
1

Secure Multiparty Computations on BitCoin
Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski and Łukasz Mazurek

University of Warsaw

Abstract

BitCoin is a decentralized digital currency, introduced in 2008, that has recently gained
noticeable popularity. Its main features are: (a) it lacks a central authority that controls the
transactions, (b) the list of transactions is publicly available, and (c) its syntax allows more
advanced transactions than simply transferring the money. The goal of this paper is to show how
these properties of BitCoin can be used in the area of secure multiparty computation protocols
(MPCs).

Firstly, we show that the BitCoin system provides an attractive way to construct a version of
“timed commitments”, where the committer has to reveal his secret within a certain time frame, or
to pay a fine. This, in turn, can be used to obtain fairness in some multiparty protocols. Secondly,
we introduce a concept of multiparty protocols that work “directly on BitCoin”. Recall that the
standard definition of the MPCs guarantees only that the protocol “emulates the trusted third party”.
Hence ensuring that the inputs are correct, and the outcome is respected is beyond the scope of
the definition. Our observation is that the BitCoin system can be used to go beyond the standard
“emulation-based” definition, by constructing protocols that link their inputs and the outputs with
the real BitCoin transactions.

As an instantiation of this idea we construct protocols for secure multiparty lotteries using
the BitCoin currency, without relying on a trusted authority (one of these protocols uses the
BitCoin-based timed commitments mentioned above). Our protocols guarantee fairness for the
honest parties no matter how the looser behaves. For example: if one party interrupts the protocol
then her money is lost and transferred to the honest participants. Our protocols are practical (to
demonstrate it we performed their transactions in the actual BitCoin system), and can be used in
real life as a replacement for the online gambling sites. We think that this paradigm can have also
other applications. We discuss some of them.

I. INTRODUCTION

Secure multiparty computation (MPC) protocols, originating from the seminal works of Yao [37]
and Goldreich et al. [25], allow a group of mutually distrusting parties to compute a joint function
f on their private inputs. Typically, the security of such protocols is defined with respect to the
ideal model where f is computed by a trusted party Tf . More precisely: it is required that during
the execution of a protocol the parties cannot learn more information about the inputs of the other
participants than they would learn if f was computed by Tf who: (a) receives the inputs from the
parties, (b) computes f , and (c) sends the output back to the parties. Moreover, even if some parties
misbehave and do not follow the protocol, they should not be able to influence the output of the
honest parties more than they could in the ideal model by modifying their own inputs.

As an illustration of the practical meaning of such security definition consider the case when
there are only two participants, called Alice and Bob, and the function that they compute is a
conjunction f∧(a, b) = a ∧ b, where a, b ∈ {0, 1} are Boolean variables denoting the inputs of
Alice and Bob, respectively. This is sometimes called the marriage proposal problem, since one
can interpret the input of each party as a declaration if she/he wants to marry the other one. More
precisely: suppose a = 1 if and only if Alice wants to marry Bob, and b = 1 if and only if Bob
wants to marry Alice. In this case f∧(a, b) = 1 if and only if both parties want to marry each other,

2

and hence, if, e.g., b = 0 then Bob has no information about Alice’s input. Therefore the privacy
of Alice is protected. One can also consider randomized functions f , the simplest example being
the coin tossing problem [6] where the computed function frnd : {⊥} × {⊥} → {0, 1} takes no
inputs, and outputs a uniformly random bit. Yet another generalization are the so-called reactive
functionalities where the trusted party T maintains a state and the parties can interact with T in
several rounds. One example of such a functionality is the mental poker [35] where T simulates
a card game, i.e. she first deals a deck of cards and then ensures that the players play the game
according to the rules.

It was shown in [25] that for any efficiently-computable function f (or, more general, any reactive
functionality) there exists an efficient protocol that securely computes it, assuming the existence
of the trapdoor-permutations. If the minority of the parties is malicious (i.e. does not follow the
protocol) then the protocol always terminates, and the output is known to each honest participant.
If not, then the malicious parties can terminate the protocol after learning the output, preventing
the honest parties from learning it. It turns out [16] that in general this problem, called the lack
of fairness, is unavoidable, although there has been some effort to overcome this impossibility
result by relaxing the security requirements [26], [11], [4], [31]. Note that in case of the two-player
protocols it makes no sense to assume that the majority of the players is honest, as this would
simply mean that none of the players is malicious. Hence, the two-party protocols in general do
not provide complete fairness (unless the security definition is weakened).

Since the introduction of the MPCs there has been a significant effort to make these protocols
efficient [28], [5], [17] and sometimes even to use them in the real-life applications such as, e.g.,
the online auctions [22]. On the other hand, perhaps surprisingly, the MPCs have not been used in
many other areas where seemingly they would fit perfectly. One prominent example is the internet
gambling: it may be intriguing that currently gambling over the internet is done almost entirely
with the help of the web-sites that play the roles of the “trusted parties”, instead of using the coin
flipping or the mental poker protocols. This situation is clearly unsatisfactory from the security
point of view, especially since in the past there were cases when the operators of these sites abused
their privileged position for their own financial gain (see e.g. [32]). Hence, it may look like the
multiparty techniques that eliminate the need for a trusted party would be a perfect replacement
for the traditional gambling sites (an additional benefit would be a reduced cost of gambling, since
the gambling sites typically charge fees for their service).

In our opinion there are at least two main reasons why the MPCs are not used for online gambling.
The first reason is that the multiparty protocols do not provide fairness in case there is no honest
majority among the participants. Consider for example a simple two-party lottery based on the
coin-tossing protocol: the parties first compute a random bit b, if b = 0 then Alice pays $1 to Bob,
if b = 1 then Bob pays $1 to Alice, and if the protocol did not terminate correctly then the parties
do not pay any money to each other. In this case a malicious party, say Alice, could prevent Bob
from learning the output if it is equal to 0, making 1 the only possible output of a protocol. Since
this easily generalizes to the multiparty case, hence it is clear that the gambling protocol would
work only if the majority is honest, which is not a realistic assumption in the fully distributed
internet environment (there are many reasons for this, one of them being the sybil attacks where
one malicious party creates and controls several “fake” identities, easily obtaining the “majority”
among the participants).

The second reason is even more fundamental, as it comes directly from the inherent limitations of
the MPC security definition, namely: such protocols do not provide security beyond the trusted-party
emulation. This drawback of the MPCs is rarely mentioned in the literature as it seems obvious that

3

in most of the real-life applications cryptography cannot be “responsible” for controlling that the
users provide the “real” input to the protocol and that they respect the output. Consider for example
the marriage proposal problem: it is clear that even in the ideal model there is no technological way
to ensure that the users honestly provide their input to the trusted party, i.e. nothing prevents one
party, say Bob, to lie about his feelings,and to set b = 1 in order to learn Alice’s input a. Similarly,
forcing both parties to respect the outcome of the protocol and indeed marry cannot be guaranteed
in a cryptographic way. This problem is especially important in the gambling applications: even in
the simplest “two-party lottery” example described above, there exists no cryptographic method to
force the looser to transfer the money to the winner.

One pragmatic solution to this problem, both in the digital and the non-digital world is to use
the concept of “reputation”: a party caught on cheating (i.e. providing the wrong input or not
respecting the outcome of the game) damages her reputation and next time may have trouble
finding another party willing to gamble with her. Reputation systems have been constructed and
analyzed in several papers (see, e.g. [33] for an overview), however they seem too cumbersome to
use in many applications, one reason being that it is unclear how to define the reputation of the
new users in the scenarios when the users are allowed to pick new names whenever they want [23].

Another option is to exploit the fact that the financial transactions are done electronically, and
hence one could try to “incorporate” the final transaction (transferring $1 from the looser to the
winner) into the protocol, in such a way that the parties learn who won the game only when the
transaction has already been performed. It is unfortunately not obvious how to do it within the
framework of the existing electronic cash systems. Obviously, since the parties do not trust each
other, we cannot accept solutions where the winning party learns e.g. the credit card number, or
the account password of the looser. One possible solution would be to design a multiparty protocol
that simulates, in a secure way, a simultaneous access to all the online accounts of the participants
and executes a wire transfers in their name.1 Even if theoretically possible, this solution is clearly
very hard to implement in real life, especially since the protocol would need to be adapted to
several banks used by the players (and would need to be updated whenever they change). The
same problems occur obviously also if above we replace the “bank” with some other financial
service (like PayPal). One could consider using Chaum’s Ecash [13], or one of its variants [14],
[12]. Unfortunately, none of these systems got widely adopted in real-life. Moreover, they are also
bank-dependent, meaning that even if they get popular, one would face a challenge of designing
a protocol that simulates the interaction of a real user with a bank, and make it work for several
different banks.

We therefore turn our attention to BitCoin, which is a decentralized digital currency introduced
in 2008 by Satoshi Nakamoto2 [30]. BitCoin has recently gained a noticeable popularity (its current
market capitalization is over 5 billion USD) mostly due to its distributed nature and the lack of a
central authority that controls the transactions. Because of that it is infeasible for anyone to take
control over the system, create large amounts of coins (to generate inflation), or shut it down. The
money is transferred directly between two parties — they do not have to trust anyone else and
transaction fees are zero or very small. Another advantage is the pseudo-anonymity3 — the users

1Note that this would require, in particular, “simulating” the web-browser and the SSL sessions, since each individual
user should not learn the contents of the communication between the “protocol” and his bank, as otherwise he could
interrupt the communication whenever he realizes that the “protocol” ordered a wire transfer from his account. Moreover,
one would need to assume that the transactions cannot be cancelled once they were ordered.

2This name is widely believed to be a pseudonym.
3A very interesting modification of BitCoin that provides real cryptographic anonymity has been recently proposed in

[29].

4

are only identified by their public keys that can be easily created, and hence it is hard to link the
real person with the virtual party spending the money. In Section II we describe the main design
principle of BitCoin, focusing only on the most relevant parts of this system. A more detailed
description can be found in Nakamoto’s original paper [30], the BitCoin wiki webpage en.bitcoin.it
(sections particularly relevant to our work are: “Transactions” and “Contracts”), or other papers on
BitCoin [29], [15], [2], [34]. In the sequel “B” denotes the BitCoin currency symbol.

A. Our contribution

We study how to do “MPCs on BitCoin”. First of all, we show that the BitCoin system provides
an attractive way to construct a version of “timed commitments” [7], [24], where the committer has
to reveal his secret within a certain time frame, or to pay a fine. This, in turn, can be used to obtain
fairness in certain multiparty protocols. Hence it can be viewed as an “application of BitCoin to
the MPCs”.

What is probably more interesting is our second idea, which in some inverts the previous one by
showing an “application of the MPCs to BitCoin”, namely we introduce a concept of multiparty
protocols that work directly on BitCoin. As explained above, the standard definition of the MPCs
guarantees only that the protocol “emulates the trusted third party”. Hence ensuring that the inputs
are correct, and the outcome is respected is beyond the scope of the definition. Our observation
is that the BitCoin system can be used to go beyond the standard “emulation-based” definition,
by constructing protocols that link the inputs and the outputs with the real BitCoin transactions.
This is possible since the BitCoin lacks a central authority, the list of transactions is public, and
its syntax allows more advanced transactions than simply transferring the money.

As an instantiation of this idea we construct protocols for secure multiparty lotteries using the
BitCoin currency, without relying on a trusted authority. By “lottery” we mean a protocol in which a
group of parties initially invests some money, and at the end one of them, chosen randomly, gets all
the invested money (called the pot). Our protocols can work in purely peer-to-peer environment, and
can be executed between players that are anonymous and do not trust each other. Our constructions
come with a very strong security guarantee: no matter how a dishonest party behaves, the honest
parties will never get cheated. More precisely, each honest party can be sure that, once the game
starts, it will always terminate and will be fair.

Our two main constructions are as follows. The first protocol (Section IV) can be executed
between any number of parties. Its security is obtained via the so-called deposits: each user
is required to initially put aside a certain amount of money, which will be payed back to her
once she completes the protocol honestly. Otherwise the deposit is given to other parties, which
“compensates” them the fact that the game terminated prematurely. This protocol uses the timed
commitment scheme described above. A certain drawback of this protocol is that the deposits need
to be relatively large, especially if the protocol is executed among larger groups of players. More
precisely to achieve security the deposit of each player needs to be N(N − 1) times the size of
the bet (observe that for the two-party case it simply means that the deposit is twice the size of
the bet). We also note that the deposits can be much smaller if one assumes that the adversary is
rational [27], [1], [21].

We also describe (in Section V) a protocol that does not require the use of deposits at all. This
comes at a price: the protocol works only for two parties, and its security relies on an assumption
that the adversary does not “maul” the transactions4, used very mildly (see Section V).

4The notion of the transaction malleability is explained in Section II-B.

http://en.bitcoin.it

5

The only cost that the participants need to pay in our protocols are the BitCoin transaction fees.
The typical BitCoin transactions are currently free. However, the participants of our protocols need
to make a small number (at most 4) of non-standard transactions (so-called “strange transactions”,
see Section II), for which there is usually some small fee (currently around 0.0001B ≈ 0.03$). To
keep the exposition simple we initially present our results assuming that the fees are zero, and later,
in Section VI, argue how to extend the definitions and security statements to take into account also
the non-zero fees. For the sake of simplicity we also assume that the bets in the lotteries are equal
to 1B. It should be straightforward to see how to generalize our protocols to other values of the
bets.

Our constructions are based on the coin-tossing protocol of Blum [6]. We managed to adapt
this protocol to our model, without the need to modify the current BitCoin system. We do not use
any generic methods like the MPC or zero-knowledge compilers, and hence the protocols are very
efficient. The only cryptographic primitives that we use are the commitment schemes, implemented
using the hash functions (which are standard BitCoin primitives). Our protocols rely strongly on
the advanced features of the BitCoin (in particular: the so-called “transaction scripts”, and “time-
locks”). Because of the lack of space we only sketch the formal security definitions. The security
proofs will appear in an extended version of this paper. We executed our transactions on the real
BitCoin. We provide a description of these transactions and a reference to them in the BitCoin
chain.

B. Applications and future work
Although, as argued in Section I-C below, it may actually make economic sense to use our

protocols in practice, we view gambling mostly as a motivating example for introducing a concept
that can be called “MPCs on BitCoin”, and which will hopefully have other applications. One
(rather theoretical) example of such application is the “millionaires problem” where Alice and Bob
want to establish who is reacher.5 It is easy to see that Alice and Bob can (inefficiently) determine
who has more coins by applying the generic MPC and zero-knowledge techniques. This is possible
since the only inputs that are needed are (a) the contents of the BitCoin ledger (more precisely:
its subset consisting of the non-redeemed transactions), which is public, and (b) Alice’s and Bob’s
private keys used as their respective private inputs (see Section II for the definitions of these terms).
Obviously, using this protocol makes sense only if, for some reason, each party is interested in
proving that she is the richer one. This is because every participant can easily pretend to be poorer
than she really is and “hide” his money by transferring it to some other address (that he also
controls). Since we do not think that this protocol is particularly relevant to practical applications,
we do not describe it in detail here. Let us only observe that, interestingly, this protocol is in some
sense dual to the coin-tossing protocol, as it uses the BitCoin system to verify the correctness of the
inputs, instead guaranteeing that the outcome is respected (as it is the case with the coin-tossing)6.

We think that analyzing what functionalities can be computed this way (taking into account the
problem of the participants “pretending to be poorer than they really are”) may be an interesting
research direction. Other possible future research directions are: constructing protocols secure
against “malleability attacks” that do not require the deposits, showing general completeness results,

5The formal definition is as follows: let a, b ∈ N denote the amount of coins that Alice and Bob respectively own. In
this case the parties compute the function fmill : N×N→ {A,B} defined as: fmill(a, b) = A if and only if a ≥ b and
fmill(a, b) = B otherwise.

6The reader may be tempted to think that a similar protocol could be used with the eCash [13]. This is not the case, as
in eCash there is no method of proving in zero-knowledge that the money has not been spent (since the list of transactions
is not public).

6

providing a more formal framework to analyze the deposit-based technique (this can probably be
done using the tools from the “rational cryptography” literature [27], [1], [21]). An interesting
research direction is also to construct protocols for games other than simple lotteries (like card, or
board games). We also think that our protocols can provide a good motivation for research in the
formal analysis of the BitCoin schemes that involve transactions with non-standard scripts. Is it
possible to formally specify and verify the properties of such protocols in the spirit of [18]? Such
formal approach would probably need to involve some elements of the temporal logic (see e.g. [3])
to capture the properties provided by the time-locks.

C. Economic analysis

Besides of being conceptually interesting, we think that our protocols can have direct practical
applications in the online gambling, which is a significant market: it is estimated that there are
currently 1,700 gambling sites worldwide handling bets worth over $4 billion per year [20]. Some
of these sites are using BitCoin. The largest of them, SatoshiDice, has been recently sold for over
$12 million [10]. All of the popular sites charge a fee for their service, called the house edge (on
top of the BitCoin transaction fees). Currently, the honesty of these sites can be verified only ex
post facto: they commit to their randomness before the game starts and later prove to the public
that they did not cheat. Hence, nothing prevents them from cheating and then disappearing from
the market (using the MPC terminology: such protocols provide security only against the “covert
adversaries” [36]). Of course, this means that the users need to continually monitor the behavior
of the gambling sites in order to identify the honest ones. This system, called the “mathematically
provable fairness” is described in a recent article [9], where it is advised to look on a particular
page, called Mem’s Bitcoin Gambling List, to check the gambling sites’ reputation. This simple
reputation system can of course be attacked in various ways. Moreover, one can expect that the sites
with more established reputation will have a higher house edge, and indeed the SatoshiDice site
charges more than the other, less well-known, sites. Currently SatoshiDice house edge is around
2% [9].

Compared to the gambling sites, our protocols have the following advantage. First of all, the
security guarantee is stronger, as it does not depend on the honesty of any trusted party. Secondly,
in our protocols there is obviously no “house edge”. On a negative side, the BitCoin transaction
fees can be slightly larger in our case than in the case of the gambling sites (since we have more
transactions, and some of them are “strange”). At the moment of writing this paper, using our
solution is cheaper than using SatoshiDice for bets larger than, say, $5, but of course whether our
protocols become really widely used in practice depends on several factors that are hard to predict,
like the value of the fees for the “strange transactions”.

We also note that, although our initial motivation was the peer-to-peer lottery, it can actually
make a lot of sense for the online gambling services to use our solutions, especially the two-party
protocol. Of course the business model of such services makes sense only if there is non-zero house
edge. This is not a problem since our protocols can be easily used in lotteries where the expected
payoff is positive for one party (in this case: the gambling service) and it is negative for the other
one (the client). Such “provably guaranteed fairness” can be actually a good selling line for some
of these services.

D. Related work

Most of the related work has been already described in the earlier sections. Previous papers on
BitCoin analyze the BitCoin transaction graph [34], or suggest improvements of the current version

7

of the system. This includes important work of Barber et al. [2] who study various security aspects
of BitCoin and Miers et al. [29] who propose a BitCoin system with provable anonymity. Our
paper does not belong to this category, and in particular our solutions are fully compatible with
the current version of BitCoin (except of the “malleability” problem concerning the last protocol,
Section V)

The work most relevant to ours in the BitCoin literature is probably Section 7.1 of[2] where
the authors construct a secure “mixer”, that allows two parities to securely “mix” their coins in
order to obtain unlinkability of the transactions. They also construct commitment schemes with
time-locks, however some important details are different, in particular, in the normal execution of
the scheme the money is at the end transferred to the receiver. Also, the main motivation of this
work is different: the goal of [2] is to fix an existing problem in BitCoin (“linkability”), while our
goal is to use BitCoin to perform tasks that are hard (or impossible) to perform by other methods.

Commitments in the context of the BitCoin were already considered in [15], however, the
construction and its applications are different — the main idea of [15] is to use the BitCoin system
as a replacement of a trusted third party in time-stamping. The notion of “deposits” has already
been used in BitCoin (see en.bitcoin.it/wiki/Contracts, Section “Example 1”7), but the application
described there is different: the “deposit” is a method for a party with no reputation to prove that
she is not a spambot by temporarily sacrificing some of her money.

II. A SHORT DESCRIPTION OF BITCOIN

BitCoin works as a peer-to-peer network in which the participants jointly emulate the central
server that controls the correctness of transactions. In this sense it is similar to the concept of
the multiparty computation protocols. Recall that, as described above, a fundamental problem with
the traditional MPCs is that they cannot provide fairness if there is no honest majority among
the participants, which is particularly difficult to guarantee in the peer-to-peer networks where
the sybil attacks are possible. The BitCoin system overcomes this problem in the following way:
the honest majority is defined in terms of the “majority of computing power”. In other words: in
order to break the system, the adversary needs to control machines whose total computing power
is comparable with the combined computing power of all the other participants of the protocol.
Hence, e.g., the sybil attack does not work, as creating a lot of fake identities in the network does
not help the adversary. In a moment we will explain how this is implemented, but let us first discuss
the functionality of the trusted party that is emulated by the users.

One of the main problems with the digital currency is the potential double spending: if coins
are just strings of bits then the owner of a coin can spend it multiple times. Clearly this risk could
be avoided if the users had access to a trusted ledger with the list of all the transactions. In this
case a transaction would be considered valid only if it is posted on the board. For example suppose
the transactions are of a form: “user X transfers to user Y the money that he got in some previous
transaction Ty”, signed by the user X. In this case each user can verify if money from transaction
Ty has not been already spent by X. The functionality of the trusted party emulated by the BitCoin
network does precisely this: it maintains a full list of transactions that happened in the system. The
format of the BitCoin transactions is in fact more complex than in the example above. Since it is
of a special interest for us, we describe it in more detail in Section II-A.

The BitCoin ledger is implemented using the concept of the Proofs of Work (PoWs) [19] in
the following clever way. The users maintain a chain of blocks. The first block B0, called the
genesis block, was generated by the designers of the system in January 2009. Each new block Bi

7Accessed on 13.11.2013.

http://en.bitcoin.it/wiki/Contracts

8

contains a list Ti of new transactions, the cryptographic hash of the previous block H(Bi−1), and
some random salt R. The key point is that not every R works for given Ti and H(Bi−1). In fact,
the system is designed in such a way that it is moderately hard to find a valid R. Technically it
is done be requiring that the binary representation of the hash of (Ti||H(Bi−1)||R) starts with a
certain number m of zeros (the procedure of extending the chain is called mining, and the machines
performing it are called miners). The hardness of finding the right R depends of course on m, and
this parameter is periodically adjusted to the current computing power of the participants in such
a way that the extension happens an average each 10 minutes. The system contains an incentive
to work on finding the new blocks. We will not go into the details of this, but let us only say that
one of the side-effects of this incentive system is the creation of new coins8.

The idea of the block chain is that the longest chain C is accepted as the proper one. If some
transaction is contained in a block Bi and there are several new blocks on top of it, then it is
infeasible for an adversary with less than a half of the total computating power of the BitCoin
network to revert it — he would have to mine a new chain C ′ bifurcating from C at block Bi−1
(or earlier), and C ′ would have to be longer than C. The difficulty of that grows exponentially with
number of new blocks on top of Bi. In practice the transactions need 10 to 20 minutes (i.e. 1-2 new
blocks) for reasonably strong confirmation and 60 minutes (6 blocks) for almost absolute certainty
that they are irreversible.

To sum up, when a user wants to pay somebody in BitCoins, he creates a transaction and
broadcasts it to other nodes in the network. They validate this transaction, send it further and add it
to the block they are mining. When some node solves the mining problem, it broadcasts its block
to the network. Nodes obtain a new block, validate transactions in it and its hash and accept it by
mining on top of it. Presence of the transaction in the block is a confirmation of this transaction,
but some users may choose to wait for several blocks on top of it to get more assurance.

A. The BitCoin transactions
The BitCoin currency system consists of addresses and transactions between them. An address

is simply a public key pk .9 Normally every such a key has a corresponding private key sk known
only to one user. The private key is used for signing the transactions, and the public key is used for
verifying the signatures. Each user of the system needs to know at least one private key of some
address, but this is simple to achieve, since the pairs (sk , pk) can be easily generated offline. We
will frequently denote key pairs using the capital letters (e.g. A), and refer to the private key and
the public key of A by: A.sk and A.pk , respectively (hence: A = (A.sk , A.pk)). We will also use
the following convention: if A = (A.sk , A.pk) then let sigA(m) denote a signature on a message
m computed with A.sk and let verA(m,σ) denote the result (true or false) of the verification of
a signature σ on message m with respect to the public key A.pk .

1) Simplified version: We first describe a simplified version of the system and then show how to
extend it to obtain the description of the real BitCoin. We do not describe how the coins are created
as it is not relevant to this paper. Let A = (A.sk , A.pk) be a key pair. In our simplified view a
transaction describing the fact that an amount v (called the value of a transaction) is transferred
from an address A.pk to an address B.pk has the following form

Tx = (y,B.pk , v, sigA(y,B.pk , v)),

8The number of coins that are created in the system is however limited, and therefore BitCoin is expected to have no
inflation.

9Technically an address is a hash of pk . In our informal description we decided to assume that it is simply pk . This
is done only to keep the exposition as simple as possible, as it improves the readability of the transaction scripts later in
the paper.

9

where y is an index of a previous transaction Ty. We say that B.pk is the recipient of Tx, and
that the transaction Ty is an input of the transaction Tx, or that it is redeemed by this transaction
(or redeemed by the address B.pk). More precisely, the meaning of Tx is that the amount v of
money transferred to A.pk in transaction Ty is transferred further to B.pk . The transaction is valid
only if (1) A.pk was a recipient of the transaction Ty, (2) the value of Ty was at least v (the
difference between v and the value of Ty is called the transaction fee), (3) the transaction Ty has
not been redeemed earlier, and (4) the signature of A is correct. Clearly all of these conditions can
be verified publicly.

The first important generalization of this simplified system is that a transaction can have several
“inputs” meaning that it can accumulate money from several past transactions Ty1

, . . . , Ty`
. Let

A1, . . . , A` be the respective key pairs of the recipients of those transactions. Then a multiple-input
transaction has the following form:

Tx = (y1, . . . , y`, B.pk , v, sigA1
(y1, B.pk , v), . . . , sigA`

(y`, B.pk , v)),

and the result of it is that B.pk gets the amount v, provided it is at most equal to the sum of
the values of transactions Ty1

, . . . , Ty`
. This happens only if none of these transactions has been

redeemed before, and all the signatures are valid. Moreover, each transaction can have a lock-time
t that tells at what time the transaction becomes final (t can refer either to a block index or to the
real physical time). In this case we have:

Tx = (y1, . . . , y`, B.pk , v, t, sigA1
(y1, B.pk , v, t), . . . , sigA`

(y`, B.pk , v, t)).

Such a transaction becomes valid only if time t is reached and if none of the transactions Ty1
, . . . , Ty`

has been redeemed by that time (otherwise it is discarded). Each transaction can also have several
outputs, which is a way to divide money between several users. We ignore this fact in our description
since we will not use it in our protocols.

2) A more detailed version: The real BitCoin system is significantly more sophisticated than
what is described above. First of all, there are some syntactic differences, the most important for
us being that each transaction Tx is identified not by its index, but by its hash H(Tx). Hence, from
now on we will assume that x = H(Tx).

The main difference is, however, that in the real BitCoin the users have much more flexibility
in defining the condition on how the transaction Tx can be redeemed. Consider for a moment the
simplest transactions where there is just one input and no time-locks. Recall that in the simplified
system described above, in order to redeem a transaction the recipient A.pk had to produce another
transaction Tx signed with his private key A.sk . In the real BitCoin this is generalized as follows:
each transaction Ty comes with a description of a function (output-script) πy whose output is
Boolean. The transaction Tx redeeming the transaction Ty is valid if πy evaluates to true on input
Tx. Of course, one example of πy is a function that treats Tx as a pair (a message mx, a signature
σx), and checks if σx is a valid signature on mx with respect to the public key A.pk . However, much
more general functions πy are possible. Going further into details, a transaction looks as follows:
Tx = (y, πx, v, σx), where [Tx] = (y, πx, v) is called the body10 of Tx and σx is a “witness” that is
used to make the script πy evaluate to true on Tx (in the simplest case σx is a signature on [Tx]). The
scripts are written in the BitCoin scripting language, which is a stack based, not Turing-complete
language (there are no loops in it). It provides basic arithmetical operations on numbers, operations
on stack, if-then-else statements and some cryptographic functions like calculating hash function

10In the original BitCoin documentation this is called “simplified Tx”. We chosen to rename it to “body” since we
find the original terminology slightly misleading.

10

or verifying a signature. The generalization to the multiple-input transactions with time-locks is
straightforward: a transaction has a form:

Tx = (y1, . . . , y`, πx, v, t, σ1, . . . , σ`),

where the body [Tx] is equal to (y1, . . . , y`, πx, v, t), and it is valid if (1) time t is reached, (2)
every πi([Tx], σi) evaluates to true, where each πi is the output script of the transaction Tyi

, and
(3) none of these transactions has been redeemed before. We will present the transactions as boxes.
The redeeming of transactions will be indicated with arrows (the arrows will be labelled with the
transaction values). For example a transaction Tx = (y1, y2, πx, v, t, σ1, σ2) will be represented as:

Tx(in: Ty1 , Ty2)

in-script: σ1 in-script: σ2

out-script(arg): πx(arg)
val: v B
tlock: t

Ty1 Ty2

v1 B v2 B

v B

The transactions where the input script is a signature, and the output script is a verification
algorithm are the most common type of transactions. We will call them standard transactions,
and the address against which the verification is done will be called the recipient of a transaction.
Currently some miners accept only such transactions. However, there exist other ones that do accept
the non-standard (also called strange) transactions, one example being a big mining pool11 called
Eligius (that mines a new block on average once per hour). We also believe that in the future
accepting the general transaction will become standard, maybe at a cost of a slightly increased fee.
This is important for our applications since our protocols rely heavily on the extended form of
transactions.

B. Security Model
To reason formally about the security we need to describe the attack model that corresponds to

the current BitCoin system. We assume that the parties are connected by an insecure channel and
have access to the BitCoin chain. Let us discuss these two assumptions in detail. First, recall that
our protocol should allow any pair of users on the internet to engage in a protocol. Hence, we
cannot assume that there is any secure connection between the parties (as this would require that
they can verify their identity, which obviously is impossible in general), and therefore any type of
a man-in-the middle attack is possible.

The only “trusted component” in the system is the BitCoin chain. For the sake of simplicity
in our model we will ignore the implementation details of it, and simply assume that the parties
have access to a trusted third party denoted Ledger, whose contents is publicly available. One
very important aspect that needs to be addressed are the security properties of the communication
channel between the parties and the Ledger. Firstly, it is completely reasonable to assume that the
parties can verify Ledger’s authenticity. In other words: each party can access the current contents
of the Ledger. In particular, the users can post transactions on the Ledger. After a transaction is
posted it appears on the Ledger (provided it is valid), however it may happen not immediately, and

11Mining pools are coalitions of miners that perform their work jointly and share the profits.

11

some delay is possible. There is an upper bound maxLedger on this delay. This corresponds to an
assumption that sooner or later every transaction will appear in some BitCoin block. We use this
assumption very mildly and e.g. maxLedger = 1 day is also ok for us (the only price for this is
that in such case we have to allow the adversary to delay the termination of the protocol for time
O(maxLedger)). Each transaction posted on the Ledger has a time stamp that refers to the moment
when it appeared on the Ledger.

What is a bit less obvious is how to define privacy of the communication between the parties
and the Ledger, especially the question of the privacy of the writing procedure. More precisely,
the problem is that it is completely unreasonable to assume that a transaction is secret until it
appears on the Ledger (since the transactions are broadcast between the nodes of the network).
Hence we do not assume it. This actually poses an additional challenge in designing the protocols
because of the problem of the malleability12 of the transactions. Let us explain it now. Recall that
the transactions are referred to by their hashes. Suppose a party P creates a transaction T and,
before posting it on the Ledger, obtains from some other party P′ a transaction T ′ that redeems
T (e.g.: T ′ may be time-locked and serve P to redeem T if P′ misbehaves). Obviously T ′ needs
to contain (in the signed body) a hash H(T) of T . However, if now P posts T then an adversary
(allied with malicious P′) can produce another transaction T̂ whose semantics is the same is T , but
whose hash is different (this can be done, e.g., by adding some dummy instructions to the input
scripts of T). The adversary can now post T̂ on the Ledger and, if he is lucky, T̂ will appear on the
Ledger instead of T ! It is possible that in the future versions of the BitCoin system this issue will
be addressed and the transactions will not be malleable. In Section V we propose a scheme that
is secure under this assumption. We would like to stress that our main schemes (Section III and
IV) do not not assume non-malleability of the transactions, and are secure even if the adversary
obtains full information on the transactions before they appear on the Ledger.

We do not need to assume any privacy of the reading procedure, i.e. each party accesses pattern
to Ledger can be publicly known. We assume that the parties have access to a perfect clock and
that their internal computation takes no time. The communication between the parties also takes no
time, unless the adversary delays it. These assumptions are made to keep the model as simple as
possible, and the security of our protocols does not depend on these assumptions. In particular we
assume that the network is asynchronous and our protocols are also secure if the communication
takes some small amount of time. For simplicity we also assume that the transaction fees are zero.
The extension to non-zero transaction fees is discussed in Section. VI.

III. BITCOIN-BASED TIMED COMMITMENT SCHEME

We start with constructing a BitCoin-based timed-commitment scheme [7], [24]. Recall that a
commitment scheme [6], [8] consists of two phases: the commitment phase Commit and the opening
phase Open . Typically a commitment scheme is executed between two parties: a committer C and
a recipient. To be more general we will assume that there are n recipients, denoted P1, . . . ,Pn. The
committer starts the protocol with some secret value x. This value will become known to every
recipient after the opening phase is executed. Informally, we require that, if the committer is honest,
then before the opening phase started, the adversary has no information about x (this property is
called “hiding”). On the other hand, every honest recipient can be sure that, no matter how a
malicious sender behaves, the commitment can be open in exactly one way, i.e. it is impossible for
the committer to “change his mind” and open with some x′ 6= x. This property is called “binding”.
Although incredibly useful in many applications, the standard commitment schemes suffer from the

12See en.bitcoin.it/wiki/Transaction Malleability.

en.bitcoin.it/wiki/Transaction_Malleability

12

Commit i(in: UC
i)

in-script: sigC̃([Commit i])
out-script(body, σ1, σ2, x):
(H(x) = h ∧ verC̃(body, σ1))∨
(verC̃(body, σ1) ∧
verP̃i

(body, σ2))

val: dB
Openi(in: Commit i)
in-script:
sigC̃([Openi]),⊥, s
out-
script(body, σ):
verC̃(body, σ)
val: dB

PayDeposit i(in: Commit i)
in-script:
sigC̃([PayDeposit i]), sigP̃i

([PayDeposit i]),⊥
out-script(body, σ): verP̃i

(body, σ)

val: dB
tlock: t

dB dB

dB

dB dB

Pre-condition:
1) The key pair of C is C̃ and the key pair of each Pi is P̃i.
2) The Ledger contains n unredeemed transactions UC

1 , . . . , U
C
n , which can be redeemed with key C̃,

each having value dB.
The CS.Commit(C, d, t, s) phase

3) The Committer C computes h = H(s). He sends to the Ledger the transactions
Commit1, . . . ,Commitn. This obviously means that he reveals h, as it is a part of each Commit i.

4) If within time maxLedger some of the Commit i transactions does not appear on the Ledger, or if
they look incorrect (e.g. they differ in the h value) then the parties abort.

5) The Committer C creates the bodies of the transactions PayDeposit1, . . . ,PayDepositn, signs them
and sends each signed body [PayDeposit i] to Pi. If an appropriate transaction does not arrive to Pi,
then he halts.

The CS.Open(C, d, t, s) phase
6) The Committer C sends to the Ledger the transactions Openi, . . . ,Openn, what reveals the secret

s.
7) If within time t the transaction Openi does not appear on the Ledger then Pi signs and sends the

transaction PayDeposit i to the Ledger and earns dB.

Fig. 1. The CS protocol. The scripts’ arguments, which are omitted are denoted by ⊥.

following problem: there is no way to force the committer to reveal his secret x, and, in particular,
if he aborts before the Open phase starts then x remains secret.

BitCoin offers an attractive way to deal with this problem. Namely: using the BitCoin system
one can force the committer to back his commitment with some money, called the deposit, that
will be given to the other parties if he refuses to open the commitment within some time t.

We now sketch the definition of a BitCoin-based commitment scheme. First, assume that before
the protocol starts the Ledger contains n unredeemed standard transactions UC

1 , . . . , U
C
n that can be

redeemed with a key known only to C, each having value dB (for some parameter d). In fact, in
real life it would be enough to have just one transaction, that would later be “splited” inside of the
protocol. This would, however, force us to use the multiple-output transactions which we want to
avoid, in order not to additionally complicate the description of the system.

The protocol is denoted CS(C, d, t, s) and it consists of two phases: the commitment phase,
denoted CS.Commit(C, d, t, s) (where s contains the message to which C commits and some
randomness) and the opening phase CS.Open(C, d, t, s). The honest committer always opens his
commitment by time t. In this case he gets back his money, i.e. the Ledger consists of standard

13

transactions that can be redeemed with a key known only to him, whose total value13 is (d · n)B.
The security definition in the standard commitment scheme: assuming that the committer is

honest, the adversary does not learn any significant information about x before the opening phase,
and each honest party can be sure that there is at most one value x that the committer can open
in the opening phase. Each recipient can also abort the commitment phase (which happens if he
discovers that the Committer is cheating, or if the adversary disturbs the communication). However,
there is one additional security guarantee: if the committer did not open the commitment by time
t then every other party earns dB. More precisely: for every honest Pi the Ledger contains a
transaction that can be redeemed with a key known only to Pi.

Let us also comment on the formal aspects. To satisfy the page limit, we do not provide the
full formal model, however, from the discussion above it should be clear how such a model can
be defined. We allow negligible error probabilities both in binding and in hiding. Also, the last
security property (concerning the deposits) has to hold only with overwhelming probability. As
these notions are asymptotic, this requires using a security parameter, denoted by k. Of course, in
reality the parameter k is partially fixed by the BitCoin specification (e.g. we cannot modify the
length of the outputs of the hash functions).

A. The implementation

Our implementation can be based on any standard commitment scheme as long as it is hash-
based, by which we mean that it has the following structure. Let H be a hash function. During the
commitment phase the committer sends to the recipient some value denoted h (which essentially
constitutes his “commitment” to x), and in the opening phase the committer sends to the recipient a
value s, such that H(s) = h. If H(s) 6= h then the recipient does not accept the opening. Otherwise
he computes x from s (there exists an algorithm that allows him to do it efficiently). One example
of such a commitment scheme is as follows. Suppose x ∈ {0, 1}∗. In the commitment phase C
computes s := (x||r), where r is chosen uniformly at random from {0, 1}k, and sends to every
recipient h = H(s). In the opening phase the commiter sends to every recipient s, the recipient
checks if indeed h = H(s), and recovers x by stripping-off the last k bits from s. The binding
property of this commitment follows from the collision-resistance of the hash function H , since
to be able to open the commitment in two different ways a malicious sender would need to find
collisions in H . For the hiding property we need to assume that H is a random oracle. We think
that this is satisfactory since anyway the security of the BitCoin PoWs relies on the random oracle
assumption. Clearly, if H is a random oracle then no adversary can obtain any information about
x if he does not learn s (which an honest C keeps private until the opening phase).

The basic idea of our protocol is as follows. The committer will talk independently to each
recipient Pi. For each of them he will create in the commitment phase a transaction Commit i with
value d that normally will be redeemed by him in the opening phase with a transaction Openi.
The transaction Commit i will be constructed in such a way that the Openi transaction has to
automatically open the commitment. Technically it will be done by constructing the output script
Commit i in such a way that the redeeming transaction has to provide s (which will therefore
become publicly known as all transactions are publicly visible). Of course, this means that the
money of the committer is “frozen” until he reveals s. However, to set a limit on the waiting time
of the recipient, we also require the commuter to send to Pi a transaction PayDeposit i that can
redeem Commit i if time t passes. Of course, Pi, after receiving PayDeposit i needs to check if it

13In case of non-zero transaction fees this value can be decreased by these fees. This remark applies also to the amounts
d redeemed by the recipients.

14

is correct. The commitment scheme and the transactions are depicted on Figure 1 (page 12). We
now state the following lemma, whose proof appears in the full version of this paper.

Lemma 1: The CS scheme on Figure 1 is a BitCoin-based commitment scheme.

IV. THE LOTTERY PROTOCOL

PutMoney1(in: T 1)
in-script: sigP1

([PutMoney1])
out-script(body, σ):
verP̃1

(body, σ)

val: 1B

. . .

PutMoney i(in: T i)

in-script: sigPi
([PutMoneyi])

out-script(body, σ):
verP̃i

(body, σ)

val: 1B

. . .

PutMoneyN (in: TN)

in-script: sigPN
([PutMoneyN])

out-script(body, σ):
verP̃N

(body, σ)

val: 1B

ComputeN (in: . . . ,PutMoneyi, . . .)

. . .
in-script:
sigP̃i

([ComputeN])
. . .

out-script(body, σ, ŝ1, ŝ2, . . . , ŝN):
H(ŝ1) = h1∧. . .∧H(ŝN) = hN∧verf̃(ŝ1,...,ŝN)(body, σ)

val: N B

1B
1B

1B

ClaimMoney1(in: ComputeN)
in-script:
sigP̃1

([ClaimMoney1]), s1, . . . sN
out-script(body, σ):
verP1(body, σ)
val: N B

. . .

ClaimMoneyi(in: ComputeN)
in-script:
sigP̃i

([ClaimMoneyi]), s1, . . . sN
out-script(body, σ):
verPi(body, σ)
val: N B

. . .

ClaimMoneyN (in: ComputeN)
in-script:
sigP̃N

([ClaimMoneyN]), s1, . . . sN
out-script(body, σ):
verPN (body, σ)
val: N B

N B N B N B

Pre-condition:
1) For each i, player Pi holds a pair of keys (Pi.sk , Pi.pk).
2) For each i, the Ledger contains a standard transaction T i that have value 1B each and whose recipient is

Pi. The Ledger contains also transactions {U i
j}, where i, j ∈ {1, . . . , N} and i 6= j, such that each U i

j

can be redeemed by P i and has value dB (for some parameter d)
Initialization phase:

3) For each i, player Pi generates a pair of keys (P̃i.sk , P̃i.pk) and sends his public key P̃i.pk to all other
players.

4) For each i, player Pi chooses his secret si.
Deposits phase:

5) Let t be the current time. For each i = 1, . . . , N the commitment phase CS.Commit(Pi, d, t + 4 ·
maxLedger, si) is executed using the transactions {U i

j} as inputs.
Execution phase:

6) For each i, player Pi puts transaction PutMoneyi to the Ledger. The players halt if any of those transactions
did not appear on the Ledger before time t+ 2 ·maxLedger.

7) For each i ≥ 2, player Pi computes his signature on transaction ComputeN and sends it to the player P1.
8) Player P1 puts all received signatures (and his own) into inputs of transaction ComputeN and puts it to

the Ledger. If ComputeN did not appear on Ledger in time t+ 3 ·maxLedger, then the players halt.
9) For each i, the player Pi puts his Open transactions on Ledger what reveals his secret and sends back

to him the deposits he made during the executions of CS protocol from Step. 5. If some player did not
revealed his secret in time t+4·maxLedger, then other players send the appropriate PayDeposit transactions
from that player CS protocols to the Ledger to get N B.

10) The player, that is the winner
(
i.e.Pf(s1,...,sN)

)
, gets the pot by sending the transaction

ClaimMoneyf(s1,...,sN) to the Ledger.

Fig. 2. The MultiPlayersLottery protocol.

As discussed in the introduction, as an example of an application of the “MPCs on BitCoin”
concept we construct a protocol for a lottery executed among a group of parties P1, . . . ,PN . We

15

say that a protocol is a fair lottery protocol if it is correct and secure. To define correctness assume
all the parties are following the protocol and the communication channels between them are secure
(i.e. it reliably transmits the messages between the parties without delay).

We assume that before the protocol starts, the Ledger contains unredeemed standard transactions
T 1, . . . , TN known to all the parties, all of value 1B and each T i can be redeemed with a key
known only to Pi. Moreover, since we will use the commitment scheme from Section III, the parties
need to have money to pay the “deposits”. This money will come from transactions {U i

j}, where
i, j ∈ {1, . . . , N} and i 6= j, such that each U i

j can be redeemed only by Pi and has value dB (for
some parameter d whose value will be determined later). We assume that these transactions are on
the Ledger before the protocol starts. The protocol has to terminate in time O(maxLedger) and at
the moment of termination, the Ledger has to contain a standard transaction with value N B which
can be redeemed with a key known only to Pw, were w is chosen uniformly at random from the
set {1, . . . , N}. The Ledger also contains transactions for paying back the deposits, i.e. we require
that for each Pi there is an additional transaction (that can be redeemed only by him) whose value
is (N − 1)dB. Of course, in the case of the non-zero fees these values will be slightly smaller, but
to keep things simple we assume here that these fees are zero.

To define security, look at the execution of the protocol from the point of view of one party, say
P1 (the case of the other parties is symmetric). Assume P1 is honest and hence, in particular, the
Ledger contains the transactions T 1, U1

2 , . . . , U
1
N , whose recipient is Pi and whose value is: 1B

in case of T 1 and dB in case of the U1
j ’s. Obviously, P1 has no guarantee that the protocol will

terminate successfully, as the other party can, e.g., leave the protocol before it is completed. What
is important is that P1 should be sure that she will not loose money because of this termination (in
particular: the other parties should not be allowed to terminate the protocol after he learned that P1

won). This is formalized as follows: we define the payoff of P1 in the execution of the protocol to
be equal to the difference between the money that P1 invested and the money that he won. More
formally, the payoff of P1 is equal to X1− ((N−1) ·d+1)B, where X1 is defined as the total sum
of the values of transactions from the execution of the protocol (including T 1, U1

2 , . . . , U
1
N) that P1

(and only him) can redeem when the protocol terminates. (The payoff of any other participant Pi

is defined symmetrically.)
Ideally we would like to require that the expected payoff of each honest player cannot be neg-

ative14. However, since the security of our protocol relies on non-perfect cryptographic primitives,
such as commitment schemes, we have to take into account a negligible probability of the adversary
breaking them. Hence, we require only that these values are “at least negligible”15 in some security
parameter k (that is used in the crypto primitives). Formally, we say that the protocol is secure if
for any strategy of the adversary, that controls the network and corrupts the other parties, (1) the
execution of the protocol terminates in time O(maxLedger), and (2) the expected payoff of each
honest party is at least negligible. The expected values are taken over all the randomness in the
experiment (i.e. both the internal randomness of the parties and the adversary). We also note that,
of course, a dishonest participant can always interrupt in a very early stage. This is not a problem
if the transaction fees are zero. In case of the non-zero transaction fees this may cause the other
parties to loose a small amount of money. This problem is addressed in Section VI.

14In principle it can be actually positive if the adversary plays against his own financial interest.
15Formally: a function α : N→ R is at least negligible if there exists a function β : N→ R such that for every i we

have α(i) ≥ β(i) and β is negligible, i.e. its absolute value is asymptotically smaller than the inverse of any polynomial.

16

A. The protocol

Our protocol is built on top of the classical coin-tossing protocol of Blum [6] that is based on
cryptographic commitments. The Blum’s scheme adapted to N parties is very simple — each party
Pi commits herself to an element bi ∈ ZN . Then, the parties open their commitments and the
winner is Pw where w = (b1+ · · ·+bN mod N)+1. As described in the introduction, this protocol
does not directly work for our applications, and we need to adapt it to BitCoin. In particular, in our
solution creating and opening the commitments are done by the transactions’ scripts using SHA-
256 hashing. Due to the technical limitations of BitCoin scripting language in its current form16,
instead of random numbers bi, the parties commit themselves to strings si sampled with uniformly
random length from SNk := {0, 1}8k ∪ . . . ∪ {0, 1}8(k+N−1), i.e. it is the set of strings of length
k, . . . , (k + N − 1) bytes17, where k is the security parameter. The winner is determined by the
winner choosing function f(s1, . . . , sN) for N players to be equal P` if

∑N
i=1 |si| ≡ (`−1) mod N,

where s1, . . . , sN are the secret strings chosen from SNk and |si| is a length of string si in bytes.
Honest users first choose length (in bytes) of their strings from the set {k, . . . , k + N − 1} and
then generate a random string of the appropriate length. It is easy to see that as long as one of
the parties draws her string’s length uniformly, then the output of f(s1, . . . , sN) is also uniformly
random.

1) First attempt: For simplicity let us start with the case of N = 2 parties, called Alice A and
Bob B. Their key pairs are A and B (resp.) and their unredeemed transactions placed on the Ledger
before the protocol starts are denoted TA, UA and TB, UB. We start with presenting a naive and
insecure construction of the protocol, and then show how it can be modified to obtain a secure
scheme. The protocol starts with Alice and Bob creating their new pairs of keys Ã = (Ã.sk , Ã.pk)
and B̃ = (B̃.sk , B̃.pk), respectively. These keys will be used during the protocol. It is actually quite
natural to create new keys for this purpose, especially since many BitCoin manuals recommend
creating a fresh key pair for every transaction. Anyway, there is a good reason to do it in our protocol,
e.g. to avoid interference with different sessions of the same protocol. Both parties announce their
public keys to each other. Alice and Bob also draw at random their secret strings sA and sB
(respectively) from the set S2k and they exchange the hashes hA = H(sA) and hB = H(sB).
Moreover Alice sends to the Ledger the following transaction:

PutMoneyA
1 (in: T A)

in-script: sigA([PutMoneyA
1])

out-script(body , σ):
verÃ(body , σ)
val: 1B

Bob also sends to the Ledger a transaction PutMoneyB1 defined symmetrically (recall that TA and
TB are standard transactions that can be redeemed by Alice and Bob respectively). If at any point
later a party P ∈ {A,B} realizes that the other party is cheating, then the first thing P will do is
to “take the money and run”, i.e. to post a transaction that redeems PutMoneyP1 . We will call it
“halting the execution”. This can clearly be done as long as PutMoneyP1 has not been redeemed
by some other transaction. In the next step one of the parties constructs a transaction Compute1
defined as follows:

16Most of the more advanced instructions (e.g. concatenation, accessing particular bits in a string or arithmetic on big
integers) have been disabled out of concern that the clients may have bugs in their implementation. Therefore, computing
length (in bytes), hashing and testing equality are the only operations available for strings.

17The transactions in the protocol will always check if their inputs are from SN
k (whenever they are supposed to be

from this set). If not, they are considered invalid, and the transaction is not evaluated.

17

Compute1(in: PutMoneyA
1 ,PutMoneyB

1)
in-script:
sigÃ([Compute1)]

in-script: sigB̃([Compute1)]

out-script(body , σ1, σ2, ŝA, ŝB):
(H(ŝA) = hA ∧ H(ŝB) = hB ∧ f(ŝA, ŝB) = A ∧
verÃ(body , σ1))∨
(H(ŝA) = hA ∧ H(ŝB) = hB ∧ f(ŝA, ŝB) = B ∧
verB̃(body , σ2))
val: 2B

Note that the body of Compute1 can be computed from the publicly-available information. Hence
this construction can be implemented as follows: first one of the players, say, Bob computes
[Compute1], and sends his signature sigB̃([Compute1)] on it to Alice. Alice adds her signature
sigÃ([Compute1)] and posts the entire transaction Compute1 to the Ledger.

The output script of Compute1 is an alternative of two conditions. Since they are symmetric
(with respect to A and B) let us only look at the first condition (call it γ). To make it evaluate to
true on body one needs to provide as “witnesses” (σ1, ŝA, ŝB) where ŝA and ŝB are the pre-images
of hA and hB (with respect to H) from S2k . Clearly the collision-resistance of H implies that ŝA
and ŝB have to be equal to sA and sB (resp.). Hence γ can be satisfied only if the winner choosing
function f evaluates to A on input (sA, sB). Since only Alice knows the private key of Ã, hence only
she can later provide a signature on σ1 that would make the last part of γ (i.e.: “verÃ(body , σ1)”)
evaluate to true.

Clearly before Compute1 appears on the Ledger each party P can “change her mind” and redeem
her initial transaction PutMoneyP1 , which would make the transaction Compute1 invalid. As we
said before, it is ok for us if one party interrupts the coin-tossing procedure as long as she had to
decide about doing it before she learned that she lost. Hence, Alice and Bob wait until Compute1
appears on Ledger before they proceed to the step in which the winner is determined. This final
step is simple: Alice and Bob just broadcast sA and sB, respectively. Now: if f(sA, sB) = A then
Alice can redeem the transaction Compute1 in a transaction ClaimMoneyA1 constructed as:

ClaimMoneyA
1 (in: Compute1)

in-script:
sigÃ([ClaimMoneyA

1]),⊥, sA, sB
out-script(body , σ): verA(body , σ)
val: 2B

On the other hand Bob cannot redeem Compute1, as the condition f(sA, sB) = B evaluates to
false. Symmetrically: if f(sA, sB) = B then only Bob can redeem Compute1 by an analogous
transaction ClaimMoneyB1 .

This protocol is obviously correct. It may also look secure, as it is essentially identical to Blum’s
protocol described at the beginning of this section (with the hash functions used as the commitment
schemes). Unfortunately, it suffers from the following problem: there is no way to guarantee that
the parties always send sA and sB. More concretely: one party, say, Bob, can refuse to send sB after
he learned that he lost (i.e. that f(sA, sB) = A). As his money is already “gone” (his transaction
TB has already been redeemed in transaction Compute1) he would do it just because of sheer
nastiness. Unfortunately in a purely peer-to-peer environment, with no concept of a “reputation”,
such behavior can happen, and there is no way to punish it.

This is exactly why we need to use the BitCoin-based commitment scheme from Section III.
Later, in Section V we also present another technique for dealing with this problem, which avoids
using the deposits. Unfortunately, it suffers from certain shortcomings. First of all, it works only

18

for two parties. Secondly, and more importantly, to achieve full security it needs an assumption
that the transactions are non-malleable.

2) The secure version of the scheme: The general idea behind the secure MultiPlayersLottery
protocol is that each party first commits to her inputs using the CS(C, d, t, s) commitment scheme,
instead of the standard commitment scheme (the parameters d and t will be determined later).
Recall that the CS commitment scheme can be opened by sending a value s, and this opening is
verified by checking that s hashes to a value h sent by the committer in the commitment phase.
So, Alice executes the CS protocol acting as the committer and Bob as a recipient (note that there
is only one recipient and hence n = 1). Let sA and hA be the variables s and h created this
way. Symmetrically: Bob executes the CS protocol acting as the committer, and Alice being the
recipient, which the corresponding variables sB and hB. Once both commitment phases are executed
successfully (recall that this includes receiving by each party the signed PayDeposit transaction),
the parties proceed to the next steps, which are exactly as before: first, each of them posts his
transaction PutMoney on the Ledger. Once all these transactions appear on the Ledger they create
the Compute2 transaction (in the same way as before), and one it appears on the Ledger they
open the commitments. The only difference is obviously that, since they used the CS commitment
scheme, they can now “punish” the other party if she did not open her commitment by executing
PayDeposit after the time t passes, and claim her deposit. On the other hand: each honest party is
always guaranteed to get her deposit back, hence she does not risk anything investing this money
at the beginning of the protocol.

We also need to comment about the choice of the parameters t and d. First, it easy to see that
the maximum time in which the honest parties will complete the protocol is at most 4 ·maxLedger
after time t′ is the time when the protocol started. Hence we can safely set t := t′ +4 ·maxLedger.

The parameter d should be chosen in such a way that it will fully compensate to each party the
fact that a player aborted. Let us now calculate the payoff of some fixed player P1, say, assuming the
worst-case scenario, which is as that (a) the protocol is always aborted when P1 is about to win, and
(b) there is only one “aborting party” (so Pi is payed only one deposit). Hence his expected payoff
is −N−1

N B (this corresponds to the case when he lost) plus d−1
N B (the case when the protocol was

aborted). Therefore to make the expected value equal to 0 we need to set d = N B. This implies
that the total amount of money invested in deposit by each player has to be equal to N(N − 1)B.
In real-life this would be ok probably for small groups N = 2, 3, but not for the larger ones.

We now have the following lemma, whose proof will appear in the full version of this paper.
Lemma 2: The MultiPlayersLottery protocol from Figure 2 is a fair lottery protocol for d = N B

and t = t′ + 4 ·maxLedger, where t′ is the starting time of the protocol.

V. TWO-PARTY LOTTERY SECURE IN A WEAKER MODEL

In this section we show a construction of a two-party lottery which avoids using the deposits, and
hence may be useful for applications where the parties are not willing to invest extra money in the
execution of the protocol. The drawback of the protocol presented in this section is that it works only
for two parties. Moreover, to achieve full security it needs an assumption that the transactions are
non-malleable. The problem of malleability has already been described in Section II-B. Recall, that
the main problem is that an adversary (e.g. the malicious miner) can modify (“maul”) the transaction
T before posting it on the Ledger in such a way that the modified transaction is semantically
equivalent to the original one, but it has a different hash. Hence, e.g., the transactions that were
created to redeem T will not be able to do it (as the hash of the transaction is different). In order
for the protocol presented in this section to be secure, we need to assume that such an attack is

19

PutMoneyA(in: T A)
in-script:
sigA([PutMoneyA])
out-script(body , σ):
verÃ(body , σ)
val: 1B

PutMoneyB(in: T B)
in-script:
sigB([PutMoneyB])
out-script(body , σ, ŝ):
verB̃(body , σ) ∧(H(ŝ) =
hB)
val: 1B

Compute(in: PutMoneyA,PutMoneyB)

in-script:
sigÃ([Compute)]

in-script:
sigB̃([Compute]), sA

out-script(body , σ1, σ2, ŝA, ŝB):
(H(ŝA) = hA ∧H(ŝB) = hB

∧f(ŝA, ŝB) = A ∧
verÃ(body , σ1)) ∨
(H(ŝA) = hA ∧H(ŝB) = hB

∧f(ŝA, ŝB) = B ∧
verB̃(body , σ2)) ∨
(verÃ(body , σ1) ∧ verB̃(body , σ2))
val: 2B

Fuse(in: Compute)
in-script:
sigÃ([Fuse]),
sigB̃([Fuse]),⊥,⊥
out-
script(body , σ):
verB(body , σ)
val: 2B
tlock: t + 2 ·
maxLedger

ClaimMoneyA(in: Compute)
in-script:
sigÃ([ClaimMoneyA]),⊥, sA, sB
out-script(body , σ):
verA(body , σ)
val: 2B

ClaimMoneyB(in: Compute)
in-script:
⊥, sigB̃([ClaimMoneyB]), sA, sB
out-script(body , σ):
verB(body , σ)
val: 2B

1B 1B

2B
2B 2B

1B 1B

2B

2B 2B

Pre-condition:
1) Alice holds a pair of keys A = (skA, pkA) and Bob holds a pair of keys B = (skB , pkB).
2) The Ledger contains standard transactions T A and T B that have value 1B each and whose recipients are

pkA and pkB , respectively.
Initialization phase:

3) Alice and Bob generate their key pairs Ã = (Ã.sk , Ã.pk) and B̃ = (B̃.sk , B̃.pk) (respectively) and
exchange the public keys Ã.pk and B̃.pk .

4) The players choose their secret strings sA and sB.
5) Alice computes a hash of her secret hA := H(sA) and sends it to Bob.
6) Bob computes a hash of his secret hB := H(sB) and sends it to Alice.
7) Each P ∈ {A,B} computes PutMoneyP and post it on Ledger. The players proceed to the next step only

once both of these transactions appear on Ledger.
Computation phase:

8) The players construct the Compute transaction as follows:
a) Alice computes the body of the transaction Compute together with the signature sigÃ([Compute])

and sends sigÃ([Compute]) to Bob.
b) Bob verifies Alice’s signature and halts if it is incorrect. Otherwise he computes the whole transaction

Compute by adding a signature sigB̃([Compute]) to the message received in the previous step.
9) The players construct the Fuse transaction as follows:

a) Bob sends hCompute = H(Compute) to Alice,
b) Alice computes [Fuse], signs it, and sends the signature sigÃ([Fuse]) to Bob (let t denote the time

when it happened),
c) Bob verifies Alice’s signature and halts if it is incorrect.

Execution phase:
10) Bob sends Compute to Ledger. Note that this reveals sB. If Compute did not appear on Ledger in time

t+maxLedger then Alice halts.
11) Alice sends sA to Bob. If Bob did not receive it in time t+2 ·maxLedger then he sends the Fuse transaction

to Ledger.
12) If f(sA, sB) = A the Alice sends ClaimMoneyA to Ledger, otherwise Bob sends ClaimMoneyB to

Ledger.

Fig. 3. The TwoPlayersLottery protocol

20

impossible. Technically, we do it by assuming that the channel between from each party to the
Ledger is private. The protocols secure in this model will be called fair under the non-malleability
assumption.

We would like to stress that we use this assumption very mildly. First of all it concerns only one
transaction (Compute, see below). Secondly, the adversary does not gain anything by launching
this attack. The only consequence is that Bob may be prevented from getting his reward in case
he wins (but the money that Alice invested in the game will not go back to her). Considering that
this attack is not simple to perform in real life it may not make sense for a malicious Alice to
launch it. Still, we would like to stress that this is a serious security problem, and we hope that in
the future the BitCoin designers will change the specification of the system in such a way that the
“malleability” attack will be impossible. To explain our protocol let us go to the point in Section
IV where it turned out that we need the BitCoin commitment schemes, i.e. just before Section
IV-A1. Recall that we observed that the protocol from Section IV-A2 is not secure against a “nasty
behavior” of party that, after realizing that she lost, simply quits the protocol.

3) An alternative (and slightly flawed) idea for a fix: Suppose for a moment we are only interested
in security against the “nasty Bob”. Our method is to force him to reveal sB simultaneously with
Compute1 being posted on the Ledger, by requiring that sB is a part of Compute1. More concretely
this is done as follows. Recall that in our initial protocol we said that Compute1 is created and
posted on the Ledger by “one of the parties”. This was ok since the protocol was completely
symmetric for A and B. In our new solution we break this symmetry by modifying the Compute1
transaction, this new version will be denoted Compute2) and designing the protocol in such a way
that Compute2 will be always posted on the Ledger by B. First of all, however, we redefine the
PutMoneyB1 transaction that B posts on the Ledger at the beginning of the protocol. The modified
transaction is denoted PutMoneyB2 .

PutMoneyB
2 (in: T B)

in-script: sigB([PutMoneyB
2])

out-script(body , σ, ŝ): verB̃(body , σ) ∧ (H(ŝ) =
hB)
val: 1B

The only difference compared to PutMoneyB1 is the addition of the “∧(H(ŝ) = hB)” part. This
trick forces Bob to reveal the pre-image of hB (which has to be equal to sA) whenever he redeems
PutMoneyB2 .

The transaction PutMoneyA1 remains unchanged, i.e.: PutMoneyA2 := PutMoneyA1 . Clearly
players can still redeem their transactions later in case they discover that the other player is cheating.
Transaction Compute2 is the same as Compute1, except that sB is added to the input script for
the second input transaction:

Compute2(in: PutMoneyA
2 ,PutMoneyB

2)
in-script:
sigÃ([Compute2])

in-script:
sigB̃([Compute2]), sB

out-script(body , σ1, σ2, ŝA, ŝB):
(H(ŝA) = hA ∧ H(ŝB) = hB ∧ f(ŝA, ŝB) = A ∧
verÃ(body , σ1))∨
(H(ŝA) = hA ∧ H(ŝB) = hB ∧ f(ŝA, ŝB) = B ∧
verB̃(body , σ2))
val: 2B

The parties post their PutMoney2 transactions on the Ledger and construct transaction Compute2
in the following way. First, observe that both parties can easily construct the body of Compute2

21

themselves, as all the information needed for this is: the transactions PutMoneyA2 and PutMoneyB2
and the hashes of sA and sB, which are all publicly available. Hence the only thing that needs
to be computed are the input scripts. This computation is done as follows: first Alice com-
putes her input script sigÃ([Compute2]) and sends it to Bob. Then Bob adds his input script
(sigB̃([Compute2]), sB), and posts Compute2 on the Ledger.

The ClaimMoneyP2 procedures (for P ∈ {A,B}) remain unchanged, except, of course that their
input is Compute2 instead of Compute1). Let us now analyze the security of this protocol from
the point of view of both parties. First, observe that Alice does not risk anything by sending
sigÃ([Compute2]) to Bob. This is because it consists of a signature on the entire body of the
transaction, and hence it is useless as long as Bob did not add his input script18. But, if Bob added
a correct input script and posted Compute2 on the Ledger then he automatically had to reveal sB.
Hence, from the point of view of Alice the problem of “nasty Bob” is solved.

Unfortunately, from the point of view of Bob the situation looks much worse, as he still has no
guarantee that Alice will post sA once she learned that she lost. This is why one more modification
of the protocol is needed.

4) The secure version of the scheme: To fix the problem described above we extend our protocol
by adding a special transaction that we denote Fuse and that will be used by Bob to redeem
Compute if Alice did not send sA within some specific time, say, 2 · maxLedger. To achieve this
we will use the time-lock mechanism described in the introduction. This requires modifying once
again the Compute2 transaction so it can be redeemed by Fuse. All in all, the transactions are
now defined as follows:

Compute(in: PutMoneyA,PutMoneyB)
in-script:
sigÃ([Compute)]

in-script:
sigB̃([Compute]), sB

out-script(body , σ1, σ2, ŝA, ŝB):
(H(ŝA) = hA ∧ H(ŝB) = hB ∧ f(ŝA, ŝB) = A ∧
verÃ(body , σ1))∨
(H(ŝA) = hA ∧ H(ŝB) = hB ∧ f(ŝA, ŝB) = B ∧
verB̃(body , σ2))∨
(verÃ(body , σ1) ∧ verB̃(body , σ2))
val: 2B

Fuse(in: Compute)
in-script:
sigÃ([Fuse]), sigB̃([Fuse]),⊥,⊥
out-script(body , σ): verB(body , σ)
val: 2B
tlock: t+ 2 ·maxLedger

(above t refers roughly to the time when Fuse is created, we will define it more concretely in
a moment).

Transactions ClaimMoneyA and ClaimMoneyB are the same as ClaimMoneyA2 and ClaimMoneyB2
(except that they redeem Compute transaction instead of Compute2). It is clear that Compute can
be generated jointly by Alice and Bob in the same way as before (the only new part of Compute
is the last line “verÃ(body , σ1)∧ verB̃(body , σ2)” that can be easily computed by both parties from
the public information).

What remains is to describe the construction of the Fuse transaction. Clearly, Bob can create the
entire Fuse by himself, except of the signature sigÃ([Fuse]) in the input script, which has to be

18Recall that the body of a transaction includes also the information about its input transactions, and moreover, a
transaction becomes valid only if all the input transactions can be redeemed

22

computed by Alice, as only she knows her private key. To do this Alice needs to know the body of
Fuse . It is easy to see that she knows all of it, except of the input transaction Compute. Moreover,
Bob cannot simply send Compute to Alice, since Compute includes the information on his secret
sB which Alice should not learn at this point.

We solve this problem by exploiting the details of the BitCoin implementation, namely the fact
that the transactions are referenced by their hashes. Hence, to create the body of Fuse Alice only
needs to know the hash hCompute of Compute. Therefore our protocol will contain the following
sub-procedure (executed directly after Bob constructs Compute, but before he posts it on the
Ledger): (1) Bob sends hCompute = H(Compute) to Alice, (2) Alice computes [Fuse], signs it,
and sends the signature sigÃ([Fuse]) to Bob, (3) Bob verifies Alice’s signature and halts if it is
incorrect. Time t that is used in the time-lock in Fuse will refer to time when Alice executed Step
(2) above. This system guarantees that Bob can always claim his 2B in time t+2 ·maxLedger even
if Alice did not execute the last step. Observe that of course Alice should halt her execution if she
does not see Compute on the Ledger within time t + maxLedger, as otherwise Bob could simply
post Compute at much later (after time t+2 ·maxLedger, say) and immediately use Fuse to claim
the reward.

There are some issues in this procedure that need to be addressed. Firstly, the reader may be
worried that H(Compute) reveals some information on Compute. In practice (and in theory if H
is a random oracle) this happens only if the set of possible inputs to H is small and known to
the adversary. In our case the adversary is the dishonest Alice, and it can be easily seen that from
her point of view the set of possible Compute transactions is huge, one reason for this being that
Compute includes sB, which is secret and uniform.

Unfortunately the fact that Alice does not know the complete transaction Compute, but only its
hash, poses a risk to her. This is because a dishonest Bob can, instead of sending H(Compute),
send a hash of some other transaction T in order to obtain the information that can be used to
redeem some other transaction used within the protocol, or even outside this session of the protocol.
This is actually one of the reasons why we assumed that the keys used by the users in our procedure
are fresh and will not be used later: in this way we can precisely know, which transactions can be
redeemed if one obtains Alice’s signature on [Fuse] constructed with false hCompute .19. It is easy to
see that the only transaction other than Compute, that could be potentially redeemed using Alice’s
signature is PutMoneyA. This transaction cannot be redeemed by “Fuse with false hCompute”, for
several reasons, one of them being that the value of PutMoneyA is 1B, which is less than the value
of Fuse (equal to 2B).

In this way we constructed the TwoPlayersLottery protocol. Its complete description is presented
on Figure 3 (page 19). The reader may also notice that this is exactly the place where the
“malleability” becomes a problem: for the security to hold Bob needs to be sure that the Fuse
transaction will redeem the transaction Compute. Unfortunately, Fuse has to be created strictly
before Compute appears on the Ledger. If the adversary intercepts Compute before it happened
(or: if the miner is malicious) then he can post a “mauled” Compute transaction on the Ledger
that behaves exactly as the original one, except that it hashes to some other value. Hence Fuse
becomes useless. We now have the following lemma (the proof appears in the full version of this
paper).

19 As a more concrete example what could go wrong without this assumption consider the following scenario. Assume
there is a not-redeemed transaction Compute∗ on the Ledger whose recipient is Alice and that also can be redeemed
by a transaction with an input script (⊥,⊥, sigÃ([T]), sigB̃([T])) (this can happen, e.g., if two coin-tossing protocol
are executed in parallel between Alice and Bob). Then a dishonest Bob can send to Alice H(Compute∗) instead of
H(Compute), and redeem Compute∗ in time t+ 2 ·maxLedger

23

Lemma 3: The TwoPlayersLottery protocol from Figure 3 is a secure lottery protocol under the
non-malleability assumption.

VI. NON-ZERO TRANSACTION FEES

We now address the problem of the transaction fees, which was ignored in the description
above. On a technical level there is no problem with incorporating the fees into our protocol: the
transactions can simply include a small fee that has to be agreed upon between the parties before
the protocol starts. The expected payoff of the parties will be in this case slightly negative (since
the fees need to be subtracted from the outcome). It is straightforward how to modify the security
definition to take this into account. One problem that the reader may notice is the issue of the
“nasty” behavior of the parties. For example, a malicious Alice can initiate the protocol with Bob
just to trigger him to post PutMoneyB on the Ledger. If Alice later aborts then Bob obviously
gets his money back, except of the transaction fee. Of course, this does not change his expected
payoff, but it still may be against his interests, as he looses some money on a game that from the
beginning was planned (by Alice) never to start.

We now describe a partial pragmatic remedy for this problem. The basic idea is to modify the
protocol by changing the instructions what to do when the other parties misbehave. Recall, that in
our protocols the parties are instructed to simply redeem their all their transactions if they notice a
suspicious behavior of the other party. Now, instead of doing this, they could keep these transactions
on the Ledger and reuse them in some other sessions of the protocol. Of course, this has to be
done with care. For example the timed commitment schemes have to be redeemed within a certain
time frame). One also has to be careful to avoid problems with reusing the keys, described above,
cf. Footnote 19. To argue formally about the security of this solution one would need to introduce
a multi-player mathematical model capturing the fact that several sessions can be executed with
shared secrets. This is beyond the scope of this paper, so we just stay on this informal level.

Let us finally observe that in the TwoPlayersLottery protocol (Figure 3) the only party that has
to redeem her transaction within some time is Alice, and moreover this transactions is a standard
BitCoin transactions (where currently the fees are zero). Hence, in this case we can reduce the risk
of loosing a transaction fee to practically none.

VII. IMPLEMENTATION

As a “proof of concept” we have implemented and executed the presented protocols. The
transactions were created using bitcoinj Java library as normal BitCoin clients do not allow user
to create (nor broadcast) non-standard transactions and sent directly to Eligius mining pool. Below
we present links to some of these transactions on the blockchain.info website. To safe space, all
links are relative to the url o blockchain.info/tx-index/ (hence, they are only indices of transactions
used by the blockchain.info site).

Commitment scheme CS: Links to all transactions in a correct execution of the commitment
scheme with one recipient are as follows: Commit : 97079150; Open: 97094781.

Here is an example of an execution for two recipients, which finished with PayDeposit trans-
actions broadcast: Commit : 96947667; PayDeposit1: 96982401; and PayDeposit2: 96982398.

Three-party lottery (MultiPlayersLottery): We have performed a correct execution of the three-
party lottery protocol, where each player bets 0.0012B. First, the players perform standard transac-
tions with output value 0.0012B. The transactions are as follows: PutMoneyA: 96946847; PutMoneyB:
96946887; and PutMoneyC : 96947563. Then the players exchange the hashes hA, hB and hC ,
and sign and broadcast the Compute transaction (96964833). After the revealing of their secrets
sA, sB and sC (by opening the commitments), the winner (in this case, player C) broadcasts the
ClaimMoneyC transaction (96966124) to get the pot.

http://blockchain.info
https://blockchain.info/tx-index/
https://blockchain.info/tx-index/97079150
https://blockchain.info/tx-index/97094781
https://blockchain.info/tx-index/96947667
https://blockchain.info/tx-index/96982401
https://blockchain.info/tx-index/96982398
http://blockchain.info/tx-index/96946847
http://blockchain.info/tx-index/96946887
http://blockchain.info/tx-index/96947563
http://blockchain.info/tx-index/96964833
http://blockchain.info/tx-index/96966124

24

Two-party lottery without deposits (TwoPlayersLottery): Below we present links to all transac-
tions in a correct execution of the protocol won by Alice:PutMoneyA: 96424665; PutMoneyB:
96436412; Compute: 96436416; ClaimMoneyA: 96436417; In this execution, the players bet
0.04B each and the transaction fees were set to 0.0001B for each transaction.

We also performed an execution which finished with the Fuse transaction: PutMoneyA: 97094615;
PutMoneyB: 97094780; Compute: 97099280; Fuse: 97105484.

As an example of a raw transaction we present the PutMoneyB transaction from the first of
the TwoPlayersLottery protocol executions described above (96436412) in more details. Here is its
dump (with some fields omitted):

{ "lock_time":0,
"in":[{ "prev_out": {"hash":"a14...096", "n":0},

"scriptSig":"304...a01 039...443" }],
"out":[{"value":"0.03990000",

"scriptPubKey":"
OP_SIZE 32 34 OP_WITHIN OP_VERIFY
OP_SHA256 f53...226 OP_EQUALVERIFY
020...e33 OP_CHECKSIG" }]}

The meaning of the above is as follows. "lock_time":0 means, that the transactioned does not
have a time lock. "hash":"a14...096" denotes a hash of the transaction, which is being
redeemed in PutMoneyB and "n":0 denotes, which output of that transaction is being re-
deemed. The input script "scriptSig":"304...a01 039...443" consists of the signature
(039...443) on PutMoneyB under the key B.pk and the public key B.pk itself (304...a01)
(in standard transaction’s output there is only pk’s hash and pk has to be included in the corre-
sponding input).

The output script expects to get as input an appropriate signature and Bob’s secret string.
The script consists of three parts: the first part OP_SIZE 32 34 OP_WITHIN OP_VERIFY
checks whether the second argument has an appropriate length; the second part OP_SHA256
f53...226 OP_EQUALVERIFY checks if its hash is equal to hB i.e. f53...226); and the last
part 020...e33 OP_CHECKSIG checks if the first argument is an appropriate signature under
key B̃.pk (i.e. 020...e33).

REFERENCES

[1] I. Abraham, D. Dolev, R. Gonen, and J. Y. Halpern. Distributed computing meets game theory: robust mechanisms
for rational secret sharing and multiparty computation. In PODC, 2006.

[2] S. Barber, X. Boyen, E. Shi, and E. Uzun. Bitter to better - how to make Bitcoin a better currency. In FC, 2012.
[3] D. Basin, C. Caleiro, J. Ramos, and L. Vigano. Distributed temporal logic for the analysis of security protocol

models. TCS, 2011.
[4] A. Beimel, Y. Lindell, E. Omri, and I. Orlov. 1/p-Secure multiparty computation without honest majority and the

best of both worlds. In CRYPTO, 2011.
[5] A. Ben-David, N. Nisan, and B. Pinkas. Fairplaymp: a system for secure multi-party computation. In CCS, 2008.
[6] M. Blum. Coin flipping by telephone. In CRYPTO, 1981.
[7] D. Boneh and M. Naor. Timed commitments. In CRYPTO, 2000.
[8] G. Brassard, D. Chaum, and C. Crépeau. Minimum disclosure proofs of knowledge. J. Comput. Syst. Sci., 1988.
[9] V. Buterin. The bitcoin gambling diaspora, 2013. Bitcoin Magazine.

[10] V. Buterin. Satoshidice sold for $12.4 million, 2013. Bitcoin Magazine.
[11] C. Cachin and J. Camenisch. Optimistic fair secure computation. In CRYPTO, 2000.
[12] J. Camenisch, S. Hohenberger, and A. Lysyanskaya. Compact e-cash. In EUROCRYPT, 2005.
[13] D. Chaum. Blind signature system. In CRYPTO, 1983.
[14] D. Chaum, A. Fiat, and M. Naor. Untraceable electronic cash. In CRYPTO, 1988.

https://blockchain.info/tx-index/96424665
https://blockchain.info/tx-index/96436412
https://blockchain.info/tx-index/96436416
https://blockchain.info/tx-index/96436417
https://blockchain.info/tx-index/97094615
https://blockchain.info/tx-index/97094780
https://blockchain.info/tx-index/97099280
https://blockchain.info/tx-index/97105484
https://blockchain.info/tx-index/96436412

25

[15] J. Clark and A. Essex. CommitCoin: Carbon dating commitments with Bitcoin - (short paper). In FC, 2012.
[16] R. Cleve. Limits on the security of coin flips when half the processors are faulty. STOC, 1986.
[17] I. Damgård et al. Practical covertly secure mpc for dishonest majority - or: Breaking the spdz limits. In ESORICS.

2013.
[18] D. Dolev and A. C. Yao. On the security of public key protocols. Information Theory, IEEE Transactions on,

1983.
[19] C. Dwork and M. Naor. Pricing via processing or combatting junk mail. In CRYPTO, 1992.
[20] The Economist. Online gambling: Know when to fold, 2013.
[21] J. A. Garay et al. Rational protocol design: Cryptography against incentive-driven adversaries. In FOCS. 2013.
[22] P. Bogetoft et al. Secure multiparty computation goes live. In FC, 2009.
[23] E. J. Friedman and P. Resnick. The social cost of cheap pseudonyms. Journal of Economics and Management

Strategy, 10:173–199, 2000.
[24] J. Garay and M. Jakobsson. Timed release of standard digital signatures. In FC, 2003.
[25] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. STOC, 1987.
[26] S. Dov Gordon and J. Katz. Partial fairness in secure two-party computation. In EUROCRYPT, 2010.
[27] J. Y. Halpern and V. Teague. Rational secret sharing and multiparty computation: Extended abstract. In STOC,

2004.
[28] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay — a secure two-party computation system. In USENIX

Security Symposium, 2004.
[29] I. Miers, C. Garman, M. Green, and A. D. Rubin. Zerocoin: Anonymous distributed e-cash from bitcoin. IEEE

S&P, 2012.
[30] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.
[31] B. Pinkas. Fair secure two-party computation. In Advances in Cryptology – EUROCRYPT 2003, 2003.
[32] The Washington Post. Cheating scandals raise new questions about honesty, security of internet gambling,

November 30, 2008.
[33] P. Resnick, K. Kuwabara, R. Zeckhauser, and E. Friedman. Reputation systems. Commun. ACM, 43(12):45–48,

December 2000.
[34] D. Ron and A. Shamir. Quantitative analysis of the full bitcoin transaction graph. In FC. 2013.
[35] A. Shamir, R. Rivest, and L. Adleman. Mental poker, April 1979. Technical Report LCS/TR-125, Massachusetts

Institute of Technology.
[36] L. von Ahn, N. J. Hopper, and J. Langford. Covert two-party computation. In STOC, 2005.
[37] A. C.-C. Yao. How to generate and exchange secrets. In FOCS, 1986.

	Introduction
	Our contribution
	Applications and future work
	Economic analysis
	Related work

	A short description of BitCoin
	The BitCoin transactions
	Simplified version
	A more detailed version

	Security Model

	BitCoin-based timed commitment scheme
	The implementation

	The lottery protocol
	The protocol
	First attempt
	The secure version of the scheme

	Two-party lottery secure in a weaker model
	An alternative (and slightly flawed) idea for a fix
	The secure version of the scheme

	Non-zero transaction fees
	Implementation
	References

