
Indistinguishability Obfuscation
from Semantically-Secure Multilinear Encodings

Rafael Pass∗ Karn Seth† Sidharth Telang‡

April 25, 2014

Abstract

We define a notion of semantic security of multilinear (a.k.a. graded) encoding schemes, which
stipulates security of a general (but quite restrictive) class of DDH-type assumptions: roughly
speaking, we require that for every distribution D over two constant-length sequences ~m0, ~m1 and
auxiliary elements ~z such that all arithmetic circuits (respecting the multilinear restrictions) are
constant with overwhelming probability over (~mb, ~z), b ∈ {0, 1}, we have that encodings of ~m0, ~z are
computationally indistinguishable from encodings of ~m1, ~z. Assuming the existence of semantically
secure multilinear encodings and the LWE assumption, we demonstrate the existence of indistin-
guishability obfuscators for all polynomial-size circuits. We additionally show that if we assume
subexponential hardness, then it suffices to consider a single (falsifiable) instance of semantical se-
curity (i.e., that semantical security holds w.r.t to a particular distribution D) to obtain the same
result.

We rely on the beautiful candidate obfuscation constructions of Garg et al (FOCS’13), Brakerski
and Rothblum (TCC’14) and Barak et al (EuroCrypt’14) that were proven secure only in idealized
generic multilinear encoding models, and develop new techniques for demonstrating security in the
standard model, based only on semantic security of multilinear encodings (which trivially holds in
the generic multilinear encoding model).

We also investigate various ways of defining an “uber assumption” (i.e., a super-assumption) for
multilinear encodings, and show that the perhaps most natural way of formalizing the assumption
that “any DDH-type assumption that holds in the generic model also holds against nuPPT attackers”
is false.

∗Cornell University, Cornell NYC Tech. Email: rafael@cs.cornell.edu. Work supported in part by a Alfred P.
Sloan Fellowship, Microsoft New Faculty Fellowship, NSF Award CNS-1217821, NSF CAREER Award CCF-0746990,
NSF Award CCF-1214844, AFOSR YIP Award FA9550-10-1-0093, and DARPA and AFRL under contract FA8750-11-2-
0211. The views and conclusions contained in this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the
US Government.
†Cornell University. Email: karn@cs.cornell.edu.
‡Cornell University. Email: sidtelang@cs.cornell.edu.

0

1 Introduction

The goal of program obfuscation is to “scramble” a computer program, hiding its implementation details
(making it hard to “reverse-engineer”), while preserving the functionality (i.e, input/output behavior)
of the program. Precisely defining what it means to “scramble” a program is non-trivial: on the one
hand, we want a definition that can be plausibly satisfied, on the other hand, we want a definition that
is useful for applications.

A first formal definition of such program obfuscation was provided by Hada [Had00]: roughly speak-
ing, Hada’s definition—let us refer to it as strongly virtual black-box—is formalized using the simulation
paradigm. It requires that anything an attacker can learn from the obfuscated code, could be simulated
using just black-box access to the functionality.1 Unfortunately, as noted by Hada, only learnable func-
tionalities can satisfy such a strong notion of obfuscation: if the attacker simply outputs the code it is
given, the simulator must be able to recover the code by simply querying the functionality and thus the
functionality must be learnable.

An in-depth study of program obfuscation was initiated in the seminal work of Barak, Goldreich,
Impagliazzo, Rudich, Sahai, Vadhan, and Yang [BGI+01]. Their central result shows that even if we
consider a more relaxed simulation-based definition of program obfuscation—called virtual black-box
(VBB) obfuscation—where the attacker is restricted to simply outputting a single bit, impossibility can
still be established.2 Their result is even stronger, demonstrating the existence of families of functions
such that given black-box access to fs (for a randomly chosen s), not even a single bit of s can be guessed
with probability significantly better than 1/2, but given the code of any program that computes fs,
the entire secret s can be recovered. Thus, even quite weak simulation-based notions of obfuscation are
impossible.

But weaker notions of obfuscation may be achievable, and may still suffice for (some) applications.
Indeed, Barak et al. [BGI+01] also suggested two such notions:

• The notion of indistinguishability obfuscation, first defined by Barak et al. [BGI+01] and explored
by Garg, Gentry, Halevi, Raykova, Sahai, and Waters [GGH+13b], roughly speaking requires that
obfuscations O(C1) and O(C2) of any two equivalent circuits C1 and C2 (i.e., whose outputs agree
on all inputs) from some class C are computationally indistinguishable.

• The notion of differing-input obfuscation, first defined by Barak et al. [BGI+01] and explored by
Boyle, Chung and Pass [BCP14] and by Ananth, Boneh, Garg, Sahai and Zhandry [ABG+13]
strengthens the notion of indistinguishability obfuscation to also require that even if C1 and C2

are not equivalent circuits, if an attacker can distinguish obfuscations O(C1) and O(C2), then
the attacker must “know” an input x such that C1(x) 6= C2(x), and this input can be efficiently
“extracted” from A.

In a very recent breakthrough result, Garg, Gentry, Halevi, Raykova, Sahai, and Waters [GGH+13b] pro-
vided the first candidate constructions of indistinguishability obfuscators for all polynomial-size circuits,
based on so-called multilinear (a.k.a. graded) encodings [BS03, Rot13, GGH13a]—for which candidate
constructions were recently discovered in the seminal work of Garg, Gentry and Halevi [GGH13a], and
more recently, alternative constructions were provided by Coron, Lepoint and Tibouchi [CLT+13].

The obfuscator construction of Garg et al proceeds in two steps. They first provide a candidate
construction of an indistinguishability obfuscator for NC1 (this construction is essentially assumed to
be secure); next, they demonstrate a “bootstrapping” theorem showing how to use fully homomorphic
encryption (FHE) schemes [Gen09] and indistinguishability obfuscators for NC1 to obtain indistin-
guishability obfuscators for all polynomial-size circuits. Further constructions of obfuscators for NC1

1Hada actually considered a slight distributional weakening of this definition.
2A similar notion of security (without referring to obfuscation) was considered even earlier by Canetti [Can97] in the

special case of what is now referred to as point-function obfuscation.

1

were subsequently provided by Brakerski and Rothblum [BR14] and Barak, Garg, Kalai, Paneth and
Sahai [BGK+13]—in fact, these constructions achieve the even stronger notion of virtual-black-box
obfuscation in idealized “generic” multilinear encoding models. Additionally, Boyle, Chung and Pass
[BCP14] present an alternative bootstrapping theorem, showing how to employ differing-input obfusca-
tions for NC1 to obtain differing-input (and thus also indistinguishability) obfuscation for both circuits
and Turing machines. (Ananth et al [ABG+13] also provide Turing machine differing-input obfuscators,
but start instead from differing-input obfuscators for polynomial-size circuits.)

In parallel with the development of candidate obfuscation constructions, several surprising appli-
cations of both indistinguishability and differing-input obfuscations have emerged: for instance, in the
works of Garg et al [GGH+13b], Sahai and Waters [SW13], Hohenberger, Sahai and Waters [HSW13],
Boyle, Chung and Pass [BCP14], Boneh and Zhandry [BZ13], Garg, Gentry, Halevi and Raykova
[GGHR14], Bitansky, Canetti, Paneth and Rosen [BCPR13], Boyle and Pass [BP13]. Most notable
among these is the work of Sahai and Waters [SW13] (and the “punctured program” paradigm it in-
troduces) which shows that for some interesting applications of virtual black-box obfuscation (such as
turning private-key primitives into public-key one), the weaker notion of indistinguishability obfuscation
suffices. Furthemore, as shown by Goldwasser and Rothblum [GR07], indistinguishability obfuscators
provide a very nice “best-possible” obfuscation guarantee: if a functionality can be VBB obfuscated
(even non-efficiently!), then any indistinguishability obfuscator for this functionality is VBB secure.
Finally, as shown by Boyle, Chung and Pass [BCP14] indistinguishability obfuscation in fact implies
a notion of differing-input obfuscation (when restricted to programs that differ on polynomially-many
inputs); and this notion already suffices for some applications of differing-input obfuscation [BST13].

1.1 Towards “Provably-Secure” Obfuscation

But despite these amazing developments, the following question remains wide open:

Can the security of general-purpose obfuscations be reduced to some “natural” intractability
assumption?

Note that while the construction of indistinguishability obfuscation of Garg et al is based on some
intractability assumption, the assumption is very tightly tied to their scheme—in essence, the assumption
stipulates that their scheme is a secure indistinguishability obfuscator.

The VBB constructions of Brakerski and Rothblum [BR14] and Barak et al [BGK+13] give us
more confidence in the plausible security of their obfuscators, in that they show that at least “generic”
attacks—that treat multilinear encoding as if they were “physical envelopes” on which multilinear op-
erations can be performed—cannot be used to break security of the obfuscators. But at the same time,
non-generic attacks against their scheme are known—since general-purpose VBB obfuscation is impos-
sible. Thus, it is not clear to what extent security arguments in the generic multilinear encoding model
should make us more confident that these constructions satisfy e.g., a notion of indistinguishability ob-
fuscation. In particular, the question of to what extent one can capture “real-world” security properties
from security proofs in the generic model through a “meta-assumption” (regarding multilinear encoding)
was raised (but not investigated) in [BGK+13]; see Remark 1 there.

In this work, we initiate a study of the above-mentioned question:

• We are concerned with the question of whether some succint and general assumption (that is
interesting in its own right, and is not “tailored” to a particular obfuscation construction) about
some low-level primitive for which candidate constructions are known (e.g., multilinear encodings),
can be used to obtain indistinguishability obfuscation.

• More importantly, we are interested in reducing the security of the obfuscation to some simpler
assumption, not just in terms of “description size” but in terms of computational complexity—

2

that is, we are not interested in assumptions that “directly” (without any security reduction) imply
security of the obfuscation.

• Finally, ideally, we would like the assumption to be efficiently falsifiable [Nao03], so that it is
possible to efficiently check whether the assumption is broken. This is particularly pressing since
the assumption that a particular scheme (e.g., one of the schemes of [GGH+13b, BR14, BGK+13])
is an indistinguishability obfuscator is not an efficiently falsifiable assumption, making it hard to
check whether they can be broken or not: a presumed attacker must exhibit two functionally-
equivalent circuits C1 and C2 that it can distinguish obfuscations of; but checking whether two
circuits are functionally equivalent may not be polynomial-time computable.3

1.2 Security of Multilinear Encodings

Towards explaining the assumptions we consider, let us start by briefly recalling multilinear (a.k.a.
graded) encoding schemes [GGH13a, GGH+13b]. Roughly speaking, such schemes enable anyone that
has access to a public parameter pp and encodings ExS = Enc(x, S), EyS = Enc(y, S′) of ring elements
x, y under the sets S, S′ ⊂ [k] to efficiently :4

• compute an encoding Ex·yS∪S′ of x · y under the set S ∪ S′, as long as S ∩ S′ = ∅;

• compute an encoding Ex+yS of x+ y under the set S as long as S = S′;

• compute an encoding Ex−yS of x− y under the set S as long as S = S′.

(Given just access to the public-parameter pp, generating an encoding to a particular element x may not
be efficient; however, it can be efficiently done given access to the secret parameter sp.) Additionally,
given an encoding ExS where the set S is the whole universe [k]—called the “target set”—we can efficiently
check whether x = 0 (i.e., we can “zero-test” encodings under the target set [k].) In essence, multilinear
encodings enable computations of certain restricted set of arithmetic circuits (determined by the sets S
under which the elements are encoded) and finally determine whether the output of the circuit is 0; we
refer to these as the legal arithmetic circuits.

Semantical Security of Multilinear Encodings The above description only explains the function-
ality of multlinear encodings, but does not discuss security. As far as we are aware, there have been
two approaches to defining security of multilinear encodings. The first approach, initiated in [GGH13a],
stipulates specific hardness assumptions closely related to the DDH assumption. The second approach
instead focuses on generic attackers and assumes that the attacker does not get to see the actual
encodings but instead can only access them through leag arithmetic circuits.

In this work, we consider the first approach, but consider general classes of DDH-type assumption.
As we shall shortly see, already coming up with reasonable definition of security for multilinear encodings

3In fact, assuming the existence of indistinguishability obfuscation and one-way functions it is easy to come up with a
method to sample C1, C2, z such that with high probability C1(z) 6= C2(z) (and thus, given z, we can easily distinguish
obfuscations of them), yet the pair of circuits (C1, C2) are indistinguishable from a pair of functionally equivalent circuits.
In particular, (mirroring the ideas from the lower bound for witness encryption of [GGSW13]), given a statement x, let
Cxb be an obfuscation of a circuit that given a witness w outputs b iff w is an NP-witness for the statement x (and ⊥
otherwise). If x is false, then by the indistinguishability obfuscation property, (Cx0 , C

x
1) is indistinguishable from two

obfuscations of the same constant ⊥ function. This still holds even if we sample a true x (and its associated witness
z) from a hard-on-the-average language (as long as we do not give z to the distinguisher). Yet given the trapdoor z,
we can clearly distinguish Cx0 , C

x
1 and also obfuscations of them. Thus, there are "fake attacks" on indistinguishability

obfuscation that cannot be efficiently distinguished from a real attack.
4Just as [BR14, BGK+13], we here rely on “set-based” graded encoding; these were originally called “generalized”

graded encodings in [GGH13a]. Following [GGH+13b, BGK+13] (and in particular the notion of a “multilinear jigsaw
puzzles” in [GGH+13b]), we additionally enable anyone with the secret parameter to encode any elements (as opposed to
just random elements as in [GGH13a]).

3

is a non-trivial and subtle task. For concreteness, let us start by stipulating a DDH-type assumption
for multilinear encoding, similar in spirit to the “graded DDH (GDDH) ” assumption of Garg et al
[GGH13a] for “symmetric” multilinear encodings. Consider sampling n random elements ~z, and let
m0 be the product of the elements in ~z, and m1 be just a random element. The asymmetric GDDH
(aGDDH) requires that encodings of m0, ~z and m1, ~z under sets S, ~T are indistinguishable if (a) S is
target set [k], and (b) S and is not the disjoint union of the sets in ~T . That is, encodings of m0, ~z and
m1, ~z under the sets S, ~T are indistinguishable as long as the sets ~T prevent “legally” obtain the product
of the elements in ~z and subtracting them from m0 or m1.

Note that for any such sets S, ~T , the particular (joint) distribution D over m0,m1, ~z has a nice “zero-
knowledge” property w.r.t. to the set of legal arithmetic circuits (w.r.t., ~S, T): every legal arithmetic
circuit C is constant over (mb, ~z), b ∈ {0, 1} with overwhelming probability; that is, there exists some
bit c such that with overwhelming probability over m0,m1, ~z ← D, C(mb, ~z) = c for b ∈ {0, 1}. We
refer to any distribution D satisfying this “zero-knowledge” property as being valid (w.r.t. S, ~T).

Our notion of single-message semantical security now states that for every S, ~T , every valid (w.r.t.
S, ~T) distribution D over m0,m1, ~z, it holds that encodings of m0, ~z and m1, ~z under the sets S, ~T
are computationally indistinguishable. We analogously define stronger notions of constant-message and
multi-message semantical security, where m0,m1 (and S) are replaced by either constant-length or
arbitrary polynomial-length vectors of elements.

At this point the careful reader may wonder, why do we restrict to “zero-knowledge” distributions D?
Why not—similarly to e.g., the uber assumption of [BBG05] in the context of bilinear maps—consider
any distribution D that makes it impossible for generic attackers to distinguish m0, ~z, and m1, ~z? As
we discuss in Section 1.3, the most natural formalization of this approach can be broken assuming
standard cryptographic hardness assumptions; this is what motivates us to restrict to “zero-knowledge
distributions”.

Obfuscation from Semantically-Secure Multilinear Encodings As a starting point, we observe
that slight variants of the constructions of [BR14, BGK+13] can be shown to satisfy indistinguishability
obfuscation for NC1 assuming multi-message semantically-secure multilinear encodings. In essence, this
follows from the fact that these construction simply release encodings of some elements; let ~m0 denote
the elements corresponding to an obfuscation of some program Π0, and ~m1 the elements corresponding to
an obfuscation of some functionally equivalent program Π1. The analyses of [BR14, BGK+13] implicitly
show that all polynomial-size legal arithmetic circuits are constant with overwhelming probability over
both ~m0 and ~m1. By slightly tweaking the constructions and the analyses5, we can extend this to
hold against all (arbitrary-size) legal arithmetic circuits, and thus indistinguishability of the encodings
(which implies indistinguishability of the obfuscations) follows as a direct consequence of the multi-
message security assumption.

This observation does take care of our first desiderata (of basing the security of obfuscation on a
succinct and general assumption. But it does not deal with our second desiderata of reducing security
to a simpler assumption—in particular, simply assuming that the (slight variants of the) schemes of
[BR14, BGK+13] are secure is a special case of the multi-message security assumption.

Our central result shows how to construct indistinguishability obfuscators for NC1 based on the
existence of constant-message semantically-secure multilinear encodings; in the sequel, we simply refer
to such schemes as being semantically secure (dropping “constant-message” from the notation). Note
that the constant-message restriction not only simplifes (and reduces the complexity) of the assumption,
it also takes us a step closer to the more standard GDDH assumption. (As far as we know, essentially
all DDH-type assumptions in “standard”/bilinear or multilinear settings consider a constant-message
setting, stipulating indistinguishability of either a single or a constant number of elements in the presence
of polynomially many auxiliary elements. It is thus safe to say that such constant-message assumptions

5Briefly, we need to tweak the construction to ensure a “perfect” simulation property.

4

are significantly better understood their multi-message counterpart.)

Theorem 1 (Informally stated). Assume the existence of semantically secure multilinear encodings.
Then there exists an indistinguishability obfuscator for NC1.

As far as we know, this is the first result presenting indistinguishability obfuscators for NC1 based
on any type of assumption with a “non-trivial” security reduction w.r.t. arbitrary nuPPT attackers (as
opposed to restricted “generic” attackers).

If additionally assuming the existence of a leveled FHE [RAD78, Gen09] with decryption in NC1—
implied, for instance, by the LWE assumption [BV11, BGV12]—this construction can be bootstrapped
up to obtain indistinguishability obfuscators for all polynomial-size circuits by relying on the technique
from [GGH+13b].

Theorem 2 (Informally stated). Assume the existence of semantically secure multilinear encodings and
a leveled FHE with decryption in NC1. Then there exists indistinguishability obfuscators for P/poly.

Semantical Security w.r.t. Restricted Classes of Distributions Our most basic notion of se-
mantical security requires indistinguishability to hold w.r.t. to any “valid” message distribution. This
may seem like a strong assumption. Firstly, such a notion can clearly not be satisfied by a deterministic
encoding schemes (as envisioned in the original work of [BS03])—we can never expect encodings of 0 and
1 (under a non target set, and without any auxiliary inputs) to be indistinguishable. Secondly, even if
we have a randomized encoding scheme in mind (such as the candidates of [GGH13a, CLT+13]), giving
the attacker access to encodings of arbitrary elements may be dangerous: As mentioned in [GGH13a],
attacks (referred to as “weak discrete logarithm attacks”) on their scheme are known in settings where
the attacker can get access to “non-trivial” encodings of 0 under any non-target set S ⊂ [k]. (We
mention that, as far as we know, no such attacks are currently known on the candidate construction of
[CLT+13].)

For the purposes of the results in our paper, however, it suffices to consider a notion of semantical
security w.r.t. restricted classes of distributions D. In particular, to deal with both of the above issues,
we consider “high-entropy” distributions D that sample elements ~m0, ~m1, ~z such that 1) each individual
element has high-entropy, and 2) any element, associated with a non-target set S ⊂ [k], that can be
obtained by applying “legal” algebraic operations to (~mb, ~z) (for b ∈ {0, 1}) has high-entropy (and thus is
non-zero with overwhelming probability).6 We refer to such message distributions as being entropically
valid.

Basing Security on a Single Falsifiable Assumption The assumption that a scheme satisfies se-
mantical security w.r.t. some class of distributions may perhaps be best viewed as a class of assumptions
(or a “meta-assumption”, just like the “uber assumption” of [BBG05]), or alternatively as an interac-
tive assumption, where the attacker first selects the sets ~S, ~T and the distribution D, and then gets a
challenge according to the distribution.

This view-point also clarifies that even for the above-mentioned restricted classes of message distri-
butions, semantical security is not an efficiently falsifiable assumption [Nao03]: the problem is that there
may not exist an efficient way of checking whether a distribution D is valid (which requires checking
that all set-respecting circuits are constant with overwhelming probability).

We finally show that we can base our construction on a single-instance of this class of assumptions,
albeit at the cost of assuming subexponential hardness of semantical security w.r.t. this specific instance.
More precisely, we show the existence of an efficiently samplable distribution Sam over sets ~S, ~T (where
|~S| = O(1)) and (provably) entropically valid message distributions D such it suffices to assume the
existence of an encodings scheme that is entropic semantically secure w.r.t., this particular distribution

6Technically, by high-entropy, we here mean that the min-entropy is at least log |R|−O(log log |R|) where R is the ring
associated with the encodings; that is, the min-entropy is “almost” optimal (i.e., log |R|).

5

over sets and messages subexponentially small indistinguishability gap. Note that this is a non-interactive
and efficiently falsifiable (decisional) assumption—in essence, it is a specific instance of a DDH-type
assumption over multilinear encodings (which satisfies the same nice “zero-knowledge property” as the
aGDDH assumptions, and thus is trivially secure in the generic model.)

Theorem 3 (Informally stated). There exists an efficiently samplable distribution Sam over sets ~S, ~T
(such that |~S| = O(1)) and entropically valid message distributions D (w.r.t. these sets) such that the
existence of an encoding scheme that is semantically secure w.r.t. the specific instance-distribution Sam
with subexponential indistinguishability gap implies the existence of indistinguishability obfuscators for
NC1.

As before, this construction can be bootstrapped up to P/poly by additionally assuming the existence
of a leveled FHE with decryption in NC1.

1.3 Alternative Security Notions for Multilinear Encodings

A natural question is whether there are reasonable qualitative strengthenings of semantical security that
can be used to achieve stronger notions of obfuscation, such as e.g., differing-input (a.k.a. extractability)
obfuscation. Towards this, we investigate various ways of defining a “super” (or uber) assumption
for multilinear encodings. A natural way of defining security of multilinear encodings would be to
require that for specific classes of problems, generic attacks cannot be beaten (this is the approach
alluded to in [BGK+13]). Perhaps the most natural instantiation of this in the context of a multilinear
DDH assumption would be to require that for any distribution D over ~m0, ~m1, ~z (where ~m0, ~m1 are
constant-length sequences), if encodings of ~m0, ~z and and ~m0, ~z are indistinguishable w.r.t. to generic
attackers, then they are also indistinguishable w.r.t. arbitrary nuPPT attacker; in essence, “if a DDH-
type assumption holds w.r.t. to generic attacks, then it also holds with respect to nuPPT attackers”.
We refer to this notion of security as extractable uber security.7

Our second main result shows that, assuming the existence of a leveled FHE with decryption in
NC1, there do not exist extractable uber-secure multilinear encodings (even if we only require security
to hold w.r.t high-entropy distributions D). In particular, we give a concrete example of a DDH-type
assumption that holds in the generic model but is false w.r.t. nuPPT attacker; in our opinion, this
yields strong evidence that security in the generic model is not indicative of real-life security—even for
very simply tasks—and motivates why our notion of semantical security restricts to “zero-knowledge”
distributions.

Theorem 4. [Informally stated] Assume the existence of a leveled FHE with decryption in NC1. Then
no multilinear encodings can satisfy extractable (entropic) uber security.

This impossibility result is demonstrated by relying on our construction of indistinguishability ob-
fuscators, showing that if the underlying multilinear encodings satisfy the extractable uber security, the
overall construction will satisfy a “too strong” notion of obfuscation.

We finally consider several plausible ways of defining uber security for multilinear encodings, which
circumvent the above impossibility results; in a nutshell, the idea is to require indistinguishability
of encodings only if the elements are statistically close w.r.t. unbounded generic attackers (that are
restricted to making polynomially many zero-test queries). We highlight that none of these assumptions
are needed for our construction of an indistinguishability obfuscation (and are stronger than semantical
security), but they may find other applications.

7We use the adjective “extractable” as this security notion implies that if an nuPPT attacker can distinguish encodings,
then the arithmetic circuits needed to distinguish the elements can be efficiently extracted out.

6

1.4 Construction Overview

Following the original work of Garg et al (as well as subsequent works), our construction proceeds in
three steps:

• We view the NC1 circuit to be obfuscated as a branching program BP (using Barrington’s Theorem
[Bar86])—that is, the program is described by m pairs of matrices (Bi,0, Bi,1), each one labelled
with an input bit inp(i), and the program is evaluated computing by for each i ∈ [m], choosing
one of the two matrices (Bi,0, Bi,1), based on the input, computing the product, and finally based
on the product determining the output—there is a unique “accept” (i.e., output 1) matrix, and a
unique “reject” (i.e., output 0) matrix.

• The branching program BP is randomized using Kilian’s technique [Kil88] (roughly, each pair
of matrices is appropriately multiplied with the same random matrix R while ensuring that the
output is the same), and then “randomized” some more—each individual matrix is multiplied by
a random scalar α. Let us refer to this step as Rand.

• Finally the randomized matrices are encoded using multilinear encodings with the sets selected
appropriately. We here rely on a (simple version) of the straddling set idea of [BGK+13] to
determine the sets. We refer to this step as Encode.

(The original construction as well as the subsequent works also consisted of several other steps, but
for our purposes these will not be needed.) The obfuscated program is now evaluated by using the
multilinear operations to evaluate the branching program and finally appropriately use the zero-test to
determine the output of the program. Let us refer to this construction as the “basic obfuscator”.

Roughly speaking, the idea behind the basic obfuscator is that the multilinear encodings intuitively
ensure that any attacker getting the encoding needs to multiply matrices along paths that corresponds
to some input to the branching program (the straddling sets are used to ensure that the input is
used consistently in the evaluation)8; the scalars α, roughly speaking, ensure that a potential attacker
without loss of generality can use a single “multiplication-path” and still succeed with roughly the
same probability, and finally, Kilian’s randomization steps ensures that if an attacker only operates on
matrices along a single path that corresponds to some input x (in a consistent way), then its output can
be perfectly simulated given just the output of the circuit on input x. (The final step relies on the fact
that the output of the circuit uniquely determines product of the branching program along the path,
and Kilian’s randomization then ensures that the matrices along the path are random conditioned on
the product being this unique value.) Thus, if an attacker can tell apart obfuscations of two programs
BP0, BP1, there must exist some input on which they produce different outputs. The above intuitions
can indeed be formalized w.r.t. generic attackers (that only operate on the encodings in a legal way,
respecting the set restrictions), relying on arguments from [BR14, BGK+13]. This already suffices to
prove that the basic obfuscator is an indistinguishability obfuscator assuming the encodings are multi-
message semantically secure.

To base security on the weaker assumption of (constant-message) semantical security, we will add
an additional program transformation steps before the Rand and Encode steps. Roughly speaking, we
would like to have a method Merge(BP0, BP1, b) that “merges” BP0 and BP1 into a single branching
program that evaluates BPb; additionally, we require that Merge(BP0, BP1, 0) and Merge(BP0, BP1, 1)
only differ in a constant number of matrices. We achieve this merge procedure by connecting together
BP0, BP1 into a branching program of double width and adding two “switch” matrices in the beginning
and the end, determining if we should go “up” or “down”. Thus, to switch between Merge(BP0, BP1, 0)
(which is functionally equivalent to BP0) and Merge(BP0, BP1, 1) (which is functionally equivalent to
BP1) we just need to switch the “switch matrices”. More precisely, given branching programs BP0 and

8The encodings, however, still permit an attacker to add elements within matrices.

7

BP1 described respectively by pairs of matrices {(B0
i,0, B

0
i,1), (B1

i,0, B
1
i,1)}i∈[m], we construct a merged

program Merge(BP0, BP1, b) described by {(B̂0
i,0, B̂

0
i,1)}i∈[m] such that

B̂0
i,b = B̂1

i,b=

(
B0

(i−1),b 0

0 B1
(i−1),b

)
for all 2 ≤ i ≤ m+ 1 and b ∈ {0, 1}

and the first and last matrices are given by:

B̂0
1,b = B̂0

m+2,b = I2w×2w for b ∈ {0, 1}

B̂1
1,b = B̂1

m+2,b =

(
0 Iw×w

Iw×w 0

)
for b ∈ {0, 1}

It directly follows from the construction that Merge(BP0, BP1, 0) and Merge(BP0, BP1, 1) differ only
in the first and the last matrices (i.e., the “switch” matrices). Furthermore, it is not hard to see that
Merge(BP0, BP1, b) is functionally equivalent to BPb.

Our candidate obfuscator is now defined as iO(B) = Encode(Rand(Merge(BP, I, 0))), where I is
simply a “dummy" program of the same size as BP .9

The idea behind the merge procedure is that to prove that obfuscations of two programs BP0, BP1

are indistinguishable, we can come up with a sequence of hybrid experiments that start with iO(BP0)
and end with iO(BP1), but between any two hybrids only changes a constant number of encodings,
and thus we may rely on semantic security of multilinear encodings to formalize the above intuitions.
At a high level, our strategy will be to matrix-by-matrix, replace the dummy branching program in the
obfuscation of BP0 with the branching program for BP1. Once the entire dummy branching program
has been replaced by BP1, we flip the “switch" so that the composite branching program now computes
the branching program for BP1. We then replace the branching program for BP0 with BP1, matrix by
matrix, so that we have two copies of the branching program for BP1. We now flip the “switch" again,
and finally restore the dummy branching program, so that we end up with one copy of BP1 and one copy
of the dummy, which is now a valid obfuscation of BP1. In this way, we transition from an obfuscation
of BP0 to an obfuscation of BP1, while only changing a small piece of the obfuscation in each step.
(On a very high-level, this approach is somewhat reminiscient of the Naor-Yung “two-key” approach
in the context of CCA security [NY90] and the “two-key” bootstrapping result for indistinguishability
obfuscation due to Garg et al [GGH+13b]—in all these approaches the length of the scheme is artificially
doubled to facilitate a hybrid argument. It is perhaps even more reminiscient of the Feige-Shamir
“trapdoor witness” approach for constructing zero-knowledge arguments [FS90], whereby an additional
“dummy” trapdoor witness is introduced in the construction to enable the security proof.)

More precisely, consider the following sequence of hybrids.

• We start off with iO(BP0) = Enc(Rand(Merge(BP0, I, 0)))

• We consider a sequence of hybrids where we gradually change the dummy program I to become
BP1; that is, we consider Encode(Rand(Merge(BP0, BP

′, 0))), where BP ′ is “step-wise” being
populated with elements from BP1.

• We reach Encode(Rand(Merge(BP0, BP1, 0))).

• We turn the “switch” : Encode(Rand(Merge(BP0, BP1, 1))).

• We consider a sequence of hybrids where we gradually change the BP0 to become BP1; that is,
we consider Encode(Rand(Merge(BP ′, BP1, 1))), where BP ′ is “step-wise” being populated with
elements from BP1.

9This description oversimplifies a bit. Formally, the Rand step needs to depends on the field size used in the Encode
steps, and thus in our formal treatment we combine these two steps together.

8

• We reach Encode(Rand(Merge(BP1, BP1, 1))).

• We turn the “switch” back: Encode(Rand(Merge(BP1, BP1, 0))).

• We consider a sequence of hybrids where we gradually change the second BP1 to become I; that
is, we consider Encode(Rand(Merge(BP1, BP

′, 0))), where BP ′ is “step-wise” being populated with
elements from I.

• We reach Encode(Rand(Merge(BP1, I, 0))) = iO(BP1).

By construction we have that if BP0 and BP1 are functionally equivalent, then so will all the hybrid
programs–the key point is that we only “morph” between two branching programs on the “inactive”
part of the merged branching program. Furthermore, by construction, between any two hybrids we
only change a constant number of elements. Thus, if some distinguisher can tell apart iO(BP0) and
iO(BP1), it must be able to tell apart two consecutive hybrids. But, by semantic security it then follows
that some “legal” arithmetic circtui can tell apart the encodings in the two hybrids. Roughly speaking,
we can now rely on simulation security of the basic obfuscator w.r.t. to just legal arithmetic circuits to
complete the argument.

There is a catch with the final step though. Recall that to rely on Kilian’s simulation argument it
was crucial that there are unique accept and reject matrices. For our “merged” programs, this is no
longer the case (the output matrix is also a function of the second “dummy” program). We overcome
this issue by noting that the first column of the output matrix actually is unique, and this is all we
need to determine the output of the branching program. Consequently it suffices to release encodings
of the just first column (as opposed to the whole matrices) of the last matrix pair in the branching
program, and we can still determine the output of the branching program. As we show, for such a
modified scheme, we can also simulate the (randomized) matrices along an “input-path” given just the
first column of the output matrix. This concludes the description of our indistinguishability obfuscator.

1.5 Conclusion and Discussion

We have introduced a new security notion, semantical security, for multilinear (a.k.a. graded) encod-
ings, which captures a general (but quite restrictive) class of DDH-type assumption over multilinear
encodings. Our main result demonstrates the existence of indistinguishability obfuscators (iO) assum-
ing the existence of semantically secure multilinear encodings and the LWE assumption; as far as we
know, this yields the first construction of iO based on a succinct and simple-to-state assumption about
some algebraic primitive (namely, multilinear encodings) for which candidate constructions are known.

We additionally show that it suffices to assume the existence of encodings schemes that satisfy a
specific, falsifiable, instance of semantical security (i.e., that a specific DDH-type assumption in the
class holds w.r.t. the encoding scheme); this time, however, we need to assume subexponentially-hard
semantical security. This shows that under subexponential reductions, indistinguishability obfuscation
can be based on a single, non-interactive and falsifiable, assumption.

We finally consider various strengthenings of semantical security, which (among other things) mo-
tivate why in our definition of semantical security, we restrict the class of DDH-type assumptions: we
show that the assumption that “every DDH-type assumptions that holds against generic attackers holds
against nuPPT attackers” is false.

Our work leaves open several interesting questions:

• Can we base iO on polynomial-hardness of a falsfiable (and preferrably non-interactive) assumption
(using a security-preserving reduction)? Note that for many applications of iO (e.g., functional
encryption [GGH+13b]) it suffices to require indistinguishability for restricted distributions of

9

programs that (with overwhelming probability) are provably functionally equivalent; for these ap-
plications, our proof already shows they can be based on specific, falsifiable, instances of semantical
security (without assuming subexponential hardness).

• Even in the regime of subexponential hardness, the specific DDH-type assumption that we use—
although it is a special case of semantical security—is not particularly natural, and doesn’t have
a particularly “simple” description. In essence, we consider semantical security with respect to
distributions over elements that describe the obfuscation of a random branching program. (As
such, in our eyes, perhaps the best reason to believe this assumption is true that it is a falsifi-
able special case of semantical security). It would be much more desirable to base security on
semantical security w.r.t. a single simple and natural distribution over ~m0, ~m1, ~z, where, for in-
stance, similar to the GDDH assumption, ~z are uniformly random elements. We conjecture that
our assumption actually can be “massaged” into a nicer looking assumption, closer in spirit to the
GDDH assumption, and we are currently working on formalizing this.

We mention a very recent work by Gentry, Lewko and Waters [GLW14] that bases witness en-
cryption [GGSW13] on exponential hardness of some nicer looking assumptions over multinear
encodings (closer in spirit to the GDDH assumption); however, in contrast to our work they rely
on multilinear (graded) encodings over composite-order rings (for which the only candidate is a
modified variant of [CLT+13]) or require more complex assumptions over prime-order rings (that
still are false for the [GGH13a] construction); additionally, they requires more functionalities from
graded encodings than we do (in particular, “ring-sampling”, “re-randomization”, “subring genera-
tion”, and “subring sampling”; see [GLW14]).

1.6 Outline of the Paper

We provide some preliminaries in Section 2. We define semantical security of multilinear (aka graded)
encodings in Section 3. Our construction of an indistinguishability obfuscator is provided in Section 4
and its proof of security is found in Section 5. We show how to slightly modify the construction to be
based on a single (falsifiable) instance of semantical security in Section 6. We finally study alternative
notions of security for multilinear encodings in Section 7.

2 Preliminaries

Let N denote the set of positive integers, and [n] denote the set {1, 2, . . . , n}. Let Z denote the integers,
and Zp the integers modulo p. Given a string x, we let x[i], or equivalently xi, denote the i-th bit of
x. For a matrix M , we let M [i, j] denote the entry of M in the ith row and jth column. We use ek to
denote the vector that is 1 in position k, and 0 in all other positions. The length of ek is generally clear
from the context. We use Iw×w to denote the identity matrix with dimension w × w.

By a probabilistic algorithm we mean a Turing machine that receives an auxiliary random tape as
input. If M is a probabilistic algorithm, then for any input x, M(x) represents the distribution of
outputs of M(x) when the random tape is chosen uniformly. M(x; r) denotes the output of M on input
x when the random tape is fixed to r. An oracle algorithm MO is a machine M that gets oracle access
to another machine O, that is, it can access O’s functionality as a black-box.

By x← S, we denote an element x is sampled from a distribution S. If F is a finite set, then x← F
means x is sampled uniformly from the set F . To denote the ordered sequence in which the experiments
happen we use semicolon, e.g. (x← S; (y, z)← A(x)). Using this notation we can describe probability
of events. For example, if p(·, ·) denotes a predicate, then Pr[x ← S; (y, z) ← A(x) : p(y, z)] is the
probability that the predicate p(y, z) is true in the ordered sequence of experiments (x ← S; (y, z) ←
A(x)). The notation {(x ← S; (y, z) ← A(x) : (y, z))} denotes the resulting probability distribution

10

{(y, z)} generated by the ordered sequence of experiments (x ← S; (y, z) ← A(x)). We define the
support of a distribution supp(S) to be {y : Pr[x← S : x = y] > 0}.

By isZero, we denote the predicate such that isZero(x) = 1 exactly when x = 0, and isZero(x) = 0
otherwise.

2.1 Obfuscation

We recall the definition of indistinguishability obfuscation due to [BGI+01].

Definition 1 (Indistinguishability Obfuscator). A uniform PPT machine iO is an indistinguishability
obfuscator for a class of circuits {Cn}n∈N if the following conditions are satisfied

• Correctness: There exists a negligible function ε such that for every n ∈ N, for all C ∈ Cn, we
have

Pr[C ′ ← iO(1n, C) : ∀x, C ′(x) = C(x)] ≥ 1− ε(n)

• Security: For every pair of circuit ensembles {C0
n}n∈N and {C1

n}n∈N such that for all n ∈ N, for
every pair of circuits C0

n, C
1
n ∈ Cn such that C0

n(x) = C1
n(x) for all x the following holds: For every

nuPPT adversary A there exists a negligible function ε such that for all n ∈ N,

|Pr[C ′ ← iO(1n, C0
n) : A(1n, C ′) = 1]− Pr[C ′ ← iO(1n, C1

n) : A(1n, C ′) = 1]| ≤ ε(n)

We additionally say that iO is subexponentially-secure if there exists some constant α > 0 such
that for every nuPPT A the above indistinguishability gap is bounded by ε(n) = 2−O(nα).

Note: We observe that the above definition allows for a negligible correctness error. That is, for any
circuit C, there is a negligible fraction of “bad” randomness r such that iO(C; r) is not functionally
equivalent to C. However, if we can efficiently check if r is “bad”, we can modify iO so that iO(C; r)
outputs C in the clear if r is “bad”. Then the modified iO has perfect correctness, and its security
remains intact since only a negligible fraction of r are “bad”. We note that our construction, as well as
all previous ones, have the property that a “bad” r can be efficiently detected, and thus these schemes
can be modified to have perfect correctness.

We now recall the definitions of iO for NC1 and P/poly.

Definition 2 (Indistinguishability Obfuscator for NC1). A uniform PPT machine iO is an indistin-
guishability obfuscator for NC1 if for every constant c, iO(c, ·, ·) is an indistinguishability obfuscator for
the class of circuits Cc = {Ccn}n∈N where Ccn is the set of circuits that have size at most nc, and have
depth at most c log n.

Definition 3 (Indistinguishability Obfuscator for P/poly). A uniform PPT machine iO is an indistin-
guishability obfuscator for P/poly if for every constant c, iO(c, ·, ·) is an indistinguishability obfuscator
for the class of circuits Pc = {Pcn}n∈N where Pcn is the set of circuits that have size at most nc.

The following simple lemma will be useful in the sequel.

Lemma 5. Let iO be a (subsexponentially-secure) indistinguishability obfuscator for C1. Then iO′
defined as iO′(c, 1n, C) = iO(1n

c
, C) is a (subexponentially-secure) indistinguishability obfuscator for

NC1.

Proof. Consider any pair of circuit ensembles {C0
n}n∈N, {C1

n}n∈N in Cc. Assume for contradiction that
there exists some nuPPT A and a polynomial p(·) such that A(1n) distinguishes iO′(c, 1n, C0

n) =
iO(1n

c
, C0

n) and iO′(c, 1n, C1
n) = iO(1n

c
, C1

n) with probability 1/p(n) for infinitely many n. Note that
for every n, C0

n, C
1
n ∈ C1nc . Thus, for infinitely many n ∈ N, there exists circuits C0

n, C
1
n ∈ C1nc such

11

that A(1n) distinguishes iO(1n
c
, C0

n) and iO(1n
c
, C1

n) with probability 1/p(n). In other words, for in-
finitely many n′ ∈ N of the form n′ = nc, there exist circuits C̃0

n′ = C0
n, C̃1

n′ = C1
n such that the nuPPT

A′(1n
′
) = A(1n) distinguishes iO(1n

′
, C̃0

n′) and iO(1n
′
, C̃1

n′) with probability 1/p(n) = 1/p(n′1/c)), which
contradicts that iO is an indistinguishability obfuscator for C1.

The same argument also works in the context of subexponential security.

2.2 Branching programs for NC1

We recall the notion of a branching program.

Definition 4 (Matrix Branching Program). A branching program of width w and length m for n-bit
inputs is given by a sequence:

BP = {inp(i), Bi,0, Bi,1)}mi=1,

where each Bi,b is a permutation matrix in {0, 1}w×w and inp(i) ∈ [n] is the input bit position examined
in step i. Then the output of the branching program on input x ∈ {0, 1}n is as follows:

BP (x)
def
=

{
1, if (

∏m
i=1Bi,x[inp(i)]) · e1 = e1.

0, otherwise

The branching program is said to be oblivious if inp : [m] → [n] is a fixed function, independent of the
function being evaluated.

The above definition differs slightly from the definition of matrix branching programs generally used,
which have the slightly stronger requirement that

∏n
i=1Bi,x[inp(i)] = Iw×w when BP (x) is accepting,

and
∏n
i=1Bi,x[inp(i)] = Preject for some fixed permutation matrix Preject 6= Iw×w when BP (x) is rejecting.

More generally,

Definition 5. The branching program is said to have fixed accept and reject matrices Paccept and Preject

if, for all x ∈ {0, 1}n,

m∏
i=1

Bi,x[inp(i)] =

{
Paccept when BP (x) = 1

Preject when BP (x) = 0

We now have the following theorem due to Barrington:

Theorem 6. ([Bar86]) For any depth d and input length n, there exists a length m = 4d, a labeling
function inp : [m] → [n], an accepting permutation Paccept with Paccept · e1 = e1, and a rejecting
permutation Preject with Preject · e1 = ek where k 6= 1 such that, for every fan-in 2 boolean circuit C of
depth d and n input bits, there exists an oblivious matrix branching program BP = {inp(i), Bi,0, Bi,1}mi=1,
of width 5 and length m that computes the same function as the circuit C.

In particular, every circuit in NC1 has a polynomial length branching program of width 5. Further, two
circuits of the same depth d will have the same fixed accepting and rejecting permutations Paccept and
Preject, and a fixed labelling function inp : [m]→ [n].

3 Semantically Secure Graded Encoding Schemes

In this section we define what it means for a graded encoding scheme to be semantically secure. We
start by recalling the notion of graded encoding schemes due to Garg, Gentry and Halevi [GGH13a].

12

3.1 Graded Encoding Schemes

Graded (multilinear) encoding schemes were originally introduced in the work of Garg, Gentry and
Halevi [GGH13a]. Just as [BR14, BGK+13], we here rely on “set-based” (or “asymmetric”) graded en-
coding; these were originally called “generalized” graded encodings in [GGH13a]. Following [GGH+13b,
BGK+13] and the notion of “multilinear jigsaw puzzles” from [GGH+13b], we additionally enable anyone
with the secret parameter to encode any elements (as opposed to just random elements as in [GGH13a]).

Definition 6 ((k,R)-Graded Encoding Scheme). A (k,R)-graded encoding scheme for k ∈ N and ring
R is a collection of sets {EαS : α ∈ R,S ⊆ [k]} with the following properties

• For every S ⊆ [k] the sets {EαS : a ∈ R} are disjoint.

• There are associative binary operations ⊕ and 	 such that for every α1, α2 ∈ R, S ⊆ [k], u1 ∈ Eα1
S

and u2 ∈ Eα2
S it holds that u1 ⊕ u2 ∈ Eα1+α2

S and u1 	 u2 ∈ Eα1−α2
S where ‘+′ and ‘−′ are the

addition and subtraction operations in R.

• There is an associative binary operation ⊗ such that for every α1, α2 ∈ R, S1, S2 ⊆ [k] such that
S1 ∩ S2 = ∅, u1 ∈ Eα1

S1
and u2 ∈ Eα2

S2
it holds that u1 ⊗ u2 ∈ Eα1·α2

S1∪S2
where ‘·’ is multiplication in

R.

Definition 7 (Graded Encoded Scheme). A graded encoding scheme E is associated with a tuple of
PPT algorithms, (InstGenE ,EncE ,AddE , SubE ,MultE , isZeroE) which behave as follows:

• Instance Generation: InstGenE takes as input the security parameter 1n and multilinearity param-
eter 1k, and outputs secret parameters sp and public parameters pp which describe a (k,R)-graded
encoding scheme {EαS : α ∈ R,S ⊆ [k]}. We refer to EαS as the set of encodings of the pair (α, S).
We restrict to graded encoding schemes where R is Zp and p is a prime exponential in n and k.

• Encoding: EncE takes as input the secret parameters sp, an element α ∈ R and set S ⊆ [k], and
outputs a random encoding of the pair (α, S).

• Addition: AddE takes as input the public parameters pp and encodings u1 ∈ Eα1
S1
, u2 ∈ Eα2

S2
, and

outputs an encoding of the pair (α1 + α2, S) if S1 = S2 = S and outputs ⊥ otherwise.

• Negation: SubE takes as input the public parameters pp and encodings u1 ∈ Eα1
S1
, u2 ∈ Eα2

S2
, and

outputs an encoding of the pair (α1 − α2, S) if S1 = S2 = S and outputs ⊥ otherwise.

• Multiplication: MultE takes as input the the public parameters pp and encodings u1 ∈ Eα1
S1
, u2 ∈

Eα2
S2
, and outputs an encoding of the pair (α1 ·α2, S1∪S2) if S1∩S2 = ∅ and outputs ⊥ otherwise.

• Zero testing: isZeroE takes as input the public parameters pp and an encoding u ∈ ES(α), and
outputs 1 if and only if α = 0 and S is the universe set [k].10

Whenever it is clear from the context, to simplify notation we drop the subscript E when we refer to the
above procedures (and simply call them InstGen,Enc, . . .).

10In the candidate scheme given by [GGH13a], isZero may not have perfect correctness: the generated instances (pp, sp)
can be “bad” with some negligible probability, so that there could exist an encoding u of a nonzero element where
isZero(pp, u) = 1. However, these “bad” parameters can be efficiently detected during the execution of InstGen. We can
thus modify the encoding scheme to simply set Enc(pp, e) = e whenever the parameters are “bad” (and appropriately
modify Add, Sub,Mult and isZero so that the operate on “unencoded” elements. This change ensures that, for every pp,
including “bad” ones, the zero test procedure isZero works with perfect correctness. We note that since bad parameters
occur only with negligible probability, this change does not affect the security of the encodings.

13

In known candidate constructions [GGH13a, CLT+13], encodings are “noisy” and the noise level
increases with each operation; the parameters, however, are set so that any poly(n, k) operations can
be performed without running into trouble. For convenience of notation (and just like all other works
in the area), we ignore this noise issue.11

Note that the above procedures allow algebraic operations on the encodings in a restricted way.
Given the public parameters and encodings made under the sets ~S, one can only perform algebraic
operations that are allowed by the structure of the sets in ~S. We call such operations ~S-respecting and
formalize this notion as follows:

Definition 8 (Set Respecting Arithmetic Circuits). For any sequence ~S of subsets of [k], we say that
an arithmetic circuit C (i.e. gates perform only ring operations {+,−, ·}) is ~S-respecting if it holds that

• Eevery input wire of C is tagged with some set in ~S.

• For every + and − gate in C, if the tags of the two input wires are the same set S then the output
wire of the gate is tagged with S. Otherwise the output wire is tagged with ⊥.

• For every · gate in C, if the tags of the two input wires are sets S1 and S2 and S1 ∩ S2 = ∅ then
the output wire of the gate is tagged with S1 ∪ S2. Otherwise the output wire is tagged with ⊥.

• It holds that the output wire is tagged with the universe set [k].12

We say that a circuit C is weakly ~S-respecting if all the above conditions hold except the last, that
is, the output wire may be tagged with some set T ⊆ [k], where T is not necessarily equal to [k]. We say
that C is non terminal ~S-respecting if T is a strict subset of [k].

3.2 Semantical Security

We now turn to defining semantical security of graded encoding schemes. Towards explaining our
notion of semantical security, let us first consider a “DDH-type” assumption for (asymmetric) multilinear
encodings, similar in spirit to the “graded DDH” assumption of Garg et al [GGH13a] (which was in the
contex of symmetric multilinear encodings, whereas we here consider asymmetric ones). Consider a
distribution D sampling n random elements ~z, and let m0 =

∏
i∈[n] zi be the product of the elements in

~z, andm1 = z′ be just a random element. A DDH-type assumption—let us refer to it as the “asymmetric
graded DDH assumption (aGDDH)”—would require that encodings of m0, ~z and m1, ~z under the sets
S, ~T are indistinguishable as long as (a) S is the target set [k], and (b) S is not the disjoint union of the
sets in ~T ; that is, the set-restrictions prohibit “legally” multiplying all the elements of ~z and subtracting
them from m0 or m1. ~z.

Note that for any such sets S, ~T , the particular (joint) distribution D over m0,m1, ~z has a nice
“zero-knowledge” property w.r.t. to the set of (S, ~T)-respecting circuits: for every (S, ~T)-respecting
circuit C, isZero(C(·)) is constant over (mb, ~z), b ∈ {0, 1} with overwhelming probability: that is, there
exists some bit c such that with overwhelming probability over m0,m1, ~z ← D, isZero(C(mb, ~z)) = c for
b ∈ {0, 1}. To see this, note that any such isZero(C(m,~z) function is of the form isZero(a ·m + p(~z))
where p(·) is a polynomial of degree at most n−1. If a = 0 and p(·) is the zero-polynomial, then clearly
the function evaluates to 1. If either a = 1 or p(·) is a non-zero polynomial, then no matter whether
m = m0 or m = m1, isZero(C(·, ·)) is evaluating a non-zero polynomial of degree at most n at a random
point; by the Schwartz-Zippel lemma, with overwhelming probability (proportional to the field size),
both these polynomials will evaluate to a non-zero value, and thus the zero-test will output 0.

11The above definition can be easily generalized to deal with the candidates by only requiring that the above conditions
hold when u1, u2 have been obtained by poly(n, k) operations.

12For ease of notation, we assume that the description of a set S also contains a description of the universe set [k].

14

We refer to any distribution D satisfying the above “zero-knowledge property” as being valid w.r.t.
S, ~T . We formalize this notion through what we refer to as a (S, ~T)-respecting message sampler. As
mentioned in the introduction, for our purposes, we need to consider a more general setting where
m0,m1, and S are replaced by constant-length vectors ~m0, ~m1, ~S; for generality, we provide a definition
that considers arbitrary length vectors of messages.

Definition 9 (Respecting Message Sampler). Let E be a graded encoding scheme, and {(~Sn, ~Tn)}n∈N
be an ensemble of pairs of sequences of sets over [kn]. We say that a nuPPT M is a {(~Sn, ~Tn)}n∈N-
respecting message sampler (or valid w.r.t. {(~Sn, ~Tn)}n∈N) if

• M on input 1n and a public parameter pp computes the ring R associated with pp and next based
on only 1n and R generates and outputs a pair (~m0, ~m1) of sequences of |Sn| ring elements and a
sequence ~z of |Tn| ring elements;

• There exists a polynomial Q(·, ·) such that for every n ∈ N, every (sp, pp) in the support of
InstGen(1n, 1kn), every (~S, ~T)-respecting arithmetic circuit C, there exists a constant c ∈ {0, 1}
such that for any b ∈ {0, 1},

Pr[(~m0, ~m1, ~z)←M(1n, pp) : isZero(C(~mb, ~z)) = c] ≥ 1−Q(n, kn)/|R|.

Let us comment that Definition 9 allows the message sampler M to select ~m0, ~m1, ~z based on the
ring R = Zp; note that this is needed even to model the aGDDH assumption (or else we could not define
what it means to pick a uniform element in the ring). On the other hand, to make the notion of valid
message samplers as restrictive as possible, we prevent the message selection from depending on pp in
any other way. Looking ahead, this restriction makes the notion somewhat nicer behaved; see Lemma
7.

We can now define what it means for a graded encoding scheme to be semantically secure. Roughly
speaking, we require that encodings of (~m0, ~z) and (~m1, ~z) under the sets (~S, ~T) are indistinguishable
as long as (~m0, ~m1, ~z) is sampled by a message sampler that is valid w.r.t. (~S, ~T).

Definition 10 (Semantic Security). Let E be a graded encoding scheme and q(·) and c(·) be polynomials.
We say a graded encoding scheme E is (c, q)-semantically secure if for every polynomial k(·), every
ensemble {(~Sn, ~Tn)}n∈N where ~Sn and ~Tn are sequences of subsets of [k(n)] of length c(k(n))) and q(k(n))
respectively, for every {(~Sn, ~Tn)}n∈N-set-respecting message sampler M and every nuPPT adversary A,
there exists a negligible function ε such that for every security parameter n ∈ N,

|Pr[Output0(1
n) = 1]− Pr[Output1(1

n) = 1]| ≤ ε(n)

where Outputb(1n) is A’s output in the following game:

• Let (sp, pp)← InstGen(1n, 1k(n)).

• Let ~m0, ~m1, ~z ←M(1n, pp).

• Let ~ub ← {Enc(sp, ~m0[i], ~Sn[i])}c(kn)i=1 , {Enc(sp, ~z[i], ~Tn[i])}q(k(n))i=1 .

• Finally, run A(1n, pp, ~ub).

We say that E is (constant-message) semantically secure if it is (O(1), O(k))-semantically secure; we
say that E multi-message semantically secure if it is (O(k), O(k))-semantically secure. We additionally
say that E is subexponentially-hard semantically secure if there exists some exists some constant α > 0
such that for every nuPPT A the above indistinguishability gap is bounded by ε(n) = 2−O(nα).13

13We could also have considered an even stronger notion where the adversary A is allowed to be of subexponential-size;
this will not be needed for our result, but may be useful in other contexts.

15

In analogy with the GDDH assumption, our notion of semantical security restricts to the case when
the number of elements encoded is O(k). As the following lemma (whose proof is delegated to Appendix
C) shows, any such encoding scheme can be modified to one that is secure as long as the number of
elements in ~z is (a-priori) polynomially bounded.

Lemma 7. Let c, ε be constants and let E be a (c, kε)-semantically secure encoding scheme. Then for
every polynomial q(k) there exists a (c, q(k))-semantically secure encoding scheme.

Also, note that our notion of semantical security requires that security holds w.r.t. to any polynomial
multilinearity parameter k(·); again, this is without loss of generality: Any encoding scheme E that is
semantically secure when restricting to k(n) < n can be turned into a new scheme E ′ that is (full-fledged)
semantically secure, by simply letting InstGen′(1n, 1k) = InstGen(1n+k, 1k).

Finally, one may also consider a notion of unbounded semantical security (that is provably stronger
than semantical security)14 which requires that E is (O(1), q(k))-semantically secure for every polynomial
q(k); this notion is not needed for our results.

Let us end this section by remarking that (sub-exponentially hard) semantical security trivially holds
against polynomial-time “generic” attackers that are restricted to “legally” operating on the encodings—
in fact, it holds even against unbounded generic attackers that are restricted to only making polynomially
(or even subexponentially) many zero-test queries: recall that each legal zero-test query is constant
with overwhelming probability (whether we operate on ~m0, ~z or ~m1, ~z) and thus by a Union Bound, the
output of any generic attacker restricted to polynomially many zero-test queries is also constant with
overwhelming probability; see Section 7 for a formal statement.

Semantical Security w.r.t. Restricted Classes of Message Samplers For our specific construc-
tion of indistinguishability obfuscators it suffices to assume the existence of semantically secure encodings
w.r.t. restricted classes of message samplers M , where the {(~Sn, ~Tn)}n∈N-respecting condition on M is
replaced by some stronger restriction on M . It particular, it suffices to restrict to message samplers
M that induce a high-entropy distribution over ~m0, ~m1, ~z—not only the individual elements have high
min-entropy but also any element computed by applying a “non-terminal” sequence of legal arithmetic
operations to ~mb, ~z (for b ∈ {0, 1}). More precisely, we say that a M is a H-entropic {(~Sn, ~Tn)}n∈N)-
respecting message sampler if M is {(~Sn, ~Tn)}n∈N-respecting, where the sets Sn and Tn are over the
universe set [kn] and additionally:

• For every security parameter n, every pp ∈ InstGen(1n, 1kn describing a ring R, every non-terminal
(~Sn, ~Tn)-respecting arithmetic circuit C that computes a non-zero polynomial in its inputs, it holds
that for b ∈ {0, 1},

H∞(C(~mb, ~z)) ≥ H(log |R|)

where (~m0, ~m1, ~z)←M(1n, pp).

We here focus on “very” high entropy message samplers, where H(n) = n−O(log n), and refer to such
message samplers as simply entropic {(~Sn, ~Tn)}n∈N)-respecting message sampler (or entropically valid),
and refer to encoding schemes satisfying semantical security w.r.t. such restricted message samplers as
entropic semantically secure.

Additionally, for our purposes, we may consider semantic security with respect to even more re-
stricted types of message samplers M and sets (~Sn, ~Tn). In particular, where: (1) Each individual
element sampled is statistically close to a uniform ring element; (2) Elements sampled are “almost”
pair-wise independent: each pair of elements encoded is statistically close to two uniform ring elements;

14Any semantically secure encoding scheme E can be modified into a new encoding scheme E ′ that still is semantically
secure but not unbounded semantically secure. Simply let each encoding additionally release a random share of a secret-
sharing of sp. If few shares are released (i.e., ~z is small) security is untouched, but if many shares are released security is
trivially broken.

16

(3) The sets contained in the sequences ~Sn, ~Tn are pairs of indices {i, j}, i, j ∈ [kn]. Properties 1, 2
are natural abstractions of what happens in the GDDH assumption (property 2 is a relaxation of the
independence, as opposed to just pair-wise independence, property satisfied by the GDDH assumption).
Property 3 implies that (if we consider a arithemtic circuit) exactly k/2 multiplications on the elements
must be performed before a zero-testing can be done; combined with the above entropic message sampler
condition, this implies that any set-respecting arithmetic circuit of multiplicative degree smaller than
k/2 produces a high-entropy element when applied to the sampled elements.15

4 Our iO Construction

In this section, we describe our construction of an indistinguishability obfuscator iO. We will prove
its security in Section 5 based on the existence multilinear encodings schemes that satisfy entropic
semantical security. In Section 6 we show how to modify the construction to base it on a single (fal-
sifiable) instance of entropic semantical security; this time, however, we require subexponentially-hard
semantical security.

As in previous works [GGH+13b, BR14, BGK+13], the strategy for our construction will be to con-
vert an NC1 circuit into an oblivious matrix branching program, apply Kilian’s randomization technique
to the matrices, and then encode these matrices using the graded encoding scheme. The encoding will
be using a so-called “straddling set system" (as in [BGK+13]) that will enforce that any arithmetic
circuit operating on these encodings can be decomposed into a sum of terms such that each term can be
expressed using only encodings that come from one branch of the branching program (more specifically,
from the path through the branching program corresponding to evaluating a particular input x to the
branching program).

The biggest change from previous work is that before randomizing and encoding the branching
program, we double its width by chaining a dummy branching program to it that computes the constant
1, and then add a branch at the very start that chooses whether to use the true program or the dummy,
based on a “switch".

At a high level, to show indistinguishability of obfuscations of C1 and C2, our strategy will be to
obfuscate the branching program for C1 together with the dummy, and then, matrix by matrix, replace
the dummy branching program with the branching program for C2. Once the entire dummy branching
program has been replaced by C2, we flip the “switch" so that the composite branching program now
computes the branching program for C2. We then replace the branching program for C1 with C2, matrix
by matrix, so that we have two copies of the branching program for C2. We now flip the “switch" again,
and finally restore the dummy branching program, so that we end up with one copy of C2 and one copy
of the dummy.

In this way, we transition from an obfuscation of C1 to an obfuscation of C2, while only changing a
small piece of the obfuscation in each step, namely a single level of the underlying branching program.
We will later show, in the following section, that each step of the transitions must be indistinguishable
based on our hardness assumption. In particular, we show that no algebraic adversary can distinguish
between two hybrids, and thus the two distributions should be computationally indistinguishable based
on our assumption.

4.1 Merging Branching Programs

We now describe a method Merge for combining two branching programs together to create a composite
branching program of double width, in a way that enables switching by changing only a small number
of matrices.

15We thank Shai Halevi for this observation (and more generally for suggesting that we consider the output of low-degree
arithmetic circuits as an alternative to our entropic condition.).

17

Construction 1 (Merging branching programs). Let BP 0 = {inp(i), B0
i,0, B

0
i,1}mi=1 and BP 1 = {inp(i),

B1
i,0, B

1
i,1}mi=1 be oblivious matrix branching programs, each of width w and length m for n input bits.

(We assume that the same labelling function inp : [m]→ [n] is used for each of BP 0 and BP 1, and this
is without loss of generality because we can add extra dummy levels so that this property holds.)
Define branching programs B̂P 0 = {inp′(i), B̂0

i,0, B̂
0
i,1}

m+2
i=1 and B̂P 1 = {inp′(i), B̂1

i,0, B̂
1
i,1}

m+2
i=1 , each of

width 2w and length m+ 2 on l input bits, where:

inp′(i)
def
=

1, when i = 1

inp(i− 1), when 2 ≤ i ≤ m+ 1

1, when i = m+ 2

and, for all levels except the first and the last, B̂P 0 and B̂P 1 agree, given by:

B̂0
i,b = B̂1

i,b
def
=

(
B0

(i−1),b 0

0 B1
(i−1),b

)
for all 2 ≤ i ≤ m+ 1 and b ∈ {0, 1}

and the first and last levels are given by:

B̂0
1,b = B̂0

m+2,b = I2w×2w for b ∈ {0, 1}

B̂1
1,b = B̂1

m+2,b =

(
0 Iw×w

Iw×w 0

)
for b ∈ {0, 1}

We define Merge so that Merge(BP 0, BP 1, 0) = B̂P 0 and Merge(BP 0, BP 1, 1) = B̂P 1.

We will show that B̂P 0 and B̂P 1 are matrix branching programs that compute the same functions
as BP 0 and BP 1 respectively, with the additional feature that B̂P 0 and B̂P 1 differ from each other in
only two levels, namely the first and the last. Further, since inp′ does not depend on the function being
computed, B̂P 0 and B̂P 1 are oblivious matrix branching programs.

Accordingly, with respect to Merge(BP 0, BP 1, b) we will often use the phrase active branching
program to refer to BP b.

Claim 8. For BP 0 = {inp(i), B0
i,0, B

0
i,1}mi=1 and BP 1 = {inp(i), B1

i,0, B
1
i,1}mi=1 each of width w and

length m on n input bits, define B̂P 0 and B̂P 1 as above. Then, for each b ∈ {0, 1}, x ∈ {0, 1}n,
m+2∏
i=1

B̂b
i,x[inp′(i)] =

(∏m
i=1 B

b
i,x[inp(i)] 0

10
∏m

i=1 B
1−b
i,x[inp(i)]

)

Proof. We observe that B̂P 0 and B̂P 1 agree on each level except the first and last, that is,

B̂0
i,b = B̂1

i,b =

(
B0

(i−1),b 0

0 B1
(i−1),b

)
∀ i : 2 ≤ i ≤ m+ 1, b ∈ {0, 1}

Then we have, for any x ∈ {0, 1}n,
m+1∏
i=2

B̂0
i,x[inp′(i)] =

m+1∏
i=2

B̂1
i,x[inp′(i)] =

m+1∏
i=2

(
B0

(i−1),x[inp′(i)] 0

0 B1
(i−1),x[inp′(i)]

)

=

m∏
i=1

(
B0
i,x[inp(i)] 0

0 B1
i,x[inp(i)]

)

=

(∏m
i=1 B

0
i,x[inp(i)] 0

0
∏m

i=1B
1
i,x[inp(i)]

)

18

Where the change of indices in the second step follows because inp′(i) = inp(i− 1) when 2 ≤ i ≤ m+ 1.
We now consider the two case for b ∈ {0, 1}.
Case 1: (b = 0)
In this case,

m+2∏
i=1

B̂0
i,x[inp′(i)] = I2w×2w ·

(∏m
i=1 B

0
i,x[inp(i)] 0

0
∏m

i=1 B
1
i,x[inp(i)]

)
· I2w×2w

=

(∏m
i=1 B

0
i,x[inp(i)] 0

0
∏m

i=1B
1
i,x[inp(i)]

)
as required.
Case 2: (b = 1)
In this case,

m+2∏
i=1

B̂1
i,x[inp′(i)] =

(
0 Iw×w

Iw×w 0

)
·

(∏m
i=1 B

0
i,x[inp(i)] 0

0
∏m

i=1 B
1
i,x[inp(i)]

)
·
(

0 Iw×w
Iw×w 0

)

=

(
0

∏m
i=1 B

1
i,x[inp(i)]∏m

i=1 B
0
i,x[inp(i)] 0

)
·
(

0 Iw×w
Iw×w 0

)

=

(∏m
i=1 B

1
i,x[inp(i)] 0

0
∏m

i=1B
0
i,x[inp(i)]

)
as required.

Claim 9. For all BP 0 and BP 1 each of width w and length m on n input bits, for each b ∈ {0, 1}, for
all x ∈ {0, 1}n,

Merge(BP 0, BP 1, b)(x) = BP b(x)

Proof. LetBP 0 = {inp(i), B0
i,0, B

0
i,1}mi=1 andBP 1 = {inp(i), B1

i,0, B
1
i,1}mi=1. Define B̂P 0 = Merge(BP 0, BP 1, 0)

and B̂P 1 = Merge(BP 0, BP 1, 1) as above. We observe that for any x ∈ {0, 1}n,

Merge(BP 0, BP 1, b)(x) = 1

⇐⇒ (

m+2∏
i=1

B̂b
i,x[inp′(i)]) · e1 = e1

⇐⇒

(∏m
i=1 B

b
i,x[inp(i)] 0

0
∏m

i=1B
1−b
i,x[inp(i)]

)
· e1 = e1 (from Claim 8)

⇐⇒ (
m∏
i=1

Bb
i,x[inp(i)]) · e1 = e1

⇐⇒ BP b(x) = 1

Thus Merge(BP 0, BP 1, b)(x) = BP b(x).

The following claim illustrates some useful properties of the Merge procedure that we will use later.
Firstly it notes that changing the bit Merge gets as input changes only the “switch” matrices in the first
and last level of the program Merge outputs. Secondly, changing one level of a program Merge gets as
input changes the output program in one level only. Finally, the first column of the output matrix of
the widened program output by Merge depends only on the first column of the output matrix of the
active program. The claim follows by observing the definition of Merge.

19

Claim 10. Let BP0 and BP1 be length m, width w branching programs, with input length n.

• Merge(BP0, BP1, 0) and Merge(BP0, BP1, 1) differ in only 4 matrices, the matrices corresponding
to the first and last level.

• Let BP ′1 be a length m branching program that differs from BP1 in only the ith level for some
i ∈ [m]. Then for both b ∈ {0, 1}, Merge(BP0, BP1, b) and Merge(BP0, BP

′
1, b) also differ only in

the ith level. A similar statement holds for branching programs BP ′0 that differ from BP0 in only
one level.

• For any b ∈ {0, 1}, let BP = Merge(BP0, BP1, b), and Pout
BP (·) and Pout

BPb(·) be the functions
computing the output matrices on a given input for BP and BPb respectively. Then for every
input x ∈ {0, 1}n,

col1(Pout
BP (x)) = extend(col1(Pout

BPb(x)))

where extend extends a length w vector by appending w zeroes to the end.

4.2 Randomizing Branching Programs

We now describe Kilian’s randomization technique [Kil88] for a branching program, adapted to our
setting, by defining a process Rand that randomizes the matrices of a branching program BP . We will
decompose the randomization into two parts, RandB and Randα, defined below, and define Rand as their
composition.

Definition 11 (RandB). Let BP = {inp(i), Bi,0, Bi,1}mi=1 be a branching program of width w and length
m, with length-n inputs. Let p be a prime exponential in n. Then the process RandB(BP, p) samples m
random invertible matrices R1, R2, . . . , Rm ∈ Zw×wp uniformly and independently, and computes

B̃i,b = R(i−1) ·Bi,b ·R−1i for every i ∈ [m], and b ∈ {0, 1}

where R0 is defined as Iw×w, and
t = Rm · e1

RandB then outputs
({B̃i,b}i∈[m],b∈{0,1}, t, p)

Definition 12 (Randα). Let ({B̃i,b}i∈[m],b∈{0,1}, t, p) be the output of RandB(BP, p) as defined above.
On this input, Randα({B̃i,b}i∈[m],b∈{0,1}, p) samples 2m non-zero scalars {αi,b ∈ Zp : i ∈ [m], b ∈ {0, 1}}
uniformly and independently, and outputs

({αi,b · B̃i,b}i∈[m],b∈{0,1}, t)

Definition 13 (Rand). Let BP = {inp(i), Bi,0, Bi,1}mi=1 be a branching program of width w and length
m, with length-n inputs. Let p be a prime exponential in n. Then we define Rand(BP, p) to be:

Rand(BP, p) = (Randα(RandB(BP, p)))

= ({αi,b · B̃i,b}i∈[m],b∈{0,1}, t)

Where ({αi,b · B̃i,b}i∈[m],b∈{0,1}, t) are as computed in the executions of Randα and RandB.

20

Execution of a randomized branching program: To computeBP (x) from the output of Rand(BP, p),
given some input labelling function inp : [m]→ [n], and x ∈ {0, 1}n, we compute

Out(x) = (
m∏
i=1

αi,x[inp(i)] · B̃i,x[inp(i)]) · t

Where Out ∈ ZwP is a w× 1 vector. The intermediate multiplications cause each R−1i to cancel each Ri,
and R0 = Iw×w, so the above computation can also be expressed as:

Out(x) = (

m∏
i=1

αi,x[inp(i)] ·Bi,x[inp(i)]) · e1

When BP (x) = 1, we have that

m∏
i=1

αi,x[inp(i)] ·Bi,x[inp(i)] · e1 = (
m∏
i=1

αi,x[inp(i)]) · e1

When BP (x) = 0, we have that

m∏
i=1

αi,x[inp(i)] ·Bi,x[inp(i)] · e1 = (
m∏
i=1

αi,x[inp(i)]) · ek

for k 6= 1. Hence, to compute BP (x), we compute Out(x) and output 0 if Out(x)[1] = 0, and 1 otherwise.

Simulating a randomized branching program: Previous works ([BGK+13, BR14]) followed [Kil88]
to show how to simulate the distribution of any single path corresponding to an input x using just BP (x).
However, the simulator required that branching programs have unique accept and reject matrices Paccept

and Preject.
We would also like a theorem, along the lines of [Kil88], that shows that any single path through

a randomized branching program BP corresponding to an input x can be simulated knowing just the
accept/reject behavior of BP on x (i.e. by knowing whether BP (x) = 1).

In our setting, however, branching programs only meet the relaxed requirement that the output
matrix Pout(x) computed by evaluating BP on input x satisfies Pout(x) · e1 = e1 ⇐⇒ BP (x) = 1.
There can thus be multiple accept and reject matrices, and the particular accept or reject matrix
output by BP can depend both on x and on the specific implementation of BP (and not simply its
accept/reject behavior). In contrast, in previous works, because Paccept and Preject were unique, knowing
just the accept/reject behavior of BP on x also determines Pout(x).

What we will show is that, for the particular randomization scheme chosen above, we can simulate
any single path through a randomized branching program BP corresponding to an input x without
knowing the exact accept/reject matrix Pout(x), but rather just knowing the first column pout(x) =
col1(Pout(x)).

This will be sufficient for our applications, because the class of branching programs we randomize
will have the property that there are fixed columns paccept and preject ∈ Zwp such that for all x ∈ {0, 1}n,
if BP (x) = 1 then col1(Pout(x)) = paccept, and if BP (x) = 0 then col1(Pout(x)) = preject. In the case of
such programs, col1(Pout(x)) is determined solely by BP (x), and not the particular implementation of
BP . Thus, for these programs, we can simulate given only BP (x).

Before we show this theorem, we define notation for a path through a branching program corre-
sponding to an input x.

21

Definition 14 (projx). Let inp : [m] → [n] be an input labelling function, and, for any x ∈ {0, 1}n,
define projx, relative to inp, such that for any branching program BP with labelling function inp, for any
prime p ∈ N, and for any ({B̃i,b}i∈[m],b∈{0,1}, t)← RandB(BP, p)

projx({B̃i,b}i∈[m],b∈{0,1}, t) = ({B̃i,x[inp(i)]}i∈[m], t),

that is, projx selects the elements from ({B̃i,b}i∈[m],b∈{0,1}, t) used when evaluating input x.

We now show a version of Kilian’s theorem, adapted to our construction.

Theorem 11. There exists an efficient simulator KSim such that the following holds. Let BP =
{inp(i), Bi,0, Bi,1}i∈[m] be a width-w branching program of length m on n bit inputs, and p a prime
exponential in n. Let x ∈ {0, 1}n be an input to BP , and let bi = x[inp(i)] for each i ∈ [m]. Let Pout(x) =∏m
i=1Bi,bi denote the matrix obtained by evaluating BP on x, and let pout(x) = col1(Pout(x)) denote

the first column of this output. Let projx(RandB(BP, p)) be defined respecting the labelling function inp.
Then KSim(1m, p, pout(x)) is identically distributed to projx(RandB(BP, p)).

Proof. We begin by defining KSim(1n, p, BP (x)) as follows:

• For each i, KSim selects B̃i,bi to be a uniformly random invertible matrix in Zw×wp .

• KSim selects t ∈ Zwp solving

(
∏
i∈[m]

B̃i,bi) · t = pout(x) (1)

where bi = x[inp(i)] for each i.

• KSim outputs {{B̃i,bi}i∈[m], t}

We want to show that the distribution output by KSim matches the real distribution of {{B̃i,bi}i∈[m], t}
in the output of RandB(BP, p). But from [Kil88], we have the following:

Claim 12. The distribution of {{B̃i,bi}i∈[m], Rm} can be exactly sampled given Pout(x), by sampling
{B̃i,bi}i∈[m], Rm to be uniformly random and independent invertible matrices in Zw×wp subject to

(
∏
i∈[m]

B̃i,bi) ·Rm = Pout(x) (2)

The above claim implies the following:

Claim 13. The distribution of {{B̃i,bi}i∈[m], Rm} can be sampled by independently choosing each B̃i,bi
uniform and invertible, and fixing Rm solving equation (2).

Proof. This follows because for every choice of invertible B̃i,bi , there exists Rm solving equation (2)
given by

Rm = (
∏
i∈[m]

B̃i,bi))
−1 · Pout(x) (3)

Further, every solution to equation (2) can be represented as invertible B̃i,bi , and an Rm solving
equation (3). Thus choosing a random solution to equation (2) corresponds to independently choosing
each B̃i,bi uniformly and invertible, and fixing Rm solving equation (3).

22

From the above argument, we have that the distribution of projx(Rand(BP, p)) is exactly the same
as the distribution produced by independently choosing each B̃i,bi uniform and invertible, fixing Rm
solving equation (3), setting t to be the first column of Rm, and outputting {{B̃i,bi}i∈[m], t}. But note
that each column coli(Rm), i ∈ [w] is the unique solution to

(
∏
i∈[m]

B̃i,bi) · coli(Rm) = coli(Pout(x))

Thus we have that each B̃i,bi is independent, uniform, and invertible, and, using i = 1, t is the unique
solution to

(
∏
i∈[m]

B̃i,bi) · t = pout(x)

and, in particular, that t is determined by only the first column of Pout(x). Thus, we see that the
distribution of projx(RandB(BP, p)) is exactly the same as that output by KSim.

4.3 Choosing a Set System

In this section we will describe how to choose a collection of sets under which to encode a randomized
branching program using the graded encoding scheme. Our selection of sets will closely follow [BGK+13],
in that we use straddling set systems. However, one difference is that while they use dual input branching
programs, we restrict our attention to single-input schemes. As a consequence, the sets will be simpler
and consist of fewer elements.

We first define straddling set systems.

Definition 15 (Straddling Set Systems [BGK+13]). A straddling set system with n entries is a collec-
tion of sets Sn = {Si,b : i ∈ [n], b ∈ {0, 1}} over a universe U , such that:⋃

i∈[n]

Si,0 =
⋃
i∈[n]

Si,1 = U

and for every distinct non-empty sets C,D ⊆ Sn, we have that if:

1. (Disjoint Sets:) C contains only disjoint sets. D contains only disjoint sets.

2. (Collision:)
⋃
S∈C S =

⋃
S∈D S

Then it must be that ∃b ∈ {0, 1} such that:

C = {Sj,b}j∈[n] , D = {Sj,(1−b)}j∈[n]

Informally, the guarantee provided by a straddling set system is that only way to exactly cover U using
elements from Sn is to use either all sets {Si,0}i∈n or all sets {Si,1}i∈n. We use a slight variant of their
construction, choosing U to be [2n], each Si,0 to be one of {1, 2}, {3, 4}, . . . , {2n− 1, 2n}, and each Si,1
to be one of {1, 2n}, {2, 3}, {4, 5} . . . , {2n − 2, 2n − 1}.16 By a proof exactly following [BGK+13], we
have that this construction is a straddling set system.

Theorem 14 (Following Construction 1 in [BGK+13]). For every n ∈ N , there exists a straddling set
system Sn with n entries, over a universe U of 2n elements; furthermore, each set in the straddling set
system has size exactly two.

16In the construction of [BGK+13], U = [2n− 1], and each Si,0 is one of {1}, {2, 3}, . . . , {2n− 2, 2n− 1}, and each Si,1
is one of {1, 2}, {3, 4}, . . . , {2n − 1}. We could have also worked with this construction, but modify it slightly to ensure
that all encodings are under sets of size exactly two.

23

We now define the process SetSystem which takes as input the length m of a branching program,
the number of input bits n, and the input labelling function inp : [m] → [n] for a branching program.
SetSystem will output the collection of straddling set systems that we will use to encode any branching
program of length m on n input bits, with labelling function inp.

Execution of SetSystem(m,n, inp):
We let nj denote the number of levels that inspect the jth input bit in inp. That is,

nj = |{i ∈ [m] : inp(i) = j}|

For every j ∈ [n], SetSystem chooses Sj to be a straddling set system with nj entries over a set Uj , such
that the sets U1, . . . , Un are disjoint. Let U =

⋃
j∈[n] Uj . SetSystem then chooses St be a set of two

elements17, disjoint from U . We associate the set system Sj with the j’th input bit of the branching
program corresponding to inp. SetSystem then re-indexes the elements of Sj to match the steps of the
branching program as described by inp, so that:

Sj = {Si,b : inp(i) = j, b ∈ {0, 1}}

By this indexing, we also have that Si,b ∈ Sinp(i) for every i ∈ [m], for every b ∈ {0, 1}.
Let k = |U ∪ St|, and WLOG, assume that the U js and St are disjoint subsets of [k] (otherwise

SetSystem relabels the elements to satisfy this property).
SetSystem then outputs

k, {Si,b}i∈[m],b∈{0,1}, St

4.4 Obfuscating Branching Programs

In this section, we will describe a process Obf that obfuscates a given branching program BP . This
process will use Rand and SetSystem as subroutines. The output of Obf will be a randomized width-10
oblivious matrix branching program, encoded under the graded encoding scheme.

Description of Obf(BP) :

Input. Obf takes as input an oblivious permutation branching program BP = {inp(i), Bi,0, Bi,1}mi=1 of
width w and length m on n input bits.

Choosing sets. Obf runs SetSystem(m,n, inp) and receives k, {Si,b}i∈[m+2],b∈{0,1}, St.

Initializing the GES. Obf runs InstGen(1n, 1k) and receives secret parameters sp and public parame-
ters pp which describe a (k,R)-graded encoding scheme. We assume the ring R is equal to Zp for
some p exponential in n and k.

Randomizing BP. Obf executes Rand(BP, p), and obtains its output, {{inp(i), αi,0·B̃i,0, αi,1·B̃i,1}i∈[m], t}

Output. Obf outputs:

pp, {inp(i), Enc(sp, αi,0 · B̃i,0, Si,0), Enc(sp, αi,0 · B̃i,0, Si,1)}i∈[m], Enc(sp, t, St)

We also define a generic version of Obf, which we refer to as GObf. Its output will be used to
initialize an oracle M for the idealized version of the graded encoded scheme. GObf(BP, pp) acts

17We make this choice to ensure that every set in the output of SetSystemconsists of exactly two indices {i, j} for
i, j ∈ [k]

24

exactly as Obf(BP), except that it works with a fixed public parameter pp supplied as input, and in
the Output step, GObf outputs

pp, {inp(i), (αi,0 · B̃i,0, Si,0), (αi,1 · B̃i,1, Si,1)}i∈[m], (t, St)

that is, the output before it is encoded under the multilinear encoding scheme.

4.5 Putting it all together: Obfuscating NC1 circuits

We now define our indistinguishability obfuscator iO for C1, as follows (by Lemma 5, this implies iO
for NC1):

Description of iO(1n, C) :

1. iO verifies that input C ∈ C1n (that is, C is a circuit with size at most n and depth at most log(n)),
and aborts otherwise.

2. iO uses Barrington’s Theorem to convert C into an oblivious width 5 permutation branching
program. It pads this branching program as follows: First, it increases the number of input
bits to the branching program to n. Next, it adds dummy levels to the end of the branching
program until its length is the same as the longest branching program for a circuit in C1

n (which is
O(4log(n)) = O(n2)). Then, for every level in the branching program, it replaces it with n dummy
levels that read every bit of the input in sequential order, inserting the original level into the
corresponding position in this sequence.

This procedure ensures that every padded branching program for a circuit in Ccn has the same
length, same number of input bits, and the same input labelling function inp as the padded
branching program for any other circuit in C1n. Let the padded branching program be BP =
{inp(i), Bi,0, Bi,1}mi=1.

3. iO generates a dummy width-5 branching program I = {inp(i), I5×5, I5×5}mi=1 of length m, where
each permutation matrix at each level is the identity matrix. iO then computes B̂P = Merge(BP, I, 0).

4. iO outputs Obf(B̂P), which yields the public parameter pp for the graded encoding scheme, to-
gether with the encoded branching program {inp(i),Enc(αi,0·B̃i,0, Si,0),Enc(αi,1·B̃i,1, Si,1)}i∈[m+2],Enc(t, St).

Correctness of iO: In order to compute the output of C(x) given its obfuscation iO(1n, C), we perform
matrix multiplication on the encoded matrices using the functions Add and Mult of the graded encoding
scheme. That is, letting bi = x[inp(i)] for each i ∈ [m+ 2], we compute the encoding of

Out(x) = (
m+2∏
i=1

αi,bi · B̃i,bi) · t

and perform isZero on the encoding of Out(x)[1] (Note we can only evaluate this expression if it is ~S-
respecting, but we will show that it is momentarily). From the correctness of the underlying randomized
branching program, we have that C(x) = 0 ⇐⇒ Out(x)[1] = 0. Thus, iO is correct as long as the
above computation is a ~S-respecting circuit.

Note that when multiplying two matrices M1 and M2 encoded under S1 and S2 respectively, the
multiplication is ~S-respecting as long as S1 ∩ S2 = ∅. Thus it suffices to show that the sets encoding
the matrices being multiplied, namely:

S1,b1 , S2,b2 , . . . , Sm+2,bm+2 , St

25

are all disjoint, and that their union is [k].
Disjointness follows by observing that each of U1, U2, . . . , Un, Bt is disjoint, and further that for each

j ∈ [n], for any i, i′ such that inp(i) = inp(i′) = j, we have that bi = bi′ = x[inp(i)] and Si,bi and Si′,bi′
are both elements of the straddling set system Sinp(i), so Si,bi ∩ Si′,bi′ = ∅.

To show that the union of the sets is [k], we note that

(
m+2⋃
i=1

Si,bi) ∪ St = (
n⋃
j=1

⋃
i:inp(i)=j

Si,x[j]) ∪ St = (
n⋃
j=1

Uj) ∪ St = [k]

by construction. Thus we have that iO is correct.

5 Proof of Security

Theorem 15. Assume the existence of an entropic semantically secure multilinear encoding scheme.
Then there exists indistinguishability obfuscators for NC1.

Proof. We show that the obfuscator defined in Section 4 is an indistinguishability obfuscator for C1.
By Lemma 5, this suffices to show the existence of indistinguishability obfuscators for NC1. Assume
for contradiction that there exists a nuPPT distinguisher D and polynomial p such that for infinitely
many n, there exist functionally equivalent circuits C0

n, C
1
n ∈ C1n such that D distinguishes iO(1n, C0

n)
and iO(1n, C1

n) with advantage 1/p(n). For any n ∈ N, let BP0 and BP1 be the branching programs
of length m = poly(n) obtained by applying Theorem 6 to the circuits C0

n and C1
n respectively, and

padding them so they have the same length and same input labelling function.
We organize the proof in three parts. In the first part we show that if D distinguishes between

obfuscations of C0
n and C1

n then there exists “widened” branching programs BP and BP ′ that differ
in only few matrices and evaluate the same function such that D distinguishes between Obf(BP) and
Obf(BP ′). Furthermore, the first column of the output matrix is the same for BP and BP ′, and
depends only on the output of the program. More concretely, there exist vectors v0 and v1 such that
for all inputs x the first column of the output matrix for both BP and BP ′ is always vBP (x).

In the second part, we apply the semantic security of the graded encoding scheme used. In particular,
we construct a message samplerM which samples (~m0, ~m1, ~z) such that Obf(BP) is simply the encoding
of (~m0, ~z) and Obf(BP ′) is the encoding of (~m1, ~z). In the third part, we show that if BP and BP ′

agree on all inputs, then the message sampler M is valid in the sense of Definition 9 and therefore D
breaks the semantic security of the encoding scheme used, hence a contradiction.

5.1 Setting up BP and BP ′ via a Hybrid Argument

Let Hybi be a procedure that takes an input two length m branching programs P0 and P1 (with the
same labeling function) and outputs a “hybrid” length m branching program whose first i levels are
identical to the first i levels of P0 and all the other levels are identical to those of P1. Formally, let
P0 = {inp(j), Bj,0, Bj,1}j∈[m] and P1 = {inp(j), B′j,0, B

′
j,1}j∈[m].

Hybi(P0, P1) = {inp(j), Bj,0, Bj,1}ij=1, {inp(j), B′j,0, B
′
j,1}mj=i+1

For every n ∈ N we define hybrid distributions in the following way.

• We start with H0 which is the obfuscation of the circuit C0
n.

H0 = iO(c, 1n, C0
n) = Obf(Merge(BP0, I, 0))

26

• For i = 1, 2 . . .m, let
Hi = Obf(Merge(BP0,Hybi(BP1, I), 0))

We change, one level at a time, the second branching program Merge takes as input from I to
BP1.

• We have that Hm = Obf(Merge(BP0, BP1, 0)). We change the “switch” input to Merge so that
the second branching program BP1 is active.

Hm+1 = Obf(Merge(BP0, BP1, 1))

• For i = 1, 2 . . .m, let

Hm+i+1 = Obf(Merge(Hybi(BP1, BP0), BP1, 1))

We change the first program Merge takes as input from BP0 to BP1, one level at a time as before.

• We have that H2m+1 = Obf(Merge(BP1, BP1, 1)). We switch back so that the first program is
active (which in this case is the same as the second program BP1)

H2m+2 = Obf(Merge(BP1, BP1, 0))

• For i = 1, 2 . . .m, let
H2m+i+2 = Obf(Merge(BP1,Hybi(I,BP1), 0))

We change the second program Merge takes as input from BP1 to I, one level at a time as before.
Finally we get

H3m+2 = iO(c, 1n, C1
n) = Obf(Merge(BP1, I, 0))

which is the obfuscation of the circuit C1
n.

Recall that by assumptionD distinguishes between {iO(c, 1n, C0
n)}n∈N and {iO(c, 1n, C1

n)}n∈N. That
is, there is a polynomial p such that for infinitely many n

|Pr[D(1n, H0) = 1]− Pr[D(1n, H3m+2)]| > 1/p(n)

By the above hybrid argument, D must distinguish between a pair of consecutive hybrids. That is,
there exists some i ∈ {0, 1, . . . 3m+ 1} such that

|Pr[D(1n, Hi) = 1]− Pr[D(1n, Hi+1)]| > 1/4mp(n)

We now show that Hi and Hi+1 can be expressed as the Obf(BP) and Obf(BP ′) respectively where
BP and BP ′ are (widened) branching programs that differ in only two levels and agree on all inputs.
Furthermore, both BP and BP ′ have the property that for all inputs x the first column of the output
matrix col1(Pout(x)) is the same for BP and BP ′, and depends only on the output of these programs
on x. More formally,

Claim 16. There exist branching programs BP and BP ′ of length m′ = m+ 2 and width 10 such that

• Hi = Obf(BP) and Hi+1 = Obf(BP ′).

• BP and BP ′ differ in at most 2 levels.

• For all x, BP (x) = BP ′(x).

27

• Let Pout
BP (·) and Pout

BP ′(·) be the functions computing the output matrices for BP and BP ′

respectively. There exist length 10 vectors v0 and v1 such that for every x, col1(Pout
BP (x)) =

col1(Pout
BP ′(x)) = vBP (x)

Proof. Let v1 = extend(col1(Paccept)) and v0 = extend(col1(Preject)) where Paccept and Preject are the
accepting and rejecting matrices from Theorem 6 for branching programs of input lengths n, and extend
extends a length w vector by appending w zeroes. We consider three cases: when i is equal to m, 2m+1
and otherwise.

Case 1: i = m: By definition ofHi andHi+1, the branching programsBP andBP ′ areMerge(BP0, BP1, 0)
and Merge(BP0, BP1, 1) respectively. By Claim 10, BP and BP ′ differ in the “switch” matrices, which
make up the first and last level. Furthermore, BP and BP ′ compute BP0 and BP1 respectively which are
equivalent programs by assumption. It remains to show the fourth condition. By Claim 10, the first col-
umn of the output matrix for a widened branching program only depends on the first column of the out-
put matrix of the active program. Hence, for every input x, col1(Pout

BP (x)) = extend(col1(Pout
BP0(x))).

By Theorem 6, Pout
BP0(x) is either Paccept or Preject depending on the output BP0(x). Therefore, for

all inputs x such that BP (x) = 0,

col1(Pout
BP (x)) = extend(col1(Preject)) = v0

Similarly, for all inputs x such that BP (x) = 1,

col1(Pout
BP (x)) = extend(col1(Paccept)) = v1

The same argument holds for BP ′ too, in which case BP1 is active and has the same accepting and
rejecting permutations Paccept and Preject by Theorem 6. Therefore, for all inputs x,

col1(Pout
BP ′(x)) = vBP1(x)

Since BP0(x) = BP1(x) = BP (x) for all x, the claim follows.

Case 2: i = 2m+1: By definition ofHi andHi+1, the branching programs BP and BP ′ areMerge(BP1,
BP1, 0) and Merge(BP1, BP1, 1) respectively. As before, these programs differ in the first and level only.
Furthermore, both BP and BP ′ compute the same function, as the active program is the same (BP1).
Also, directly from Claim 10 and Theorem 6 we have that for all inputs x,

col1(Pout
BP (x)) = col1(Pout

BP ′(x)) = extend(col1(Pout
BP1(x))) = vBP1(x) = vBP (x)

Case 3: i 6= m and i 6= 2m+ 1: First, consider the subcase when i < m or i > 2m+ 1. The programs
BP and BP ′ are of the form Merge(BP0, Pi) and Merge(BP0, Pi+1) respectively where Pi and Pi+1 are
branching programs that differ only in the i + 1th level. By Claim 10, BP and BP ′ differ only in the
i + 1th level too. Furthermore, in both BP and BP ′, the active program is BP0. Hence BP and BP ′

compute the same function and similarly as the previous case, we have that for all inputs x,

col1(Pout
BP (x)) = col1(Pout

BP ′(x)) = extend(col1(Pout
BP0(x))) = vBP0(x) = vBP (x)

The case when m < i < 2m+ 1 follows similarly. This concludes the proof of the claim.

This concludes the first part of the proof. At this point we have that there is a polynomial p such
that for infinitely many n there exist branching programs BP and BP ′ with the properties described
in Claim 16 such that

|Pr[D(1n,Obf(BP)) = 1]− Pr[D(1n,Obf(BP ′))]| > 1/4mp(n)

In the next part we show that the distinguisher D can be used to break the semantic security game of
the graded encoding scheme used by Obf.

28

5.2 Applying Semantic Security

Fix n ∈ N, and let BP = {inp(i), Bi,0, Bi,1}i∈[m′] and BP ′ = {inp(i), B′i,0, B
′
i,1}i∈[m′]. Let l1, l2 ∈ [m] be

the levels in which BP and BP ′ differ. All other matrices of BP and BP ′ are the same. That is, for
every i /∈ {l1, l2}, b ∈ {0, 1} we have that Bi,b = B′i,b.

Let (k, {Si,b}i∈[m],b∈{0,1}, St) = SetSystem(m′, n′, inp) where n′ is the input length of the branching
programs BP,BP ′, and let

~Sn = {Sl1,b, Sl2,b}b∈{0,1}
~Tn = ({Si,b}i∈[m′]/{l1,l2},b∈{0,1}, St)

We now define a message sampler M as follows. When run with security parameter 1n, M gets BP and
BP ′ as non-uniform advice. On input 1n, public parameters pp that describe a (k,Zp)-graded encoding
scheme, M samples m′ random invertible 10× 10 matrices over Zp, {Ri}i∈[m′] and 2m′ random scalars
from Zp, {αi,b}i∈[m′],b∈{0,1}. M then uses these matrices and scalars to randomize BP and BP ′ as
described by Rand(·, p) to obtain {αi,b · B̃i,b}i∈[m′],b∈{0,1}, {αi,b · B̃′i,b}i∈[m′],b∈{0,1} and t. M outputs

~m0 = ({αl1,b · B̃l1,b}b∈{0,1}, {αl2,b · B̃l2,b}b∈{0,1})

~m1 = ({αl1,b · B̃′l1,b}b∈{0,1}, {αl2,b · B̃′l2,b}b∈{0,1})

~z = ({αi,b · B̃i,b}i∈[m′]/{l1,l2},b∈{0,1}, t)

We observe that D(1n,Obf(BP)) (resp. D(1n,Obf(BP ′))) is simply the output of D when playing
the semantic security game in Definition 10 parameterized by the bit b = 0 (resp. b = 1) with the
message sampler M and sets (~Sn, ~Tn) (as defined above). To see this, observe that the distribution of
(~m0, ~z) is identical to Rand(BP, p) and the distribution of (~m1, ~z) is identical to Rand(BP ′, p). When
these elements are encoded under sets ~Sn, ~Tn then we obtain the distributions Obf(BP) and Obf(BP ′)
respectively.

Recall that for infinitely many n,

|Pr[D(1n,Obf(BP)) = 1]− Pr[D(1n,Obf(BP ′))]| > 1/4mp(n)

Since the graded encoding scheme is semantically secure, and |~Sn| ∈ O(1) and |~Tn| ∈ O(k), it must
be that M is not a {~Sn, ~Tn}n∈N-respecting message sampler. In the remainder of the proof we show
that if BP and BP ′ agree on all inputs then M is a {~Sn, ~Tn}n∈N-respecting message sampler, hence
implying a contradiction. Similar statements were shown in [BGK+13] and [BR14]. In particular, GObf
is a simplified version of the obfuscator of [BGK+13], which [BGK+13] shows is VBB secure against
algebraic adversaries. We will follow the structure of the proof in [BGK+13], but cannot use it in a
black-box way due to the differences in the construction and the fact that their proof only works for
branching programs that have unique accepting and rejecting output matrices. The branching programs
we consider may not have this property.

5.3 Showing that M is a Valid Message Sampler

To prove that M is a {~Sn, ~Tn}n∈N-respecting message sampler we need to show that there exists a
polynomial Q such that for every n ∈ N, every (sp, pp) in the support of InstGen(1n, 1k), and every
(~Sn, ~Tn)-respecting arithmetic circuit C, there exists a constant c ∈ {0, 1} such that for any b ∈ {0, 1},

Pr[(~m0, ~m1, ~z)←M(1n, pp) : isZero(C(~mb, ~z)) = c] ≥ 1−Q(n, k)/|R|.

where R is the ring associated with pp. We show that the result of applying any (~Sn, ~Tn)-respecting
arithmetic circuit C on (~m0, ~z) (resp. (~m1, ~z)), can be simulated with overwhelming probability given

29

just BP . This implies (by a union bound over b ∈ {0, 1}) that for every such C there exists some bit
c such that with overwhelming probability C(~mb, ~z) = c for b ∈ {0, 1}, and thus M is {~Sn, ~Tn}n∈N-
respecting. It suffices to show the following lemma and to note that BP and BP ′ are functionally
equivalent.

Lemma 17. There exists a Turing machine CSim such that for every m,n,w ∈ N, v0, v1 ∈ {0, 1}w,
labeling function inp : [m] → [n], prime number p, and ~S-respecting arithmetic circuit C where ~S =
SetSystem(m,n, inp), the following holds. For every branching program BP of length m, width w and
labeling function inp for which on every input x, col1(Pout(x)) = vBP (x) it holds that

Pr[isZero(C(Rand(BP, p))) 6= CSimBP (1m, p, C, v0, v1)] ≤ 32wm/p

The proof of the lemma follows the structure of the VBB simulation in [BGK+13], appropriately
adapted to deal with the fact that our branching programs do not have a unique output by relying on
Theorem 11.

Proof. Roughly speaking the lemma follows from the the property that ~S-respecting arithmetic circuits,
due to the straddling set systems in ~S, can only evaluate expressions that are “consistent” with some
inputs. In particular, following [BGK+13], the polynomial evaluated by C can be expressed as the sum
of single-input terms where each single-input term is a function of elements that are consistent with
some single input to the branching program. Next, we rely on Theorem 11 to show that the sum of
these single-input terms will depend only on the value of the branching program on these inputs.

The following proposition states that the function a ~S-respecting arithmetic circuit computes can
be expressed as the sum of several single-input terms. This decomposition is very similar to the one
shown in [BGK+13].18

Proposition 1. Fixm,n,w ∈ N and inp : [m]→ [n]. Let ~S = SetSystem(m,n, inp) = ({Si,b}i∈[m],b∈{0,1},

St), and let C be any ~S-respecting arithmetic circuit. There exists a set X ⊆ {0, 1}n of inputs such that

(i)
C({αi,bB̃i,b}i∈[m],b∈{0,1}, t) ≡

∑
x∈X

Cx({αi,bB̃i,b}i∈[m],b∈{0,1}, t)

where each Cx is a ~S-respecting arithmetic circuit, whose input wires are labelled only with sets
respecting a single input x ∈ {0, 1}n, that is, only with sets ∈ {Si,x[inp(i)]}i∈[m] ∪ {St}.

(ii) For each Cx above, for every branching program BP of width w and length m on n input bits, with
input labelling function inp, every prime p, and every ({αi,b · B̃i,b}i∈m,b∈{0,1}, t)← Rand(BP, p)

Cx({αi,bB̃i,b}i∈[m],b∈{0,1}, t) = αx · px({B̃i,x[inp(i)]}i∈[m], t)

where px is some polynomial, and αx = (
∏
i∈[m] αi,x[inp(i)]). Furthermore, when px is viewed as a

sum of monomials, each monomial contains exactly one entry from each B̃i,x[inp(i)], and one entry
from t.

The proof of Proposition 1 uses the following lemma:

Lemma 18. Fix m,n,w ∈ N and inp : [m] → [n]. Let ~S = SetSystem(m,n, inp) = ({Si,b}i∈[m],b∈{0,1},

St), and let C be any weakly ~S-respecting arithmetic circuit whose output wire is tagged with T ⊆ [k].
Then there exists a set U ⊆ {0, 1, ∗}m such that for every branching program BP of width w and length
m on n input bits, with input tagging function inp, every prime p, and every ({αi,b ·B̃i,b}i∈m,b∈{0,1}, t)←
Rand(BP, p),

18The key difference is that [BGK+13] proves such a decomposition for “dual-input” branching program, and use the
“dual-input” property to show that there are only polynomially many terms in the decomposition.

30

(i)
C({αi,bB̃i,b}i∈[m],b∈{0,1}, t) ≡

∑
u∈U

Cu({αi,bB̃i,b}i∈[m],b∈{0,1}, t)

where each Cu is a weakly ~S-respecting arithmetic circuit, whose input wires are tagged only with
sets ∈ {Si,u[i]}i∈[m]:u[i] 6=∗ ∪ {St}, and whose output wire is tagged with T .

(ii) Each Cu above is the sum of several “monomial” circuits, where each monomial circuit performs
only multiplications of elements in ({αi,b ·B̃i,b}i∈m,b∈{0,1}, t), is weakly ~S-respecting, and has output
wire tagged with T .

(iii) For each Cu above,

Cu({αi,bB̃i,b}i∈[m],b∈{0,1}, t) = αu · pu({B̃i,u[i]}i∈[m]:u[i] 6=∗, t)

where pu is some polynomial, and αu = (
∏
i∈[m]:u[i]6=∗ αi,u[i]). Furthermore, when pu is viewed as a

sum of monomials, each monomial contains exactly one entry from each B̃i,u[i] such that u[i] 6= ∗,
and possibly one entry from t. Further, pu can be computed by a weakly ~S-respecting circuit whose
output wire is tagged with T .

The lemma can be proved using a simple induction. We provide a complete proof of the lemma in
Appendix B. Given this lemma, the proof of Proposition 1 is as follows:

Proof. Part (i) We consider the special case of Lemma 18 part (i), in which C is ~S-respecting (as
opposed to only weakly ~S-respecting). In this case, we have that each Cu in the decomposition of C is
also ~S-respecting, and in particular, each Cu for u ∈ U has its output wire tagged with the universe set
[k].

We first observe that for any Cu in the decomposition of C, u cannot contain ∗. This is because the
output of Cu is tagged with [k], and thus must have at least one input wire tagged with either of Si,0
or Si,1 for each i, or else the straddling set Sinp(i) will be incomplete, and thus the output wire cannot
be tagged with [k].

Further, we observe that for every u ∈ U , for every j ∈ [n], there must be a bit bj ∈ {0, 1} such that
for every i ∈ [m] such that inp(i) = j, u[i] = bj . This can be seen by considering any monomial circuit
in Cu individually. Recall from Lemma 18 part (ii) that Cu is formed by summing some number of
monomials circuits, each of which is ~S-respecting and has output wire tagged with [k]. This means that
Sj ⊆ [k] is covered by the elements of the monomial. However, since Sj is constructed as a straddling set,
the only way to cover Sj in a monomial circuit that only contains multiplication gates, is by using either
all sets from {Si,0 : inp(i) = j}i∈m or all sets from {Si,1 : inp(i) = j}i∈m. This means, correspondingly,
that u must be such that there is a bit bj ∈ {0, 1}, for every i ∈ [m] such that inp(i) = j, u[i] = b. Define
x ∈ {0, 1}n so that x[j] = bj for all j ∈ [n]. In this way, we can define a one-to-one correspondence from
each u ∈ U to corresponding x ∈ {0, 1}n, and we simply relabel each Cu to the corresponding Cx to get
the desired decomposition of C. We observe that the additional conditions on each Cx can be achieved
from the corresponding conditions on Cu as guaranteed by Lemma 18.

Part (ii) Part (ii) follows directly from Part (i) of this proposition, together with Lemma 18 part (iii),
and the observation that each Cu in Lemma 18 is relabelled to Cx for some x ∈ {0, 1}n in Part (i) of
this proposition.

Now we are ready to describe the simulator CSim. CSim gets as input 1m, prime p, a ~S-respecting
circuit C, vectors v0, v1 and has oracle access to a length m branching program BP . Let X be the set
of inputs and {px}x∈X be the single-input polynomials corresponding to the decomposition of C. For

31

every x ∈ X, CSim queries BP on x, samples dx ← KSim(1m, p, vBP (x)) and checks whether px(dx) = 0.
CSim outputs 1 if and only if for every input x ∈ X, px(dx) = 0.

Now we prove correctness of our simulation. First, we prove some claims that will be useful. In each
of these claims, let projx be defined with respect to the labeling function inp of the branching program
BP . The following claim states that if C(Rand(BP, p)) is always zero, then every single-input term is
always zero.

Claim 19. If Pr[C(Rand(BP, p) = 0] = 1 then for every input x ∈ X,

Pr[px(projx(RandB(BP, p))) = 0] = 1

Proof. Consider a fixed d = ({B̃i,b}i∈[m],b∈{0,1}, t) in the support of RandB(BP, p) and let Cd({αi,b}i∈[m],b∈{0,1}) =

C({αi,b · B̃i,b}i∈[m],b∈{0,1}, t). By Proposition 1, we know that

Cd({αi,b}) =
∑
x∈X

(
∏
i∈[m]

αi,x[inp(i)])px(projx(d))

and Cd is a degree m+ 2 polynomial. By assumption, C(Rand(BP, p)) is always zero (over the support
of Rand(BP, p)); hence, Cd({αi,b}) = 0 for all non-zero {αi,b}. By the Schwartz-Zippel lemma, this can
happen only if Cd is the zero polynomial. By the structure of Cd, this implies that for every x ∈ X,
px(projx(d)) = 0. This argument works for every fixed value of d, hence we have that for every x ∈ X,
Pr[px(projx(RandB(BP, p))) = 0] = 1.

The next claim states that if C(Rand(BP, p)) is not always zero, then it is zero with small probability.
Furthermore, there exists a single-input term that is zero with small probability.

Claim 20. For any ~S-respecting circuit C, if Pr[C(Rand(BP, p)) = 0] < 1 then the following holds.

1. Pr[C(Rand(BP, p)) = 0] ≤ 16wm/p

2. There exists x ∈ X such that Pr[px(projx(RandB(BP, p))) = 0] ≤ 16wm/p, where X is obtained
from the decomposition of C by Proposition 1.

Proof. We start by showing part 1.

Part 1: If Rand(BP, p) = Randα(RandB(BP, p)) can be expressed as a low-degree (≤ 2w) polynomial
on uniformly random values in Zp—namely, the α’s and the randomization matrices Ri’s—then by the
Schwartz-Zippel lemma the first part of the claim directly follows. However, there are two barriers to
applying this argument:

• RandB does not sample uniformly random matrices {Ri}i∈[m]; rather, it chooses uniformly random
invertible matrices Ri. Similarly, Randα does not sample uniformly random {αi,b}i∈[m],b∈{0,1};
rather, it chooses uniformly random non-zero αi,b.

• RandB also needs to compute inverses R−1i to Ri for every i ∈ [m] (which may no longer be
expressed as low degree polynomials in the matrices {Ri}i∈[m]).

To handle the second issue, consider the distribution RandBadj(BP, p) that is defined exactly as RandB(BP, p)

except that for every i ∈ [m] it uses adj(Ri) = R−1i det(Ri) instead of R−1i . Note that every entry of the
adjoint of a w×w matrix M is some cofactor of M (obtained by the determinant of the w− 1×w− 1
matrix obtained by deleting some row and column of A). Hence every entry of adj(Ri) can be ex-
pressed as a degree w polynomial in Ri. Let Randadj(BP, p) = Randα(RandBadj(BP, p)). It follows that
Randadj(BP, p) is computed by degree (at most) 2w polynomial in the matrices {Ri}i∈[m] and scalars
{αi,b}i∈[m],b∈{0,1}.

32

Furthermore, we show that Pr[C(Randadj(BP, p)) = 0] = Pr[C(Rand(BP, p)) = 0]. Recall that by
Proposition 1,

C ≡
∑
x∈X

Cx

and for each Cx above and every ({αi,b · B̃i,b}i∈[m],b∈{0,1}, t)← Rand(BP, p) ,

Cx({αi,b · B̃i,b}i∈[m],b∈{0,1}, t) = αx · px({B̃i,x[inp(i)]}i∈[m], t)

where αx = (
∏
i∈[m] αi,x[inp(i)]) and px is a polynomial such that, when viewed as a sum of monomials,

each monomial contains exactly one entry from each B̃i,x[inp(i)], and one entry from t. Recall that for
every i ∈ [m],

B̃i,x[inp(i)] = Ri−1Bi,x[inp(i)]R
−1
i

For every i ∈ [m], replacing R−1i with adj(Ri) has the effect of multiplying each monomial in px with
the scalar det(Ri). Hence

Cx(Randadj(BP, p)) = (
∏
i∈[m]

det(Ri)) · Cx(Rand(BP, p))

Since C is the sum of such Cx terms, it holds that C(Randadj(BP, p)) = (
∏
i∈[m] det(Ri))C(Rand(BP, p)).

For every i ∈ [m], by invertibility, det(Ri) 6= 0 and hence

Pr[C(Randadj(BP, p)) = 0] = Pr[C(Rand(BP, p)) = 0]

So far, we have that Randadj(BP, p) is computed by a degree 2w polynomial in the matrices {Ri}i∈[m]

and scalars {αi,b}i∈[m],b∈{0,1}. However the first issue remains: each Ri is uniformly random invertible
and each αi,b is uniformly random non-zero, whereas we need them to be uniformly random. Con-
sider the distribution Randadj,U (BP, p) that is obtained by the computing the same polynomial on
uniformly random matrices {Ri}i∈[m] and scalars {αi,b}i∈[m],b∈{0,1} over Zp. In Claim 29, we show
that the statistical distance between Randadj(BP, p) and Randadj,U (BP, p) is at most 8wm/p. Further-
more, the support of Randadj,U (BP, p) contains the support of Randadj(BP, p). This implies that if
Pr[C(Randadj(BP, p)) = 0] < 1 then Pr[C(Randadj,U (BP, p)) = 0] < 1.

We now turn to proving the statement of the claim. Using facts shown above, we have that

Pr[C(Rand(BP, p)) = 0] < 1 =⇒ Pr[C(Randadj(BP, p)) = 0] < 1 =⇒ Pr[C(Randadj,U (BP, p)) = 0] < 1

By Proposition 1, C evaluates a m+1 degree polynomial, and Randadj,U (BP, p) is computed by a degree
2w polynomial in uniformly random values in Zp. By the Schwartz-Zippel lemma,

Pr[C(Randadj,U (BP, p)) = 0] < 1 =⇒ Pr[C(Randadj,U (BP, p) = 0] ≤ 2w(m+ 1)/p ≤ 8wm/p

We have that the statistical distance between Randadj,U (BP, p) and Randadj(BP, p) is at most 8wm/p.
Therefore, Pr[C(Rand(BP, p)) = 0] = Pr[C(Randadj(BP, p)) = 0] ≤ 16wm/p thus proving the first
part of the claim. We proceed to show part 2.

Part 2: By Proposition 1, for every x ∈ X, there exists a ~S-respecting arithmetic circuit Cx such that
for every ({αi,b · B̃i,b}i∈[m],b∈{0,1}, t)← Rand(BP, p),

Cx({αi,b · B̃i,b}i∈[m],b∈{0,1}, t) = αx · px({B̃i,x[inp(i)]}i∈[m], t)

where αx = (
∏
i∈[m] αi,x[inp(i)]) and C =

∑
x∈X Cx. In particular, px({B̃i,x[inp(i)]}i∈[m], t) = 0 iff Cx({αi,b ·

B̃i,b}i∈[m],b∈{0,1}, t) = 0 (since αi,b is non-zero).

33

Thus, we have that

Pr[C(Rand(BP, p))) = 0] = Pr[Cx(Randα(RandB(BP, p))) = 0] = Pr[px(projx(RandB(BP, p))) = 0]

There must exist an input x ∈ X such that Pr[Cx(Rand(BP, p))) = 0] < 1 or else Pr[C(Rand(BP, p))) =
0] = 1. By the first part of the claim, it follows that

Pr[C(Rand(BP, p))) = 0] ≤ 16wm/p,

which concludes the proof.

Now we analyze the correctness of the simulator CSim. We consider the following two cases: when
C(Rand(BP, p)) is always zero, and otherwise.

Case 1: Pr[C(Rand(BP, p)) = 0] = 1: In this case we will show that the simulation always succeeds.
If Pr[C(Rand(BP, p)) = 0] = 1 then by Claim 19, for every x ∈ X, Pr[px(projx(RandB(BP, p))) = 0] =
1. Recall that KSim(1m, p, vBP (x)) simulates projx(RandB(BP, p)) perfectly. Therefore, CSim always
outputs 1 and hence succeeds.

Case 2: Pr[C(Rand(BP, p)) = 0] < 1: In this case, by the first part of Claim 20 we have that

Pr[isZero(C(Rand(BP, p))) = 1] ≤ 16wm/p

By the perfect simulation of KSim, we have that

Pr[CSimBP = 1] = Pr[∀x (dx ← projx(RandB(BP, p)) : px(dx) = 0)]

By second part of Claim 20 there exists input xC such that Pr[pxC (projxC (RandB(BP, p))) = 0] ≤
16wm/p. Therefore,

Pr[CSimBP = 1] ≤ Pr[pxC (projxC (RandB(BP, p))) = 0] ≤ 16wm/p

Therefore, by a union bound we have that

Pr[isZero(C(D)) = CSimBP = 0] > 1− 32wm/p

This concludes the proof of the lemma.

5.4 Restricting to Entropic Message Samplers

We here show that the message samper M satisfies the required high-entropy condition (required by
the notion of entropic semantical security); that is, M is entropically valid.

Recall that the message sampler M in the proof of Theorem 15 gets as input the description of a
ring R = Zp and samples (~m0, ~m1, ~z) such that (~m0, ~z) and (~m1, ~z) are the “randomizations" (as defined
in the description of Rand) of fixed branching programs. We now show the following proposition, which
combined with the fact that the length m of the branching programs is polynomial in log |R| (recall that
R = Zp where p is a prime exponential in the multilinearity parameter k which is < 3m), implies that
the output of a non-terminal set-respecting circuit on input (~mb, ~z) (for both b ∈ {0, 1}) has min-entropy
log |R| −O(log log |R|), as required.

34

Proposition 2. Let BP be a branching program of length m, width w, input length n and input labeling
function inp. Let p be a prime and ~S = SetSystem(m,n, inp). Let C be a non-terminal ~S-respecting
arithmetic circuit that computes a non-zero polynomial. Then we have that

H∞(C(Rand(BP, p))) ≥ log(
p

12wm
)

or equivalently, for any fixed output a ∈ Zp

Pr[C(Rand(BP, p)) = a] ≤ 12wm/p

Proof. Let T be the set that tags the output wire of C as per the construction given in Definition
8. Since C is non-terminal ~S-respecting, we have that T is a strict subset of [k] where (k, ~S) =
SetSystem(m,n, inp). By Lemma 18 part (iii), there exists a set U of labels u ∈ {0, 1, ∗} such that for
every ({αj,b · B̃j,b}j∈[m],b∈{0,1}, t)← Rand(BP, p) we have that

C({αj,b · B̃j,b}j∈[m],b∈{0,1}, t) =
∑
u∈U

αu · pu({B̃j,u[j]}j∈[m]:u[j]6=∗, t) (4)

where αu =
∏
j∈[m]:u[j] 6=∗ αj,u[j]. Furthermore, each pu is computed by a weakly ~S-respecting circuit

whose output wire is also tagged with T . Since C computes a non-zero polynomial, there must exist
v ∈ U such that pv is a non-zero polynomial. We now have the following claim.

Claim 21. Pr[pv({B̃j,v[j]}j∈[m]:v[j] 6=∗, t) = 0] ≤ 10wm/p.

Proof. To see this, we first observe that since T is a strict subset of [k] and pv is computed by a ~S-
respecting circuit whose output wire is tagged with T , either pv does not operate on some level of the
branching program or it does not operate on t; that is, either,

• there exists j ∈ [m] such that v[j] = ∗, or

• pv is not a function of t.

In the first case, by an argument similar to that in Claim 13, we can show that the distribution
({B̃j,v[j]}j∈[m]:v[j] 6=∗, t) is identical to the distribution ({Rj}j∈[m]:v[j] 6=∗, col1(Rm+1)) where {Rj}m+1

j=1 are
random invertible matrices over Zw×wp . By Claim 29, this distribution is statistically 8wm/p-close to
the distribution where each matrix entry is uniformly random in Zp. Furthermore, since pv is computed
by a ~S-respecting circuit, it is of degree at most m + 1 < 2wm. By the Schwartz Zippel lemma, the
evaluation of pv on such random inputs from Zp is zero with probability at most 2wm/p. All in all, we
have Pr[pv({B̃j,v[j]}j∈[m]:v[j] 6=∗, t) = 0] ≤ 10wm/p.

In the second case, pv acts on the {B̃j,v[j]}j∈[m]. Following Claim 13, this distribution is identi-
cal to that of m random invertible matrices over Zw×wp . Similarly to the first case, it follows that
Pr[pv({B̃j,v[j]}j∈[m]) = 0] ≤ 10wm/p.

Let E be the event that pv({B̃j,v[j]}j∈[m]:v[j]6=∗, t) 6= 0. For any fixed output a ∈ Zp we have that

Pr[C(Rand(BP, p)) = a] ≤ Pr[C(Rand(BP, p)) = a|E] + Pr[Ē] (5)

For a fixed {B̃j,b}j∈[m],b∈{0,1} let q(B̃,a) be a polynomial in variables {αj,b}j∈[m],b∈{0,1} such that

q(B̃,a)({αj,b}j∈[m],b∈{0,1}) = C({αj,b · B̃j,b}j∈[m],b∈{0,1})− a

When the event E occurs, we claim that the resulting polynomial q(B̃,a) is a non-zero polynomial
of degree at most m. This can be easily seen given the decomposition of C in (4). When q(B̃,a) is a

35

non-zero polynomial then by the Schwartz Zippel lemma, its evaluation on uniformly random non-zero
inputs {αj,b}j∈[m],b∈{0,1} is zero with probability at most m/p− 1 ≤ 2wm/p. Therefore, we have

Pr[C(Rand(BP, p)) = a|E] = Pr[qB̃({αj,b}) = 0|E] ≤ 2wm

p
(6)

Combining (6) and (5) and Claim 21, we have Pr[C(Rand(BP, p)) = a] ≤ 12wm/p.

5.5 Achieving Obfuscation for Arbitrary Programs

[GGH+13b] show that any indistinguishability obfuscation scheme for NC1 can be bootstrapped into
an indistinguishability obfuscation scheme for all poly-sized circuits using FHE. That is, they prove the
following theorem.

Theorem 22 ([GGH+13b]). Assume the existence of indistinguishability obfuscators iO for NC1 and a
leveled Fully Homomorphic Encryption scheme with decryption in NC1. Then there exists an indistin-
guishability obfuscator iO′ for P/poly.

Applying their construction to our indisinguishability obfuscator yields an indistinguishability ob-
fuscator for arbitrary polynomial size circuits:

Theorem 23. Assume the existence of a entropic semantically secure multilinear encoding scheme and
a leveled Fully Homomorphic Encryption scheme with decryption in NC1. Then there exists indistin-
guishability obfuscators for P/poly.

6 iO from Single-Distribution Semantical Security

The assumption that a scheme satisfies semantical security w.r.t. some class of message samplers may
perhaps be best viewed as a class of assumptions (or a “meta-assumption”, just like the “uber assumption”
of [BBG05]), or alternatively as an interactive assumption, where the attacker first selects the sets ~S, ~T
and the message sampler M , and then gets a challenge according to the message sampler.

This view point also clarifies that even for the above-mentioned restricted classes of message dis-
tributions, semantical security is not an efficiently falsifiable assumption [Nao03]: the problem is that
there may not exist an efficient way of checking whether a message sampler is valid (which requires
checking that all set-respecting circuits are constant with overwhelming probability).

We here show that a single, falsifiable, instance of this class of assumptions suffices for proving
security of indistindinguishability obfuscator, albeit at the cost of subexponential hardness.

6.1 Single-Distribution Semantical Security

Let us start by formalizing a “single-distribution” version of semantical security, where we restrict
semantical security to hold w.r.t. to a single efficiently samplable distribution over pairs of message
samplers M , and sets ~S, ~T . We call this distribution over message samplers and sets an instance
sampler. Analogously to the notion of a valid message sampler, we now define a notion of a valid
instance sampler as follows:

Definition 16. We say that a PPT Sam is a (c, q)-(entropically) valid instance sampler if

• There exist a polynomial k(·), such that for every n ∈ N, for every rn ∈ {0, 1}∞ , Sam(1n, rn)
outputs a tuple (~Sn, ~Tn,Mn), where ~Sn, ~Tn are sequences of sets over [k(n)] with |~Sn| = c(k(n))
and |~Tn| = q(k(n)).

36

• For every sequence of random tapes {rn}n∈N, {Mn}n∈N is (entropically) { ~Sn, ~Tn}n∈N-respecting,
where for every n ∈ N, (~Sn, ~Tn,Mn)← Sam(1n; rn).

Definition 17 (Single-distribution Semantic Security). Let E be a graded encoding scheme and Sam be
a (c, q)-valid instance sampler. We say that E is semantically secure w.r.t. Sam if for every nuPPT
adversary A, there exists a negligible function ε such that for every security parameter n ∈ N,

|Pr[Output’0(1
n) = 1]− Pr[Output’1(1

n) = 1]| ≤ ε(n)

where Output’b(1n) is A’s output in the following game:

• Let ~Sn, ~Tn,Mn ← Sam(1n).

• Let kn be such that ~Sn and ~Tn are sequences of sets over [kn]. Let (sp, pp)← InstGen(1n, 1kn).

• Let ~m0, ~m1, ~z ←Mn(1n, pp).

• Let ~ub ← {Enc(sp, ~m0[i], ~Sn[i])}c(n)i=1 , {Enc(sp, ~z[i], ~Tn[i])}q(n)i=1 .

• Finally, run A(1n, pp, (~Sn, ~Tn),Mn, ~ub).

Note that given an (O(1), O(k))-valid instance sampler Sam, the assumption that E is semantically-
secure w.r.t. Sam is a special case of the assumption that E is (constant-message) semantically secure; if
E is not semantically secure w.r.t. Sam, there exists ensembles {rn}n∈N, {~Sn, ~Tn}n∈N and {Mn}n∈N such
that ~Sn, ~Tn,Mn = Sam(1n; rn) (and thus {Mn}n∈N is a valid message sampler for {~Sn ~Tn}n∈N, yet the
nuPPT A(1n, ·, ~Sn, ~Tn,Mn, ·) breaks semantical security when considering {~Sn, ~Tn}n∈N and {Mn}n∈N.

Furthermore, that given an (O(1), O(k))-(entropically) valid instance sampler Sam, the assump-
tion that E is semantically-secure w.r.t. Sam is a non-interactive and efficiently falsifiable (decisional)
assumption—in essence, it is a specific instance of a DDH-type assumption over multilinear encodings.

6.2 Basing Security on Single-Distribution Semantical Security

We now show how to slightly modify the construction iO from Section 4 so that we can base it on
single-distribution semantical security assumption. This time, however, we require subexponentially-
hard semantical security (and as such the assumption is incomparable to the one needed for the scheme
from Section 4.)

Towards this, we introduce a new technical notion of “random-program iO” and first show that
our indistinguishability obfuscator in fact can be proven to satisfy (subexponentially-secure) random-
program iO for NC1 can be based on (subexponentially-hard) single-distribution semantical security.
We next show that subexponentially-secure random-program iO for NC1 implies (full-fledged) iO.

6.2.1 Random-Program iO

Let us first recall a different “merge” procedure from the work of Boyle, Chung and Pass [BCP14]:
Given two NC1 circuits C0, C1 taking (at most) n-bit inputs, and a string z, let M̂erge(C0, C1, z) be a
circuit that on input x runs C0(x) if x ≥ z and C1(x) otherwise. ([BCP14] use this type of merged
circuits to perform a binary search and prove that indistinguishability obfuscation implies differing-input
obfuscation for circuits that differ in only polynomially many inputs.) Also, M̂erge is defined such that
M̂erge(C0, C1, 0) = C0 and M̂erge(C0, C1, 2

n) = C1. It is easy to see that an NC1 circuit computing
M̂erge(C0, C1, z) can be efficiently found given NC1 circuits C0, C1 and z; (abusing notation) let M̂erge
denote an efficient procedure that outputs such a circuit.

We now define a (rather technical) weaker version of indistinguishability obfuscation—which we
refer to as random-program iO—and note that our earlier iO construction shows that there exists a

37

(O(1), O(k))-valid instance sampler Sam such that semantically-secure multilinear encodings w.r.t. Sam
imply random-program iO for C1 (recall that Cc = {Ccn}n∈N where Ccn is the set of circuits that have
depth at most c log n and size at most nc.)

Definition 18 (Random-Program Indistinguishability Obfuscator). A uniform PPT machine iO is
a random-program indistinguishability obfuscator for the class of circuits C1 if it satisfies the same
correctness condition as in Definition 1 but the security condition is replaced by:

• Security: For every nuPPT adversary A there exists a negligible function ε such that for all
n ∈ N,

|Pr[EXP0(1
n) = 1]− Pr[EXP1(1

n) = 1]| ≤ ε(n)

where, EXPb(1
n) denotes the output of the following experiment:

– Uniformly sample C0, C1 ∈ Ccn and z ∈ [0, . . . , 2n − 1];

– If C0(z) 6= C1(z), let C1 = C0;

– Let C ′b′ = M̂erge(C0, C1, z + b′) for b′ ∈ {0, 1}, C ′ ← iO(1n, C ′b);

– Finally output A(1n, C ′0, C
′
1, z, C

′).

We additionally say that iO is exponentially-secure if for every nuPPT A the above indistinguishability
gap is bounded by ε(n) = 2−O(n2).

Note that by definition, the circuits C ′0, C ′1 in the experiment above are always functionally equivalent
and thus “standard” iO implies random-program iO. Furthermore, note that assuming that a scheme
satisfies random-program iO is a non-interactive assumption that is efficiently falsifiable; this is what
enables us to base it on single-distribution semantical security. (We mention a very recent work by
Gentry, Lewko and Waters [GLW14] in the context of witness encryption [GGSW13] that similarly
defines a falsifiable primitive "positional witness encryption" that implies the full-fledged notion with
an exponential security loss.)

Theorem 24. There exists an (O(1), O(k))-entropically valid instance sampler Sam, such that if there
exists an encoding scheme that is (subexponentially-hard) semantically secure w.r.t. Sam, then there
exists a (exponentially-secure) random-program indistinguishability obfuscator for C1.

Proof. Consider the obfuscator iO presented in Section 4. We first show that it is a random-program
indistinguishability obfuscator based on single-distribution semantical security, and next show how to
acheive exponential security assuming subexponentiallyt-hard single-distribution semantical security
(and by increasing the security parameter.)

Note that to satisfy random-program iO, we only require indistinguishability of obfuscations of the
programs C ′0, C ′1 sampled in EXPb (which by definition are functionally equivalent). By the proof in
Section 5, in essence, it now follows that we only need to appeal to semantical security w.r.t to an
instance sampler Sam that samples programs C ′0, C ′1 as in EXPb, samples a random hybrid index j
and outputs sets ~S, ~T and the message sampler M used in the reduction to semantical security when
comparing hybrids j and j + 1. More formally, for any circuits C ′0 and C ′1 sampled in EXPb(1

n) from
C1n, let h(n) be the number of hybrids in the reduction to semantic security (Section 5) corresponding to
iO(1, 1n, C ′0) and iO(1, 1n, C ′1), and let constant c and polynomials k(·) and q(·) be such that ~S, ~T used
in these hybrids of have the sizes c and q(k(n)) respectively, and are sets over [k(n)]. Recall that each of
these hybrids correspond to one step in the transition from a branching program for C ′0 to a branching
program C ′1, where each step changes at most two levels of the branching program. (We assume M̂erge
is defined in a “size-preserving” manner, so that every pair of circuits C ′0 and C ′1 sampled in EXPb(1

n)

38

have the same length.) We now define Sam(1n; rn) as follows: Using random coins rn, Sam samples C ′0
and C ′1 as in EXPb(1

n) from C1n, and chooses a random hybrid index j ∈ [h(n) − 1]. Next, it outputs
the sets (~Sn, ~Tn) and message sampler Mn used in the reduction to semantic security when comparing
hybrids j and j + 1 for programs C ′0, C ′1.

Note that since each pair of the circuits C ′0, C ′1 sampled in EXP are functionally equivalent, by
the proof as in Section 5.3 (more specifically, Lemma 17), we have that the messages ~m0, ~m1, ~z output
by Mn are such that every (~S, ~T)-respecting circuit is constant on both ~m0, ~z and ~m1, ~z, except with
probability at most Q(n, k)/|R| for some fixed polynomial Q(·, ·). Thus, for every sequence of random
tapes {rn}n∈N, {Mn}n∈N is { ~Sn, ~Tn}n∈N-respecting, where for every n ∈ N, ~Sn, ~Tn,Mn = Sam(1n; rn).
We conclude that Sam is a (O(1), O(k))-valid instance sampler.

We now show that if E is semantically secure with respect to Sam, then iO is a random-program
indistinguishability obfuscator for C1. Consider some nuPPT attacker A for the random-program
indistinguishability obfuscation security game and define the hybrid experiments Hybjb(1

n) for every
j ∈ [h(n)− 1], as follows:

• Let (sp, pp)← InstGen(1n, 1k(n)).

• For rn ← {0, 1}∞, let (~Sn, ~Tn,Mn)← Samj(1n, rn), where Samj(1n; rn) is the same as Sam(1n; rn)
defined above, except it always chooses hybrid j (instead of picking the hybrid index at random).
Let C ′0 and C ′1 be the circuits underlying Mn, and z be the merge index underlying Mn. (We
assume Mn is defined so that this information is efficiently extractable.)

• Sample (~m0, ~m1, ~z)←Mn(1n, pp).

• Let ~ub ← {Enc(sp, ~m0[i], ~Sn[i])}ci=1, {Enc(sp, ~z[i], ~Tn[i])}q(k(n))i=1 .

• Finally, run A(1n, C′0, C′1, z, (pp, ~ub)).

Observe that Hyb00(1
n) = EXP0(1

n), Hyb
h(n)−1
1 (1n) = EXP1(1

n), and, for every i ∈ [h(n) − 2)],
Hybi1(1

n) = Hybi+1
0 (1n). Thus we have a sequence of h(n) hybrids from EXP0(1

n) to EXP1(1
n),

so if A distinguishes EXP0(1
n) and EXP1(1

n) with probability ε, there exists some j∗ such that it
distinguishes Hybj

∗

0 (1n) and Hybj
∗

1 (1n) with probability ε/h(n). We now define a nuPPT attacker A′

for semantical security w.r.t. Sam: For each n, A′ receives as non-uniform advice the index j∗ and
proceeds as follows: A′(1n, pp, , (~Sn, ~Tn),Mn, ~ub) examines Mn and extracts C ′0, C ′1, z and j from it, and
if j = j∗ executes A(1n, C ′0, C

′
1, z, (pp, ~ub), and otherwise simply outputs 1. Note that if j = j∗, A′

has distinguishing advantage ε/h(n) and otherwise it outputs 1; it follows that A′ total distinguishing
advantage is ε/h2(n). It follows that if E is entropic semantically secure w.r.t. Sam then iO is a
random-program iO for C1.

Finally, we observe that relying on subexponentially-hard entropic semantic security w.r.t. Sam
with constant α, iO can be modified into an exponentially-secure random-program indistinguishability
obfuscator. We change iO to simply run the underlying multilinear encoding scheme with security
parameter n′ = n2/α. It follows from the above proof that if the advantage of any adversary for the
semantic security of the multilinear encoding scheme is bounded by 2−O(n′α) then the advantage of any
adversary for the random-program obfuscation of iO is bounded by 2−O(n2).

From Random-Program iO to Full-Fledged iO. We now show that the existence of exponentially-
secure random-program iO for the class C1 implies the existence of (full-fledged) iO for NC1.

Theorem 25. If there exists PPT iO that is a exponentially-secure random-program indistinguishability
obfuscator for C1, then there exists a PPT iO′ that is a subexponentially-secure indistinguishability
obfuscator for NC1.

39

Proof. Assume the existence of a PPT iO that is a exponentially-secure random-program indistinguisha-
bility obfuscator for the class C1. We show that iO is a (subexponentially-secure) indistinguishability
obfuscator for C1; by Lemma 5, this suffices for concluding the existence of (subexponentially-secure)
indistinguishability obfuscators for NC1.

Assume there exists some nuPPT A such that for infinitely many n, there exists a pair of functionally
equivalent circuits C0

n, C1
n ∈ C1n such that A distinguishes iO(1n, C0

n) and iO(1n, C1
n) with probability,

say, 2−n). For any such n, consider a sequence of 2n + 1 hybrid distributions, where

• H0 = iO(1n, C0
n) = iO(1n, M̂erge(C0

n, C
1
n, 0))

• Hi = iO(1n, M̂erge(C0
n, C

1
n, i)) for i ∈ [1, . . . , 2n − 1]

• H2n = iO(1n, C1
n)) = iO(1n, M̂erge(C0

n, C
1
n, 2

n))

There must exist some z such that A distinguishesHz andHz+1 with advantage at least 2−n·2−n = 2−2n.
Thus, there exists some sequence of programs {C0

n, C
1
n}n∈N where C0

n, C
1
n ∈ Ccn and a sequence of of inputs

{zn}n∈N, zn ∈ [0, . . . , 2n− 1], such that for infinitely many n, A distinguishes iO(1n, M̂erge(C0
n, C

1
n, zn))

and iO(1n, M̂erge(C0
n, C

1
n, zn + 1)) with advantage 2−2n.

We now construct a nuPPT A′ attacking the random-program indistinguishability property of iO′:
A′ (non-uniformly) incorporates {C0

n, C
1
n}n∈N and {zn}n∈N and on input 1n, C0, C1, z, C checks whether

for b ∈ {0, 1}, Cb = Cbn and z = zn; if so, it outputs A(1n, C), and otherwise it outputs 1. Let us now
analyze the success probability of A′:

• Conditioned on the inputs being “correct” (i.e., for b ∈ {0, 1}, Cb = Cbn and z = zn), then A′

distinguishes EXP0 and EXP1 with advantage 2−2n.

• Conditioned on the inputs not being “correct”, A′’s output is 1.

Since the inputs are chosen at random, it follows that A′ has a total distinguishing advantage of at least
2−3n·2−2n = 2−5n, which contradicts the assumption that iO is an exponentially secure random-program
indistinguishability obfuscator.

Combing the above theorems, we get the following corollary.

Theorem 26. There exists an (O(1), O(k))-entropically valid instance sampler Sam, such that if there
exists an encoding scheme that is subexponentially-hard semantically secure w.r.t. Sam, then there exists
a subexponentially-secure indistinguishability obfuscator for NC1.

7 Alternative Security Notions for Multilinear Encodings

In this section we consider alternative ways of defining security of multilinear encodings. First, in section
7.1 we show that semantical security holds (in a very strong sense) w.r.t. generic attackers. Next, in
section 7.2 we consider various “uber assumptions” (similar to the uber-assumption of [BBG05] in the
context of bilinear maps)19 which capture the intuition that “if a DDH-type assumption holds w.r.t. to
generic attacks, then it also holds with respect to nuPPT attackers”. As we shall see the perhaps most
natural formalization of this notion is false (under standard cryptographic assumptions)—in particular,
we give a concrete example of a DDH-type assumption that holds in the generic model but is false w.r.t.
nuPPT attackers. We finally consider alternative ways for formalizing such an uber assumption.

19We thank Shai Halevi for pointing out the connection with [BBG05].

40

7.1 Semantical Security w.r.t. Algebraic Attackers

We begin by showing that semantic security holds in the generic model. We formally define an algebraic
adversary (or generic adversary) by considering adversaries that interact with the following oracle.

Definition 19 (OracleM). LetM be an oracle which operates as follows:

• M gets as initial input a ring R, k ∈ N and list L of m pairs {(αi, Si)}mi=1, α ∈ R and S ⊆ [k].

• Every oracle query to M is an arithmetic circuit C : Rm → R. When queried with C, M checks
whether C is a ~S-respecting arithmetic circuit where ~S = {Si}mi=1. If not,M outputs ⊥. Otherwise,
M computes C on {αi}mi=1 and outputs 1 if and only if the output of C is zero, and outputs 0
otherwise.

To formalize that (even subexponentially-hard) semantical security holds w.r.t. generic attackers, we
define a stronger notion of a set-respecting message samplers—which requires not only that the output
of every set-respecting circuit is constant with overwhelming probability, but also that this holds for the
output of any unbounded algebraic attacker that is restricted to polynomially-many zero-test queries—
and show that this notion in fact already is implied by the standard one. This shows that semantical
security holds in a very strong sense w.r.t. to generic attackers.

Definition 20 (Strongly Respecting Message Sampler). We say that a nuPPTM is a strongly {(~Sn, ~Tn)}n∈N-
respecting message sampler (or strongly valid w.r.t. {(~Sn, ~Tn)}n∈N) if it satisfies the same conditions
as in Definition 9 but where the second bullet is replaced by the following:

• For every polynomial p, there exists some polynomial Q such that for every n ∈ N, every (sp, pp)
in the support of InstGen(1n, 1kn), every (deterministic) oracle algorithm A that on input 1n makes
at most p(n) oracle queries, there exists some string α ∈ {0, 1}∗ such that

Pr[(~m0, ~m1, ~z)←M(1n, pp) : AM(pp, ~p0)(1n) = AM(pp, ~p1)(1n) = α] ≥ 1−Q(n, kn)/|R|.

where ~pb = {(mb[i], Si)}
c(n)
i=1 , {(z[i], Ti)}

q(n)
i=1 and c(n) and q(n) are the lengths of ~Sn and ~Tn respec-

tively.

Note that validity is the special case of strong validity where we restrict to the case when p(n) = 1.

Theorem 27. A message samplerM is strongly {(~Sn, ~Tn)}n∈N-respecting if and only it is {(~Sn, ~Tn)}n∈N-
respecting.

Proof. The "only if" direction is trivial (as mentioned, if p(n) = 1 strong validity collapses down to
validity). To prove the "if direction", consider some M , p(·), security parameter n ∈ N, (sp, pp) ∈
InstGen(1n, 1k(n)) where pp defines a ring R, and oracle machine A (the algebraic adversary) such that
A(1n) makes at most p(n) oracle queries. From semantic security of E , we have that there exists some
polynomial Q(·, ·) such that for every (~S, ~T)-respecting arithmetic circuit C, there exists a constant
cC ∈ {0, 1} such that for every b ∈ {0, 1} ,

Pr[(~m0, ~m1, ~z)←M(1n, pp) : isZero(C(~mb, ~z)) 6= c] ≤ Q(n, k(n))/|R|

For b ∈ {0, 1}, consider an execution of both AM(pp,~pb)(1n) where ~m0, ~m1, ~z are sampled by M . Note
that except with probability Q(n, k(n))/|R| it holds the first oracle query C1 by A is answered as cC1 .
Analogously, if the first i queries C1, . . . , Ci were answered as cC1 , . . . cCi , then except with probability
Q(n, k(n))/|R|, the (i+1)th query Ci+1 will be answered as cCi+1 . It follows that except with probability
p(n)Q(n, k(n))/|R| over ~m0, ~m1, ~z, the output of A is identical to the output of an execution of A where
every oracle query C is answered by the bit cC . Thus, for every algebraic attacker A there exists
some string α—namely the output of A where every oracle query C is answered by cC—such that for
b ∈ {0, 1}, except with probability p(n)Q(n, k(n))/|R|, the output of AM(pp,~pb)(1n) is α.

41

Note that for the above proof to go through it is cruicial that we restrict the algebraic attacker to
making polynomially-many (or subexponentially-many) oracle queries. This is not just an anomaly of
the proof: if we allow the attacker to make an unbounded number of queries, then strong validity would
no longer imply validity; we discuss this point further in Section 7.2.2.

7.2 Uber Assumptions for Multilinear Encodings

A natural question is whether there are reasonable qualitative strengthenings of semantical security that
can be used to achieve stronger notions of obfuscation, such as differing-input (a.k.a. extractability)
obfuscation. We here consider such a strengthening.

At first sight, it may seem like the most natural way of defining security of multilinear encodings
would be to require that for specific classes of problems, generic attacks cannot be beaten (this is the
approach alluded to in [BGK+13]). A natural “uber assumption” (similar to the uber-assumption of
[BBG05] in the context of bilinear maps) would be to require that “if a DDH-type assumption holds
w.r.t. to generic attacks, then it also holds with respect to nuPPT attackers”. Let us now formalize this
notion.

7.2.1 Extractable Uber Security

We start by defining a notion of a computationally valid message sampler: roughly speaking, we want to
capture the intuition that no generic attacker can distinguish ~m0, ~z from ~m1, ~z. To get a definition that
is a strong as possible, we require indistinguishability to hold in a pointwise sense: with overwhelming
probability, the output of AM(pp, ~p0)(1n, pp) is required to be the same as the output of AM(pp, ~p1)(1n, pp).

Definition 21 (Computationally Respecting Message Sampler). We say that a nuPPT M is a compu-
tationally {(~Sn, ~Tn)}n∈N-respecting message sampler (or computationally valid w.r.t. {(~Sn, ~Tn)}n∈N) if
it satisfies the same conditions as in Definition 9 but where the second bullet is replaced by the following:

• For every nuPPT oracle machine A, there exists some negligible function ε such that for every
n ∈ N,

Pr[(sp, pp)← InstGen(1n, 1kn), (~m0, ~m1, ~z)←M(1n, pp) : AM(pp, ~p0)(1n, pp) 6= AM(pp, ~p1)(1n, pp)] ≤ ε(n)

where ~pb = {(mb[i], Si)}
c(n)
i=1 , {(z[i], Ti)}

q(n)
i=1 and c(n) and q(n) are the lengths of ~Sn and ~Tn respec-

tively.

Note that computational validity differs from strong validity (which is equivalent to “ plain” validity)
in two main aspects: 1) we no longer require the output of the algebraic attacker to be constant
with overwhelming probability; rather, we only require that it cannot tell apart ~m0 and ~m1, and 2)
the algebraic attacker is restricted to be nuPPT (as opposed to being unbounded and only making
polynomially many queries).

We now define extractable “uber security” in exactly the same way as semantic security except that
we only require the message sampler to be computationally valid (and define entropic uber security
in the analogous way). In other words, extractable uber security implies that whenever ~m0, ~z and
~m1, ~z are pointwise computationally indistinguishable w.r.t. legal algebraic attackers, encodings of them
computationally indistinguishable. (We use the term “extractable” since this notion of security requires
that if encodings can be distinguished, then we can efficiently find (or “extract”) set-respecting circuits
that distinguish the elements.)

We now have the following theorem.

Theorem 28. Assume the existence of a leveled Fully Homomorphic Encryption scheme with decryption
in NC1. Then no graded encoding scheme satisfies entropic extractable uber security.

42

Proof. Consider any graded encoding scheme E . To show that E is not entropic extractable uber secure
we need to show that there exists an entropic computationally respecting message samplerM and PPT
adversary A such that A distinguishes between encodings of (~m0, ~z) and (~m1, ~z) where (~m0, ~m1, ~z)←M .

OurM will sample obfuscations of the following circuit family, that was shown to be unobfuscatable
in the virtual black box setting [BGI+01].Let (Gen,Enc,Dec,Eval) be a semantically secure fully homo-
morphic encryption scheme with ciphertext size N(·); for simplicity of exposition, let us first assume
that it is an “unleveled” FHE. For each security parameter n, consider the class of circuits

Cn = {Cn,a,b,v,pk,sk,â}a,b∈{0,1}n,v∈{0,1},(pk,sk)∈Gen(1n),â∈Enc(pk,a)

taking N(n)-bit inputs, where

Cn,a,b,v,pk,sk,â(x) =

(pk, â) if x = 0

b if x = a

v if Dec(sk, x) = b

0 otherwise

Then M(1n, pp) operates as follows, given public parameters pp to a graded encoding scheme it first
computes the ring R = Zp associated with pp.

• M samples (pk, sk) ← Gen(1n) and a, b ← {0, 1}n uniformly at random, and computes â =
Enc(pk, a).

• M generates branching programs BP 0 and BP 1 corresponding to Cn,a,b,0,pk,sk,â and Cn,a,b,1,pk,sk,â
respectively, and computes B̂P 0 = Merge(BP 0, BP 1, 0) and B̂P 1 = Merge(BP 0, BP 1, 1), each of
width 10 and length m. Recall, from Claim 10, that B̂P 0 and B̂P 1 differ only in levels 1 and m,
and that B̂P 0 and B̂P 1 are functionally equivalent to BP 0 and BP 1 respectively.

• M samples m random invertible matrices over Z10×10
p , {Ri}i∈[m] and 2m random scalars from

Zp, {αi,b}i∈[m],b∈{0,1}. M then uses these matrices and scalars to randomize B̂P 0 and B̂P 1 as
described by Rand(·, p) to obtain {αi,b · B̃i,b}i∈[m],b∈{0,1}, {αi,b · B̃′i,b}i∈[m],b∈{0,1} and t.

• M outputs
~m0 = ({α1,b · B̃1,b}b∈{0,1}, {αm,b · B̃m,b}b∈{0,1})

~m1 = ({α1,b · B̃′1,b}b∈{0,1}, {αm,b · B̃′m,b}b∈{0,1})

~z = ({αi,b · B̃i,b}i∈[m′]/{1,m},b∈{0,1}, t)

Note that (~m0, ~z) is identically distributed to Rand(B̂P 0, p) and similarly (~m1, ~z) is identically
distributed to Rand(B̂P 1, p) As a result, by Proposition 2, we have that M is an entropic message
sampler.

Let ({Si,b}i∈[m],b∈{0,1}, St) = SetSystem(m,N, inp), where inp is the labelling function for the branch-
ing programs B̂P 0 and B̂P 1, and let

~Sn = {S1,b, Sm,b}b∈{0,1}

~Tn = ({Si,b}i∈[m′]/{1,m},b∈{0,1}, St)

We show that M is a computationally {~Sn, ~Tn}n∈N-respecting message sampler, i.e. no nuPPT oracle
machine A′ can pointwise distinguish the oracles M(~m0, ~z) and M(~m1, ~z). We note that by Lemma

43

17 and a Union Bound over A′’s queries, the output of A′M(~m0,~z) (resp. A′M(~m1,~z)) can be simulated
with only oracle access to BP0 (resp. BP1), or equivalently, to Cn,a,b,0,pk,sk,â (resp. Cn,a,b,1,pk,sk,â)20. In
fact, with high probability over the randomness of M , A′ and the simulator, the simulator’s output is
identical to the output of A′. We observe that this simulation can be made efficient using the techniques
introduced in [BGK+13] (i.e. by modifying BP0 and BP1 to be dual-input branching programs and
correspondingly changing SetSystem); this requires encodings elements using sets of size 4 (as opposed
to 2 as in our original construction). Let this efficient simulator be Sim.

We would now like to argue that with high probability over the randomness ofM and Sim, SimBP 0 =
SimBP 1 . Recall that the circuits Cn,a,b,0,pk,sk,â (equivalent to BP0) and Cn,a,b,1,pk,sk,â (equivalent to
BP1) differ only on inputs x for which Dec(sk, x) = b (on these inputs Cn,a,b,0,pk,sk,â(x) = 0, whereas
Cn,a,b,1,pk,sk,â(x) = 1). Since b was randomly chosen from an exponentially large set of values, to find
such an input with noticeable probability, Sim must query one of the circuits on input a with noticeable
probability, otherwise its view is independent of b. However, if the original ciphertext â is an encryption
of 0 instead of a, then the view of Sim is independent of a, and thus Sim can only query a with negligible
probability. Thus by the semantic security of the FHE scheme, the probability that Sim can query a
when given BP0 or BP1 is negligible. This implies that the outputs of SimBP 0 and SimBP 1 differ with
only negligible probability.

We now have that :

• A′M(~m0,~z) = SimBP0 , except with negligible probability;

• SimBP0 = SimBP1 , except with negligible probability;

• SimBP1 = A′M(~m1,~z), except with negligible probability.

By a union bound, we have that A′M(~m0,~z) = A′M(~m1,~z), except with negligible probability. Thus M
must be a computationally respecting sampler. Finally, it follows using identically the same argument
as in Section 5.4 that the message sampler satisfies the required high-entropy condition and thus is an
entropic computationally respecting message sampler.

Now we will show an nuPPT adversary A that distinguishes between encodings of (~m0, ~z) and
(~m1, ~z) when encoded under sets (~Sn, ~Tn) Note that given encodings of one of (~m0, ~z) and (~m1, ~z), A in
fact receives either Obf(B̂P 0) or Obf(B̂P 1). Let us refer to this input to A as O.

A evaluates O on input 0 to receive (pk, â), and then simply homomorphically evaluates O on the
ciphertext â in order to generate a valid encryption of the hidden value b, and then feeds this new
ciphertext back into O to reveal the secret bit v, and then outputs v. Thus A succeeds in distinguishing
(~m0, ~z) and (~m1, ~z) with probability 1. Additionally, note that since O is a constant-width branching
program, O can be computed by a NC1 circuit, thus for this argument it suffices to use a leveled FHE.

We thus have that no graded encoding scheme can satisfy entropic extractable uber security.

Note that the above proof in fact rules out also entropic extractable uber security with respect to
a slight relaxation of simple message samplers, where instead of restricting to encodings under sets of
size 2, we restrict to sets of size 4.

7.2.2 “Plain” Uber Security

Due to the above impossibility result, we here consider a weaker variant of an uber security—which we
simply refer to as (plain) “uber security”, where we strengthen the “computational validity” condition to
a “weak validity” condition where the the algebraic attacker is allowed to be unbounded while making
polynomially many queries. Note that weak validity differs from strong validity only in the respect

20To apply the Union Bound it is important that the query response C(~mb, ~z) depends only on the queried arithmetic
circuit C and the input-output behavior of BPb as shown in Lemma 17

44

that weak validity does not require the output of the algebraic attacker is constant (with overwhelming
probability).

Definition 22 (Weakly Respecting Message Sampler). We say that a nuPPTM is a weakly {(~Sn, ~Tn)}n∈N-
respecting message sampler (or weakly valid w.r.t. {(~Sn, ~Tn)}n∈N) if it satisfies the same conditions as
in Definition 9 but where the second bullet is replaced by the following:

• For every polynomial p, there exists some polynomial Q such that for every n ∈ N, every (sp, pp)
in the support of InstGen(1n, 1kn), every (deterministic) oracle algorithm A that on input 1n makes
at most p(n) oracle queries,

Pr[(~m0, ~m1, ~z)←M(1n, pp) : AM(pp, ~p0)(1n) = AM(pp, ~p1)(1n)] ≥ 1−Q(n, kn)/|R|.

where ~pb = {(mb[i], Si)}
c(n)
i=1 , {(z[i], Ti)}

q(n)
i=1 and c(n) and q(n) are the lengths of ~Sn and ~Tn respec-

tively.

We define “uber security” in exactly the same way as semantic security except that we only require
the message sampler to be weakly valid (and define entropic uber security in the analogous way). In
other words, uber security implies that whenever ~m0, ~z and ~m0, ~z are pointwise statistically close w.r.t.
legal algebraic attackers, encodings of them computationally indistinguishable.

Let us remark that for uber security to imply semantical security, it is important that we restrict the
algebraic attacker (in the definition of a weakly valid message sampler) to only make polynomially many
queries. Otherwise, even the aGDDH distribution (described in Section 3) is not weakly valid: With
high probability over (m0,m1, ~z) sampled from the aGDDH distribution, there always exists some legal
arithmetic circuit C such that isZero(C(m0, ~z)) 6= isZero(C(m1, ~z)).21 Therefore, an unbounded-query
algebraic adversary could simply go over all legal arithmetic circuits and distinguish the elements.

We are not aware of any attacks (like those against extractable uber security) against “plain” uber
security, and it thus seems like a reasonable strengthening of semantical security, which may have
other applications. In fact, we may consider an even further strengthening of this notion—which we
refer to as statistical uber security— by replacing the the weakly valid message sampler by a super
weakly valid message sampler which only requires ~m0, ~z and ~m1, ~z to be statistically indistinguishable
by algebraic attackers (as opposed to be pointwise statistically indistinguishable); that is, the second
bullet in Definition 9 is replaced by:

• For every (computationally unbounded) oracle machine A that makes at most polynomially many
oracle queries, there exists a negligible function ε such that for every security parameter n ∈ N,

|Pr[(sp, pp)← InstGen(1n, 1k(n)), (~m0, ~m1, ~z)←M(1n, pp) : AM(pp, ~p0)(1n, pp) = 1]−
Pr[(sp, pp)← InstGen(1n, 1k(n)), (~m0, ~m1, ~z)←M(1n, pp) : AM(pp, ~p1)(1n, pp) = 1]| ≤ ε(n)

where ~pb = {(mb[i], Si)}
c(n)
i=1 , {(z[i], Ti)}

q(n)
i=1 and c(n) and q(n) are the lengths of ~Sn and ~Tn respec-

tively.

7.3 Strong Semantical and Uber Security

Recall that in the definition of both validity and weak validity, we consider arbitrary-size set-respecting
circuits. We may weaken both validity conditions (and thus obtain stronger notion of semantical and
uber security) by restricting attention to only polynomial-size arithmetic circuits. Note that in the

21Consider a very simple aGDDH instance, where |~z| = 2, T1 = T2 = S = [k]. For non-zero z1, z2, there always exists
some a such that the circuit C(m, z1, z2) = isZero(m−az1) yields different outputs on input (m0, ~z) and (m1, ~z)—namely,
a = z2.

45

context of uber security, this takes us a step closer to extractable uber security (which is impossible
under reasonable assumption): we restrict to algebraic attackers that make polynomially-many queries
and each query is polynomial-size, but the attacker may generate these queries (and generate its final
output) in a computationally unbounded way. We refer to these notions respectively as strong semantical
security and strong uber security.

7.4 Weak Semantic Security

We end this section by considering a weaker notion of semantical security—let us refer to it as weak
semantical security—where the definition of a valid message sampler requires the the answer to every
set-respecting circuit is actually constant (as opposed to only being constant with overwhelming prob-
ability); a similar relaxation can be applied also to uber security. While we do not know whether any
of these weaker assumptions suffices for obtaining obfuscation (and they do not imply the aGDDH as-
sumption), the weak notion of semantical security suffices for obtaining witness encryption [GGSW13]—
roughly speaking, the notion of witness encryption enables a sender to encrypt a message m using an
NP-statement x such that a) if the statement is false, then encodings of any two messages are indistin-
guishable, and b) if the statement is true, then anyone who has a witness w for x can recover m. Let
us briefly sketch this construction:22 As in [GGSW13], we focus on the NP-language Exact-Cover where
an x instance consist of sets S1, . . . , Sn ⊆ [k]; for a true instance, there exists some “exact cover” of
[k] using a subset of the sets, whereas for a false instance no such exact cover exists. Now, to encrypt
the bit m under the instance S1, . . . Sn, use a multilinear encoding scheme over the set [k + 1], encode
1 under each of the sets S1, . . . Sn and finally encode m under the set {k + 1}. Clearly anyone who
knows an exact cover can obtain an encoding of m under [k+ 1] (by appropriately multiplying the sets
corresponding to the exact cover and additionally the encoding of m under {k + 1}). On the other
hand, if the instance is false, there is no exact cover, and thus “legal” algebraic operation can never
be used to obtain an encoding under the full set [k + 1] and thus zero-testing can never be used; thus
indistinguishability of encryptions follows by weak semantical security.

8 Acknowledgments

We are very grateful to Omer Paneth, Ran Canetti, Kai-Min Chung, Sanjam Garg, Craig Gentry,
Shai Halevi, Amit Sahai, Abhi Shelat, Hoeteck Wee and Daniel Wichs for many helpful comments.
We are especially gratefeul to Shai for pointing out the connection between semantical security for
multilinear encodings and the “uber” assumption for bilinear maps of [BBG05], and for several very
useful conversations about multilinear encodings and the security of the [GGH13a] constructions, and
to Amit for helpful conversations about the presentation of our results. Thanks a lot!

References

[ABG+13] Prabhanjan Ananth, Dan Boneh, Sanjam Garg, Amit Sahai, and Mark Zhandry. Differing-
inputs obfuscation and applications. 2013.

[Bar86] David A. Mix Barrington. Bounded-width polynomial-size branching programs recognize
exactly those languages in nc1. In STOC, pages 1–5, 1986.

[BBG05] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based encryption with
constant size ciphertext. In Ronald Cramer, editor, Advances in Cryptology EUROCRYPT

22The observation that semantically secure multilinear encoding directly implies witness encryption was obtained in a
conversation with Sanjam Garg, Craig Gentry and Shai Halevi.

46

2005, volume 3494 of Lecture Notes in Computer Science, pages 440–456. Springer Berlin
Heidelberg, 2005.

[BCP14] Elette Boyle, Kai-Min Chung, and Rafael Pass. On extractability obfuscation. In TCC,
pages 52–73, 2014.

[BCPR13] Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. Indistinguishability obfuscation
vs. auxiliary-input extractable functions: One must fall. Technical report, Cryptology
ePrint Archive, Report 2013/641, 2013.

[BGI+01] Boaz Barak, Oded Goldreich, Rusell Impagliazzo, Steven Rudich, Amit Sahai, Salil Vadhan,
and Ke Yang. On the (im) possibility of obfuscating programs. In Advances in Cryptology
CRYPTO 2001, pages 1–18. Springer, 2001.

[BGK+13] Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit Sahai. Protecting
obfuscation against algebraic attacks. Cryptology ePrint Archive, Report 2013/631, 2013.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomorphic
encryption without bootstrapping. In ITCS, pages 309–325, 2012.

[BP13] Elette Boyle and Rafael Pass. Limits of extractability assumptions with distributional
auxiliary input. 2013.

[BR14] Zvika Brakerski and Guy N. Rothblum. Virtual black-box obfuscation for all circuits via
generic graded encoding. In TCC, pages 1–25, 2014.

[BS03] Dan Boneh and Alice Silverberg. Applications of multilinear forms to cryptography. Con-
temporary Mathematics, 324(1):71–90, 2003.

[BST13] Mihir Bellare, Igors Stepanovs, and Stefano Tessaro. Poly-many hardcore bits for any one-
way function. Cryptology ePrint Archive, Report 2013/873, 2013. http://eprint.iacr.
org/.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from
(standard) lwe. In FOCS, pages 97–106, 2011.

[BZ13] Dan Boneh and Mark Zhandry. Multiparty key exchange, efficient traitor tracing, and
more from indistinguishability obfuscation. Technical report, Cryptology ePrint Archive,
Report 2013/642, 2013. http://eprint. iacr. org, 2013.

[Can97] Ran Canetti. Towards realizing random oracles: Hash functions that hide all partial infor-
mation. In CRYPTO, pages 455–469, 1997.

[CLT+13] Jean-Sébastien Coron, Tancrède Lepoint, Mehdi Tibouchi, et al. Practical multilinear
maps over the integers. In CRYPTO 2013-33rd Annual Cryptology Conference Advances
in Cryptology, volume 8042, pages 476–493, 2013.

[FS90] Uriel Feige and Adi Shamir. Witness indistinguishable and witness hiding protocols. In
STOC ’90, pages 416–426, 1990.

[Gen09] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University,
2009.

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal
lattices. In Advances in Cryptology–EUROCRYPT 2013, pages 1–17. Springer, 2013.

47

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters.
Candidate indistinguishability obfuscation and functional encryption for all circuits. Proc.
of FOCS 2013, 2013.

[GGHR14] Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana Raykova. Two-round secure mpc
from indistinguishability obfuscation. In TCC, pages 74–94, 2014.

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption and its
applications. In Proceedings of the 45th Annual ACM Symposium on Symposium on Theory
of Computing, STOC ’13, pages 467–476, New York, NY, USA, 2013. ACM.

[GLW14] Craig Gentry, Allison Bishop Lewko, and Brent Waters. Witness encryption from instance
independent assumptions. Cryptology ePrint Archive, Report 2014/273, 2014. http:
//eprint.iacr.org/.

[GR07] Shafi Goldwasser and Guy Rothblum. On best-possible obfuscation. In Salil Vadhan,
editor, Theory of Cryptography, volume 4392 of Lecture Notes in Computer Science, pages
194–213. Springer Berlin Heidelberg, 2007.

[Had00] Satoshi Hada. Zero-knowledge and code obfuscation. In Advances in Cryptology–
ASIACRYPT 2000, pages 443–457. Springer, 2000.

[HSW13] Susan Hohenberger, Amit Sahai, and Brent Waters. Replacing a random oracle: Full
domain hash from indistinguishability obfuscation. Technical report, Cryptology ePrint
Archive, Report 2013/509, 2013. http://eprint. iacr. org, 2013.

[Kil88] Joe Kilian. Founding crytpography on oblivious transfer. In Proceedings of the twentieth
annual ACM symposium on Theory of computing, pages 20–31. ACM, 1988.

[Nao03] Moni Naor. On cryptographic assumptions and challenges. In CRYPTO, pages 96–109,
2003.

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen ci-
phertext attacks. In Proceedings of the twenty-second annual ACM symposium on Theory
of computing, pages 427–437. ACM, 1990.

[RAD78] R L Rivest, L Adleman, and M L Dertouzos. On data banks and privacy homomorphisms.
Foundations of Secure Computation, Academia Press, pages 169–179, 1978.

[Rot13] Ron D Rothblum. On the circular security of bit-encryption. In Theory of Cryptography,
pages 579–598. Springer, 2013.

[SW13] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: Deniable
encryption, and more. Technical report, IACR Cryptology ePrint Archive, 2013: 454,
2013.

A Technical Lemma

Claim 29. Fix m,w ∈ N, and let p ∈ N be a prime. Let D0 be the following distribution:

D0 = {{Ri}i∈[m], {αi,b}i∈[m],b∈{0,1}}

where each Ri is a uniformly random invertible matrix in Zw×wp (i.e det(Ri) 6= 0, and each αi,b is a
uniformly random non-zero scalar in Zp.

48

Let D1 be a distribution defined identically to D0, except with each Ri being a uniformly random (not
necessarily invertible) matrix in Zw×wp , and each αi,b a uniformly random (not necessarily non-zero)
scalar in Zp.
Then:

∆(D0,D1) ≤ 8wm/p

where ∆(D0,D1) denotes the statistical distance between distributions D0 and D1.

Proof. Note that D0 and D1 are each uniformly distributed on their respective supports, and that
supp(D0) ⊆ supp(D1). Then the statistical distance between D0 and D1 can be computed as follows:

∆(D0,D1) =
∑

d∈supp(D0)∪supp(D1)

|Pr[D0 = d]− Pr[D1 = d]|

=
∑

d∈supp(D0)

|Pr[D0 = d]− Pr[D1 = d]|+
∑

d∈supp(D1)\supp(D0)

|Pr[D1 = d]|

=
∑

d∈supp(D0)

| 1

|supp(D0)|
− 1

|supp(D1)|
|+

∑
d∈supp(D1)\supp(D0)

| 1

|supp(D1)|
|

= (|supp(D0)| · |
1

|supp(D0)|
− 1

|supp(D1)|
|) + (|supp(D1) \ supp(D0)| · |

1

|supp(D1)|
|)

= 2 · (1− |supp(D0)|
|supp(D1)|

)

But notice that (1 − |supp(D0)|
|supp(D1)|) can be interpreted as Pr[∃i ∈ [m], b ∈ {0, 1} : det(Ri) = 0 ∨ αi,b = 0].

For each i ∈ [m], the probability det(Ri) = 0 can be bounded by applying the Schwartz-Zippel lemma
to the det(·), which is a polynomial of degree w. Thus we have that Pr[det(Ri) = 0] ≤ w/p. Further,
each αi,b is zero with probability 1/p. Hence, applying a union bound, we have that

∆(D0,D1) = 2 · (1− |supp(D0)|
|supp(D1)|

)

≤ 2 · (2m/p+mw/p)

≤ 8wm/p

B Proof of Lemma 18

In this section, we prove Lemma 18, restated below for clarity:

Lemma 22. Fix m,n,w ∈ N and inp : [m] → [n]. Let ~S = SetSystem(m,n, inp) = ({Si,b}i∈[m],b∈{0,1},

St), and let C be any weakly ~S-respecting arithmetic circuit whose output wire is tagged with T ⊆ [k].
Then there exists a set U ⊆ {0, 1, ∗}m such that for every branching program BP of width w and length
m on n input bits, with input tagging function inp, every prime p, and every ({αi,b ·B̃i,b}i∈m,b∈{0,1}, t)←
Rand(BP, p),

(i)
C({αi,bB̃i,b}i∈[m],b∈{0,1}, t) ≡

∑
u∈U

Cu({αi,bB̃i,b}i∈[m],b∈{0,1}, t)

where each Cu is a weakly ~S-respecting arithmetic circuit, whose input wires are tagged only with
sets ∈ {Si,u[i]}i∈[m]:u[i] 6=∗ ∪ {St}, and whose output wire is tagged with T .

49

(ii) Each Cu above is the sum of several “monomial” circuits, where each monomial circuit performs
only multiplications of elements in ({αi,b ·B̃i,b}i∈m,b∈{0,1}, t), is weakly ~S-respecting, and has output
wire tagged with T .

(iii) For each Cu above,

Cu({αi,bB̃i,b}i∈[m],b∈{0,1}, t) = αu · pu({B̃i,u[i]}i∈[m]:u[i] 6=∗, t)

where pu is some polynomial, and αu = (
∏
i∈[m]:u[i]6=∗ αi,u[i]). Furthermore, when pu is viewed as a

sum of monomials, each monomial contains exactly one entry from each B̃i,u[i] such that u[i] 6= ∗,
and possibly one entry from t. Further, pu can be computed by a weakly ~S-respecting circuit whose
output wire is tagged with T .

Proof. Part (i)We begin by expressing the circuit C as a polynomial in variables ({αi,b·B̃i,b}i∈m,b∈{0,1}, t),
in the form of a sum of monomials (possibly exponentially many). We do so recursively: we associate
each wire w of the circuit with a multiset Sw of pairs of monomials and signs (“+1” or “-1”), such that the
sum of the monomials multiplied by their respective signs computes the same value as the value com-
puted by the circuit at that wire. We eventually output the multiset of monomial pairs corresponding
to the output wire. We compute the sets of monomials as follows:

• Any input wire of the circuit reading input variable v can be represented as the set {(v,+)}.

• The output wire of an addition gate can be represented as the union of the multisets of monomial
pairs representing the gates left and right children.

• The output wire of an subtraction gate can be similarly represented as the union of the multisets
of the gate’s left input wire, and of its right input wire with the “sign” component of every pair
negated (from “+1” to ”-1” and vice versa), to reflect subtraction.

• For the output wire of a multiplication gate, for each pair (M1, s1) in the multiset of its left input
and each pair (M2, s2) in the multiset of its right input, we add (M1 ·M2, s1 · s2) to the multiset
of the output wire.

We note that it holds inductively in the above process that the sum of the monomials in the multiset
associated with each wire w in C, multiplied by its appropriate sign, equals the value computed on that
wire w.

We also show that each monomial in the set corresponding to a wire can be computed by a weakly
~S-respecting circuit whose output wire has the same tag as the wire. This can again be seen inductively:

• This property holds at any input wire of C, since the only monomial in the set can be computed
using the input wire itself as the “monomial circuit".

• This property also holds at any output wire of an addition or subtraction gate, since the circuit
corresponding to any monomial in this wire’s set is the same as the circuit for the monomial from
the corresponding incoming wire to the gate.

• Finally, at the output wire of a multiplication gate G, for any monomial M in this wire’s set
computed as the product of monomials M1 and M2, the circuit for M is simply the circuit
for each of M1 and M2, joined by a multiplication gate. Since G performs a set respecting
multiplication, and the output wires of M1 and M2’s circuits have the same tags as the input
wires of G, we have that the multiplication joining M1 and M2’s circuits to produce M ’s circuit
is set-respecting, and so the circuit corresponding to M is a weakly ~S-respecting circuit whose
output wire has the same tag as the output wire of G.

50

Thus each of the monomials in the decomposition of C can be represented as a weakly set-respecting
arithmetic circuit with output wire tagged with T , where this circuit simply multiplies together all
terms in the monomial in some order, and performs no additions. Finally, the tags of the input wires
of these monomial circuits must be mutually disjoint, otherwise the monomial circuit would perform a
non-set-respecting multiplication at some level.

We label each monomial M with an element u ∈ {0, 1, ∗}m, where u[i] = b if Si,b is the label on one
of input wires inM ’s circuit representation, and u[i] = ∗ if neither Si,0 and Si,1 are labels on any ofM ’s
input wires. We note that no monomial can have both Si,0 and Si,1 on its input wires because these two
sets are not disjoint, and the tags of the input wires of the monomial circuits must be mutually disjoint.

We now let Cu be the circuit representing the subtraction of all momonials in the the decomposition
of C labelled with u and sign (−1) from the sum of all momonials in the the decomposition of C
labelled with u and sign (+1). Since each monomial can be represented as a weakly set-respecting
circuit with output wire tagged with T , adding several monomials together is a set-respecting operation,
as is subtracting several monomials from the sum, and thus each Cu is a weakly set-respecting circuit.
Further, since each monomial circuit has output wire tagged with T , each Cu also has output wire
tagged with T . Further, by the way we labelled each monomial, each of the input wires of Cu is tagged
only with sets ∈ {Si,u[i]}i∈[m]:u[i] 6=∗∪{St}. Finally, if we sum over all the u, we capture all the monomials
in the decomposition of C multiplied by their respective signs, so we have that

∑
uCu = C.

Part (ii) We observe that by construction of Cu, it is a sum of several monomial circuits each of which
performs only multiplications of its inputs, is weakly ~S-respecting, and has output wire tagged with T .

Part (iii) From part (ii), we have that for each Cu, it is a sum of several monomial circuits each of which
performs only multiplications of its inputs, is weakly ~S-respecting, and has output wire tagged with T .
Furthermore, for each such monomial circuit the input tags are drawn from sets ∈ {Si,u[i]}i∈[m]:u[i]6=∗ ∪
{St}. In fact, each of these monomials must contain exactly one input wire tagged with each of the sets
in {Si,u[i]}i∈[m]:u[i] 6=∗, and exactly one set tagged with St if and only if St ⊆ T . This means that each of
these monomials is the product of one element chosen from each of the matrices ({αi,u[i] ·B̃i,u[i]}i∈m:u[i]6=∗,
and possibly one element from t. Thus each monomial in the decomposition of Cu has a common factor
of αu = (

∏
i∈[m]:u[i] 6=∗ αi,u[i]).

We can now write Cu as a polynomial (namely the sum of its monomials multiplied by their respective
signs), and by factoring αu from each of it monomials and letting pu be the remaining polynomial, we
have, as required, that

Cu({αi,bB̃i,b}i∈[m],b∈{0,1}, t) = αu · pu({B̃i,u[i]}i∈[m]:u[i]6=∗, t)

Finally, we note that computing pu is the same as computing Cu if the alphas are set to 1. Since Cu
is ~S-respecting, we thus have that pu can be computed by a weakly ~S-respecting circuit whose output
wire is tagged with T .

C Proof of Lemma 7

In this section we prove Lemma 7, restated below for clarity.

Lemma 30. Let c, ε ∈ N and E be an (c, kε)-semantically secure encoding scheme. Then for every
polynomial q(k) there exists a (c, q(k))-semantically secure encoding scheme.

Proof. Consider any polynomial q(·) and constants c, ε. Given a (c, kε)-semantically secure encoding E ,
we construct a new multilinear encoding scheme E ′ and prove that E ′ is (c, q(k))-semantically secure.
Let (InstGen,Enc,Add,Sub,Mult, isZero) be the algorithms associated with E . We define a new encoding
scheme E ′ = (InstGen′,Enc′,Add′,Sub′,Mult′, isZero′) as follows.

51

• InstGen′ on input (1n, 1k) runs (pp, sp) ← InstGen(1n, 1(q(k)+1)1/ε) and generates an encoding of
a uniformly random non-zero element e under the set {k + 1, . . . (q(k) + 1)1/ε} by running u1 ←
Enc(sp, e, {k + 1, . . . (q(k) + 1)1/ε}). InstGen′ outputs (pp, u1) as the public parameters and sp as
the secret parameters.

• Enc′,Add′, Sub′,Mult′ are identical to Enc,Add, Sub,Mult respectively.

• isZero′ takes as input public parameters (pp, u1) and an encoding u under the set [k] to zero-test.
isZero′ simply outputs isZero(Mult(pp, u, u1)). The correctness of isZero′ follows from that of isZero
and the fact that Mult(pp, u, u1) returns an encoding, under the set [(q(k) + 1)1/ε], of an element
which is zero if and only if u is an encoding of zero.

It is easy to see that the correctness of E ′ follows from that of E .
We now show that E ′ is (c, q(k))-semantically secure. Assume for contradiction there exists a polyno-

mial k′(·), ensemble {~S′n, ~T ′n}n∈N of sets where |~S′n| = c, |~T ′n| = q(k′(n)), {~S′n, ~T ′n}n∈N-respecting message
sampler M ′ and nuPPT adversary A′ such that for sufficiently large n, A′ distinguishes encodings of
elements as described in the semantic security game in Definition 10.

Let k(·) be a polynomial such that k(n) = (q(k′(n)) + 1)1/ε. For every n ∈ N, let ~Sn, ~Tn be a
sequence of sets over [k(n)] where ~Sn = ~S′n and ~Tn = (~T ′n, {k′(n) + 1, . . . k(n)}). We will construct
a {~Sn, ~Tn}n∈N-respecting message sampler M and nuPPT adversary A such that (M,A) breaks the
(c, kε)-semantic security of E .

We define the message sampler M as follows: on input 1n, pp ∈ InstGen(1n, 1k(n)), M samples
(~m0, ~m1, ~z) ← M ′(1n, pp). and outputs the elements (~m0, ~m1, (~z, e)) where e is a uniformly random
non-zero element, i.e. M outputs the same elements sampled byM ′ with an additional element e. Note
that M ′ samples elements based only on the ring associated with the public parameters pp, which in
this case, is the same ring associated with pp′ ∈ InstGen′(1n, 1k

′(n)).
To show that M is {~Sn, ~Tn}n∈N-respecting, we claim that for any (~Sn, ~Tn)-respecting circuit C

acting on (~m0, ~m1, (~z, e)) there exists a (~S′n, ~T
′
n)-respecting circuit C ′ acting on (~m0, ~m1, ~z) such that

isZero(C(·)) = isZero(C ′(·)). C ′ is simply the circuit C computes to obtain an element corresponding to
the set [k′(n)], with which it must multiply an element under the set {k′(n) + 1, . . . k(n)} to reach the
target set [k(n)]. Since M ′ is {~S′n, ~T ′n}n∈N-respecting, the output of isZero(C ′(·)) is constant with over-
whelming probability. Therefore, the output of isZero(C(·)) is constant with overwhelming probability
too, and M is {~Sn, ~Tn}n∈N-respecting.

We now define a nuPPT adversary A that breaks the semantic security of E . On input encodings
~u and public parameters pp, A simply removes the last encoding u from ~u and runs A′ on input public
parameters (pp, u) and the remaining encodings. Observe that for any security parameter n, the output
of A in the semantic security game in Definition 10 when played with message sampler M and sets
~Sn, ~Tn is identical to the output of A′ in the game played with message sampler M ′ and sets ~S′n, ~T ′n.
Recall that ~Sn, ~Tn are sequences of sets over [k(n)] and |~Sn| = c and |~Tn| = k(n)ε. Therefore, this
contradicts the (c, kε)-semantic security of E .

52

