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Abstract. In many cases, we can only have access to a service by prov-
ing we are sufficiently close to a particular location (e.g. in automobile
or building access control). In these cases, proximity can be guaranteed
through signal attenuation. However, by using additional transmitters an
attacker can relay signals between the prover and the verifier. Distance-
bounding protocols are the main countermeasure against such attacks;
however, such protocols may leak information regarding the location of
the prover and/or the verifier who run the distance-bounding protocol.

In this paper, we consider a formal model for location privacy in the con-
text of distance-bounding. In particular, our contributions are threefold:
we first define a security game for location privacy in distance-bounding;
secondly, we define an adversarial model for this game, with two adver-
sary classes; finally, we assess the feasibility of attaining location privacy
for distance-bounding protocols. Concretely, we prove that for proto-
cols with a beginning or a termination, it is theoretically impossible to
achieve location privacy for either of the two adversary classes, in the
sense that there always exists a polynomially bounded adversary that
wins the security game. However, for so-called limited adversaries, which
cannot see the location of arbitrary provers, carefully chosen parameters
do, in practice, enable computational location privacy.

1 Introduction

Often, our location is critical in order to gain access to places and/or
services. For instance, in applications such as automobile access control
the key (prover) needs to be close enough to the car lock (verifier) in
order to unlock it [16]. In some cases, unlocking the car may in fact also
start the car (in passive keyless entry and start (PKES) systems [17]). If



the proximity check is performed through signal attenuation, an adver-
sary may easily perform man-in-the-middle attacks by relaying messages
between the communicating parties (provers and verifiers), while these
parties are situated far from each other. Thus, in the automobile exam-
ple, an adversary may unlock the car even if the car key (and the prover)
is located very far. This type of attack (called mafia fraud [11]) can also be
mounted against bankcards [12], mobile phones [18], proximity cards [19],
and wireless ad hoc networks [10, 24].

Distance-bounding (DB) protocols are meant to counteract man-in-
the-middle relay attacks in authentication schemes. They are challenge-
response authentication protocols, that allow the verifier, by measuring
the time-of-flight of the messages exchanged, to calculate an upper bound
on the prover’s distance (as well as checking the validity of the responses,
which usually ensure authentication). DB protocols were first introduced
by Brands and Chaum [5] to preclude relay attacks in ATM systems.
Subsequently, numerous DB protocols were proposed [20, 26, 8] and many
attacks against them have been published [21, 2, 23, 3, 14]. To the best
of our knowledge [4] describes the latest most secure distance-bounding
protocol against all known attack modes. Another provably-secure proto-
col attaining quite strong terrorist-fraud resistance requirements has also
been recently published in [15].

Location privacy was introduced in the context of distance-bounding
by Rasmussen and Čapkun [25], who noted that distance-bounding pro-
tocols may leak further location-related information than just the fact
that the prover is within the maximum allowed distance from the veri-
fier. This information leakage follows from the measurement of messages’
arrival times.

To combat this, Rasmussen and Čapkun [25] proposed a privacy-
preserving distance-bounding protocol (denoted here as the RČ proto-
col). Though the protocol in [25] claims to preserve location privacy, we
note that location privacy has never been formalised in the literature.
Additionally, the RČ protocol has been shown to be susceptible to a non-
polynomial dictionary attack which may reveal the prover’s and verifier’s
locations [1] as well as to a mafia fraud attack [22]. Mitrokotsa et al. [22]
have proposed a new distance bounding protocol called Location-Private
Distance Bounding (LPDB) that improves the basic construction of the
RČ protocol and renders it secure against the latter attack.

Distance bounding can also be extended to location verification [28]
(also known as secure positioning [27]) when multiple verifiers interact
with a single prover. In that case the location of the prover can be deter-



mined using the intersection of the bounding spheres surrounding each
verifier. This approach is also taken under consideration in the recent
work regarding position-based cryptography [9]. Our approach here is
different as we consider a single verifier and many provers, and we thus
only achieve distance bounding, and not secure positioning. Furthermore,
in position-based cryptography all the adversaries have the same knowl-
edge as the prover, including the secret key. However, in our model, we do
not allow the adversary knowledge of the secret key, as that would allow
it to trivially distinguish between the two provers in the location privacy
game, without actually requiring any location data.

We also mention the recent work on localisation privacy by Burmester
[6, 7], where location is used in a steganographic sense (such that provers
are convinced that verifier-generated challenges are honest, and they do
not reveal their presence to adversaries). However, very notably the con-
structions in [7] require provers to be aware of their position/location,
which is a strong assumption in the case of general provers. In this case,
location is used as a part of the verifier’s challenge, and the prover verifies
that the location is sufficiently close to the prover’s location.

Contributions: In this paper, we address precisely the topics of lo-
cation privacy in distance-bounding. Our contributions are threefold:

1. We first define a classical left-or-right indistinguishability game for
location privacy in distance-bounding protocols. In this game, the
adversary knows its distance to the verifier V and can create provers
P at arbitrary distances from itself and V.

2. For this location privacy game, we consider two main adversarial
classes: omniscient and limited adversaries. Omniscient adversaries
capture an adversary that can measure the signal strength of the
transmitted messages and are aware, for all transmissions along the
timed channel, when the message is sent and when it arrives at them.
Unsurprisingly, no location privacy is feasible for omniscient adver-
saries. Limited adversaries, on the other hand, are only aware of the
time at which they receive messages from other participants.

3. Finally, we show that achieving location privacy with respect to lim-
ited adversaries is impossible for protocols with a beginning or a ter-
mination, and which run in polynomial time. We prove that loca-
tion privacy against limited adversaries minimally requires the prover
and the verifier to introduce exponential delays between receiving and
sending messages, and we give a lower bound for these delays. Since
the transmission speed is high (e.g. the speed of light in the case
of RFID transmissions), the delay can be implemented in practice.



Finally, we show how to specify these delays in the LPDB protocol
proposed in [22].

Organisation: This paper is organised as follows. We begin by defin-
ing distance-bounding protocols and location privacy in section 2, outlin-
ing also our adversarial classes. We then assess the feasibility of achieving
location privacy for distance-bounding protocols in section 3, for both
omniscient and limited adversaries, giving a lower bound for the delays
that each party must have between receiving a message and sending a re-
sponse message. We apply our results and the obtained bound in section
4, in order to modify the LPDB protocol [22] to attain location privacy
with respect to limited adversaries.

2 Preliminaries

2.1 Communication Model

Our distance-bounding scenario resembles that of Dürholz et al. [13], but
we consider multiple provers. Concretely, there is a single verifier V, but
many provers P1, . . . ,Pn, such that V and Pi for every i share a secret key
Ki output by a key generation algorithm Kg. We also assume that when
it is initialised, the verifier V is also equipped with an upper bound on the
maximum allowed communication time (or time distance) tmax between
itself and the prover.

The communication model considered by [13] is round-based. How-
ever, e.g. the RČ [25] and the LPDB [22] distance-bounding protocols
are not round-based. Therefore, we consider a more generalised model,
where the two parties P and V interact with no round-based restriction,
via two types of channels: a timeless and a timed channel. Parties P and
V may send messages m along each of the two channels (i.e., they are
duplex channels). In order to make the model more realistic we consider
the transmissions along the timed channel to be bit-by-bit.

More formally, the timed channel is associated with the global clock,
such that each bit of an input message m will be associated with a time
ts at which the sending party has sent the bit. The corresponding output
bit of message m is associated with a time tr, which is the time at which
the receiving party has received the bit. The bit-by-bit treatment of the
transmission time is compulsory, as in practice, each bit of the message
is transmitted sequentially or in smaller packets. However, for practical
purposes we will often associate (in our proofs) the sending time of a
message by the sending time of the first bit of this message, since this



particular value is enough to leak significant information regarding the
position of the honest protocol participants (prover and/or verifier).

For the sake of completeness for our model, however, we associate a
message m with an |m|-dimensional vector of sending times t̄s and an
|m|-dimensional vector of transmission times t̄r. We also require that the
values in t̄s and those in t̄r are monotone non-decreasing, i.e. for any
message m and any 1 ď i ă j ď m, it holds that tsi ď tsj and tri ď trj .
Furthermore, if we consider the communication between two parties A
and B and that a message m is sent from the party A to the party B at
time t̄s then the reception time t̄r of the message m at the party B will
satisfy the following equation for every i “ t1, . . . , |m|u:

tri “ tsi ` tAB.

where tAB denotes the time distance between the parties A and B. More
precisely, tAB denotes the time (measured in time units TU) that every
bit of a message m takes to travel between A and B.

Moreover, if the message m leaks off this channel to an adversary
A, each bit of the leaked message is associated with an |m|-dimensional
timestamp t̄rA. Note that this information alone may not suffice to learn
the sending time of the message, as the adversary does not necessarily
know the distance between it and the sending party.

Both channels allow the prover P and the verifier V to interact con-
currently, i.e. it is possible that both the prover P and the verifier V
transmit at the same time across the duplex channel. This is indeed the
case for the RČ protocol [25].

We now define communication in distance-bounding protocols as be-
ing slow (or lazy) if it takes place on the timeless communication channel
and fast (or time-critical) if it takes place on the timed communication
channel. Note that it is possible to alternate fast and slow communication
arbitrarily. We note that this approach is perfectly in-tune with the simi-
lar communication model of [13], but it is also compatible with protocols
that are not round-based.

Definition 1. We say that DB “ pV,P,Kgq is a distance-bounding pro-
tocol with parameters ptmax, εq where tmax denotes the upper bound on
transmission time in the fast phase and ε denotes the tolerance level for
honest P-V authentication failures if:

Key Generation: Kg generates a secret key K ÐÝ Kgp1`q for any ` P N.
Distance-Bounding Authentication: The joint execution of the prover
and verifier algorithms V and P for parameters ptmax, εq ends with a



verifier-generated distance-bounding authentication bit b P t0, 1u.
We require ε-completeness, i.e., the interaction of an honest prover P
and an honest, fixed verifier V for parameters ptmax, εq is accepted by the
verifier with probability at least 1´ ε if tVP ď tmax.

2.2 Adversarial Models

In our framework, the goal of the adversary is to break location privacy
as defined below. In this section, we first show how adversaries interact
with the communication channels and with the honest parties during an
attack. Then, we define two adversarial classes depending on the strength
of the adversary. Finally, we show the location privacy game.

We consider adversaries A that interact with the distance-bounding
system as follows: (1) A may eavesdrop on the communication (across
both the timed and the timeless channel) of an honest prover P and an
honest verifier V; and (2) A may interact with honest provers in prover-
adversary sessions and with honest verifiers in adversary-verifier sessions.
Note that this behaviour implies that an adversary can mount a full man-
in-the-middle attack by simply opening concurrent prover-adversary and
adversary-verifier sessions. This is again in agreement with the treatment
given by Duerholz et al.; we refer to that paper for the more formal notions
of session identifiers.

In view of [29, ?], we consider that frequency hopping (i.e. imple-
menting a protocol such that the sender and the receiver hop from one
frequency to another during the transmission) is not an effective coun-
termeasure against eavesdropping adversaries. In particular, by simply
eavesdropping all possible frequencies (in practice the prover and the ver-
ifier are unable to use too many different frequencies), the adversary can
successfully “piece together” the communication.

We consider two types of adversaries: the limited and the omniscient
adversaries, which are described as follows:

Limited adversaries: These adversaries may eavesdrop on hon-
est prover-verifier sessions or communicate with provers and verifiers in
prover-adversary and respectively adversary-verifier sessions. On eaves-
dropping the timed channel in honest prover-verifier sessions, limited ad-
versaries learn the transmitted message m and the bit-by-bit time the
message is received at, t̄rA “ t̄s` t̄PA, where P is the party that sent the
message m and t̄PA is an |m|-dimensional vector with entries equalling
the time distance tPA between P and the adversary A. Note that the
adversary A is able to choose its location and knows tAV (i.e. its time



distance from the verifier V); consequently, A learns the sending times at
which the verifier sends its messages.

Omniscient adversaries: These adversaries can also eavesdrop on
honest prover-verifier sessions or communicate with provers and verifiers
as above. Additionally, an omniscient adversary can measure the signal
strength of the transmitted messages and is aware, for all transmissions
along the timed channel, when the message is sent and when it arrives at
them. More precisely, on eavesdropping on the timed channel during an
honest prover-verifier session, strong adversaries learn the message m, the
bit-by-bit time the message is received, t̄rA “ t̄s` t̄PA, and the bit-by-bit
sending time t̄s. Thus, strong adversaries can trivially learn the distance
between them and the party P that sent the message.

To justify that an omniscient adversary can also learn the sending
time of messages, we could model this by distributed, limited adversaries,
i.e. A “ pA1,A2q. The composite adversary A chooses the locations of A1

and A2 and can do triangulation of signals. This definition also extends to
a moving adversary (i.e. an adversary that is able to change its location)
as discussed in Section 3.1.

We consider only polynomial adversaries, (i.e. having polynomial run-
time and running polynomially many sessions with the provers and the
verifier). The adversary’s goal is to break the location privacy of the
distance-bounding protocol, which we define by means of a left-or-right
indistinguishability game as described below.

Phase 1: In this phase, a limited adversary is given the security pa-
rameter (in unary) 1λ. The adversary may now initialise provers Pi and
the verifier V at arbitrary locations with respect to itself and the verifier,
and may interact arbitrarily with the provers and the verifier. At the end
of this phase, the adversary outputs two indices i, j such that tPiV and
tPjV are both smaller than the threshold tmax; which are forwarded to a
challenger.
Phase 2: The challenger checks that the two provers are both within the
maximum distance tmax, then closes all sessions that are open for these
provers. The challenger flips a bit b and assigns the handle PChal as fol-
lows: PChal “ Pi if b “ 0 and PChal “ Pj if b “ 1.
Phase 3: Finally, by interacting with the challenge prover PChal, as well
as all other provers with the exception of Pi and Pj , the adversary must
produce a decision bit d. Let ExpLocPrivDB pA, 1λq be the output of a single
run of the location privacy game. We say that the adversary wins if d “ b,
and we write it as ExpLocPrivDB pA, 1λq “ 1. The adversary can be considered



as a hypothesis test for the following hypotheses:

H0 : the response sent from the prover PChal to V’s challenge is actually from
the prover P0.

and

H1 : the response sent from the prover PChal to V’s challenge is actually from
the prover P1.

We define the advantage of the adversary in this game as:

AdvLocPrivDB A “
ˇ

ˇ

ˇ
2P

”

ExpLocPrivDB pA, 1λq “ 1
ı

´ 1
ˇ

ˇ

ˇ

Definition 2. We say that distance-bounding protocols provide location
privacy if @locP0 , locP1, @locV , @A it holds:

AdvLocPrivDB A “ neglp1λq

We should note here that an adversary would select the location of the
participants in such a way to maximize his advantage. Thus, an adversary
A would not select P0 and P1 at the same location or at equal distance
to A and V.

3 Why Location Privacy does not Work

In this section we first argue that location privacy cannot be achieved with
respect to an omniscient adversary. Then, we show that location privacy
can only be achieved with respect to limited adversaries if the honest
parties running the protocol introduce a delay in their transmissions; we
furthermore give a lower bound on this delay.

3.1 Omniscient Adversary

It is trivial to see that no location privacy can be attained with respect to
an omniscient adversary. Indeed, consider an omniscient adversary placed
arbitrarily with respect to the verifier. Let this adversary A create two
provers P0 and P1 such that the distance between this adversary and the
provers is different i.e. tP0A ‰ tP1A.



Obviously an adversary A would choose his location in such a way in
order to maximise his advantage. Thus, choosing to be at equal distance
from the two provers he is trying to distinguish would not be a good
choice.

The adversary forwards P0,P1 to the challenger, receiving the handle
PChal, which is either P0 or P1. Now, the adversary eavesdrops on a session
between PChal and V, thus learning the sending time of the messages and
the time it receives them. It thus calculates the time distance between
itself and the two parties communicating and, since the distances are all
different, it can identify the parties w.p. 1.

A single, but moving adversary (i.e., an adversary than can change
its position during the attack) could also infer some information about
the location of the prover by standing between P0 and P1 and moving
toward P0 due to the Doppler phenomenon. If bits arrive with a higher
frequency, they must be sent by P0 instead of P1.

3.2 Limited Adversary

By eavesdropping on the duplex timed channel between the challenged
prover and the verifier, the adversary will receive triA, the timestamp when
A receives the first bit of message mi. The adversary A also observes:

– tV “ tr1A: the time A receives the first message bit from V.

– tP “ tr2A: the time A receives the first message bit from P.

In what follows we show that the very first bit sent through the timed
channel leaks. To be able to prove that, we make the following reasonable
assumptions as for how the sending time of this first bit is decided during
the protocol. Note that similar observations hold for the final bit sent.
For simplicity, we only treat the first one.

Assumption 1 We assume that the distance bounding phase of a distance-
bounding protocol may have one of the following constructions:

– Case 1: The verifier V starts the distance bounding phase after a
reference time t0 and a random delay, possibly equal to 0, which we
denote delayV , while the prover Pb where b P t0, 1u starts after receiv-
ing the first message from the verifier V and a random delay delayPb

.

– Case 2: The prover Pb starts the distance bounding phase after a ref-
erence time t0 and a random delay delayPb

, while the verifier V starts
after receiving the first message from the prover Pb and a random
delay delayV .



– Case 3: The prover Pb and the verifier V start sending messages
independently. More precisely, the prover Pb starts sending messages
after a reference time TPb

and a random delay delayPb
, while the veri-

fier V starts sending messages after a reference time TV and a random
delay delayV .

We should note here that when we mention “random delay” we mean a
delay of arbitrary distribution.

Assumption 2 We also assume that A knows the times TPb
(where b P

t0, 1u) and TV ; the latter value is defined only for Case 3 of Assumption
1.

In figure 1 are depicted the above described cases. Without loss of
generality in figure 1 the adversary A is located between the verifier V
and the prover P.

It is easy to see that in our model a limited adversary A, knows
and can even choose the locations of P0, P1 with respect to itself and the
verifier V, i.e. the values tAP0 , tAP1 , tVP0 , tVP1 . Also, A knows the distance
tAV to V. We will show how an adversary intercepting the values above
can distinguish between the two hypotheses H0,H1 with non-negligible
probability.

Lemma 1. Under Assumptions 1 and 2 we assume that there exists ε
and a bound B such that:

Prdelay ď Bs “ 1´ ε,

where delay might represent the delays of the provers delayP0, delayP1, or
the delay (delayV) of the verifier as defined in Assumption 1. Then, there
exists an adversary A against location indistinguishability which achieves
a distinguishing advantage:

AdvA ě

R

tmax

4B

V

p1´ 2εq.

where tmax is the maximum allowed transmission time between a legiti-
mate prover P and a verifier V.

Moreover, this adversary does not need to take part in the actual pro-
tocol; the attack relies exclusively on eavesdropping. Assuming that the
protocol is complete and polynomially bounded, there is a negligible ε
such that B exists and is polynomially bounded. So, the advantage AdvA
is not negligible. Consequently, a distance-bounding protocol as defined
in definition 1 does not provide location privacy as per definition 2.
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Fig. 1. Transmission of messages between the verifier and the prover for the three
different cases of the construction of a distance-bounding protocol.



Proof. Based on Assumption 1 we have three cases.
Case 1: The verifier V starts the distance bounding phase after a refer-
ence time t0 and a random delay (denoted as delayV), whereas the prover
Pb starts after receiving the first message from the verifier V and a ran-
dom delay (denoted as delayPb

).
This case is depicted in figure 1 (a). More precisely, we consider that the
following events take place:

1. After some time reference t0 and a delayV the verifier V sends a mes-
sage c to the prover Pb where b P t0, 1u. The first bit of this message
will arrive at the adversary A at time tV such that:

tV “ t0 ` delayV ` tVA (1)

where tVA denotes the time of flight for one bit from the verifier V to
the adversary A.

2. The prover Pb with b P t0, 1u responds to the verifier V with a message
r, after some delay (delayPb

). The first bit of r arrives at A at time
tPb

such that:

tPb
“ t0 ` delayV ` tVPb

` delayPb
` tPbA (2)

where tVPb
denotes the time-of-flight for one bit from V to Pb, and

tPbA denotes the time-of-flight for one bit from Pb to A.

From equations (1) and (2) it is easy to see that:

tPb
´ tV “ tVPb

´ tVA ` delayPb
` tPbA

We let db be the probability density function (pdf) of delayPb
, i.e. we

consider the delay to be a random variable distributed according to db.
If hypothesis H0 holds, then tP “ tP0 , while if hypothesis H1 holds, then
tP “ tP1 . Since tP and tV depend on random delays, they can be perceived
as random variables. Let:

T “ tP ´ tV ´ tVP0 ` tVA ´ tP0A and

∆ “ tVP1 ` tP1A ´ tVP0 ´ tP0A

Note that whereas the value ∆ is fixed and even chosen by the adversary,
T is a random variable, depending on the delays. Indeed, if hypothesis
H0 holds then T “ delayP0 has pdf d0, while if hypothesis H1 holds,
then T “ delayP1 ` ∆ and we write P rT “ ts “ d1pt ´ ∆q, i.e. T has a
distribution equivalent to d1, shifted by a fixed value ∆.



In the following, we often condition success probabilities on hypotheses
H0 and H1 and use the notation PHb

revents for Prevent | Hb holdss, i.e.
the probability that event holds, conditioned on the fact that Hb holds.

We consider that A is implementing a best distinguisher based on the
likelihood that PH0rT “ ts ą PH1rT “ ts for observed value t. If this
holds, then A outputs 0, else it outputs 1. So A outputs 0 iff the observed
value of
T “ tP ´ tV ´ tVP0 ` tVA ´ tP0A is T “ t such that:

Prt “ delayP0s ą Prt “ delayP1 `∆s

Then, it holds:

Adv “ PH0rAÑ 0s ´ PH1rAÑ 0s

“
1

2

ż `8

´8

|d0ptq ´ d1pt´∆q|dt, (3)

where d0 and d1 make r0, Bs have density at least 1 ´ ε. When tP0V “
tP1V “ tmax, P0, V and P1 are aligned in this order and the adversary A
overlaps with the location of P0, then ∆ “ 2tmax.
Case 2: The prover Pb starts the distance bounding phase after a refer-
ence time t0 and a random delay (denoted as delayPb

). While the verifier
V starts after receiving the first message from the prover Pb and a random
delay (denoted as delayV).

This case is depicted in figure 1 (b). Now, we have:

tPb
“ t0 ` delayPb

` tPbA

tV “ t0 ` delayPb
` tPbV ` delayV ` tVA

tV ´ tPb
“ tPbV ` delayV ` tVA ´ tPbA

We let:

T “ tV ´ tP ´ tP0V ´ tVA ` tP0A and

∆ “ tP1V ´ tP1A ´ tP0V ` tP0A

Similarly, if the adversary A is implementing a distinguisher for the two
provers P0 and P1 then its advantage is given by:

Adv “ PH0rAÑ 0s ´ PH1rAÑ 0s

“
1

2

ż `8

´8

|dptq ´ dpt´∆q| dt (4)



where d denotes the pdf of the random variable delayV , such that r0, Bs
has density at least 1 ´ ε. When tP0V “ tP1V “ tmax, P0, V and P1 are
aligned and the location of the adversary A overlaps with the location
of the prover P1, then ∆ “ 2tmax. Thus, from equations (3) and (4) we
derive that in both cases it holds:

Adv “
1

2

ż `8

´8

|q0ptq ´ q1pt´∆q|dt

for some functions q0 and q1 that make r0, Bs have density at least 1´ ε.
We further have a case where ∆ “ 2tmax. Let:

xb,i “

ż i|∆|

pi´1q|∆|
qbptqdt and n “

R

B

|∆|

V

We have xb,0 “ 0, xb,n`1 “ 0, xb,i ě 0 and xb,1` ¨ ¨ ¨ ` xb,n ě 1´ ε. Given
I Ď t0, . . . , nu we let TI “

Ť

iPI

“

pi´ 1q|∆|, i|∆|
‰

. For ∆ ą 0, we have:

AdvTI ,∆ “
ÿ

iPI

px0,i ´ x1,i´1q and (5)

AdvTI ,´∆ “
ÿ

iPI

px0,i ´ x1,i`1q

Let:

Adv∆ “ max
I

AdvTI ,∆ “
1

2

n
ÿ

i“0

|x0,i ´ x1,i´1|

Adv´∆ “ max
I

AdvTI ,´∆ “
1

2

n
ÿ

i“0

|x0,i ´ x1,i`1|

We have:

Adv∆ ` Adv´∆ “
1

2

n
ÿ

i“0

p|x0,i ´ x1,i´1| ` |x0,i ´ x1,i`1|q (6)

ě
1

2

n
ÿ

i“0

|x1,i`1 ´ x1,i´1|

Since x1,i ě 0 and x1,1 ` ¨ ¨ ¨ ` x1,n ě 1 ´ ε, there exists j such that:
x1,j ě

1´ε
n . Thus:

Adv∆ ` Adv´∆ ě
1

2
p|x1,j ´ x1,j´2| ` |x1,j´2 ´ x1,j´4| ` . . . q (7)

ě
x1,j
2
ě

1´ ε

2n



Thus,

maxpAdv∆,Adv´∆q ě
1´ ε

4n

So, there exists ∆ such that:

Adv∆ ě

R

|∆|

4B

V

p1´ εq

For ∆ “ 2tmax there exists an adversary A such that:

AdvA ě

R

tmax

2B

V

p1´ εq

Case 3: The prover Pb and the verifier V send messages independently.
More precisely, the prover Pb starts sending messages after a reference
time TPb

and a random delay (delayPb
) while the verifier V starts sending

messages after a reference time TV and a random delay (delayV). We
assume that for this case the adversary A knows the values TPb

´ TV .
This case is depicted in figure 1 (c). We now have:

tV “ TV ` delayV ` tVA

tPb
“ TPb

` delayPb
` tPbA

tPb
´ tV “ delayPb

´ delayV ` TPb
` tPbA ´ TV ´ tVA

We let:

T “ tP ´ tV ´ TP1 ´ tP1A ` TV ` tVA and (8)

∆ “ TP1 ` tP1A ´ TP0 ´ tP0A (9)

We consider that the adversary A is implementing a best distinguisher
based on the likelihood if PH0rtP ´ tV s ą PH1rtP ´ tV s then A outputs 0
otherwise it outputs 1. So, A outputs 0 iff tP´tV´TP1´tP1A`TV`tVA “
T “ t such that:

Prt “ delayP0 ´ delayV s ą Prt “ delayP1 ´ delayV `∆s

Then, it holds:

Adv “ PH0rAÑ 0s ´ PH1rAÑ 0s

“
1

2

ż `8

´8

|q0ptq ´ q1pt´∆q|dt (10)

where qb for b P t0, 1u denotes the pdf of the random variable delayPb
´

delayV and the support of q0 and q1 make r´B,Bs have density at least
1 ´ 2ε. When tP0V “ tP1V “ tmax, P0, V and P1 are aligned in this



order and if TP1 ě TP0 the location of the adversary A overlaps with the
location of P0 while if TP1 ă TP0 the location of the adversary A overlaps
with the location of the prover P1. Thus, in both of these cases it holds
that |∆| ě 2tmax. Let:

xb,i “

ż i|∆|

pi´1q|∆|
qbptqdt and n “

R

B

|∆|

V

We have xb,0 “ 0, xb,n`1 “ 0, xb,i ě 0, xb,´n`1 ` ...` xb,n ě 1´ 2ε and:

Adv∆ ` Adv´∆ “
1

2

n
ÿ

i“´n

p|x0,i ´ x1,i´1| ` |x0,i ´ x1,i`1|q

ě
1

2

´n
ÿ

i“0

|x1,i`1 ´ x1,i´1|

Since x1,i ě 0 and x1,´n`1 ` ¨ ¨ ¨ ` x1,n ě 1´ 2ε, there exists j such that:
x1,j ě

1´2ε
2n . Thus:

Adv∆`Adv´∆ě
1

2
p|x1,j ´ x1,j´2|`|x1,j´2 ´ x1,j´4|`. . .q

ě
x1,j
2
ě

1´ 2ε

4n

Thus,

maxpAdv∆,Adv´∆q ě
1´ 2ε

8n

So, there exists ∆ such that:

Adv ě

R

|∆|

8B

V

ě
tmax

4B
p1´ 2εq

[\

Lemma 2. If Assumption 1 holds and db follows the uniform distribution
in the range r0, Bs and denotes the pdf of the delayPb

while delayV is
always equal to 0 then the best distinguisher based on tP ´ tV and the
locations satisfies:

AdvA “
2tmax

B
,

where tmax denotes the maximum allowed transmission time between a
legitimate prover P and a verifier V.



Proof. Following the proof of the Lemma 1 on page 10 the best distin-
guisher based on tP´tV and the locations (of the provers and the verifier)
follows equations (3), (4) or (10). So, it satisfies:

Adv “
1

2

ż `8

´8

|d0ptq ´ d1p´∆` tq| dt

since delayV “ 0. Since db follows the uniform distribution in the range
r0, Bs, it holds:

AdvA “
1

2

ż ∆

0

dt

B
`

1

2

ż B`∆

B

dt

B
“
∆

B

and ∆ is bounded by 2tmax in all three cases.
[\

Practical Consequences Although the attack is polynomial, we can
still live with it in practice thanks to the very high celerity of light, since
the time it takes to cover 10 m is 2´25 sec. Indeed, let:

h “ log2
B

2tmax

The best advantage is comparable to guessing h bits correctly. To have a
privacy level of h bits (i.e., a best advantage of 2´h), we shall thus have:

B ě 2h`1tmax (11)

For instance, when tmax is the time light takes to go through the dis-
tance of 10 m and h “ 20 bits (i.e., an adversary cannot distinguish two
provers, accept with one chance out of a million), we have B ě 0.07 sec,
which is still a reasonable delay, though not polynomially bounded due
to equation (11).

However, note that adding such a delay does not immediately guar-
antee location privacy against any attacker. This delay only prevents the
generic attack we showed, and can be extended to any passive attacker,
but it is not trivial to know whether it also automatically prevents active
limited-adversary attacks. This issue is left for future work.

4 Location Private Construction

In this section we apply our results from the previous section to achieve a
location private distance-bounding protocol for limited adversaries. The
proposed protocol is based on the LPDB protocol [22]. We assume that
the verifier V and the prover P share a secret key K. As in the LPDB
protocol, we have two phases: the initialisation phase and the distance-
bounding phase.



– Initialisation Phase: The prover P generates a random nonce NP
and sends it to the verifier V. The verifier V generates a random nonce
NV and sends it to the prover P. Both the prover and the verifier use
as input the concatenation of the nonces NP and NV as input to a
keyed pseudorandom function (fK) and divide the output of the PRF
into two parts, i.e.:

M ||RP Ñ fKpNP ||NVq.

Prover P Verifier V

Initialization phase

NP
$
ÐÝ t0, 1un

NP
ÝÝÝÝÝÝÝÝÝÑ NV

$
ÐÝ t0, 1un, RV

$
ÐÝ t0, 1un

M}RP ÐÝ fKpNP}NVq
NV

ÐÝÝÝÝÝÝÝÝÝ M}RP ÐÝ fKpNP}NVq

Distance Bounding phase
start at time t start at time t

wait for delay ∆
$
ÐÝ r0, Bs compute streamV :“

streamVoo RandV1}M}RV}RandV2

- drop received bits during |RandV1 | ě Bf
the waiting time |RandV2 | ě tmaxf

compute streamP :“

RandP1}RP ‘ R̂V}RandP2 s.t.
|streamP | “ |streamV |

the sending of RP ‘ R̂V synchronises
with the reception of RV

- start transmitting after ∆
streamP //

Fig. 2. Proposed location-private distance-bounding protocol, secure against limited

adversaries. Here
$
ÐÝ denotes sampling uniformly at random, ÐÝ denotes a simple mes-

sage transmission, and ø denotes a continuous stream transmission at maximal bit
rate.

Furthermore, V generates another random value RV of length n.
– Distance Bounding Phase: Both the prover P and the verifier V

start their actions at a commonly agreed time t. More precisely, at
time t the verifier V starts transmitting the stream of bits streamV
such that: streamV :“ RandV1}M}RV}RandV2 . At time t the prover P
starts waiting for a delay ∆ that follows the uniform distribution with
range r0, Bs, where B satisfies the following condition as explained in
section 3.2:

B ě 2h`1tmax

The prover P drops any bits received during the waiting time ∆. After
this delay, the prover P starts transmitting the stream of bits streamP



such that:

streamP :“ RandP1}RP ‘ R̂V}RandP2

where R̂V denotes the received value of RV from the prover P. The
transmission of RP ‘ R̂V must start as soon as P starts receiving the
bits of RV .

We note here that RandP1 , RandP2 , RandV1 , RandV2 denote ran-
dom values generated by the prover P and the verifier V respectively.
Compared to the LPDB protocol [22], we further require that:

|streamV | “ |streamP | and |RandV1 | ě Bf and

|RandV2 | ě tmaxf.

The verifier V could freely select the length of RandV1 and RandV2

satisfying these inequalities. It is easy to see that it holds:

|RandP1 | “ |RandV1 | ` |M | ` ptPV ´∆qf

which is positive and

|RandP2 | “ |RandV2 | ´ ptPV ´∆qf

which is also positive.

4.1 Security of the Location Private Construction

We briefly sketch here the security proof for our new protocol.

Theorem 1. For a passive limited adversary, if f is a PRF then:

AdvLocPrivDB pAq ď 2´h ` negl

Proof. Note that the maximal delay B is exponential in h due to equa-
tion (11). For a passive limited adversary A, fK can be replaced by a
random function, then M and RP can be assumed to be random. Then,
the distribution of the view of the adversary V iewA consists of NP , NV ,
streamV , streamP and the time of reception of the two streams. The re-
ception time of the first bits are tV and tP . Since the streams have equal
length, all other reception times can be obtained from tV and tP .

We reduce the LocPriv game to a similar one where the PRF f is
replaced by a random function. The difference between AdvLocPrivDB pAq and



the new advantage Adv is negligible, thanks to the PRF property. Clearly,
the messages are uniformly distributed.

The protocol belongs to Case 3 of assumption 2. Based on Lemma 5,
we have:

Adv ď
2tmax
B

ď 2´h

[\

We should mention here that the security of the proposed protocol
conforms with the theorem 2 that has already been proven for the LPDB
protocol [22].

Theorem 2. Assuming that f is a PRF, that RV is uniformly distributed
in a set of exponential size, that RP is in a set of exponential size, the
LPDB protocol [22] is a distance bounding protocol which provides resis-
tance to distance fraud, and resistance to mafia fraud.

5 Conclusions

In this paper, we investigate the problem of location privacy in distance-
bounding protocols. More precisely, we define a security game for location
privacy in distance-bounding protocols and an adversarial model, com-
posed of two classes of adversaries, an omniscient and a limited adversary.
We prove that location privacy is information-theoretically impossible for
any adversary of the two classes. In particular, a generic passive adversary
can break the location privacy of any polynomial-time protocol. Never-
theless, we show that for limited adversaries, carefully chosen parameters
enable computational, provable location privacy in practice. For those pa-
rameters we propose a location private distance-bounding protocol based
on the LPDB distance-bounding protocol [22].
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