
A Generic Chosen-Ciphertext Key-Leakage Secure Public Key

Encryption Scheme from Hash Proof System

Rupeng Yang ∗1, Qiuliang Xu †1, Yongbin Zhou ‡2, Chengyu Hu §1, and Zuoxia Yu ¶1

1School of Computer Science and Technology, Shandong University, Jinan, 250101, China
2State Key Laboratory of Information Security, Institute of Information Engineering,

Chinese Academy of Sciences, Beijing, China

November 28, 2013

Abstract

We present a new generic construction of public key encryption (PKE) scheme that is secure
against a-posteriori chosen-ciphertext λ-key-leakage attacks (LR-CCA-2 secure) from any uni-
versal hash proof system (HPS). Our construction relies only on the existence of universal hash
proof systems, which makes our scheme simple, clean and efficient. Furthermore, our construc-
tion is a potential way to construct LR-CCA-2 secure PKE scheme from minimal assumption.

1 Introduction

Cryptography has achieved great success in the standard model, which assumes every party has its
own secret and the adversary can only access such secret in some restricted way. However when
a cryptographic system is implemented in the real world, some unintended information will be
leaked. And we refer to attacks that obtain such information as side channel attacks (e.g. [13, 9]).
To protect against side channel attacks, we can extend the standard model to capture such attacks
and design cryptographic systems that are secure under these new models.

Micali and Reyzin put forward such a model in their pioneering work [14]. However, their model
relies on the assumption that only computation leaks information and thus can not capture attacks
that can obtain secret information that is not being used in computation such as cold boot attacks
introduced by [9].

Inspired by the cold boot attacks, Akavia, Goldwasser and Vaikuntanathan [1] formalized a new
model that can leak any efficiently computable functions of the secret key adaptively as long as
the total amount of leakage is bounded. In [15], Naor and Segev extended the model in [1] to the
setting of chosen-ciphertext security. In this work, we follow the model of [15] and present a new
generic construction of a secure PKE scheme.

∗orbbyrp@gmail.com
†Corresponding author: xql@sdu.edu.cn
‡zhouyongbin@iie.ac.cn
§hcy@sdu.edu.cn
¶yuzuoxia1990@gmail.com

1

1.1 Our Results

We propose a new generic construction of public key encryption scheme that is LR-CCA-2 secure
from any universal hash proof system. More precisely, our scheme uses a universal HPS to mask
the plaintexts and a universal2 HPS to verify the ciphertexts. Since hash proof systems use some
private information that should be put in the secret key, our scheme is more involved to prove and
its leakage rate is lower compared with other generic constructions with LR-CCA-2 security (e.g.
[15, 16]). However, our scheme is quite efficient as HPS can be implemented efficiently. And in
fact the total leakage amount it can tolerate is not lower in the same setting compared to other
constructions. We have a lower leakage rate just because we have a bigger secret key. In addition,
our construction relies only on the existence of universal HPS, which makes our scheme simple
and clean. Furthermore, Hazay et al. [11] showed that a weak HPS can be constructed from any
standard PKE scheme. And if their construction can be adapted to construct a standard HPS, our
scheme will be an LR-CCA-2 secure PKE from minimal assumption.

1.2 Related Work

Key-leakage attacks The model considered in this paper was first formalized by Akavia, Gold-
wasser and Vaikuntanathan in [1], and then it was extended to the setting of chosen-ciphertext
security by Naor and Segev in [15].

There are two other generic constructions of PKE schemes [15, 16] that are LR-CCA-2 secure
to our best knowledge. Both of them use a universal HPS to mask the plaintexts just as we do.
The difference is the way they verify the ciphertexts. The scheme in [15] uses NIZK to verify the
ciphertexts and thus their construction is very inefficient. The scheme in [16] uses a lossy filter to
verify the ciphertexts and their efficiency is comparable to ours but the construction of lossy filter
is more complicated.

There are various cryptographic primitives based on this model, e.g. the signature schemes
[12, 3], the identity based encryption schemes [2] and so on.

Extended key-leakage attacks There are several ways to extend the model in this paper to
capture more scenarios.

One approach is to relax the restriction of the amount of leakage information. Naor and Segev
also present a model in [15] that the total amount of leakage information is not bounded and
requires only that the secret key still has a certain amount of min-entropy given the leakage. And
the model in [7] requires only that the secret key can not be efficiently recovered given the leakage.

Another approach is to relax the time that the adversary can obtain side-channel information.
The work in [10] consider after-the-fact model in encryption scenarios and it allows the adversary to
access the leakage oracle after the challenge phase. However, they also modify the notion of security
into reserving the pseudo-entropy of encrypted message. The models in [4, 6] do not bound the
overall amount of leakage and only restrict the leakage amount in and between each period after
dividing the total lifetime of the system into periods.

2

2 Preliminaries

2.1 Basic Notions

We first recall some basic notions and terminologies here.
A function f mapping non-negative integers to non-negative reals is negligible if for every poly-

nomial p(·), there exists n0 ≥ 0 such that for all integers n > n0, f(n) <
1

p(n) .

We denote by x
U← X the operation of picking x uniformly at random from a set X. We denote

by Um a random variable with uniform distribution over {0, 1}m. We denote by Ex←X [f(x)] the
expected value of random variable f(X). We denote by [n] the set {1, 2, 3, . . . , n}. All logarithms in
this paper are with base 2.

Definition 2.1. Let X and Y be two random variables with range U. The statistical distance between
X and Y is defined as

∆(X, Y) =
1

2

∑
u∈U
|Pr[X = u]− Pr[Y = u]|

Lemma 2.2. Let X, Y and Z be three random variables.

1. ∆(X, Z) ≤ ∆(X, Y) + ∆(Y, Z).

2. For every randomized function f, ∆(f(X), f(Y)) ≤ ∆(X, Y). We remark that, the random-
ness used by f is independent of X and Y.

2.2 Leakage-Resilient Public-Key Encryption

We present the notion of public key encryption scheme and its security definition in key-leakage
attacks here. Our approaching of security is identical to the definition for a-posteriori chosen-
ciphertext key-leakage attacks in [5].

We consider a PKE scheme as a tuple Π = (KeyGen, Enc, Dec). Here KeyGen is a probabilistic
polynomial-time key generation algorithm that takes the security parameter 1n as input and outputs
a public-key/private-key pair (PK, SK) from the key space PK × SK. Enc is a probabilistic
polynomial-time encryption algorithm that takes the public key PK and a message M from the
message space M as input and outputs the ciphertext C. Dec is a deterministic polynomial-time
decryption algorithm that takes the secret key SK and a ciphertext C as input and outputs either
a message M ∈ M or a reject symbol ⊥.

A PKE scheme should satisfy a “correctness” property. That is to say, the decryption of an
encrypted message should be identical to the original message. More formally, a PKE scheme is
correct if for all M from the message spaceM it holds that

Pr[Dec(SK, Enc(PK, M)) ̸= M where (PK,SK)← KeyGen(1n)]

is negligible. Here the probability is taken over the internal coin tosses of the relevant algorithms.
Informally, a PKE scheme is secure under chosen-ciphertext key-leakage attacks if the adversary

can not break the scheme even when he can obtain the decryptions of ciphertexts of his choosing
and some partial information on the secret key of the encryption scheme.

We model the ability of such adversary by providing him with access to two kinds of oracles. One
is the decryption oracle, denoted D(SK, ·), takes a string C as input and outputs a decryption using

3

the secret key SK. We also denote by D ̸=C(SK, ·) a decryption oracle that decrypts any ciphertext
other than C. Another oracle is the leakage oracle, denoted Oλ,n(SK, ·), takes the description of
any efficiently computable function f as input and outputs f(SK). Here λ is a function mapping
non-negative integers to non-negative integers and we require that the total number of bits leaked
by the leakage oracle is at most λ(n) for the security parameter n.

Now we consider the game ExptLeakageCCA2
Π, A (n) played by an adversary and a benign simulator.

For simplicity, we model the adversary A as two oracle machines A1 and A2 and then the game
can be viewed as a simulator running by invoking these oracle machines.

1. (PK, SK)← KeyGen(1n).

2. (M0, M1, state)← AO
λ,n(SK, ·), D(SK, ·)

1 (PK) such that |M0| = |M1|.

3. b
U← {0, 1}.

4. C ← Enc(PK, Mb).

5. b′ ← AD ̸=C(SK, ·)
2 (C, state).

6. Output 1 if b = b′ and 0 otherwise.

Definition 2.3. A public key encryption scheme Π=(KeyGen, Enc, Dec) is secure against a-
posteriori chosen-ciphertext λ(n)-key-leakage attacks if for any probabilistic polynomial-time adver-
sary A = (A1, A2) it holds that:

AdvLeakageCCA2
Π, A (n)

def
= |Pr[ExptLeakageCCA2

Π, A (n) = 1]− 1

2
|

is negligible in n. Here the probability is taken over the internal coin tosses of the relevant algorithms
and the adversary.

2.3 Randomness Extraction

We recall some basic notions relating to randomness extractors here.

Definition 2.4 ([8]). Let X be a random variable. Then the min-entropy of X,denoted H∞(X), is
defined as

H∞(X) = − log(max
x←X

Pr[X = x])

Definition 2.5 ([8]). Let X and Y be two random variables. Then the average min-entropy of X
conditioned on Y, denoted H̃∞(X|Y), is defined as

H̃∞(X|Y) = − log(Ey←Y [max
x←X

Pr[X = x|Y = y]])

= − log(Ey←Y [2
−H∞(X|Y=y)])

Lemma 2.6 ([8]). Let X, Y and Z be random variables. If Y has at most 2λ possible values, then
H̃∞(X|(Y, Z)) ≥ H̃∞((X, Y)|Z)− λ ≥ H̃∞(X|Z)− λ.

4

The proof of this lemma can be found in [8]. Now we generalize this lemma for our security
proof.

Lemma 2.7. Let X, Y and Z be random variables. The range of X, Y and Z are X , Y and Z. In
addition, Y has at most N possible values. Let F be a family of functions from X to Π and let π
be an element of Π Then we have:∑

y∈Y

∑
z∈Z

max
f∈F

Pr[f(X) = π ∧ Y = y ∧ Z = z] ≤ N ·
∑
z∈Z

max
f∈F

Pr[f(X) = π ∧ Z = z]

Proof. ∑
y∈Y

∑
z∈Z

max
f∈F

Pr[f(X) = π ∧ Y = y ∧ Z = z]

≤
∑
y∈Y

∑
z∈Z

max
f∈F ,y′∈Y

Pr[f(X) = π ∧ Y = y′ ∧ Z = z]

≤ N ·
∑
z∈Z

max
f∈F ,y′∈Y

Pr[f(X) = π ∧ Y = y′ ∧ Z = z]

≤ N ·
∑
z∈Z

max
f∈F

Pr[f(X) = π ∧ Z = z]

Definition 2.8 ([8]). Let U be a set. A function Ext : U × {0, 1}t → {0, 1}m is an average-case
(k, ϵ)-strong extractor if for all pairs of random variables (X, I) such that the range of X is U and
H̃∞(X|I) ≥ k, it holds that

∆((Ext(X, R), R, I), (Um, R, I)) ≤ ϵ

where R is uniform on {0, 1}t.

We remark that as we can easily encode elements in U into binary strings in our settings, we
just write Ext as a function from U × {0, 1}t to {0, 1}m for the given U for simplicity.

For the existence of average-case randomness extractors, Dodis et al. proved that from any
family of universal hash functions we can get an average-case strong extractor. More precisely, we
have:

Lemma 2.9. Fix an output length m, for any k ≥ 0 and ϵ ≥ 0 we have an average-case (k, ϵ)-strong
extractor from U × {0, 1}t to {0, 1}m as long as m ≤ k − 2 log(1ϵ) + 2.

2.4 Hash Proof System

Now we present a brief description of hash proof systems introduced by Cramer and Shoup [5], and
refer the reader to [5] for more details. For simplicity, we ignore negligible errors that mentioned
in [5]. Lemma 2.2 shows that they have negligible effects on the results. As we will use universal2
HPS to help verify the validity of the ciphertexts in our PKE scheme, we do not simply view HPS
as a key encapsulation mechanism here.

5

2.4.1 Projective hashing

Let X , Y, K, S be finite, non-empty sets. Let L be a non-empty, proper subset of X . Let
H = (Hk)k∈K be a collection of functions indexed by K. And for every k ∈ K, Hk is a function
from X into Y. Let α be a function from K into S. Set H = (H, K, X , L, Y, S, α).

Definition 2.10 ([5]). H = (H, K, X , L, Y, S, α), defined as above, is called a projective hash
family (for (X , L)) if for all k ∈ K, the action of Hk on L is determined by α(k).

Definition 2.11 ([5]). Let H defined as above be a projective hash family, and let ϵ ≥ 0 be a real
number.

H is ϵ-universal if for all s ∈ S, x ∈ X\L, and y ∈ Y, it holds that

Pr[Hk(x) = y ∧ α(k) = s] ≤ ϵPr[α(k) = s]

Here the probability is taken over the choosing of k ∈ K at random.
H is ϵ-universal2 if for all s ∈ S, x, x∗ ∈ X , and y, y∗ ∈ Y, with x /∈ L ∪ {x∗} it holds that

Pr[Hk(x) = y ∧ α(k) = s ∧ Hk(x
∗) = y∗] ≤ ϵPr[α(k) = s ∧ Hk(x

∗) = y∗]

Here the probability is taken over the choosing of k ∈ K at random.

It is not hard to see that the concept of ϵ-universal describes the concept of min-entropy in
some sense.

Lemma 2.12. Let H defined as above be an ϵ-universal projective hash family. Let S ′ be the
image of α on K. Consider any conditional probability space where particular values of x ∈ X\L
and s ∈ S ′ are fixed and k is chosen from K at random. We denote by Y the random variable Hk(x)
on the above conditional probability space, Then we have

H∞(Y) ≥ log(1/ϵ)

Proof. As H is ϵ-universal, we have

∀y ∈ Y Pr[Hk(x) = y ∧ α(k) = s] ≤ ϵPr[α(k) = s]

And as s ∈ S ′, we have Pr[α(k) = s] ̸= 0. So we have

∀y ∈ Y Pr[Hk(x) = y |α(k) = s] ≤ ϵ

And then we have
max
y∈Y

Pr[Hk(x) = y |α(k) = s] ≤ ϵ

So we have
max
y∈Y

Pr[Y = y] ≤ ϵ

And by the definition of min-entropy, we have

H∞(Y) ≥ log(1/ϵ)

6

Note that the notion of “random variable” here is a little different from the notion in probability
theory. However, This abuse seems harmless and is very common in cryptography, so we just ignore
it in this paper.

Lemma 2.13. An ϵ-universal2 projective hash family is also an ϵ-universal projective hash family.

Proof. Let H defined as above be an ϵ-universal2 projective hash family. For all s ∈ S, x ∈ X\L
and y ∈ Y, we fix an x∗ ∈ X\{x}. Then we have:

Pr[Hk(x) = y ∧ α(k) = s]

=
∑
y∗∈Y

Pr[Hk(x) = y ∧ α(k) = s ∧Hk(x
∗) = y∗]

≤
∑
y∗∈Y

ϵ · Pr[α(k) = s ∧Hk(x
∗) = y∗]

= ϵ · Pr[α(k) = s]

2.4.2 Subset membership problem

Let SM be a subset membership problem. We consider an instance Λ[X , L, W, R] of SM. Here,
X and W are finite, non-empty sets. L is a non-empty proper subset of X . R ⊂ X ×W is a binary
relation. For x ∈ X and w ∈ W, w is a witness for x if (x, w) ∈ R.

The Subset membership problem is to decide whether an element of X is chosen randomly from
L or X\L given an instance Λ.

We also need some algorithms of SM.

1. Param is a probabilistic polynomial-time algorithm that takes the security parameter 1n as
input and outputs an instance Λ of SM.

2. Sample is a probabilistic polynomial-time algorithm that takes an instance Λ of SM as input
and outputs a random x ∈ L together with a witness w ∈ W for x.

Definition 2.14 ([5]). Let SM be a subset membership problem, and Param be its instance sampling
algorithm. We say that SM is hard if for any probabilistic polynomial-time algorithm A it holds
that

AdvSMA (n) = |Pr[A(1n, Λ, x) where Λ← Param(1n) and x
U← L]

− Pr[A(1n, Λ, x) where Λ← Param(1n) and x
U← X\L]|

is negligible in n. Here the probability is taken over the sample of Λ, the uniformly chosen of x and
the internal coin tosses of A.

2.4.3 Hash proof system

A hash proof system P is based on a subset membership problem SM and associates with each
instance Λ of SM a projective hash family H. More precisely, for each instance Λ[X , L, W, R],
the projective hash family H = (H, K, X , L, Y, S, α) is based on the same X and L.

7

Additionally, P provides following algorithms to carry out basic operations. We also remark
that for a specific HPS P, given an instance of the underlying subset membership problem, the
corresponding projective hash family is fixed and quite trivial to get. So we do not discriminate
them here.

1. Gen is a probabilistic polynomial-time algorithm that takes an instance Λ of SM as input
and outputs a pair (k,s). Here k is uniform on K and s = α(k).

2. Pub is a deterministic polynomial-time algorithm that takes an instance Λ of SM, s ∈ S such
that s=α(k) for some k ∈ K, and x ∈ L together with a witness w ∈ W for x as input and
outputs y ∈ Y such that Hk(x) = y.

3. Priv is a deterministic polynomial-time algorithm that takes an instance Λ of SM, k ∈ K
and x ∈ L as input and outputs y ∈ Y such that Hk(x) = y.

It is easy to see that Pub and Priv are in fact evaluating the same function. More precisely,
Pub(Λ, s, x, w) = Priv(Λ, k, x) as long as s = α(k) and w is a witness for x. We call it the
“correctness” of HPS.

We also need some properties of HPS, and they come from the underlying projective hash
families.

Definition 2.15 ([5]). Let ϵ be a function mapping non-negative integers to non-negative reals.
Let SM be a subset membership problem. Let P be an HPS for SM.

We say that P is ϵ-universal if for all n ≥ 0 and for all Λ ← Param(1n), the projective hash
family H that P associates with Λ is ϵ(n)-universal.

We say that P is ϵ-universal2 if for all n ≥ 0 and for all Λ← Param(1n), the projective hash
family H that P associates with Λ is ϵ(n)-universal2.

Now we present the notion of extended hash proof system which is very useful in our construction.
An extended HPS P is also based on a subset membership problem SM. But it associates with
each instance Λ of SM a projective hash family H as well as a finite set E , and for each instance
Λ[X , L, W, R], the projective hash family H = (H, K, X × E , L × E , Y, S, α) is based on
X × E and L× E . Also, the algorithms Pub and Priv are different from the ordinary HPS, as they
additionally take an extension e ∈ E as input. All other things stay the same as those of ordinary
HPS.

2.5 Computational Assumptions

Let GroupGen be a probabilistic polynomial-time algorithm that takes 1n as input and outputs a
tuple (G, q, g), where q is a prime whose length is a polynomial of n, G is a cyclic group of order
q and g is generator of G.

Definition 2.16. The Decisional Diffie-Hellman problem is hard relative to GroupGen if for any
probabilistic polynomial-time algorithm A it holds that

|Pr[A(G, g, gr1 , gr2 , gr1r2)]− Pr[A(G, g, gr1 , gr2 , gr3)]|

is negligible in n where (q, G, g)← GroupGen(1n) and r1, r2, r3 are chosen uniformly at random
from Zq. Here the probability is taken over the chosen of r1, r2 and r3 as well as the internal coin
tosses of GroupGen and A.

8

The DDH assumption is the assumption that the DDH problem is hard for some algorithm
GroupGen.

We call the tuple (G, g, gr1 , gr2 , gr3) a DH tuple if r3 = r1 · r2 and non-DH tuple otherwise.
Note that, since the proportion of DH tuple is negligible, it is also hard to distinguish between a
DH tuple and a non-DH tuple if the DDH assumption holds.

3 Generic Construction

In this section, we present a general construction of secure public-key encryption scheme that is
LR-CCA-2 secure using appropriate hash proof systems for a hard subset membership problem and
appropriate randomness extractors.

Let SM be a subset membership problem. Let P be an ϵ1-universal HPS for SM. Let P̂ be
an ϵ2-universal2 extended HPS for SM. We use the symbol ˆ to distinguish algorithms from the
two hash proof systems above. Let λ, t and m be functions mapping non-negative integers to
non-negative integers. We denote by E the set {0, 1}t × {0, 1}m. Let ϵ3 be a function mapping
non-negative integers to non-negative reals. We require that ϵ1, ϵ2 and ϵ3 are negligible functions.
Let n be the security parameter, and we will omit it for simplicity in some cases. For example, we
will write λ instead of λ(n) if n is obvious from context.

To simplify the notation, we consider the scheme with a fixed security parameter n as well as
a fixed instance Λ[X , L, W, R] of SM, which is an output of the algorithm Param on input
1n, although it should be generated in the key generation algorithm. With Λ fixed, let H =
(H, K, X , L, Y, S, α) be the projective hash family that P associates with Λ, and let Ĥ =
(Ĥ, K̂, X × E , L × E , Ŷ, Ŝ, α̂) be the projective hash family that P̂ associates with Λ. Let Ext
: Y × {0, 1}t → {0, 1}m be an average-case (log(1

ϵ1
) − λ − 1, ϵ3)-strong extractor. From Lemma

2.9, we know that we can construct such an extractor as long as m ≤ log(1
ϵ1
) − λ − 2 log(1

ϵ3
) + 1.

The tuple (Λ, H, Ĥ, Ext) are used as the public parameters of the encryption scheme and is public
automatically.

Now we describe our PKE scheme with plaintext space {0, 1}m.

Key Generation
Run algorithm Gen of P and P̂ to generates the key pairs.

(k, s)← Gen(Λ)

(k̂, ŝ)← ˆGen(Λ)

The public key PK is (s, ŝ).

The private key SK is (k, k̂).

Encryption
To encrypt a message M ∈ {0, 1}m under the public key PK=(s, ŝ), one does the following.

Sample a random x ∈ L, together with a corresponding witness w ∈ W using algorithm
Sample of SM.

Compute e=Ext(Pub(Λ, s, x, w), r)⊕M with a random seed r
U← {0, 1}t.

9

Compute ŷ = ˆPub(Λ, ŝ, x, w, r, e).

The ciphertext C is (x, r, e, ŷ).

Decryption
To decrypt a ciphertext C=(x, r, e, ŷ) under the secret key SK=(k, k̂), one does the following.

Compute ŷ′ = ˆPriv(Λ, k̂, x, r, e).

Check whether ŷ = ŷ′ and if they are not equal, output the reject symbol ⊥ and halt.

Compute M ′=Ext(Priv(Λ, k, x), r)⊕ e.

Output the message M ′.

The correctness of the scheme holds as the correctness of both hash proof systems in the scheme
holds.

Our construction is very similar to the one presented in [5], and is just a generalization of the
efficient LR-CCA-2 secure scheme in [15]. In fact, the scheme in [5] is itself an LR-CCA-2 secure
PKE scheme when the underlying hash proof systems are constructed appropriately.

To make sure the scheme is LR-CCA-2 secure we should bound the leakage amount λ. We find
that the scheme is secure as long as for any security parameter n we have

λ ≤ min(log(
1

ϵ1
)−m− 2 log(

1

ϵ3
) + 1, log(

1

ϵ2
)−m− ω(log(n)))

The security of our scheme follows from the following theorem.

Theorem 3.1. The above scheme is secure against a-posteriori chosen-ciphertext λ-key-leakage
attacks, assuming SM is a hard subset membership problem, P is an ϵ1-universal HPS for SM with
negligible ϵ1, P̂ is an ϵ2-universal2 extended HPS for SM with negligible ϵ2, there exists appropriate
randomness extractors, and λ ≤ min(log(1

ϵ1
) − m − 2 log(1

ϵ3
) + 1, log(1

ϵ2
) − m − ω(log(n))) with

negligible ϵ3.

Proof. We prove our main theorem using the game sequence technique formalized by Shoup in
[17]. We first define a sequence of games, each played between an adversary and a benign simulator.
We remark that in fact every game should take a security parameter as input, but for simplicity, we
just consider games as they have already taken an input “1n” in this paper. Then for each game,
we can model it as a probability space and define a target event on it. Notice that, as each game
is modeled as a probability space, we do not require the processes in the games to be efficient.

We denote by Π our PKE scheme. Let n be the security parameter. For any probabilistic
polynomial-time adversary A, we define following games and denote by Si the event that Gamei
outputs 1.

Game0
This is almost the original game ExptLeakageCCA2

Π, A (n). More precisely:

1. The public parameter (Λ(X , L, W, R), H, Ĥ, Ext), the public key PK=(s, ŝ) and the
secret key SK=(k, k̂) are generated by invoking the Key generation algorithm of the
PKE scheme.

2. (M0, M1, state)← AO
λ,n(SK, ·), D(SK, ·)

1 (PK) such that |M0| = |M1|.

10

3. b
U← {0, 1}.

4. x∗
U← L, r∗ U← {0, 1}t, u∗ = Ext(Priv(Λ, k, x∗), r∗), e∗ = u∗⊕Mb, ŷ

∗ = ˆPriv(Λ, k̂, x∗, r∗, e∗),
C∗ = (x∗, r∗, e∗, ŷ∗).

5. b′ ← AD ̸=C∗ (SK, ·)
2 (C∗, state).

6. Output 1 if b = b′ and 0 otherwise.

Game1
In this game, we make a small change in generating the challenge ciphertext C∗. The simulator
chooses x∗ uniformly at random from X\L instead of L this time. All other operations remain
identical to Game0.

Game2
In this game, we make a small change in responding the two decryption oracles. The simulator
additionally reject a ciphertext C = (x, r, e, ŷ) as long as x is not in L even if it can pass
the verification. All other operations remain identical to Game1.

Game3
In this game, we make a small change in generating the challenge ciphertext C∗ again. The
simulator use a random string from {0, 1}m to mask the plaintext this time. For more details,

e∗ = u∗ ⊕Mb for u∗
U← {0, 1}m while the generation of x∗, r∗ and ŷ∗ as well as all other

operations remain identical to Game2.

The validity of our main theorem follows from the following claims.

Claim 3.2. Pr[S0] = Pr[ExptLeakageCCA2
Π, A (n) = 1].

Proof. It is obvious that Pr[S0] = Pr[ExptLeakageCCA2
Π, A (n) = 1] for the correctness of hash proof

systems and the fact that the simulator can simulate these oracles perfectly.

Claim 3.3. |Pr[S0]− Pr[S1]| is negligible in n.

Proof. Assume |Pr[S0]−Pr[S1]| = ϵ for some non-negligible function ϵ. Then we can construct a
probabilistic polynomial-time distinguishing algorithm that invokes A1 and A2 to break the subset
membership problem SM.

On input (Λ[X , L, W, R], x∗), where Λ is an instance of SM that is generated using the
security parameter 1n and x∗ ∈ X is chosen uniformly at random from either L or X\L, let H, Ĥ
and Ext defined as in the description above of the algorithm KeyGen of the PKE scheme, then the
distinguishing algorithm A′ works as follows:

1. (k, s)← Gen(Λ), (k̂, ŝ)← ˆGen(Λ). SK=(k, k̂), PK=(s, ŝ).

2. (M0, M1, state)← AO
λ,n(SK, ·), D(SK, ·)

1 (PK) such that |M0| = |M1|.

3. b
U← {0, 1}.

4. r∗
U← {0, 1}t, u∗ = Ext(Priv(Λ, k, x∗), r∗), e∗ = u∗ ⊕Mb, ŷ

∗ = ˆPriv(Λ, k̂, x∗, r∗, e∗),
C∗ = (x∗, r∗, e∗, ŷ∗).

11

5. b′ ← AD ̸=C∗ (SK, ·)
2 (C∗, state).

6. Output 1 if b = b′ and 0 otherwise.

All the oracles above are simulated by A′ using SK. In addition, it will respond these queries
correctly unless the decryption query is C∗ after it has been generated or the total amount of
leakage bits will exceed λ after answering.

It is easy to see that the algorithms invoked by A′ are all efficient. In addition, A′ can simulate
the oracles efficiently because decrypting using SK is efficient and all functions submitted to the
leakage oracle are efficiently computable. Therefore, our algorithm A′ is efficient.

Further more, it is evident that when x∗ is chosen uniformly at random from L, the computation
in the above algorithm proceeds just as in Game0 and when x∗ is chosen uniformly at random from
X\L, the computation in the above algorithm proceeds just as in Game1. So we have:

Pr[A′(Λ, x) = 1 where x
U← L] = Pr[S0]

Pr[A′(Λ, x) = 1 where x
U← X\L] = Pr[S1]

As |Pr[S0]− Pr[S1]| = ϵ for non-negligible function ϵ, we have:

|Pr[A′(Λ, x) = 1 where x
U← L]− Pr[A′(Λ, x) = 1 where x

U← X\L]| = ϵ

for non-negligible function ϵ.
Therefore, we have an efficient distinguishing algorithmA′ that breaks the hardness of the subset

membership problem SM which is a contradiction. So we have |Pr[S0] − Pr[S1]| is negligible in
n.

Claim 3.4. |Pr[S1]− Pr[S2]| is negligible in n.

Proof. It is easy to see that Game1 and Game2 are defined on the same probability space as they
use the same randomness. Let F2 be the event that some ciphertexts C = (x, r, e, ŷ) where x /∈ L
but ŷ = Ĥk̂(x, r, e) is submitted to the decryption oracle in Game2. We denote such query as
“invalid query”. Note that Game1 and Game2 are identical as long as F2 does not occur. Then we
have Pr[S0 ∧ ¬F2] = Pr[S1 ∧ ¬F2]. Therefore:

|Pr[S0]− Pr[S1]| = |Pr[S0 ∧ F2] + Pr[S0 ∧ ¬F2]− Pr[S1 ∧ F2]− Pr[S1 ∧ ¬F2]|
= |Pr[S0 ∧ F2]− Pr[S1 ∧ F2]|
≤ Pr[F2]

Now, what we need is to show that Pr[F2] is negligible.
Assume A will make at most Q(n) queries to the decryption oracles for a polynomial Q since A

is a probabilistic polynomial-time adversary. We denote by Z =
∪λ

i=0{0, 1}i the range of leakage
information. We denote by EX the set X ×{0, 1}t×{0, 1}m and by EL the set L×{0, 1}t×{0, 1}m.

We define Ĝk̂(a)
def
= Ĥk̂(x, r, e) for a = (x, r, e) for simplicity.

We first fix the values of Λ[X , L, W, R], the adversary’s coins, b, x∗, r∗ and k in the probability
space that Game1 and Game2 are defined on and denote by Ω the conditional space. We denote by
F ′2 the event in Ω that is defined identical to F2. Now we consider arguments in Ω whose probability

12

is taken over the chosen of k̂. Note that the distribution of k̂ in Ω is identical to the distribution
of k̂ generated by algorithm ˆGen. Let K̂ be an random variable over the distribution of k̂.

We denote by “Phase I” the phase before the challenge ciphertext generates, and by “Phase II”

the phase after the challenge ciphertext generates. We denote by F
(1)
2
′ the event that invalid query

occurs in Phase I and by F
(2)
2
′ the event that invalid query occurs in Phase II. Then we have

Pr[F ′2] = Pr[F
(1)
2
′] + Pr[F

(2)
2
′ ∧ ¬F (1)

2
′]

≤ Pr[F
(1)
2
′] + Pr[F

(2)
2
′]

And now we need only to bound Pr[F
(1)
2
′] and Pr[F

(2)
2
′].

We further fix the value of α(K̂) to be ŝ. Then the public parameter and public key are fixed
now. Further more, the response of a decryption query is also fixed given a ciphextext C=(x, r, e,
ŷ). To see this, we consider following two cases:

1. x ∈ L: In this case, the decryption is in fact determined by the public key although it can
not be evaluated limited by the computational ability.

2. x /∈ L: In this case, the decryption oracle rejects the ciphertext directly and so the response
is also fixed.

Recall that the randomness of A is also fixed in Ω. Therefore, the view and the behavior of A are
fixed step by step until he makes a query to the leakage oracle. Also, the first query submitted to
the leakage oracle is fixed. So we can further fix z as the total output of the leakage oracle step by
step again. We then let Z be an random variable over the distribution of z. This time, the view
and the behavior of A are fixed until the ciphertext is generated. Now we bound the probability

of F
(1)
2
′. Since all the ciphertexts submitted to the decryption oracle in Phase I are fixed in the

beginning conditioned on ŝ and z, we can bound the probability of each query C=(a, ŷ) in Phase
I being an invalid query by

max
a∈EX\EL, ŷ∈Ŷ

Pr[ĜK̂(a) = ŷ|α(K̂) = ŝ ∧ Z = z]

Thus we can bound the probability of F
(1)
2
′ conditioned on any consistent ŝ and z:

Pr[F
(1)
2
′|α(K̂) = ŝ ∧ Z = z] ≤ Q ·max

a, ŷ
Pr[ĜK̂(a) = ŷ|α(K̂) = ŝ ∧ Z = z]

Here, the range of a is EX\EL and the range of ŷ is Ŷ.
Therefore, we have:

Pr[F
(1)
2
′] =

∑
ŝ∈Ŝ

∑
z∈Z

Pr[F
(1)
2
′ ∧ α(K̂) = ŝ ∧ Z = z]

≤ Q ·
∑
ŝ∈Ŝ

∑
z∈Z

max
a, ŷ

Pr[ĜK̂(a) = ŷ ∧ α(K̂) = ŝ ∧ Z = z]

≤ Q · 2λ+1 ·
∑
ŝ∈Ŝ

max
a, ŷ

Pr[ĜK̂(a) = ŷ ∧ α(K̂) = ŝ]

≤ Q · 2λ+1 ·
∑
ŝ∈Ŝ

ϵ2 · Pr[α(K̂) = ŝ]

≤ Q · 2λ+1 · ϵ2

13

Here, the range of a is EX\EL and the range of ŷ is Ŷ.
To see that the second inequality in the above derivation holds, we first define an auxiliary

function “eql”, that is from Ŷ × Ŷ to {0, 1} and eql(ŷ1, ŷ2) = 1 iff ŷ1 = ŷ2 for ŷ1 ∈ Ŷ and ŷ2 ∈ Ŷ.
And now we can rewrite ĜK̂(a) = ŷ into Fa,ŷ(K̂) = 1, where F is a family of function indexed by

element form EX × Ŷ and defined as Fa, ŷ(k̂) = eql(Ĝk̂(a), ŷ). Thus, by Lemma 2.7, the second
inequality holds.

The third inequality in the above derivation holds for Lemma 2.13 and the property of universal
projective hash family.

Now we continue to consider the game in Ω. The view and the behavior of A are fixed until the
challenge ciphertext is generated when ŝ and z are fixed. Also, the challenge plaintexts are fixed.
For convenience, we let A be an random variable over the distribution of the tuple (x∗, r∗, e∗)
although it is determined by ŝ and z now and we denote this value as a∗. We additionally fix the
value of GK̂(A) to be ŷ∗. Then the challenge ciphertext C∗ = (a∗, ŷ∗) is fixed. As a result, the
view and the behavior of A are completely fixed. And now, we bound the probability of each query
C=(a, ŷ) in Phase II being an invalid query. We consider the following two cases:

1. a = a∗: Then we have ŷ ̸= ŷ∗ since the decryption oracle requires C ̸= C∗ and that means
this query is not an invalid query with certainty.

2. a ̸= a∗: Since all the ciphertexts submitted to the decryption oracle in Phase II are also fixed
in the beginning conditioned on ŝ, z, a∗ and ŷ∗, we can bound the probability by

max
a∈EX\(EL∪{a∗}), ŷ∈Y

Pr[ĜK̂(a) = ŷ|α(K̂) = ŝ ∧ Z = z ∧ GK̂(a∗) = ŷ∗]

Thus we can bound the probability of F
(2)
2
′ conditioned on any consistent ŝ, z, a∗ and ŷ∗:

Pr[F
(2)
2
′|α(K̂) = ŝ ∧ Z = z ∧ GK̂(a∗) = ŷ∗]

≤ Q ·max
a, ŷ

Pr[ĜK̂(a) = ŷ|α(K̂) = ŝ ∧ Z = z ∧ GK̂(a∗) = ŷ∗]

Here, the range of a is EX\(EL ∪ {a∗}) and the range of ŷ is Ŷ.

14

Therefore, we have:

Pr[F
(2)
2
′] =

∑
ŝ∈Ŝ

∑
z∈Z

∑
a∗∈EX

∑
ŷ∗∈Ŷ

Pr[F
(2)
2
′ ∧ α(K̂) = ŝ ∧ Z = z ∧A = a∗ ∧ GK̂(A) = ŷ∗]

≤ Q ·
∑
ŝ∈Ŝ

∑
z∈Z

∑
a∗∈EX

∑
ŷ∗∈Ŷ

max
a, ŷ

Pr[ĜK̂(a) = ŷ ∧ α(K̂) = ŝ ∧ Z = z ∧A = a∗ ∧ GK̂(A) = ŷ∗]

≤ Q · 2λ+1 ·
∑
ŝ∈Ŝ

∑
a∗∈EX

∑
ŷ∗∈Ŷ

max
a, ŷ

Pr[ĜK̂(a) = ŷ ∧ α(K̂) = ŝ ∧A = a∗ ∧ GK̂(A) = ŷ∗]

≤ Q · 2λ+m+1 ·
∑
ŝ∈Ŝ

∑
ŷ∗∈Ŷ

max
a, ŷ

Pr[ĜK̂(a) = ŷ ∧ α(K̂) = ŝ ∧ GK̂(A) = ŷ∗]

≤ Q · 2λ+m+1 ·max
a∗

∑
ŝ∈Ŝ

∑
ŷ∗∈Ŷ

max
a, ŷ

Pr[ĜK̂(a) = ŷ ∧ α(K̂) = ŝ ∧ GK̂(a∗) = ŷ∗]

≤ Q · 2λ+m+1 ·max
a∗

∑
ŝ∈Ŝ

∑
ŷ∗∈Ŷ

ϵ2 · Pr[α(K̂) = ŝ ∧ GK̂(a∗) = ŷ∗]

≤ Q · 2λ+m+1 · ϵ2

Here, the range of a is EX\(EL ∪ {a∗}) and the range of ŷ is Ŷ.
The third inequality holds because x∗ and r∗ are fixed in Ω and e∗ has only 2m possible values.
Now we can bound the probability of Pr[F ′2]:

Pr[F ′2] ≤ Pr[F
(1)
2
′] + Pr[F

(2)
2
′]

≤ Q · 2λ+1 · ϵ2 +Q · 2λ+m+1 · ϵ2
≤ Q · 2λ+m+2 · ϵ2

≤ Q

2ωlog(n)

that is negligible. The last inequality in the above derivation holds because λ ≤ log(1
ϵ2
) − m −

ω(log(n)).
And now since we have Pr[F ′2] is negligible in any conditional probability space Ω, we can

conclude that Pr[F2] is negligible in the original probability space and that completes the proof.

Claim 3.5. |Pr[S2]− Pr[S3]| is negligible in n.

Proof. Game2 and Game3 are identical except the way they mask the plaintext, or in other words,
the distribution of u∗.

We first fix the values of Λ[X , L, W, R], the adversary’s coins, b, x∗, k̂ and s in both games
and denote the new games as Game′2 and Game′3. We also denote by S′i the corresponding target
event in Game′i. Let O

′
i be an random variable over the distribution of the output of Game′i, thus

O′i = 1 iff S′i occurs. Here we have i ∈ {2, 3} above. Note that, these fixed values are chosen from
identical distributions in Game2 and Game3.

The distribution of k is identical in Game′2 and Game′3. In fact, they are identical to the
distribution of k in Lemma 2.12. Let K be an random variable over the distribution of k above.

15

Further, we denote by z the value of the total output of the leakage oracle and denote by aux(K) an
random variable over the distribution of z since when a specific k is fixed z is also fixed. Also, aux
is fixed and identical in both games. Let R be an random variable over the uniform distribution
on {0, 1}t.

Now if we further fix the value of z, the value of r∗ and the value of u∗, both games are fixed and
identical. We denote by o the output of each game and we have o = f(z, r∗, u∗) for a deterministic
function f. Therefore, we have O′2 = f(aux(K), R, Ext(Hk(x

∗), R)) and O′3 = f(aux(K), R, Um).
From Lemma 2.12 and 2.6, we have

H̃∞(HK(x∗)|aux(K)) ≥ H∞(HK(x∗))− (λ+ 1) ≥ log
1

ϵ1
− (λ+ 1)

Then we have
∆((Ext(HK(x∗), R), R, aux(K)), (Um, R, aux(K))) ≤ ϵ3

from the definition of randomness extractors. And by Lemma 2.2, we have

∆(O′2, O′3) ≤ ϵ3

In conclusive, we have

|Pr[S′2]− Pr[S′3]| = |Pr[O′2 = 1]− Pr[O′3 = 1]|

=
1

2
· (|Pr[O′2 = 1]− Pr[O′3 = 1]|+ |Pr[O′2 = 0]− Pr[O′3 = 0]|)

= ∆(O′2, O′3)

≤ ϵ3

that is negligible.
Now since Pr[S′2]− Pr[S′3] is negligible in any conditional probability space, we have Pr[S2]−

Pr[S3] is negligible.

Claim 3.6. Pr[S3] =
1
2 .

Proof. Since Mb is masked by a truly random string, it is clear that b is independent of the view
of the adversary, and thus b is independent of b′. So we have Pr[S3] =

1
2 .

By Claim(3.2) ∼ Claim(3.6) and the triangle inequality, we have

AdvLeakageCCA2
Π, A (n) = |Pr[ExptLeakageCCA2

Π, A (n) = 1]− 1

2
|

= |Pr[S0]− Pr[S3]|
≤ |Pr[S0]− Pr[S1]|+ |Pr[S1]− Pr[S2]|+ |Pr[S2]− Pr[S3]|

which is negligible in n. And that completes the proof of our main theorem.

16

4 Instantiation

In this section, we present a secure PKE scheme based on the Decisional Diffie-Hellman (DDH)
assumption from our generic encryption scheme construction above.

Assume the DDH problem is hard relative to an algorithm GroupGen. Let (G, q, g0) be an
instance generated by invoking GroupGen on 1n for the security parameter n. Let g1 = gr0 for
r ← Z∗q . Let c, h, t, m and λ be functions mapping the security parameter n to non-negative
integers and let ϵ be an function mapping the security parameter n to non-negative reals. We
will omit n for simplicity in some cases. Let Ext be an (h log q − λ − 1, ϵ)-strong extractor from
Gh × {0, 1}t to {0, 1}m. Let Γ be an injective function from Z2

q × {0, 1}t × {0, 1}m to Zc
q. We

regard the parameters described above as public parameters and they should be generated in the
key generation phase.

Now we describe the PKE scheme with fixed public parameters as above.

Key Generation

Choose ki,j ∈ Zq at random for i ∈ {0, 1} and j ∈ [h] and let sj = g
k0,j
0 · gk1,j1 ∈ G for j ∈ [h].

Choose k̂i,j ∈ Zq at random for i ∈ {0, 1} and j ∈ [c+2h− 1] and let ŝj = g
k̂0,j
0 · gk̂1,j1 ∈ G for

j ∈ [c+ 2h− 1].

The private key is ((ki,j)i∈{0,1},j∈[h], (k̂i,j)i∈{0,1},j∈[c+2h−1])

The public key ((sj)j∈[h], (ŝj)j∈[c+2h−1]).

Encryption
To encrypt a message M ∈ {0, 1}m, one does the following.

Choose w ∈ Zq, r ∈ {0, 1}t at random.

Compute x0 = gw0 and x1 = gw1 .

Compute y = (swj)j∈[h].

Compute e = Ext(y, r)⊕M .

Compute (γj)j∈[c] = Γ(x0, x1, r, e).

Compute ŷ = (ŝwj ·
∏c

i=1 ŝ
γiw
h+i+j−1)j∈[h].

The ciphertext is (x0, x1, r, e, ŷ).

Decryption
To decrypt a ciphertext (x0, x1, r, e, ŷ), one does the following.

Compute (γ′j)j∈[c] = Γ(x0, x1, r, e).

Compute ŷ′ = (x
k̂0,j
0 · xk̂1,j1 ·

∏c
i=1 (x

γ′
ik̂0,h+i+j−1

0 · xγ
′
ik̂1,h+i+j−1

1))j∈[h].

Check whether ŷ = ŷ′ and if they are not equal, output the reject symbol ⊥ and halt.

Compute y′ = (x
k0,j
0 · xk1,j1)j∈[h].

Compute M ′ = Ext(y′, r)⊕ e

Output the message M ′.

17

It is evident from [5] that the PKE scheme above is an instantiation of our generic construction
with a 1

qh
-universal HPS and a 1

qh
-universal2 HPS based on a hard subset membership problem.

Thus, it is LR-CCA-2 secure as long as ϵ is negligible and λ ≤ h log q −m− ω(log n). In addition,
the leakage rate ranges from about 1

10 to about 1
6 by adjusting relevant parameters such as h.

We can also instantiate our generic PKE scheme with other computational assumptions such
as the DCR assumption and the QR assumption. An interesting problem is how to construct a
universal HPS with minimal assumptions, e.g. there exists one way trapdoor functions, and thus
we can construct PKE schemes that is LR-CCA-2 secure with one way trapdoor functions directly.

5 Conclusion

We present a new generic construction of public key encryption scheme that is LR-CCA-2 secure
from any universal HPS and we give an efficient instantiation of it based on DDH assumption.
However, the leakage rate of our generic construction is low as it has a big secret key inherently.
It is an interesting problem to improve the leakage rate of our scheme using more sophisticated
techniques. Also our scheme will be an LR-CCA-2 secure PKE from minimal assumption if HPS
can be constructed from any CPA secure PKE. And we leave it as an open problem.

References

[1] Adi Akavia, Shafi Goldwasser, and Vinod Vaikuntanathan. Simultaneous hardcore bits and
cryptography against memory attacks. In Theory of Cryptography, pages 474–495. Springer,
2009.

[2] Joël Alwen, Yevgeniy Dodis, Moni Naor, Gil Segev, Shabsi Walfish, and Daniel Wichs. Public-
key encryption in the bounded-retrieval model. In Advances in Cryptology–EUROCRYPT
2010, pages 113–134. Springer, 2010.

[3] Elette Boyle, Gil Segev, and Daniel Wichs. Fully leakage-resilient signatures. In Advances in
Cryptology–EUROCRYPT 2011, pages 89–108. Springer, 2011.

[4] Zvika Brakerski, Yael Tauman Kalai, Jonathan Katz, and Vinod Vaikuntanathan. Overcoming
the hole in the bucket: Public-key cryptography resilient to continual memory leakage. In
Foundations of Computer Science (FOCS), 2010 51st Annual IEEE Symposium on, pages
501–510. IEEE, 2010.

[5] Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In Advances in CryptologyEUROCRYPT 2002, pages
45–64. Springer, 2002.

[6] Yevgeniy Dodis, Kristiyan Haralambiev, Adriana Lopez-Alt, and Daniel Wichs. Cryptography
against continuous memory attacks. In Foundations of Computer Science (FOCS), 2010 51st
Annual IEEE Symposium on, pages 511–520. IEEE, 2010.

[7] Yevgeniy Dodis, Yael Tauman Kalai, and Shachar Lovett. On cryptography with auxiliary
input. In Proceedings of the 41st annual ACM symposium on Theory of computing, pages
621–630. ACM, 2009.

18

[8] Yevgeniy Dodis, Leonid Reyzin, and Adam Smith. Fuzzy extractors: How to generate strong
keys from biometrics and other noisy data. In Advances in cryptology-Eurocrypt 2004, pages
523–540. Springer, 2004.

[9] J Alex Halderman, Seth D Schoen, Nadia Heninger, William Clarkson, William Paul, Joseph A
Calandrino, Ariel J Feldman, Jacob Appelbaum, and Edward W Felten. Lest we remember:
cold-boot attacks on encryption keys. Communications of the ACM, 52(5):91–98, 2009.

[10] Shai Halevi and Huijia Lin. After-the-fact leakage in public-key encryption. In Theory of
Cryptography, pages 107–124. Springer, 2011.

[11] Carmit Hazay, Adriana López-Alt, Hoeteck Wee, and Daniel Wichs. Leakage-resilient cryp-
tography from minimal assumptions. In Advances in Cryptology–EUROCRYPT 2013, pages
160–176. Springer, 2013.

[12] Jonathan Katz and Vinod Vaikuntanathan. Signature schemes with bounded leakage resilience.
In Advances in Cryptology–ASIACRYPT 2009, pages 703–720. Springer, 2009.

[13] Paul C Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss, and other
systems. In Advances in CryptologyCRYPTO96, pages 104–113. Springer, 1996.

[14] Silvio Micali and Leonid Reyzin. Physically observable cryptography. In Theory of Cryptog-
raphy, pages 278–296. Springer, 2004.

[15] Moni Naor and Gil Segev. Public-key cryptosystems resilient to key leakage. SIAM Journal
on Computing, 41(4):772–814, 2012.

[16] Baodong Qin and Shengli Liu. Leakage-resilient chosen-ciphertext secure public-key encryption
from hash proof system and one-time lossy filter. 2013.

[17] Victor Shoup. Sequences of games: a tool for taming complexity in security proofs. IACR
Cryptology ePrint Archive, 2004:332, 2004.

19

