
0 1 0 1 1 0
0 1 1 0 0 0
0 1 1 0 1 0
0 1 1 1 0 1
0 1 1 1 1 1

x4 x3 x2 x1 x0 φ5

1 0 0 0 0 1
1 0 0 0 1 1
1 0 0 1 0 0
1 0 0 1 1 1
1 0 1 0 0 0
1 0 1 0 1 0
1 0 1 1 0 1
1 0 1 1 1 0

x4 x3 x2 x1 x0 φ5

1 1 0 0 0 1
1 1 0 0 1 0
1 1 0 1 0 1
1 1 0 1 1 0
1 1 1 0 0 0
1 1 1 0 1 0
1 1 1 1 0 1
1 1 1 1 1 1

2. Linear transform λT . Let s′ = λ(sT ) for 0 ≤ i, j ≤ 15:

s′[ i ][ j ] = s[ (j + 4) mod 16 ][ i ] ⊕
s[ (j + 8) mod 16 ][ i ] ⊕ (2)
s[ (j + 12) mod 16 ][ i ].

We note that the λT transform consists of a transpose of the matrix and a bit parity oper-
ation. The transpose and bit parity operations are individually involutions but applying
their compound operation λT four times results in the original matrix.

3. Nonlinear transform φ. We define s′ = φ(s) for 0 ≤ i, j ≤ 15 as:

s′[ i ][ j ] = φ5
(
s[ i ][ j ],

s[ i ][ (j − 1) mod 16 ],

s[ i ][ (j − 2) mod 16 ], (3)
s[ i ][ (j − 3) mod 16 ],

s[ i ][ (j − 4) mod 16 ]
)
,

where φ5 is defined the following Algebraic Normal Form (ANF) polynomial in Z2:

φ5(x0, x1, x2, x3, x4) = x0x1x3x4 + x0x2x3 + x0x1x4 + x1x2x3 + x2x3x4+

x0x3 + x1x3 + x2x3 + x2x4 + x3x4 + x1 + x3 + x4. (4)

Selection of φ5 is discussed in Section 4.1 and Table 1 gives its truth table.

3.2 Hashing and Authenticated Encryption

We claim that π can be used in all of the following proposed Sponge modes of operation.
However, we suggest that unique message nonces or randomizers are always used for
AE and MAC modes.

– Authenticated Encryption (AE) with SPONGEWRAP[9].



– Keyed Message Authentication Codes (MACs) [21].
– Collision resistant hashing [6].
– Tree hashing with SAKURA [22].
– Pseudorandom extractors (PRFs and PRNGs) [8].
– BLINKER two-party protocols [23].

For CBEAM described in this paper b = 256 and a natural choice for rate is r = 64,
leaving a capacity of c = 192. This is more suitable for low-resource platforms and
short messages than KECCAK with its 1600-bit state [1].

For SPONGEWRAP and other modes with frame bits it may be appropriate to have
r = 65 or 66 in order to not break input byte boundaries. For 238 bits of data per key
we claim 2128 security based on Theorems of [10], equivalent to AES-128 and suitable
for SECRET data. For 246 data we claim 2112 security, superior to 3DES / TDEA [24].

If even faster speeds are required and unique nonces are available, one may reduce
the number of rounds to mx4 or even mx2 and use the MONKEYDUPLEX construction
of [25]. However, many of the security assurances will break down in this case.

φ5

0123456789101112131415 x

16 - Cycle Hardware Implementation (x and y are rotated at each cycle)

0123456789101112131415 y

0123456789101112131415

01234567891011121314

012345678910111213

0123456789101112

01234567891011

15

1415

131415

12131415

0123456789101112131415

φ5 φ5 φ5 φ5 φ5 φ5 φ5 φ5 φ5 φ5 φ5 φ5 φ5 φ5φ5 φ5

Bitslicing Software Implementation (x, x≪ 1, · · · , x≪ 4 in different registers)

≪ 1

≪ 2

≪ 3

≪ 4

x

y

R0

R1

R2

R3

R4

Fig. 3. Example of a 16 × 16 - bit φ function based on a 5 × 1 - bit Boolean function φ5. We
observe 16 and 1 cycle implementations of the same function. Note that the latter example is
equivalent to “bit slicing” software implementation using rotated words.



4 Design and Analysis

Ignoring the round constant, the mx transform may be viewed as a transpose of a matrix
followed by 16 parallel, independent invocations of a 16 - bit permutation, (φ ◦ λ)16.
We start with the most fundamental observation:

Theorem 1. The mx transform is bijective (reversible).

Proof. The mx transform is bijective as all of its component functions are individually
reversible. It is trivial to see that the linear transform λ is bijective. Since convolution
by a nonlinear Boolean function is generally not reversible, one may compute the 216 -
entry table of φ16 to verify that it is indeed bijective. ut

The choice of round constants was specially crafted to deter rotational [16] and slide
[26, 27] attacks.

Theorem 2. Without the round constants the mx transform is shift-invariant both hor-
izontally and vertically. Let s′ = mx(s) and t′ = mx(t). If each element s[ i ][ j ] =
t[ (i+4∆i) mod 16 ][ (j+∆j) mod 16 ] for some offsets∆i and∆j , then s′[ i ][ j ] =
t′[ (i+∆j) mod 16 ][ (j + 4∆i) mod 16 ].

Proof. The theorem follows form shift-invariant properties of all component functions.
Note the exchange of indices 4∆i and ∆j due to transpose. ut

4.1 Selection of φ5

We analyzed all 22
5

= 232 five-input Boolean functions, searching for ones that re-
sult in invertible 16-bit φ functions with particularly good properties. Five neighboring
bits are used since rotation amounts that would yield better branching (such as the set
{0, 1, 2, 4, 8}) didn’t result in any appropriate functions. Single left rotations are used
as it is universally available (addition of number to self with carry flow-over to LSB).

There were 260 invertible functions, of which 56 were dependent on all five input
bits in nonlinear fashion. Eight of these exhibited optimal differential and linear prop-
erties. However there are three independent mirror symmetries (inversion of all input
and output bits and the order of input bits) and therefore 23 = 8 equivalent functions.
Discounting these symmetries, there is only one optimal function, φ5 (Equation 4).

Invertibility φ5 of for other word sizes besides n = 16 and the surprising properties
of these inverse functions are analyzed in Appendix D.

4.2 Differential and Linear Cryptanalysis

Sponge functions can be attacked with DC [13] and LC [14, 15] even though reasonable
attack models are radically different from block ciphers.

Because of λ, changing one bit of the input will spread the difference to at least
three bit positions outside the first quadword which can be modified by the attacker.
After four of six mx iterations, there is no easily detectable bias regardless of input dif-
ference, which we feel is an appropriate security margin. See Table 4 for an illustration
of progress of differentials in the state during forward and reverse iterations.



For this analysis we view (φ ◦ λ)16 row operation as a 16 × 16 - bit “S-Box”.
The highest-probability differential is 0CCC → 8001 and its rotational equivalents.
The probability of this differential is 12032

216 ≈ 0.1836. From Table 2 in Appendix C
we observe that a 1-bit input difference never yields a 1-bit output difference (branch
number is greater than 2).

The best linear approximation for (φ ◦ λ)16 is 0888 → 0001 and its rotational
equivalents, which have a bias of 16384

216 = 1
4 . The other best approximations are given

in Table 3. Significantly, all single bit approximations have 0 linear bias, as do 2-to-1
and 1-to-2 - bit approximations.

4.3 Algebraic Properties

The truth table for φ5 Boolean function is given in Table 1. From its definition in Equa-
tion 4 one easily see that the degree of φ5 is 4 (and ANF weight 13), and that is also the
algebraic degree of φ state transform mx (see Equation 3).

The mx function has been designed to have a significant amount of algebraic “one-
wayness” in the sense discussed by Hiltgen [28]. The following somewhat surprising
observation can be verified by examining the inverse of φ16:

Observation 1 The algebraic degree of the φ−116 inverse function is 11. The weight
(number of nonzero terms) of the ANF polynomial for each output bit of φ−116 is 13465.

For a characterization of the Algebraic properties of the inverse of φ−1n for n 6= 16,
we refer to Appendix D, where tables and conjectures are presented.

The algebraic degree of mxn is bound by 4n. We have verified that the output after
six invocations actually has a degree up to 256. If state bits are observed as a function
of sq[ 0 ], the number of terms of each degree are distributed in a way that indicates
that CBEAM is not vulnerable to d-monomial distinguishers [29] or other traditional
algebraic attacks.

Higher-degree inverse indicates high-degree iteration. Research by Boura and Can-
teaut on the algebraic degree of iterated permutations seen as multivariate polynomials
shows that the degree depends on the algebraic degree of the inverse of the permutation
which is iterated [5]. This indicates exceptional algebraic security for our proposal.

5 Padding and Implementation Notes

A special padding mode of operation, BLINKER [23], is proposed together with CBEAM.
This multi-use padding mode allows full encryption protocols to be built from CBEAM.
We note that an early version of CBEAM and BLINKER was used in the HAGRAT aca-
demic Remote Access Trojan [30], minimizing the size of the encryption component.

CBEAM is highly flexible when it comes to implementation platforms. A standard
C implementation may compute four rows in parallel using 64-bit data types whereas
specific implementation strategies exist that fully utilize architectures from 16-bit to
256-bit word size. Figure 4 shows how the state fits into the register sets of various
CPU architectures.



In hardware implementations, an invocation of the mxn transform can take any-
where between 1 and several thousand clock cycles, depending on the number of gates,
peak energy and amount of surface area available. Figure 3 shows sixteen- and single
clock versions of a φ16 - type convolution.

5.1 Hardware Implementations

We have designed and written VHDL for two implementations, dubbed Serial-CBEAM
and Block-CBEAM. These have been found to function correctly on a Xilinx Virtex 3E
FPGA board with the ISE 14.4 design flow.

Serial Implementation. The Serial implementation assumes external 256-bit memory
for the state and operates on that state one bit at a time. The implementation sacrifices a
lot of clock cycles for reduction of gates and area. The implementation requires only 16
internal register bits in addition to address/clock counters. The implementation with a
1-bit data bus requires 256 read cycles and 256 write cycles for each MX iteration, 3072
clocks in total for full π = mx6. We estimate that the implementation footprint is only
about 300 GE without the 256-bit external state memory.

Block Implementation. This is a 1 - cycle implementation of the mx function (with
e.g. 256 parallel φ5 circuits). Depending on target platform and area, timing constraints,
it is possible to implement more than one round of mx2 in a single cycle. Pipelined
operation using SAKURA-like [22] hopping hash trees can also be considered with this
mx core.

5.2 Implementing CBEAM in Software Without Matrix Transpose

Since transposing a binary matrix is generally slow in software, one would typically
want to combine two mx operations into a double-round with separate “vertical” and
“horizontal” parts. We give some generic guidance on how to implement mx2 in soft-
ware this way. However, one should examine the reference 16-bit, 64-bit, and 256-bit
implementations for architecture-specific optimizations.

rw[0] rw[1] rw[2] rw[3] rw[4] rw[5] rw[6] rw[7] rw[8] rw[15]rw[14]rw[13]rw[12]rw[11]rw[10]rw[9]

16× 16 = 256 - bit state r

YMM0

XMM0 XMM1

MMX0 MMX2 MMX3 MMX4

R0 R1 R2 R3 R4 R5 R6 R7

Fig. 4. Illustration on how to fit the 256-bit state into a single Haswell+ AVX2 YMM register, two
Pentium 3+ SSE XMM registers, four Pentium+ MMX or ARM NEON registers or eight ARM
general purpose registers for bit-slicing computation.



Step 1: Vertical linear transform λ. This step is easiest to implement by viewing the
state as 64-bit words (“quadwords”) sq[0..3] with s = ( sq[ 0 ], sq[ 1 ], sq[ 2 ], sq[ 3 ] ).

t = sq[ 0 ] ⊕ sq[ 1 ] ⊕ sq[ 2 ] ⊕ sq[ 3 ]

s′ = (sq[ 0 ] ⊕ t, sq[ 1 ] ⊕ t, sq[ 2 ] ⊕ t, sq[ 3 ] ⊕ t ). (5)

Step 2: Vertical nonlinear transform. An optimized bit-slicing method for φ5 is used
(See Appendix B). Note that the input words may be stored in registers and contents of
registers values in shifted for each new input word. For 0 ≤ i ≤ 15:

s′w[ i ] = φ5
(
sw[ i ], sw[ (i− 1) mod 16 ], sw[ (i− 2) mod 16 ],

sw[ (i− 3) mod 16 ], sw[ (i− 4) mod 16 ]
)
. (6)

Step 3: Round Constant. As the round constants are only active at odd rounds, they
are in fact always applied between vertical and horizontal rounds in this type of imple-
mentation. Written as transposed quadwords, the three nonzero round constants are:

rc1q = 0x2000040000300009

rc3q = 0x6000050000100008 (7)

rc3q = 0xA0000C000070000B

Constants from Equation 7 are XORed over the first quadword of state at round i:

s′q[ 0 ] = sq[ 0 ]⊕ rciq. (8)

Step 4: Horizontal linear transform λ. This step is relatively slow in this type of im-
plementation. There are many ways to do this; we note that each nibble of t is equivalent
to each other. This step is also parallelizable. For 0 ≤ i ≤ 15:

t = sw[ i ] ⊕ (sw[ i ] ≪ 4) ⊕ (sw[ i ] ≪ 8) ⊕ (sw[ i ] ≪ 12)

s′w[ i ] = sw[ i ] ⊕ t. (9)

Step 5: Horizontal nonlinear transform. Again a bit-slicing implementation of φ5
(Appendix B) is used, but on rotated values of each word. For 0 ≤ i ≤ 15:

s′w[ i ] = φ5
(
sw[ i ], sw[ i ] ≪ 1, sw[ i ] ≪ 2, sw[ i ] ≪ 3, sw[ i ] ≪ 4

)
. (10)



5.3 Latest Server/Desktop/Laptop Systems: x86-64 with AVX2

The Intel Haswell (Generation 4 Core) and later x86-64 CPUs support 256-bit AVX2
(Advanced Vector Extensions 2) SIMD instructions. The AVX2 platform provides shuf-
fle and vector shift instructions for 16-bit vector sub-units in addition to 256-bit Boolean
logic for the nonlinear function φ5 (Equation 4). We can implement full 256-bit φ5
with only eight instructions (Appendix B.1). This roughly doubles the overall execu-
tion speed when compared to optimized 64-bit gcc versions.

The following speeds were measured on a MacBook Air (Q3/2013) with Intel Core
i5 - 4250U CPU @1.30 GHz running Ubuntu Linux 13.04. The internal clock frequency
was 1.90 GHz for all tests.

We compare to OpenSSL 1.0.1e AES implementation, which is the de facto stan-
dard AES implementation. Generic assembler optimizations were enabled but we dis-
abled the full hardware AES for fairness.

Implementation Troughput Cycles/Byte
CBEAM-GCC 58.5 MB/s 32.5
CBEAM-AVX2 117.5 MB/s 16.1
OpenSSL AES-128 106.5 MB/s 17.8
OpenSSL AES-192 86.0 MB/s 22.1
OpenSSL AES-256 71.9 MB/s 26.4

5.4 Sensors and Pervasive Devices: MSP430

Texas Instruments MSP430 is a well known family of low-cost and ultra-low power
16-bit SoC microcontrollers, widely used in sensor networks. CBEAM beats the more
than dozen MSP430 encryption algorithm implementations reported in [31], often by
an order of magnitude.

Our implementation of π is able to execute entirely on 12 general-purpose registers
without having to resort to stack (except the top value) and therefore the running RAM
requirement is equivalent to the state size, 32 bytes. The φ5 function was realized with
nine logic instructions (Appendix B.2). Unfortunately the target only has 1-bit shifts
and no multi-bit rotation instructions, which results in a bottleneck for “horizontal” λ.

The cipher is as fast as the very fastest AES implementations on this platform but
has significantly smaller implementation footprint. The following numbers are only for
cores, modes of operation not included. The IAIK [32] implementation is commercial
and written in hand-optimized assembly. The Texas Instruments [33] implementation is
recommended by the SoC vendor.

Code Flash Ram Encryption Decryption Cycles/Byte
CBEAM 386 32 4369 4404 550.5
AES-128 [32] 2536 ? 5432 8802 550.1
AES-128 [33] 2423 80 6600 8400 525.0
AES-256 [32] 2830 ? 7552 12258 766.1



6 Conclusions

We propose the use of novel rotation-invariant φ functions in cryptographic primitives
such as hashes and authenticated encryption. These functions have fascinating and at-
tractive properties such as “feeble one-wayness”; the Boolean complexity of inversion
appears to be much higher than the Boolean complexity of computing the permutation
in forward direction. We have experimentally verified that the polynomial degree for
the inverse of a φ5 function grows linearly as the number of input bits grows, while it
remains constant in forward direction. Hence the function and its inverse are in different
complexity classes (linear vs. polynomial or super-polynomial).

In a Sponge construction a large and efficient cryptographic permutation is required.
The permutation needs to be computed only in one direction during normal operation.
It has been shown that complexity of inversion makes collision search and other attacks
more difficult. Here an asymmetric φ function is an ideal choice. This motivates us to
propose a new 256-bit Sponge function, CBEAM, which can be used for cryptographic
hashing, authenticated encryption, and other purposes.

In addition to the theoretical side, the main attractive feature of CBEAM is its ex-
treme implementation flexibility; a single word encryption operation may require any-
where between 1 to thousands of cycles, depending on the area and energy requirements
of the implementation. We also demonstrate that it is approximately as fast as AES on
both high-end CPUs and low-end MCUs, while having a significantly smaller imple-
mentation footprint.
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A Trace of Execution for CBEAM

A trace (test vector) of six rounds of computation for the π = mx6 function:

b = ( 0123, 1234, 2345, 3456, 4567, 5789, 6789, 789A,

89AB, 9ABC, ABCD, BCDE, CDEF, DEF0, EF01, F012 )

mx(b) = ( 88A8, 3333, BDBD, BFC1, DD5D, B87B, BF7D, A3B5,

88A8, CCCC, F6F6, FF06, 5555, 9999, EDED, FE0D )

mx2(b) = ( 6F0D, E713, 4B47, B151, 25BD, 929F, 2540, 7780,

4985, 511D, 818C, A135, 8426, 9911, FB65, 3991 )

mx3(b) = ( E50C, EAE4, 07F3, B08A, 6476, 2138, D90D, F629,

3919, 3071, 1E59, 1458, DEEC, 15F3, 96DF, 1FB2 )

mx4(b) = ( 8922, B751, 6648, 0EED, C285, 89E5, 2DFC, DBBF,

4310, 77FA, 3494, 7F13, 47D9, 6DD3, 1E59, E502 )

mx5(b) = ( 2CA0, 67B3, 4F96, 0A46, B209, AC7E, 5C64, A125,

CF7C, B46F, EB8A, FAED, 1130, 934D, CC02, 0D67 )

mx6(b) = π(b) = ( 5432, 281E, B184, 9481, AAF0, C9BE, A028, 4C79,

4B69, 53BF, 53C0, CFE8, 8839, 9D2A, 89E3, 1300 )

B Bit-Slicing for φ5

The ANSI C reference implementation cbref/mx6-gcc.c implements φ5 as a macro
as follows:

#define CBEAM_PHI5(x0, x1, x2, x3, x4) \
(~(x0 & ((~x3 & x4) ^ (~x2 & x3))) & \
(x1 | (~x2 & x3))) ^ (~x2 & (~x3 & x4))



Here we put our trust to compiler for common subexpression elimination of (~x3 & x4)
and (~x2 & x3). One can assign these to temporary variables if necessary. We have
exhaustively verified that φ5 cannot be implemented with less than eight logical instruc-
tions (ANDN (~x & y) is a single op).

B.1 AVX 2

Here is a code snippet written in AVX2 C intrinsics for implementing the φ5 function
with 8 logical instructions on 256-bit registers:

// t0 = Phi5(x0,x1,x2,x3,x4)
t0 = _mm256_andnot_si256(x3, x4);
t1 = _mm256_andnot_si256(x2, x3);
t2 = _mm256_andnot_si256(x2, t0);
t3 = _mm256_or_si256(x1, t1);
t0 = _mm256_xor_si256(t0, t1);
t1 = _mm256_and_si256(x0, t0);
t0 = _mm256_andnot_si256(t1, t3);
t0 = _mm256_xor_si256(t0, t2);

Please see the reference implementation file cbref/mx6-avx2.c for tricks on how
to implement λ and various shifts efficiently on this platform.

B.2 MSP430

TI MSP430 has only two-operand machine instructions and hence the code is slightly
longer with 9 instructions on 16-bit registers:

/* r14 = Phi5(r15,r14,r13,r12,r11) */
bic r12, r11
inv r13
and r13, r12
and r11, r13
xor r12, r11
and r11, r15
bis r12, r14
bic r15, r14
xor r13, r14

The MSP430 reference implementation cbeam430/mx430.s can compute π = mx6

without utilizing stack (except the top value, which is basically free).



C Auxiliary Tables

Table 2. Probabilities (%) of best differentials for (λ◦φ)16 with specific input weight (rows) and
output weight (columns). The best overall differential and the best differential with output weight
1 are emphasized.

Wt 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 0 0 1.07 .513 .635 .562 .385 .330 .140 .137 .064 .021 .003 0 0 0
2 0 4.30 2.15 2.54 2.15 1.37 .592 .443 .284 .256 .116 .098 .037 .027 .006 .006
3 17.2 5.47 5.47 3.91 1.78 .922 .787 .476 .330 .195 .177 .119 .079 .052 .027 .003
4 .009 1.46 3.37 5.15 1.95 1.32 .903 .439 .305 .375 .232 .159 .101 .064 .049 .021
5 .684 2.93 6.74 2.49 2.20 1.76 .885 .635 .446 .363 .266 .192 .140 .085 .064 .021
6 7.03 18.4 5.47 3.91 2.34 1.37 .894 .702 .412 .354 .214 .168 .131 .128 .052 .018
7 .928 2.00 4.17 2.12 3.09 1.64 1.14 .671 .470 .299 .247 .223 .165 .101 .040 .024
8 2.93 3.22 3.22 4.15 3.12 1.95 1.20 .732 .522 .360 .220 .256 .140 .070 .049 .034
9 8.20 4.00 11.1 4.59 3.52 1.95 1.28 .885 .525 .366 .253 .171 .134 .101 .067 .024
10 .598 1.39 1.66 2.73 1.46 2.27 1.44 .781 .586 .323 .220 .208 .131 .153 .043 .021
11 .964 2.44 3.27 2.05 3.96 2.22 1.27 .879 .403 .232 .266 .192 .165 .092 .037 .027
12 .781 5.57 2.83 6.74 2.34 1.86 .696 .439 .290 .296 .198 .171 .128 .058 .040 .031
13 0 .122 .159 .323 .247 .269 .327 .317 .272 .214 .223 .119 .082 .058 .031 .009
14 0 .018 .073 .150 .177 .250 .269 .424 .235 .275 .140 .104 .061 .052 .024 .015
15 0 0 .003 .006 .079 .064 .122 .058 .076 .064 .055 .037 .043 .034 .021 0
16 0 0 0 0 0 .006 .006 .049 .024 .055 .031 .058 .015 .021 0 .012

Table 3. Absolute biases (%) of best linear approximations for (λ◦φ)16 with specific input mask
weight (rows) and output weight (columns).

Wt 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 0 0 6.25 3.71 4.69 3.12 2.73 1.56 1.17 .586 .439 0 0 0 0 0
2 0 12.5 7.03 9.38 6.25 4.88 3.71 2.93 3.32 1.86 1.27 1.27 .684 .391 0 0
3 25.0 12.5 9.38 6.25 5.08 4.49 4.59 3.71 2.73 1.95 1.66 1.42 1.37 .830 .684 0
4 0 7.03 9.38 7.81 7.81 7.03 3.91 3.81 3.03 2.88 4.39 6.15 3.37 2.73 1.27 2.15
5 6.25 12.5 9.38 8.59 9.38 5.86 5.08 3.91 5.27 6.05 6.84 3.47 2.64 2.49 1.95 1.07
6 18.8 18.8 15.6 10.9 7.03 5.47 5.27 6.45 6.25 8.01 4.83 3.32 2.15 1.95 1.46 1.17
7 0 7.81 10.9 12.5 7.81 6.64 7.42 8.40 8.40 4.59 3.91 4.15 4.74 2.78 3.42 1.27
8 6.25 15.6 14.1 9.38 10.2 8.59 8.59 9.77 6.45 4.79 4.83 3.96 3.76 3.76 2.25 .977
9 18.8 18.8 15.6 10.9 8.59 10.5 10.9 6.25 4.69 3.96 4.39 3.56 2.88 2.15 1.95 .879
10 0 7.03 7.81 9.38 9.38 14.1 8.59 5.08 4.49 4.54 3.61 3.96 3.76 4.98 2.83 2.25
11 6.25 7.81 7.81 10.9 15.6 7.81 6.25 4.59 3.61 3.32 4.20 4.88 3.08 2.98 1.86 1.17
12 6.25 9.38 14.1 17.2 9.38 6.25 3.91 3.32 3.37 3.32 3.66 4.20 2.98 2.59 1.46 1.56
13 0 0 1.95 2.93 2.93 2.93 3.71 2.88 3.27 4.20 3.52 2.78 3.27 3.52 5.08 .586
14 0 0 .391 .684 1.90 2.05 2.44 2.29 2.93 2.98 2.59 2.98 2.69 2.78 1.46 .977
15 0 0 0 .684 .635 1.22 1.66 1.76 1.81 1.76 2.05 1.86 2.29 1.17 .684 0
16 0 0 0 0 0 0 0 .488 .537 .684 .977 1.37 1.32 2.78 1.17 9.38



Table 4. Progression of differentials in consecutive invocations of mx. Here the zeroth bit has
been flipped; ∆ = 0255 || 1. We observe that the full state is affected and there is no detectable
bias after mx4. The π transform has six rounds by default.

mx(x)⊕ mx(x⊕∆)
# 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
00 38 50 63 50 37 50 62 50 37 50 63 38 00 00 00 25
01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
03 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
04 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
05 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
06 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
07 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
08 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
09 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
11 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
12 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
13 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
14 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
15 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

mx2(x)⊕ mx2(x⊕∆)
# 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
00 09 12 16 12 09 12 16 12 09 12 16 09 00 00 00 06
01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
03 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
04 14 19 23 19 14 19 23 19 14 19 23 14 00 00 00 09
05 23 31 39 31 23 31 39 31 23 31 39 23 00 00 00 16
06 19 25 31 25 19 25 31 25 19 25 31 19 00 00 00 12
07 14 19 23 19 14 19 23 19 14 19 23 14 00 00 00 09
08 19 25 31 25 19 25 31 25 19 25 31 19 00 00 00 13
09 23 31 39 31 23 31 39 31 23 31 39 23 00 00 00 16
10 19 25 31 25 19 25 31 25 19 25 31 19 00 00 00 13
11 14 19 23 19 14 19 23 19 14 19 23 14 00 00 00 09
12 19 25 31 25 19 25 31 25 19 25 31 19 00 00 00 12
13 23 31 39 31 23 31 39 31 23 31 39 23 00 00 00 16
14 19 25 31 25 19 25 31 25 19 25 31 19 00 00 00 12
15 14 19 24 19 14 19 23 19 14 19 23 14 00 00 00 09

mx3(x)⊕ mx3(x⊕∆)
# 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
00 33 34 33 32 33 34 33 32 33 36 36 37 38 39 36 32
01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
03 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
04 40 42 41 39 40 42 41 39 40 43 43 42 44 45 43 39
05 47 48 47 45 47 49 47 45 46 48 48 47 49 49 48 45
06 44 46 45 43 44 46 45 43 44 46 46 46 47 48 46 43
07 40 42 41 39 40 42 41 39 40 43 43 42 44 45 43 39
08 44 46 45 43 44 46 45 43 44 46 46 46 47 48 46 43
09 46 48 47 45 47 49 47 45 46 48 48 47 48 49 48 45
10 44 46 45 43 44 46 45 42 44 46 46 46 47 48 46 43
11 40 42 41 39 40 42 41 39 40 42 43 42 44 45 43 39
12 44 46 45 43 44 46 45 43 44 46 46 46 47 48 46 43
13 46 48 47 45 47 49 47 45 46 48 48 47 48 49 48 45
14 44 46 45 43 44 46 45 43 44 46 46 46 47 48 46 43
15 40 42 41 39 40 42 41 39 40 43 43 42 44 45 43 39

mx4(x)⊕ mx4(x⊕∆)
# 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
00 49 49 49 49 49 49 49 49 49 49 49 50 50 50 49 49
01 49 49 50 49 49 50 50 49 49 50 50 50 50 50 50 49
02 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50
03 50 50 50 50 50 50 50 49 50 50 50 50 50 50 50 50
04 49 50 50 49 49 50 50 49 49 50 50 50 50 50 50 49
05 49 49 50 49 49 49 50 49 49 49 50 50 50 50 50 49
06 49 50 50 49 50 50 50 49 49 50 50 50 50 50 50 49
07 49 49 49 49 49 49 49 49 49 49 50 50 50 50 50 49
08 49 49 49 49 49 49 49 49 49 49 49 49 50 50 50 49
09 49 49 49 49 49 49 49 49 49 49 49 50 50 50 50 49
10 50 50 50 49 49 50 50 49 50 50 50 50 50 50 50 49
11 49 49 49 49 49 49 50 49 49 49 50 50 50 50 50 49
12 49 49 49 49 49 49 49 49 49 49 49 49 50 50 50 49
13 49 49 49 49 49 49 49 49 49 49 49 50 50 50 50 49
14 50 50 50 49 50 50 50 49 49 50 50 50 50 50 50 49
15 49 49 49 49 49 49 49 49 49 49 50 50 50 50 50 49

Progression of differentials in consecutive invocations of inverse function mx−1. Here again the
zeroth bit is flipped. After third round there is no longer any detectable bias.

mx−1(x)⊕ mx−1(x⊕∆)
# 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
00 00 00 00 00 00 00 00 00 00 00 00 00 50 50 50 50
01 00 00 00 00 00 00 00 00 00 00 00 00 50 50 50 50
02 00 00 00 00 00 00 00 00 00 00 00 00 50 50 50 50
03 00 00 00 00 00 00 00 00 00 00 00 00 50 50 50 50
04 00 00 00 00 00 00 00 00 00 00 00 00 50 50 50 50
05 00 00 00 00 00 00 00 00 00 00 00 00 50 50 50 50
06 00 00 00 00 00 00 00 00 00 00 00 00 50 50 50 50
07 00 00 00 00 00 00 00 00 00 00 00 00 50 50 50 50
08 00 00 00 00 00 00 00 00 00 00 00 00 50 50 50 50
09 00 00 00 00 00 00 00 00 00 00 00 00 50 50 50 50
10 00 00 00 00 00 00 00 00 00 00 00 00 50 50 50 50
11 00 00 00 00 00 00 00 00 00 00 00 00 50 50 50 50
12 00 00 00 00 00 00 00 00 00 00 00 00 50 50 50 50
13 00 00 00 00 00 00 00 00 00 00 00 00 50 50 50 50
14 00 00 00 00 00 00 00 00 00 00 00 00 50 50 50 50
15 00 00 00 00 00 00 00 00 00 00 00 00 50 50 50 50

mx−2(x)⊕ mx−2(x⊕∆)
# 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
00 20 25 19 25 34 34 24 25 24 25 25 25 25 25 25 25
01 24 21 22 20 20 20 20 21 20 21 21 20 21 21 21 21
02 23 21 21 21 21 21 20 21 20 21 21 21 21 21 21 22
03 39 39 39 39 40 40 39 39 39 39 39 39 39 39 39 39
04 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50
05 49 50 50 50 49 49 50 50 50 50 50 50 50 50 50 50
06 46 47 47 48 49 49 48 47 48 47 47 48 47 47 47 47
07 49 48 47 47 47 47 46 47 46 48 48 47 48 48 48 49
08 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50
09 49 50 50 50 47 47 49 50 49 50 50 50 50 50 50 50
10 44 46 44 47 51 51 47 46 47 46 46 47 46 46 46 46
11 50 47 48 47 47 47 46 47 46 47 47 47 47 47 48 48
12 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50
13 49 49 49 49 47 47 49 49 49 49 49 49 49 49 49 50
14 41 45 42 45 50 50 46 45 46 45 45 45 45 45 45 45
15 47 38 40 36 38 38 35 37 34 38 37 36 39 38 39 40



D Tables and Conjectures on Algebraic Properties of φ−1
n

The φ5 (Equations 4 and 10) Boolean mapping also defines reversible n× n - bit shift-invariant functions for other n apart from n = 16.
Each forward function has degree 4. The characteristics of the Algebraic Normal Form of inverse functions up to n = 32 are given below.
Each column contains the number of monomials of given degree; the last column has the number of nonzero terms for all degrees.

Conjecture 1. The inverse of φn is defined for each n ≥ 5 with n 6= 0 (mod 3) and deg φ−1n =
⌈
2
3n
⌉
.

Conjecture 2. Computation of φ−1n has at least polynomial complexity (with degree ≥ 2).

The computation of φn has linear complexity O(n) but the complexity of φ−1n is at least O(n2) since the number of input bits grows with
n as per observation in Conjecture 1. Super-polynomial complexity has not been ruled out as we do not know a polynomial time algorithm
for φ−1n . Based on current evidence we are reluctant to believe in exponential complexity, however.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Poly n.z.t.

6 Nonsurjective.
7 4 11 17 15 6 53
8 3 9 13 13 9 2 49
9 Nonsurjective.
10 5 21 55 91 95 56 14 337
11 4 18 45 75 88 69 28 4 331
12 Nonsurjective.
13 6 34 125 303 502 565 408 168 30 2141
14 5 30 106 253 433 543 471 252 72 8 2173
15 Nonsurjective.
16 7 50 236 753 1705 2797 3293 2686 1430 446 62 13465
17 6 45 205 640 1456 2504 3236 3017 1912 766 172 16 13975
18 Nonsurjective.
19 8 69 397 1570 4506 9678 15684 19001 16832 10532 4402 1104 126 83909
20 7 63 351 1356 3866 8472 14450 18965 18645 13266 6554 2114 396 32 88537
21 Nonsurjective.
22 9 91 617 2910 10112 26816 55170 88281 109077 102570 71834 36250 12464 2618 254 519073
23 8 84 553 2548 8750 23352 49428 83181 110136 112723 87302 49868 20260 5510 892 64 554659
24 Nonsurjective.
25 10 116 905 4956 20216 63770 158824 315095 498190 624397 614364 467824 269904 114084 33356 6036 510 3192557
26 9 108 820 4390 17654 55622 140638 288151 477827 636095 671875 555352 353222 168890 58546 13834 1980 128 3445141
27 Nonsurjective.
28 11 144 1270 7918 37078 135562 396082 936523 1801051 2816653 3568633 3638674 2956588 1887016 925480 336844 85766 13646 1022 19545961
29 10 135 1161 7083 32664 118764 349392 843177 1676448 2740338 3661044 3966297 3452310 2386518 1289610 532002 161404 33822 4348 256 21256783
30 Nonsurjective.
31 12 175 1721 12033 63606 264432 886320 2431089 5500476 10297548 15947808 20378433 21385950 18304116 12646968 6947652 2965474 948556 214062 30408 2046 119228885
32 11 165 1585 10855 56487 232938 781992 2171889 5029839 9731040 15696456 21023385 23257191 21114276 15602790 9279726 4369660 1589364 429714 81042 9468 512 130470385


