
Linearly Homomorphic Structure Preserving Signatures:
New Methodologies and Applications

Dario Catalano1, Antonio Marcedone2,?, and Orazio Puglisi1

1 University of Catania, Catania, Italy,
2 Scuola Superiore di Catania, University of Catania, Catania, Italy

Abstract At Crypto 2013 Libert, Peters, Joye and Yung introduced the notion of
Linearly Homomorphic Structure Preserving Signatures (LHSPS) as a tool to perform
verifiable computation on encrypted data and to create constant-size non malleable
commitments to group elements. In this paper we improve our understanding of LH-
SPS by putting forward new methodologies and applications. First, we present a generic
transform that converts LHSPS which are secure against weak random message attack
(RMA) into ones that achieve full security guarantees. Next we give evidence that RMA
secure linearly homomorphic structure preserving signatures are interesting in their own
right by showing applications in the context of on-line/off-line homomorphic and net-
work coding signatures. This notably provides what seems to be the first instantiations
of homomorphic signatures achieving on-line/off-line efficiency trade-offs.

? Part of the work done while visiting Aarhus University.

1

1 Introduction

Structure Preserving cryptography provides a simple and elegant methodology to com-
pose algebraic tools within the framework of Groth Sahai proof systems [36]. In the
last years, this methodology has been widely used to design simple and modular re-
alizations of cryptographic protocols and primitives. These include structure preserv-
ing signatures (SPS) [6,3,4,1,2,16,23,24,30,35,37], commitments [34,7] and encryption
schemes [17]. Very recently Libert et al. [41] further enlarged this set of primitive
by introducing and realizing the notion of Linearly Homomorphic Structure Preserv-
ing signatures (LHSPS for short). Informally LHSPS are like ordinary SPS but they
come equipped with a linearly homomorphic property that makes them interesting
even beyond their usage within the Groth Sahai framework. In particular Libert et
al. showed that LHSPS can be used to enable simple verifiable computation mecha-
nisms on encrypted data. More surprisingly, they observed that linearly homomorphic
SPS (generically) yield efficient simulation sound trapdoor commitment schemes [31],
which in turn imply non malleable trapdoor commitments [27] to group elements.

Our Contribution. In this paper we improve our understanding of linearly homo-
morphic structure preserving signatures by proposing new constructions and appli-
cations for this primitive. More precisely, our contributions are as follows. First, we
put forward an efficient and generic methodology to convert LHSPS which are secure
against a very weak random message attack into ones that achieve full security. Specif-
ically, by random message security here we mean that the unforgeability guarantee
holds only with respect to adversaries that are allowed to see signatures corresponding
to messages randomly chosen by the signer. We stress that while similar transforms
were known for structure preserving signatures (e.g. [25]), to our knowledge this is the
first such transform for the case of linearly homomorphic signatures in general. On a
technical level, we note that the main difficulty in proving this result comes from the
fact that we require it to hold in the strong security model introduced by Freeman in
[29].

As a second contribution of this paper we show how to construct a very simple
LHSPS which is secure against random message attack (RMA). Our construction relies
on a variant of the Computational Diffie-Hellman assumption introduced by Kunz-
Jacques and Pointcheval in [40]. Our construction is less general (but also conceptually
simpler) than that given in [41]. Indeed, while the latter allows to sign vectors of
arbitrary dimension, ours allow to sign only scalars (i.e. vectors composed by one
single component).

Perhaps surprisingly, however, we show that this simple scalar construction has
useful applications in the context of on-line/off-line (homomorphic) signatures. Very
informally, on-line/off-line signatures allow to split the cost of signing in two phases.
An (expensive) offline phase that can be carried out without needing to know the
message m to be signed and a much more efficient on-line phase that is done once m
becomes available. In this sense, we show that RMA-secure linearly homomorphic SPS
naturally fit the on-line/off-line scenario. Specifically, we prove that if one combines
a RMA-secure LHSPS (to sign scalars) with a Σ protocols with some specific homo-
morphic properties, one gets a fully fledged linearly homomorphic signature achieving
a very efficient online phase. Moreover, since the resulting signature scheme supports
vectors of arbitrary dimensions as underlying message space, our results readily gen-
eralize to the case of network coding signatures [12]. More concretely, by combining
our RMA-secure scheme together with (a variant of) Schnorr’s identification protocol

2

we get what seems to be the first constructions of strongly secure homomorphic and
network coding signatures offering online/offline efficiency tradeoffs.

1.1 Other Related Work

Structure Preserving Signature (SPS). Structure preserving signatures were in-
troduced (with a different terminology) in 2006 by Groth [35] as a tool to realize
group signatures in the standard model. The scheme from [35], is mainly of theoret-
ical interest as each signature consists of thousands of group elements. More efficient
realizations were provided by Cathalo, Libert and Yung [23] and by Fuchsbauer [30].
In 2011 Abe, Groth, Haralambiev, Ohkubo [4] proved that any secure SPS scheme
using asymmetric bilinear groups must consist of at least 3 group elements. Moreover
they proposed a realization matching this lower bound. Later Abe, Groth an Ohkubo
in [5] prove that any SPS scheme matching this lower bound must be based on some
interactive assumptions. Constructions based on the much more standard decision
linear assumption [11] were later given in [37,16,24]. More recently Abe et al. [1,2]
managed to realize constant size constructions under simple assumptions.

Over the last years SPS have been used in different application [17,34]. Recently
Sakai et al. in [42] use SP Identity Based Encryption to obtain a new property called
message− dependent opening, that restricts the power of the opening authority.

Linearly homomorphic signature The concept of homomorphic signature scheme
was originally introduced in 1992 by Desmedt [26], and then refined by Johnson,
Molnar, Song, Wagner in 2002 [38]. A very useful class of homomorphic signatures
are linearly homomorphic ones, introduced in 2009 by Boneh et al. [12] as a way to
prevent pollution attacks in network coding. Linearly homomorphic signatures allow
one to sign linear functions of signed data without needing to know the secret signing
key. Following the original construction from [12] many other works further explored
the notion of homomorphic signatures by proposing new frameworks and realizations
[32,8,14,13,21,9,22,29,10,20]. In the symmetric setting constructions of homomorphic
message authentication codes have been proposed by [12,33,19]

On-line/Off-line Signatures. On-Line/Off-Line digital signature were introduced
by Even, Goldreich and Micali in [28]. In such schemes the signature process consists
of two parts: a computationally intensive one that can be done Off-Line (i.e. when
the message to be signed is not known) and a much more efficient online phase that
is done once the message becomes available. There are two general ways to construct
on-line/off-line signatures: using one time signatures [28] or using chameleon hash [44].
In [18] Catalano et al., unified the two approaches by showing that they can be seen
as different instantiations of the same paradigm.

2 Preliminaries and notation

We denote with Z the set of integers, with Zp the set of integers modulo p. An algorithm
A is said to be PPT if it’s modelled as a probabilistic Turing machine that runs in

polynomial time in its inputs. If S is a set, then x
$← S denotes the process of selecting

one element x from S uniformly at random. A function f is said to be negligible if for
all polynomial p there exists n0 ∈ N such that for each n > n0

|f(n)| < 1

p(n)

3

2.1 Computational assumptions

We recall below a few well known computational assumptions.
Let G be a finite (multiplicative) group of prime order p.

Definition 1 (CDH). We say that the Computational Diffie-Hellman assumption
holds in G if, given a random generator g ∈ G, there exists no PPT A that on input
g, ga, gb outputs gab with more than negligible probability. Here the probability is

taken over the uniform choices of a, b
$← Zp and the internal coin tosses of A.

The 2-out-of-3 Computational Diffie-Hellman assumption was introduced by Kunz-
Jacques and Pointcheval in [40] as a relaxation of the standard CDH assumption. It
is defined as follows.

Definition 2 (2-3CDH). We say that the 2-out-of-3 Computational Diffie-Hellmann
assumption holds in G if, given a random generator g ∈ G, there exists no PPT A
that on input (g, ga, gb) (for random a, b

$← Zp) outputs h, hab (h 6= 1) with more than
negligible probability.

2.2 Linearly Homomorphic Structure Preserving Signatures Schemes

Following [41], we define linearly homomorphic structure preserving signatures by
adapting to the structure preserving context the definition of linearly homomorphic
signature scheme. In particular we assume that the message space is some multiplica-
tive group M and

– We use as set of functions F the set of linear combinations of elements of the group,
so each function f ∈ F can be uniquely expressed as f(m1, . . . ,mk) =

∏k
i=1m

αi
i ,

and therefore can be identified by a proper vector (α1, . . . , αk) ∈ Zk.
– We identify each dataset by a string fid, and use an additional argument i ∈
{1, . . . , n} for the signing algorithm to specify that the signed message can be
used only as the i-th argument for each function f ∈ F .

As a technical note we stress that the following definitions are slightly different with
respect to those given in [41]. This is to accommodate the fact that our constructions
focuses on signing vectors rather than subspaces as in [41]. Formally, we have the
following:

Definition 3 (LHSPSS). A Linearly homomorphic structure-preserving signature
scheme is a tuple of PPT algorithms (KeyGen, Sign, Verify, Eval) such that:

– KeyGen(1λ, n, k) takes as input the security parameter λ, an integer n denoting
the length of vectors to be signed and an upper bound k for the number of messages
signed in each dataset. It outputs a secret signing key sk and a public verification
key vk; the public key implicitly defines a message space of the form M = Gn,
a file identifier space D = {0, 1}nd and a signature space Σ ⊆ Gns , for some
ns, nd ∈ poly(λ).

– Sign(sk,m,fid, i) takes as input the secret key, an element m ∈ M, a dataset
identifier fid, an index i ∈ {1, . . . , k} and outputs a signature σ.

– Verify (vk, σ, m, fid, f) takes as input the pubic key vk, a signature σ ∈ Σ, a
message m ∈ M a dataset identifier fid ∈ D and a function f ∈ F and outputs 1
(accept) or 0 (reject).

4

– Eval (vk, fid, f, {σi}i=1...k) takes as input the public key vk, a dataset identifier
fid, an admissible function f in its vector form (α1, . . . , αk), a set of k signatures
{σi}i=1...k and outputs a signature σ ∈ Σ. Note that this algorithm should also
work if less than k signatures are provided, as long as their respective coefficients
in the function f are 0, but we avoid to explicitly account this to avoid heavy
notation.

The correctness conditions of our scheme are the following:

– Let (sk, vk) ← KeyGen(1λ, n, k) be an honestly generated keypair, m ∈ M,
fid any dataset identifier and i ∈ 1, . . . , k. If σ ← Sign(sk,m,fid, i), then with
overwhelming probability

Verify(vk, σ,m,fid, ei) = 1,

where ei is the i-th vector of the standard basis of Zk.
– Let (sk, vk)← KeyGen(1λ, n, k) be an honestly generated keypair, m1, . . . ,mk ∈
M any tuple of messages signed w.r.t the same fid, and let σ1, . . . , σk ∈ Σ,
f1, . . . , fk ∈ F such that for all i ∈ {1, . . . , k}, Verify(vk, σi,mi, fid, fi) = 1.
Then, for any admissible function f = (α1, . . . , αk) ∈ Zk, with overwhelming
probability

Verify(vk,Eval(vk,fid, f, {σi}i=1...k), f(m1, . . . ,mk), fid,
k∑
i=0

αifi) = 1

Security Roughly speaking, a LHSPSS is said to be secure if no PPT adversary A
can produce with more than negligible probability one of the following:

– A signature for a message w.r.t. a new fid (i.e. one that it has never seen before)
– A signature w.r.t. a previously seen identifier, for a message m different from the

one obtained applying the claimed function f to the previously signed messages of
the same dataset

– A signature it has not seen but that has been used in the Eval algorithm to
compute signatures it has seen (under certain independence constraints, see the
formal definition for details).

We distinguish between notions where the adversary has no control over the signed
messages he can see, and the standard one where he can adaptively choose them by
itself.

Definition 4 (Random message attack security). An LHSPSS is unforgeable
against a random message attack if for all n the advantage of any PPT adversary A
in the following game is negligible in the security parameter λ:
Setup The challenger runs KeyGen(1λ, n, k) and gives vk to A. The message space
M, the signature space Σ and the dataset space D are all implicitly defined by the
verification key.
Queries A can ask a polynomial number of queries of the following types:

– Signing Queries A asks for a new message/signature couple w.r.t. to a specific
fid ∈ D and a specific index i ∈ {1, . . . , k} . The challenger checks that this query
has not been previously answered (otherwise it returns ⊥), then it picks a random

message m
$←M and uses the secret key sk to compute a signature σ for m w.r.t.

5

fid and the index i. Finally it picks a handle h (from a proper set of identifiers),
stores (h, (fid,m, σ, ei)) in a table T and returns h to A. Note that A does not see
neither the message nor the signature, and that here ei ∈ Zk is the i-th vector of
the canonical basis, used to indicate the (trivial) function with respect to which
the signature has been issued.

– Derivation Queries A chooses a set of handles h = (h1, . . . , hk) and a vector of
coefficients f = (α1, . . . , αk). The challenger retrieves {(hi, (fidi,mi, σi, fi))}i=1,...k

from T and returns ⊥ if any of these does not exist or if fidi 6= fidj for some

i, j ∈ 1, . . . , k. Else, it computes m =
∏k
i=1m

αi
i , σ = Eval(vk,fid, f, {σi}i=1...k),

chooses a handle h, stores (h, (fid,m, σ,
∑k

i=0 αifi)) in T and returns h to A.

– Reveal Queries A chooses a handle h. If this handle is not in T , the challenger
returns ⊥. Otherwise it retrieves the corresponding record (h, (fid,m, σ, f)) from
table T and gives (fid,m, σ, f) to A. Next it adds (h, (fid,m, σ, f)) to a different
table Q.

Forgery A outputs a dataset identifier fid∗, a message m∗, a signature σ∗ and a func-
tion f∗.
Let Qfid∗ = {(hi, (fid∗,mi, σi, fi))}i=1,...,s ⊆ Q be the set of entries in Q for which
fid = fid∗.
The Adversary wins the game if Verify(vk, fid∗,m∗, σ∗, f∗) = 1 and one of the fol-
lowing conditions hold:

1 Qfid∗ is empty
2 f∗ (interpreted as a vector) is in the span of {f1, . . . , fs} but, for any α1, . . . , αs

such that f =
∑s

i=1 αifi, it holds m∗ 6=
∏s
i=1m

αi
i

3 f∗ (interpreted as a vector) is not in the span of {f1, . . . , fs}

Finally we define the advantage AdvLHSPSS−RMA(A) of A as the probability that A
wins the game.

Known Random Message Security. We also extend the above definition to con-
sider a slightly stronger adversarial model (that we call Known Random Message
Attack security). Informally the KRMA security game is almost identical to the RMA
game above. The only difference concerns Signing queries which are dealt as follows.

– Signing Queries A asks for a new message/signature couple w.r.t. to a specific
fid ∈ D and a specific index i ∈ {1, . . . , k} . The challenger checks that this query
has not been previously answered (otherwise it returns ⊥), then it picks a random

message m
$←M and uses the secret key sk to compute a signature σ for m w.r.t.

fid and the index i. Finally it picks a handle h (from a proper set of identifiers),
stores (h, (fid,m, σ, ei)) in a table T and returns h and m to A. Thus, in this case
A actually knows the (random) message (but not the corresponding signature)
being signed by the challenger.

Definition 5 (Chosen message attack security). An LHSPSS is unforgeable
against chosen message attack if for all n the advantage of any PPT adversary A
in the following game is negligible in the security parameter λ:
Setup The challenger runs KeyGen(1λ, n, k) and gives vk to A. The message space
M and the signature space Σ are implicitly defined by the verification key.
Queries A can ask a polynomial number of queries of the following types:

6

– Signing Queries When A asks for a signature on the triple (fid,m, i) (where fid
is a file identifier, m ∈ M and i ∈ 1, . . . , k), the challenger first checks that no
other signature of the form (fid, ·, i) has been requested (if this is not the case, it
returns ⊥). Then it uses the secret key sk to compute a signature σ for m w.r.t.
fid and the index i. Finally it picks a handle h (from a proper set identifiers),
stores (h, (fid,m, σ, ei)) in a table T and returns h.

– Derivation Queries A chooses a set of handles h = (h1, . . . , hk) and a set of
coefficients f = (α1, . . . , αk). The challenger retrieves {(hi, (fidi,mi, σi))}i=1,...k

from T and returns ⊥ if any of these does not exists or if fidi 6= fidj for some

i, j ∈ 1, . . . , k. Else, it computes m =
∏k
i=1m

αi
i , σ = Eval(vk,fid, f, {σi}i=1...k),

chooses a handle h, stores (h, (fid,m, σ,
∑k

i=0 αifi))) in T and returns h to A.

– Reveal Queries A chooses a handle h. If this handle is not in T, the challenger
returns ⊥. Otherwise it retrieves the corresponding record (h, (fid,m, σ, f)) from
table T and gives (fid,m, σ, f) to A. Next it adds (h, (fid,m, σ, f)) to a different
table Q.

Forgery A outputs a dataset identifier fid∗, a message m∗, a signature σ∗ and a func-
tion f∗.
Let Qfid∗ = {(hi, (fid∗,mi, σi, fi)}i=1,...,s ⊆ Q be the set of entries in Q for which
fid = fid∗.
The Adversary wins the game if Verify(vk, fid∗,m∗, σ∗, f∗) = 1 and one of the fol-
lowing conditions hold:

1 Qfid∗ is empty
2 f∗ (interpreted as a vector) is in the span of {f1, . . . , fs} but, for any α1, . . . , αs

such that f =
∑s

i=1 αifi, it holds m∗ 6=
∏s
i=1m

αi
i

3 f∗ (interpreted as a vector) is not in the span of {f1, . . . , fs}

Finally we define the advantage AdvLHSPSS−CMA(A) of A the probability that A
wins the game.

2.3 Homomorphic Online/Offline signatures

Definition 6 (LHOOS). A Linearly homomorphic Online/Offline signature scheme
is a tuple of PPT algorithms (KeyGen, OffSign, OnSign, Verify, Eval) such that:

– KeyGen(1λ, n, k) takes as input the security parameter λ, an integer n denoting
the length of vectors to be signed and an upper bound k for the number of messages
signed in each dataset. It outputs a secret signing key sk and a public verification
key vk; the public key implicitly defines a message space that can be seen as
a vector space of the form M = Fn (where F is a field), a file identifier space
D = {0, 1}nd and a signature space Σ.

– OffSign(sk, fid) takes as input the secret key, and a file identifier fid ∈ D and
outputs some information Ifid.

– OnSign(sk,fid, Ifid,m, i) takes as input the secret key, an element m ∈ M, an
index i ∈ {1, . . . , k}, a dataset identifier fid and the related information Ifid output
by OffSign. It outputs a signature σ.

7

– Verify (vk,fid,m, σ, α) takes as input the pubic key vk, a signature σ ∈ Σ, a
message m ∈ M, a dataset identifier fid ∈ D and a vector α ∈ Zk; it outputs 1
(accept) or 0 (reject).

– Eval (vk, fid, {mi, σi, αi}i=1,...,d, β) takes as input the public key vk, a dataset
identifier fid, a vector β = (β1, . . . , βd) ∈ Zd (for some integer d ∈ N), a set of d
tuples {mi, σi, αi} of a message mi, a signature σi and a vector αi ∈ Zk. It outputs
a signature σ ∈ Σ.

The correctness conditions of our scheme are the following:

– Let (sk, vk) ← KeyGen(1λ, n, k) be an honestly generated keypair, m ∈ M, fid
any dataset identifier and i ∈ 1, . . . , k. If σ ← Sign(sk, fid,OffSign(sk,fid),m, i),
then with overwhelming probability

Verify(vk, σ,m,fid, ei) = 1,

where ei is the ith vector of the standard basis of Zk.
– Let (sk, vk)← KeyGen(1λ, n, k) be an honestly generated keypair, m1, . . . ,md ∈
M any tuple of messages signed w.r.t the same fid, and let σ1, . . . , σd ∈ Σ,
α1, . . . , αd ∈ Zk such that for all i ∈ {1, . . . , d}, Verify(vk, σi,mi, fid, αi) = 1.
Then, for any vector β = (β1, . . . , βd) ∈ Zd, with overwhelming probability

Verify(vk,Eval(vk, fid, β, {mi, σi, αi}i=1,...,d),

d∑
i=1

βimi, fid,

d∑
i=0

βiαi) = 1

Definition 7 (LHOOS CMA). An LHOOS is unforgeable against a chosen mes-
sage attack if for all n the advantage of any PPT adversary A in the following game
is negligible in the security parameter λ:
Setup The challenger runs KeyGen(1λ, n, k) and gives vk to A. The message space
M, the signature space Σ and the dataset space D are all implicitly defined by the
verification key.
Signing Queries A can ask a polynomial number of queries of the form (mi, fid, i)
(where mi ∈M is a message, fid is a dataset identifier and i ∈ {1, . . . , k} is an index),
and get the corresponding signatures by the challenger. No two queries where only
the message mi changes can be asked by the adversary (if this happens, the answer
to the second query is ⊥).
Forgery A outputs a dataset identifier fid∗, a message m∗, a signature σ∗ and a vector
α∗ ∈ Zk.
The Adversary wins the game if Verify(vk,fid∗,m∗, σ∗, α∗) = 1 and, called m1, . . . ,mk

the messages (possibly) queried by the adversary for the identifier fid∗, either

– there exists i such that α∗i 6= 0, but no message w.r.t. index i and fid∗ has been
queried by the adversary.

– the previous condition does not occur, and m∗ 6=
∑k

i=1 αimi

Finally we define the advantage AdvLHOOS−RMA(A) of A as the probability that A
wins the game.

One can give an analogous notion of strong security against a chosen message
attack, where even a new signature for a message the adversary received from the
simulator (or computed itself from the Eval algorithm and signatures obtained from
the simulator) is considered a forgery.

8

Remark 8. In the definition above, the dataset identifiers need to be prepared in ad-
vance during the off-line phase. While this assumption is reasonable for several ap-
plications, the use of a chameleon hash [39] function could easily allow the signer to
change the fid during the on-line phase at a negligible computational cost. Indeed, in
the practical instantiation presented in appendix D we achieve this better outcome
for free.

3 From random message security to chosen message security

In this section we present our main result: a general transform to construct an LHSPS
secure against chosen message attack from one secure under random message attack.
This transform comes in two flavours, depending on whether the underlying scheme
is RMA secure or known RMA secure. In this latter case the conversion is totally
generic. In the first case, on the other hand, the RMA secure scheme needs to satisfy
some additional, but reasonable, requirements. In particular we require it to be almost
deterministic. Informally, this means that given a file identifier fid ∈ D and a signature
on a message m with respect to fid, the signature of any other m′ ∈ M w.r.t. to any
admissible function f ∈ F and the same fid is uniquely determined.

We stress that while we present our theorems in the context of (linearly homo-
morphic) structure preserving signatures, our results apply essentially to any linearly
homomorphic signature scheme.

Let HSPS = (HKeyGen,HSign,HVerify,HEval) be a LHSPS which is either
known RMA-secure or RMA-secure and almost deterministic. The transformation be-
low shows how to produce a new LHSPS T = (TKeyGen,TSign,TVerify,TEval)
which is secure under CMA.

– TKeyGen(1λ, n, k) takes as input the security parameter λ, the vector size n and
an upper bound k for the number of messages signed in each dataset. It runs two
times the HKeyGen algorithm to obtain (sk1, vk1) ← HKeyGen(1λ, n, k) and
(sk2, vk2)← HKeyGen(1λ, n, k).
It outputs sk = (sk1, sk2) as the secret signing key and vk = (vk1, vk2) as the
public verification key. The message space M is the same of HSPS.

– TSign(sk,m,fid, i) It chooses random m1 = (m1,1, . . . ,m1,n)
$←M and computes

m2 ←
(
m1
m1,1

, . . . , mn
m1,n

)
(where m = (m1, . . . ,mn)).

Then it computes σ1 ← HSign(sk1,m1, i,fid), σ2 ← HSign(sk2,m2, i,fid) and
outputs σ = (fid,m1, σ1, σ2).

– TVerify(vk, σ,m,fid, f) parses σ as (fid,m1, σ1, σ2), computes m2 ←
(
m1
m1,1

, . . . , mn
m1,n

)
and checks that the following equations hold:

HVerify(ski,mi, σi, fid, f) = 1 for i = 1, 2.

– Eval(vk, fid, f, {σ(i)}i=1...k) parses σ(i) as (fid(i),m
(i)
1 , σ

(i)
1 , σ

(i)
2) and f as (α1, . . . , αk),

then checks that fid = fid(i) for all i and, if not, aborts. Finally it sets

σ1 ← HEval(vk1,fid, {σ(i)
1 }i=1...k, f),

σ2 ← HEval(vk2,fid, {σ(i)
2 }i=1...k, f),

9

m1 =

(
k∏
i=1

(m
(i)
1,1)αi , . . . ,

k∏
i=1

(m
(i)
1,n)αi

)
and returns

σ ← (fid,m1, σ1, σ2)

Theorem 9. Suppose HSPS is a LHSPS secure against a random message attack
with almost deterministic signatures. Moreover assume that the underlying message
space is a group where one can efficiently solve systems of group equations. Then the
scheme T described above is a LHSPS secure against a chosen message attack.

Proof. We prove the theorem by reducing the security of T to the one of HSPS, and
showing how to build a simulator B that uses an adversary A against T to break the
RMA security of HSPS.
First of all one can notice that, by construction, if (m∗,Sign∗ = (fid∗,m∗1,Sign∗1,Sign∗2), f∗)
is a forgery for T then at least one between (m∗1,Sign1, f

∗) (case 1) and (m∗/m∗1,Sign2, f
∗)

(case 2) is a forgery for the corresponding instance of HSPS.
The simulator B works as follows:
It receives a public key vk′ for an instance of HSPS from its challenger. First of all
it flips a coin to guess in which case he will be (as usual, his guess will be right with
probability at least 1/2). Without loss of generality, we will describe the simulation
in the case where its guess is case 1.

Setup B runs once the HKeyGen algorithm to obtain (sk2, vk2), sets vk1 ← vk′ and
gives vk = (vk1, vk2) to A.

Signing Queries Each time A asks a query of the form (fid,m, i), B forwards a
query of the form (fid, i) to its challenger and gets back an handle h (if the chal-
lenger returns an error ⊥, B simply forwards it to A). Then it chooses a random
message1 m2, computes Sign2 ← Sign(sk2,m2, fid2, i) and returns h to A. The
handle h, the messages m and m2, the signature Sign2 and the index i are stored
in a table T, like in the real experiment.

Derivation Queries In response to a derivation query (h1, . . . , hk, f), the simulator
forwards the query to its challenger, and gets back a new handle h (or an error ⊥,
which gets forwarded to A). Then it executes itself the query on the second part
of the signature by computing Sign(h) ← Eval(vk, fid, f, {Sign(hi)}i=1,...,k), com-

putes the corresponding messages m(h) =
∏k
i=1(m(hi))fi , m

(h)
2 =

∏k
i=1(m

(hi)
2)fi

(the components m(hi),m
(hi)
2 Sign(hi) corresponding to each handle hi are re-

trieved from the table T). Finally, B gives h to A and stores the messages, signa-
ture, handles and function f in T .

Reveal Queries When A provides a handle h in a reveal query, B forwards the reveal
query to the challenger. If the answer is ⊥, B simply forwards it to A. Otherwise,
it gets a tuple (fid,m1,Sign1, f). Since the adversary expects to receive a valid
signature for a certain message m (that the simulator knows since it is stored

1 We stress that, since the simulator does not know what random message m1 the challenger has
chosen to sign, at this point there is no guarantee that m = m1m2. However, the adversary only
gets a random handle, and we will deal with this problem later.

10

in its own table T together with the handle h, the message m2 and signature
Sign2), it must now modify the table T in such a way that it is compliant with
the information that the adversary has requested and the ones it has already
obtained in the previous reveal queries. In particular, for each reveal query (as-
sociated with a function f), the adversary knows a message m2 such that, called

m
(1)
2 , . . . ,m

(k)
2 the messages corresponding to the second part of the signatures

issued by the simulator in response to the signing queries for the same fid, it holds

that m2 =
∏k
i=1(m

(hi)
2)fi . It can modify the table by choosing a random simul-

taneous solution for all these equations2 (in the unknowns m
(1)
2 , . . . ,m

(k)
2) and

computing new signatures3 for each entry in T (except for those who have been
already given to the adversary) by either using the Sign or the Eval algorithm.
Finally, it can compute m1 = m/m2 and give the updated signature to A in
response to the query.

Forgery Suppose A returns m∗, σ∗ = (fid∗,m∗1, σ
∗
1, σ
∗
2), f∗ as a valid forgery and

that B’s guess was correct. Then B can return (fid∗,m∗1, σ
∗
1, f
∗) as a valid forgery

against HSPS to its challenger.

We remark that the proof above becomes much simpler if the simulator were
allowed to know the messages signed by the challenger when answering signing queries.
Formalizing this observation leads to the following theorem (whose proof is omitted):

Theorem 10. If HSPS is a LHSPS secure against known random message attack
the scheme T described above is a LHSPS secure against a chosen message attack.

Remark 11. We described this generic construction w.r.t. multiplicative schemes, but
it can be trivially extended to other kinds of homomorphic schemes modifying the
class of functions accordingly. The only requirement for this extension to work is that
each function in this class of functions must be homomorphic w.r.t. the same operation
of the signature scheme.

3.1 A random message secure construction for the scalar case

Here we present a randomly secure instantiation for the case where n = 1, that is when
the vectors in the message space have only one component. In appendix C we show
how to to derive a fully secure scheme using the conversion methodology described in
the previous section4. Our construction uses as underlying building block the strongly
secure variant of Waters signature given in [15]. For completeness, such a scheme is
recalled in appendix A
Let G, GT be groups of prime order p such that e : G×G→ GT is a bilinear map and
H ={HK}K∈K be a family of collision-resistant hash functions HK : {0, 1}∗ → Zp.
The scheme works as follows:
2 A solution always exists, since if the simulator was given the actual messages chosen by the chal-

lenger, he could set m
(i)
2 = m/mi

1 for all i. Moreover, we assumed that such a solution can be
efficiently computed

3 by the the property that the scheme is almost deterministic, the adversary cannot distinguish
whether or not the signatures it has not seen have been modified during the game because for each
message there is only one signature and therefore this signature does not contain any information
about how it was generated.

4 More precisely the scheme given in appendix C is a slightly optimized version of what one would
get by naively converting our random message secure scheme. See appendix C for details.

11

KeyGen(1λ, 1, k): Choose two random generators g, g2 ∈ G and a random hashing

key K
$← K.

Pick random α,w
$← Zp and set g1 = gα,W ← gw, l← dlog pe.

Select random group elements A0, . . . , Al, h1, . . . , hk, h
$← G.

Set vk ← (g, g1, g2,W,A0, . . . , Al, h, h1, . . . , hk,K) as the public verification key
and sk = (w, gα2) as the secret signing key.

Sign(sk,m,fid, i): This algorithm stores a list L of all previously returned dataset
identifiers fid (together with the related secret information r and public informa-
tion σ, τ, s defined below) and works according to the type of fid it is given in
input):

If fid 6∈ L, then choose5 r, s
$← Zp, set σ ← gr , compute t ← HK(fid‖σ),

fid ← HK(gths) and τ ← gα2 (A0
∏l
ζ=1A

[fid]ζ
ζ)r (where [fid]ζ is the ζ-th bit of

fid)

Else if fid ∈ L, then retrieve the associated r, σ, τ, s from memory.
Then set M ← mw, T ← (hiM)r (if a signature for the same fid and the same
index i was already issued, then abort). Finally output Sign← (fid, σ, τ, T,M, s)
as a signature for m w.r.t. the function ei (where ei is the i-th vector of the
canonical basis of Zn).

Verify(vk,m,Sign, f): Parse the signature Sign as (fid, σ, τ, T,M, s), f as (f1, . . . , fk)
and compute t← HK(fid‖σ), fid← HK(gths). Then check that:

e(τ, g) = e(g2, g1) · e(A0

l∏
ζ=1

A
[fid]ζ
ζ , σ)

e(M, g) = e(m,W)

e(T, g) = e(
k∏
i=1

hfii M,σ)

If all the above equations hold output 1, else output 0.
Eval (vk, α,Sign1, . . . ,Signk): Parse α as (α1, . . . , αk) and Signi as (fidi, σi, τi, Ti,Mi, si),
∀i = 1, . . . , k. Then verify that all Signi share the same fid, σ, τ, s components
and, if not, reject. Finally, compute T ←

∏k
i=1 T

αi
i , M ←

∏k
i=1M

αi
i and output

Sign = (fid, σ, τ, T,M, s).

The security of the scheme follows from the following theorem (whose proof is
deferred to appendix B.1)

Theorem 12. If the 2-3CDH assumption holds and H is a family of collision resistant
hash functions then the scheme described above is a secure Linearly homomorphic
signature scheme according to definition 4.

5 We stress that, even if s ∈ Z is not an element of the group G, it is only used to authenticate the
identifier fid and therefore it does not compromise the usefulness of SPS in any application that we
are aware of.

12

4 Applications to On-Line/Off-Line Homomorphic Signatures

In this section we show applications to the case of on-line/off-line homomorphic sig-
natures. More precisely we show that combining a LHSPS secure against a random
message attack, with a certain class of sigma protocols yields to efficient on-line/off-
line linearly homomorphic (and network coding) signature schemes. Informally the
properties we require from the underlying sigma protocol are: (1) it is linearly ho-
momorphic, (2) its challenge space can be seen as a vector space and (3) the third
message of the protocol can be computed in a very efficient way (as it is used in the
online phase of the resulting scheme). More precise details follow.
We start by recalling the notion of Σ-Protocol.

Σ-Protocol. Let R ⊆ {0, 1}∗×{0, 1}∗ be an arbitrary binary relation, with the only
restriction that if (x,w) ∈ R, then the length of w is polynomial in the length of x
(typically, (x,w) ∈ R if x is part of an NP language L and w is one of its associated
witnesses). A Σ protocol for R is an interactive (three rounds) protocol involving two
parties: a prover P and a verifier V . We assume that both parties are PPT machines
and that they agree on some value x in advance, and the goal of the protocol is to
let the prover convince the verifier that he knows w such that (x,w) ∈ R. The three
rounds are carried out as follows: in the first round P sends a message to V, who
replies with a string (chosen at random from a well defined set and called a challenge
string), and finally gets back a third message from P and outputs 1 or 0 depending
on whether he is convinced by this interaction.
More formally, a Σ protocol consists of four PPT algorithms Σ = (Σ-Setup, Σ-Com,
Σ-Resp, Σ-Verify) defined as follows:

Σ-Setup(1λ,R)→ (x,w) It takes as input a security parameter λ and a relation R.
It returns a statement x and a witness w such that (x,w) ∈ R.

Σ-Com(x)→ (R, r) Is a probabilistic algorithm run by the prover to get the first
message R to be sent to the verifier and some private state r to be stored and
used later in the protocol.

Σ-Resp(x,w, r, c)→ s Is an algorithm run by the prover to compute the last (third)
message of the protocol (to be sent to the verifier). It takes as input the statement
x, its witness w, the challenge string (chosen at random by V in a well defined set
ChSp and sent as the second message of the protocol), and some state information
r. It outputs the third message of the protocol.

Σ-Verify(x,R, c, s)→ {0, 1} Is the verification algorithm that on input the message
R, a challenge c ∈ ChSp and a response s, outputs 1 (accept) or 0 (reject).

We assume that the protocol satisfies the following three proprieties:

Completeness ∀(x,w) ∈ R, any (R, r) ←Σ-Com(x, r), any c ∈ ChSp and s ←Σ-
Resp(x,w, r, c), it holds that Σ-Verify(x,R, c, s) = 1 with overwhelming proba-
bility.

Special Soundness There exists a PPT extractor algorithm Σ-Ext such that ∀x ∈
L, ∀R, c, s, c′, s′ such that (c, s) 6= (c′, s′), Σ-Verify(x,R, c, s) = 1 and
Σ-Verify(x,R, c′, s′) = 1, outputs w′ ←Σ-Ext(x,R, c, s, c′, s′) such that (x,w′) ∈
R

Special Honest Verifier Zero Knowledge (HVZK) There exists a PPT algorithm
S such that ∀x ∈ L,∀c ∈ ChSp, S(x, c) generates a pair (R, s) such that Σ-
Verify(x,R, c, s) = 1 and the probability distribution of (R, c, s) is identical to
the one obtained by running the real algorithms.

13

4.1 Vector and Homomorphic Σ-protocols

Given a language L and an integer n ∈ N, we can consider the language Ln =
{(x1, . . . , xn) | xi ∈ L ∀i = 1, . . . , n}. A trivial witness for a tuple (vector) in this
language is the tuple of the witnesses of each of its components for the language
L. As before we can consider the relation Rn associated to Ln, where (x,w) =
(x1, . . . , xn, w1, . . . , wn) ∈ Rn if (x1, . . . , xn) is part of Ln and wi is a witness for
xi. A vector Σ protocol for Rn is a three round protocol defined similarly as above
with the relaxation that the special soundness property is required to hold in a weaker
form. Namely, we require the existence of an efficient extractor algorithm Σn-Ext such
that ∀x ∈ Ln, ∀ R, c, s, c′, s′ such that (c, s) 6= (c′, s′), Σn-Verify(x, R, c, s) = 1 and
Σn-Verify(x, R, c′, s′) = 1, outputs (x,w)←Σn-Ext (x, R, c, s, c′, s′) where x is one
of the components of x and (x,w) ∈ R.

Definition 13. A Sigma protocol Σ = (Σ-Setup,Σ-Com,Σ-Resp,Σ-Verify) for a
relation R is called group homomorphic if

– The outputs of the Σ-Com algorithm and the challenge space of the protocol can
be seen as elements of two groups (G1, ◦1) and (G2, ◦2) respectively

– There exists a PPT algorithm Combine such that, for all (x,w) ∈ R and all
α ∈ Zn, if transcripts {(Ri, ci, si)}i=1,...,n are such that Σ-Verify(x,Ri, ci, si) = 1
for all i, then

Σ-Verify (x,Rα1
1 ◦1 · · · ◦1 R

αn
n , cα1

1 ◦2 · · · ◦2 c
αn
n ,Combine(α, {(Ri, ci, si)}i=1,...,n)) = 1

We stress that the above definition can be trivially extended to the case of vector
sigma protocols.

In appendix D we show that a simple variant of the well known identification protocol
by Schnorr fits the requirements of (efficient) homomorphic vector Σ-protocol

4.2 On-Line/Off-Line Signature

In this section we describe a generic framework to obtain an On-Line/Off-Line Signa-
ture Scheme.
Suppose S = (KeyGen,Sign,Verify,Eval) is a randomly secure LHSPS (even
one that only allows to sign scalars) and Σn = (Σn-Setup,Σn-Com,Σn-Resp,Σn-
Verify) a group homomorphic vector Sigma protocol associated to a relation Rn on
a language Ln. Our generic construction works as follows:

ON/OFFKeyGen (1λ, k, n): It runs (vk1, sk1)← KeyGen(1λ, k, n) and (x,w)←Σn-
Setup(1λ,Rn). It outputs vk← (vk1,x), sk← (sk1,w).

OFFSign (sk, fid): This algorithm runs the Σn-Com algorithm k times to obtain
(Ri, ri)←Σn-Com(x). Then it signs each Ri using the LHSPS signing algorithm
σi ← Sign(sk1,fid, Ri, i) and outputs Ifid = {(i, ri, Ri, σi)}i=1,...,k.

ONSign (vk, sk,m, fid, Ifid, i): It parses Ifid as6 {(i, ri, Ri, σi)}i=1,...,k, computes s←Σn-
Resp(x,w, ri,m) and outputs σ ← (Ri, σi, s)

ON/OFFVerify (vk,m, σ): It parses σ as (R, σ, s) and vk as (vk1,x). Then it checks
that

Verify(vk1, R, σ1) = 1 and Σn-Verify(x, R,m, s) = 1.

If both the above equations hold it returns 1, else it returns 0.

6 As said in remark 8, the use of a chameleon hash function (if the scheme does not support this feature
itself) allows the signer to compute a valid signature even on inputs fid1, Ifid2 where fid1 6= fid2

14

ON/OFFEval (vk, α, σ1, . . . , σk): it parses σi as (Ri, σi, si) for each i = 1, . . . , k and
vk as (vk1,x). Then it computes:

R← Rα1
1 ◦1 · · · ◦1 R

αk
k , σ ← Eval(vk1, α, σ1, . . . , σk),

s← Combine (α, {(Ri, ci, si)}i=1,...,k) .

Finally it returns (R, σ, s) (as a signature for the message mα1
1 ◦2 · · · ◦2 mαk

k).

Theorem 14. If S = (KeyGen,Sign,Verify,Eval) is a randomly secure LHSPS
and Σn = (Σn-Setup,Σn-Com,Σn-Resp,Σn-Verify) is a group homomorphic vector
sigma protocol for a non trivial relation Rn, then the on line/off line scheme described
above is secure against a chosen message attack according to definition 7.

Suppose m∗, (R∗, σ∗, s∗) is the forgery returned by an adversary A w.r.t the identifier
fid∗ and the vector α∗ = (α∗1, . . . , α

∗
k). Let {σ1, . . . , σk} the set of signatures seen by

A w.r.t. the same identifier fid∗ and the messages (m1, . . . ,mk). Note that, because
S is secure against random messages attacks, it must be that

∏k
i=1R

αi
i = R∗ and

fid∗ = fid for some fid that A has received during the security game. Therefore, by
the security definition, the only kind of forgery the adversary can make is one where

m∗ 6= m
α∗1
1 ◦2 · · · ◦2 m

α∗k
k .

In this case we describe a simulator B that uses A to extract a witness for the language
L such that Ln is the language associated to the relation Rn. B takes as input a vector
of statements x ∈ Ln. It must then return a couple (x,w) such that x is a component
of x and (x,w) ∈ R. It works as follows.
Key Generation. B runs (vk1, sk1) ← KeyGen(1λ, k, n) and gives to A vk =
(vk1,x). It is easy to check that this key is correctly distributed as in the real case.
Signing queries. Each time A asks for a signature on a message mi w.r.t. an identi-
fier fid and to an index i ∈ 1, . . . , k, B uses the HVZK simulator of the sigma protocol
to compute (Ri, si)← S(x,m). Then it computes a signature σi ← Sign(sk1, fid, Ri, i)
on Ri and returns the signature σ ← (Ri, σi, si) to A.
Forgery Suppose A returns a forgery of type 1 (R∗, σ∗, s∗) for the message m∗. Let

m = m
α∗1
1 ◦2 · · · ◦2 m

α∗k
k and s = Combine (α∗, {(Ri,mi, si)}i=1,...,k) .

B uses the extractor (x,w)←Σ-Ext(x, R,m∗, s∗,m, s) from the vector special sound-
ness to obtain a witness for one of the components of x.

The security obtained by this construction can be strengthened by assuming ad-
ditional properties on the underlying LHSPS scheme. If we assume that either S has
almost deterministic encryptions or that is strongly secure against a random message
attack, we can prove that the resulting construction is strongly secure as well. The
proofs are straightforward and similar to the previous one and therefore we omit them.
Below is a formal statement of one of these two theorems.

Theorem 15. If S = (KeyGen,Sign,Verify,Eval) is an almost deterministic ran-
domly secure LHSPS and Σn = (Σn-Setup,Σn-Com,Σn-Resp,Σn-Verify) is a group
homomorphic vector sigma protocol for a non trivial relation Rn, then the on line/off
line scheme described above is strongly secure against chosen message attacks.

In appendix D we show two practical examples of vector sigma protocols, built
upon Schnorr’s sigma protocol [43]. We also present a further modification of the
vector special soundness property, which preserves the security of the construction
but allows to build more efficient schemes.

15

References

1. Masayuki Abe, Melissa Chase, Bernardo David, Markulf Kohlweiss, Ryo Nishimaki, and Miyako
Ohkubo. Constant-size structure-preserving signatures: Generic constructions and simple assump-
tions. In Xiaoyun Wang and Kazue Sako, editors, Advances in Cryptology – ASIACRYPT 2012,
volume 7658 of Lecture Notes in Computer Science, pages 4–24. Springer, December 2012.

2. Masayuki Abe, Bernardo David, Markulf Kohlweiss, Ryo Nishimaki, and Miyako Ohkubo. Tagged
one-time signatures: Tight security and optimal tag size. In Kaoru Kurosawa and Goichiro
Hanaoka, editors, PKC 2013: 16th International Workshop on Theory and Practice in Public
Key Cryptography, volume 7778 of Lecture Notes in Computer Science, pages 312–331. Springer,
February / March 2013.

3. Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralambiev, and Miyako Ohkubo.
Structure-preserving signatures and commitments to group elements. In Tal Rabin, editor, Ad-
vances in Cryptology – CRYPTO 2010, volume 6223 of Lecture Notes in Computer Science, pages
209–236. Springer, August 2010.

4. Masayuki Abe, Jens Groth, Kristiyan Haralambiev, and Miyako Ohkubo. Optimal structure-
preserving signatures in asymmetric bilinear groups. In Phillip Rogaway, editor, Advances in
Cryptology – CRYPTO 2011, volume 6841 of Lecture Notes in Computer Science, pages 649–666.
Springer, August 2011.

5. Masayuki Abe, Jens Groth, and Miyako Ohkubo. Separating short structure-preserving signatures
from non-interactive assumptions. In Dong Hoon Lee and Xiaoyun Wang, editors, Advances in
Cryptology – ASIACRYPT 2011, volume 7073 of Lecture Notes in Computer Science, pages 628–
646. Springer, December 2011.

6. Masayuki Abe, Kristiyan Haralambiev, and Miyako Ohkubo. Signing on elements in bilin-
ear groups for modular protocol design. Cryptology ePrint Archive, Report 2010/133, 2010.
http://eprint.iacr.org/.

7. Masayuki Abe, Kristiyan Haralambiev, and Miyako Ohkubo. Group to group commitments
do not shrink. In David Pointcheval and Thomas Johansson, editors, Advances in Cryptology –
EUROCRYPT 2012, volume 7237 of Lecture Notes in Computer Science, pages 301–317. Springer,
April 2012.

8. Nuttapong Attrapadung and Benôıt Libert. Homomorphic network coding signatures in the
standard model. In Dario Catalano, Nelly Fazio, Rosario Gennaro, and Antonio Nicolosi, editors,
PKC 2011: 14th International Workshop on Theory and Practice in Public Key Cryptography,
volume 6571 of Lecture Notes in Computer Science, pages 17–34. Springer, March 2011.

9. Nuttapong Attrapadung, Benôıt Libert, and Thomas Peters. Computing on authenticated data:
New privacy definitions and constructions. In Xiaoyun Wang and Kazue Sako, editors, Advances
in Cryptology – ASIACRYPT 2012, volume 7658 of Lecture Notes in Computer Science, pages
367–385. Springer, December 2012.

10. Nuttapong Attrapadung, Benôıt Libert, and Thomas Peters. Efficient completely context-hiding
quotable and linearly homomorphic signatures. In Kaoru Kurosawa and Goichiro Hanaoka, ed-
itors, PKC 2013: 16th International Workshop on Theory and Practice in Public Key Cryp-
tography, volume 7778 of Lecture Notes in Computer Science, pages 386–404. Springer, Febru-
ary / March 2013.

11. Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In Matthew Franklin,
editor, Advances in Cryptology – CRYPTO 2004, volume 3152 of Lecture Notes in Computer
Science, pages 41–55. Springer, August 2004.

12. Dan Boneh, David Freeman, Jonathan Katz, and Brent Waters. Signing a linear subspace: Sig-
nature schemes for network coding. In Stanislaw Jarecki and Gene Tsudik, editors, PKC 2009:
12th International Conference on Theory and Practice of Public Key Cryptography, volume 5443
of Lecture Notes in Computer Science, pages 68–87. Springer, March 2009.

13. Dan Boneh and David Mandell Freeman. Homomorphic signatures for polynomial functions.
In Kenneth G. Paterson, editor, Advances in Cryptology – EUROCRYPT 2011, volume 6632 of
Lecture Notes in Computer Science, pages 149–168. Springer, May 2011.

14. Dan Boneh and David Mandell Freeman. Linearly homomorphic signatures over binary fields
and new tools for lattice-based signatures. In Dario Catalano, Nelly Fazio, Rosario Gennaro,
and Antonio Nicolosi, editors, PKC 2011: 14th International Workshop on Theory and Practice
in Public Key Cryptography, volume 6571 of Lecture Notes in Computer Science, pages 1–16.
Springer, March 2011.

15. Dan Boneh, Emily Shen, and Brent Waters. Strongly unforgeable signatures based on computa-
tional Diffie-Hellman. In Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin, editors,
PKC 2006: 9th International Conference on Theory and Practice of Public Key Cryptography,
volume 3958 of Lecture Notes in Computer Science, pages 229–240. Springer, April 2006.

16

16. Jan Camenisch, Maria Dubovitskaya, and Kristiyan Haralambiev. Efficient structure-preserving
signature scheme from standard assumptions. In Ivan Visconti and Roberto De Prisco, editors,
SCN 12: 8th International Conference on Security in Communication Networks, volume 7485 of
Lecture Notes in Computer Science, pages 76–94. Springer, September 2012.

17. Jan Camenisch, Kristiyan Haralambiev, Markulf Kohlweiss, Jorn Lapon, and Vincent Naessens.
Structure preserving CCA secure encryption and applications. In Dong Hoon Lee and Xiaoyun
Wang, editors, Advances in Cryptology – ASIACRYPT 2011, volume 7073 of Lecture Notes in
Computer Science, pages 89–106. Springer, December 2011.

18. Dario Catalano, Mario Di Raimondo, Dario Fiore, and Rosario Gennaro. Off-line/on-line signa-
tures: Theoretical aspects and experimental results. In Ronald Cramer, editor, PKC 2008: 11th
International Conference on Theory and Practice of Public Key Cryptography, volume 4939 of
Lecture Notes in Computer Science, pages 101–120. Springer, March 2008.

19. Dario Catalano and Dario Fiore. Practical homomorphic macs for arithmetic circuits. In Thomas
Johansson and Phong Q. Nguyen, editors, Advances in Cryptology – EUROCRYPT 2013, volume
7881 of Lecture Notes in Computer Science, pages 336–352. Springer, May 2013.

20. Dario Catalano, Dario Fiore, Rosario Gennaro, and Konstantinos Vamvourellis. Algebraic (trap-
door) one-way functions and their applications. In Amit Sahai, editor, TCC 2013: 10th Theory
of Cryptography Conference, volume 7785 of Lecture Notes in Computer Science, pages 680–699.
Springer, mar 2012.

21. Dario Catalano, Dario Fiore, and Bogdan Warinschi. Adaptive pseudo-free groups and applica-
tions. In Kenneth G. Paterson, editor, Advances in Cryptology – EUROCRYPT 2011, volume
6632 of Lecture Notes in Computer Science, pages 207–223. Springer, May 2011.

22. Dario Catalano, Dario Fiore, and Bogdan Warinschi. Efficient network coding signatures in the
standard model. In Marc Fischlin, Johannes Buchmann, and Mark Manulis, editors, PKC 2012:
15th International Workshop on Theory and Practice in Public Key Cryptography, volume 7293
of Lecture Notes in Computer Science, pages 680–696. Springer, May 2012.

23. Julien Cathalo, Benôıt Libert, and Moti Yung. Group encryption: Non-interactive realization in
the standard model. In Mitsuru Matsui, editor, Advances in Cryptology – ASIACRYPT 2009,
volume 5912 of Lecture Notes in Computer Science, pages 179–196. Springer, December 2009.

24. Melissa Chase and Markulf Kohlweiss. A new hash-and-sign approach and structure-preserving
signatures from DLIN. In Ivan Visconti and Roberto De Prisco, editors, SCN 12: 8th International
Conference on Security in Communication Networks, volume 7485 of Lecture Notes in Computer
Science, pages 131–148. Springer, September 2012.

25. Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and Sarah Meiklejohn. Malleable proof
systems and applications. In David Pointcheval and Thomas Johansson, editors, Advances in
Cryptology – EUROCRYPT 2012, volume 7237 of Lecture Notes in Computer Science, pages
281–300. Springer, April 2012.

26. Yvo Desmedt. Computer security by redefining what a computer is. NSPW, 1993.
27. Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptography. In 23rd Annual

ACM Symposium on Theory of Computing, pages 542–552. ACM Press, May 1991.
28. Shimon Even, Oded Goldreich, and Silvio Micali. On-line/off-line digital signatures. Journal of

Cryptology, 9(1):35–67, 1996.
29. David Mandell Freeman. Improved security for linearly homomorphic signatures: A generic frame-

work. In Marc Fischlin, Johannes Buchmann, and Mark Manulis, editors, PKC 2012: 15th Inter-
national Workshop on Theory and Practice in Public Key Cryptography, volume 7293 of Lecture
Notes in Computer Science, pages 697–714. Springer, May 2012.

30. Georg Fuchsbauer. Automorphic signatures in bilinear groups and an application to round-optimal
blind signatures. Cryptology ePrint Archive, Report 2009/320, 2009. http://eprint.iacr.org/.

31. Juan A. Garay, Philip D. MacKenzie, and Ke Yang. Strengthening zero-knowledge protocols
using signatures. In Eli Biham, editor, Advances in Cryptology – EUROCRYPT 2003, volume
2656 of Lecture Notes in Computer Science, pages 177–194. Springer, May 2003.

32. Rosario Gennaro, Jonathan Katz, Hugo Krawczyk, and Tal Rabin. Secure network coding over
the integers. In Phong Q. Nguyen and David Pointcheval, editors, PKC 2010: 13th International
Conference on Theory and Practice of Public Key Cryptography, volume 6056 of Lecture Notes in
Computer Science, pages 142–160. Springer, May 2010.

33. Rosario Gennaro and Daniel Wichs. Fully homomorphic message authenticators. In Xiaoyun
Wang and Kazue Sako, editors, Advances in Cryptology – ASIACRYPT 2012, volume 7658 of
Lecture Notes in Computer Science, page 290. Springer, December 2012.

34. J. Groth. Homomorphic trapdoor commitments to group elements. Cryptology ePrint Archive,
Report 2009/007, 2009. http://eprint.iacr.org/.

17

35. Jens Groth. Simulation-sound NIZK proofs for a practical language and constant size group
signatures. In Xuejia Lai and Kefei Chen, editors, Advances in Cryptology – ASIACRYPT 2006,
volume 4284 of Lecture Notes in Computer Science, pages 444–459. Springer, December 2006.

36. Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups. In Nigel P.
Smart, editor, Advances in Cryptology – EUROCRYPT 2008, volume 4965 of Lecture Notes in
Computer Science, pages 415–432. Springer, April 2008.

37. Dennis Hofheinz and Tibor Jager. Tightly secure signatures and public-key encryption. In Rei-
haneh Safavi-Naini and Ran Canetti, editors, Advances in Cryptology – CRYPTO 2012, volume
7417 of Lecture Notes in Computer Science, pages 590–607. Springer, August 2012.

38. Robert Johnson, David Molnar, Dawn Xiaodong Song, and David Wagner. Homomorphic sig-
nature schemes. In Bart Preneel, editor, Topics in Cryptology – CT-RSA 2002, volume 2271 of
Lecture Notes in Computer Science, pages 244–262. Springer, February 2002.

39. Hugo Krawczyk and Tal Rabin. Chameleon signatures. In ISOC Network and Distributed System
Security Symposium – NDSS 2000. The Internet Society, February 2000.

40. Sébastien Kunz-Jacques and David Pointcheval. About the security of MTI/C0 and MQV. In
Roberto De Prisco and Moti Yung, editors, SCN 06: 5th International Conference on Security
in Communication Networks, volume 4116 of Lecture Notes in Computer Science, pages 156–172.
Springer, September 2006.

41. Benôıt Libert, Thomas Peters, Marc Joye, and Moti Yung. Linearly homomorphic structure-
preserving signatures and their applications. In Ran Canetti; Juan A. Garay, editor, Advances in
Cryptology – CRYPTO 2013, volume 8042 of Lecture Notes in Computer Science, pages 289–307.
Springer, August 2013.

42. Y. Sakai, K. Emura, G. Hanaoka, Y. Kawai, T. Matsuda, and K. Omote. G. Group signatures
with message-dependent opening. In Michel Abdalla and Tanja Lange, editors, PAIRING 2012:
6th International Conference on Pairing-based Cryptography, volume 7708 of Lecture Notes in
Computer Science, pages 270–294. Springer, may 2013.

43. Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In Gilles Brassard,
editor, Advances in Cryptology – CRYPTO’89, volume 435 of Lecture Notes in Computer Science,
pages 239–252. Springer, August 1990.

44. Adi Shamir and Yael Tauman. Improved online/offline signature schemes. In Joe Kilian, editor,
Advances in Cryptology – CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science,
pages 355–367. Springer, August 2001.

45. Brent R. Waters. Efficient identity-based encryption without random oracles. In Ronald Cramer,
editor, Advances in Cryptology – EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer
Science, pages 114–127. Springer, May 2005.

18

A Waters Signature

For sake of completeness we now describe the Waters signature schemes [45], which
we use in some of the practical constructions presented in this paper.
Let G, GT be groups of prime order p such that e : G×G→ GT is a bilinear map.

KeyGen(p) : It sets l← dlog pe and chooses g, g2
$← G, α

$← Zp and A0, A1 . . . , Al
$←

G. Then it sets g1 ← gα and returns vk = (g, g1, g2, A0, A1, . . . , Al), sk = gα2
Sign(m, sk) : This algorithm chooses a random r

$← Zp and sets σ ← gr and τ ←
gα2

(
A0
∏l
ζ=1A

[m]ζ
ζ

)r
. Then it returns Σ = (σ, τ)

Verify(vk,m,Σ) : It checks that

e(g, τ) = e(σ,A0

l∏
ζ=1

A
[m]ζ
ζ) · e(g1, g2).

If the above equation holds it returns 1, else it returns 0.

This scheme is secure under CDH assumption.
In [15] a strongly secure variant of the previously described scheme (under the same
computational assumption) is provided. We will refer to this latter scheme as the
Strong Waters Signature Scheme.
The signature scheme works as follows.
Let G, GT be groups of prime order p such that e : G × G → GT is a bilinear map
and H = {HK}K∈K (where K is the keys’ space) a family of collision resistant hash
functions

KeyGen(p) : It sets l ← dlog pe and chooses g, g2, h
$← G, α

$← Zp, A0, A1 . . . , Al
$←

G, K
$← K. Then it sets g1 ← gα and returns vk = (g, g1, g2, h, A0, A1, . . . , Al, k),

sk = gα2
Sign(m, sk) : This algorithm chooses random r, s

$← Zp and sets σ ← gr. Then it

computes t ← H(m‖σ), M ← H(gths) and τ ← gα2

(
A0
∏l
ζ=1A

[M]ζ
ζ

)r
. Next it

returns Σ = (σ, τ, s)
Verify(vk,m,Σ) : To verify a signature Σ = (σ, τ, s) the algorithm computes t ←

H(m‖σ), M ← H(gths). Then it checks that

e(g, τ) = e(σ,A0

l∏
ζ=1

A
[M]ζ
ζ) · e(g1, g2).

If the above equation holds it returns 1, else it returns 0.

B Postponed Proofs

B.1 Proof of theorem 12

Proof. Proving correctness is straightforward, given the bilinear property of the pair-
ing function. For what concerns security, we split the proof in 4 different cases. In

19

each of them, we will show how an adversary that breaks the security of the scheme
can be used to build a simulator that breaks the 2-3CDH assumption. In particular,
let m∗,Sign∗ = (fid∗, σ∗, τ∗, T ∗,M∗, s∗), f∗ be the forgery returned by the adver-
sary A, Q the set of answers returned to A in response to its reveal queries, and let
Qfid∗ = {(hη, (fid∗,mη,Signη, fη))}η=1,...,ν ⊆ Q be the set of signatures seen by A
for which the file identifier is fid∗, where Signη = (fidη, ση, τη, Tη,Mη, sη) .
Then (at least) one of the following conditions hold:

Case 1: Qfid∗ is empty.
Case 2: Qfid∗ is not empty, but (σ∗, τ∗, s∗) 6= (ση, τη, sη) for all η = 1, . . . , ν (note that,
by construction, all the signatures in Qfid∗ share the same σ, τ and s components).
Case 3: Qfid∗ is not empty, (σ∗, τ∗, s∗) = (ση, τη, sη) for all η = 1, . . . , ν, f∗ (inter-
preted as a vector) is in the span of {f1, . . . , fν} but, for any α1, . . . , αν such that
f =

∑ν
η=1 αηfη, it holds m∗ 6=

∏ν
η=1m

αη
η .

Case 4: Qfid∗ is not empty, (σ∗, τ∗, s∗) = (ση, τη, sη) for all η = 1, . . . , ν and f∗

(interpreted as a vector) is not in the span of {f1, . . . , fν}.
As one can notice, the simulator can guess in which case he will be in advance

with probability at least 1/4.

Case 1. We deal with this type of adversary by constructing a simulator that is
similar to that used in [41,15] to prove the security of the strongly secure variant of
Waters signature scheme. The simulator B receives on input (g, ga, gb), and behaves
as follows:

Key Generation It sets g1 ← ga, g2 ← gb (thus implicitly defining part of the secret

key as ga2 = gab) and picks an hash function HK
$← H. Then it chooses a random

value w ∈ Zp and random elements h1 = gl1 , . . . , hk = glk , h = g` ∈ G for random
`, l1, . . . , lk ∈ Zp. Next it computes W = gw and chooses A0, A1, . . . , Al in the
same way as in security proof of Waters’ signature [45]. Because of this choice,
there exist two functions J,K : {0, 1}l → Z (these functions are all kept internal
to the simulator) hidden to the adversary such that, for any string fid ∈ {0, 1}l,
the expression Y (fid) := A0

∏l
ζ=1A

[fid]ζ
ζ can be written as Y (fid) = g

J(fid)
2 gK(fid).

In addition, it was proven that for any distinct τ, τ1, . . . , τq ∈ {0, 1}l we will have
J(τ) = 0 mod p and J(τi) 6= 0∀i ∈ {1, . . . , q} with non negligible probability
η = 1

8q(l+1) .

Finally, B creates two empty tables T and Q (used to store the output of signing
and reveal queries, as explained in the security definition) and gives vk to A.

Signing queries When A ask a new signing query on a dataset identifier fid with
respect to index i, B does the following:

if fid ∈ T it retrieves the corresponding (σ, τ, s) from the memory.

if fid 6∈ T , it chooses a random γ ∈ Zp and sets fid ← HK(gγ). if J(fid) = 0
mod p aborts. Else it chooses random r ← Zp and sets

τ = (Y (fid))rg
−K(fid)

J(fid)

1

σ = grg
− 1
J(fid)

1 .

20

In fact they also can be written as τ = gab(YG(fidi))
r′ and σ = gr

′
where

r = r′ + a
J(fid)

. (See Waters [45] for details).

Then it sets t← Hk(fid‖σ) and s = γ−t
`

Then it chooses λ
$← Zp, computes m← gλ and signs it by setting M ← mw, T ←

σli+λw = (hiM)r
′
.

The signature (fid, σ, τ, T,M, s, ei) and the message m are not directly returned
to A, but associate with a new handle h and stored in the table T .

Derivation and Reveal Queries are handled as in the real experiment.

Forgery Once A provides a forgery Sign∗ = (fid∗, σ∗, τ∗, T ∗,M∗, s∗) B computes
J(fid

∗
) and aborts if J(fid

∗
) 6= 0

From this forgery A can extract a CDH solution as follows. First notice that by
correctness the components τ and σ of the forgery will be of the form

τ = gab
(
Y (fid

∗
)
)r′

σ = gr
′

Thus the required value can be extracted as

gab = τ/σK(fid
∗
)

Case 2. In this case, where (σ∗, τ∗, s∗) 6= (ση, τη, sη) , it is possible to reduce the
security to the one of the strongly secure Waters signature scheme. The simulator is
quite simple: it uses Waters’ scheme as a signing oracle to compute the part of the
signatures regarding the fid, and can easily fake the other part of each signature by
using the discrete logarithms of the messages and of the hi and the value w.
Case 3. First of all one can notice that, because the forgery must satisfy (in partic-

ular) the third and fourth verification equations, it must be that

M∗ = (m∗)w and T ∗ =

(
k∏
i=1

h
α∗i
i M

∗

)r
Moreover, the same two equations must also hold for the honestly computed signature
for the function f∗ on the messages signed by the challenger (we call m,Sign such
couple). So it must be that:

T ∗T
−1

=

(
k∏
i=1

M∗M
−α∗i
i

)r
If the left hand side of the equation is equal to 1 we don’t have any forgery (in fact
M∗ =

∏k
i=1M

αi
i and T ∗ = T).

Else, in the case when

m∗
k∏
i=1

m
−α∗i
i 6= 1

we describe a simulator B that uses A to break the 2-3CDH assumption. B works as
follows. It takes in input a 2-3CDH tuple (g, gw, gr) and guesses the dataset identifier
fid′ for which it will receive a forgery7.

7 Note that the simulator does not need to predict the exact value of the identifier it will receive a
forgery about, but only to pick one among the ones it will be asked to sign (for example, it might
pick a random integer i from a large enough domain and choose fid′ to be the i-th identifier it will
be queried about). So the probability to guess correctly is not negligible and the reduction still
works.

21

Key Generation B chooses a random hash key K ← K and a random generator

g2 ∈ G. It sets W ← gw (so w is implicitly part of the secret key), α
$← Zp and

g1 ← gα. It selects bi
$← Zp for i = 1, . . . , k and for each bi it computes mi = gbi ,

hi = gδim−wi , for random δ1, . . . , δk
$← Zp and h

$← G. Finally it picks random
a0, a1, . . . , al, setsAζ ← gaζ , ζ = 0, . . . , l and gives (g, g1, g2,W,A0, . . . , Al, h, h1, . . . , hk,K)
to A.

Signing Queries To answer to the queries about the dataset fid′ in the position i
from A, B uses the previously created messages mi and answers with the following.

if fid′ 6∈ T , it chooses a rand s ∈ Zp and sets

σ = gr,

t← HK(fid′‖σ),

fid′ ← HK(gths),

τ ← gα2

σa0

l∏
ζ=1

σaζ [fid′]ζ

 = gα2

A0

l∏
ζ=1

A
[fid′]ζ
ζ

r

,

if fid′ ∈ T , it retrieves the corresponding (σ, r, τ, s) from memory.

Then it sets T ← σδi and M ←W bi = mw
i .

By inspection, one can check that τ , M and T are correctly distributed as in the
real case.
To answer the other queries with dataset identifier fid 6= fid′ w.r.t. index i it does
the following.

if fid 6∈ T , it chooses fresh random s, r
$← Zp and sets

σ ← gr,

t← HK(fid‖σ),

fid← HK(gths),

τ ← gα2

A0

l∏
ζ=1

A
[fid]ζ
ζ

r

,

if fid ∈ T , it retrieves the corresponding (σ, r, τ, s) from memory.

Then it sets m ← gbi for a random bi
$← Zp, T ← (hiMi)

r, M ← W bi . Like in
the previous case the signature is not directly returned to A but associated with
a new handle h and stored in a table T.

Derivation and Reveal Queries are handled as in the real experiment.
Forgery Assume that the adversary A produced a forgery Sign∗ for the function

f∗ = (α∗1, . . . , α
∗
k) w.r.t fid∗. If fid∗ 6= fid′, then it aborts. Otherwise it proceeds as

follows.
Considering the signature Sign = (fid, σ, τ , T ,M, s) for the message m and the
function f∗ (that the simulator can compute by the Eval algorithm from the
function f∗ provided by A and the messages mi chosen by the simulator itself),

22

we can and extract a 2-3CDH solution by the couple

(
m∗∏k

i=1m
α∗
i
i

, T
∗

T

)
; in fact the

elements of the couple are not trivial by the definition of this subcase.

Case 4. In this case we can use exactly the same simulation of case 3, and assume,
just to simplify the notation, that the adversary asks for exactly k signing queries
(otherwise the simulator can just compute them on his own). In fact, since f∗ is not in
the span of the vectors {f1, . . . , fν}, the probability that f∗(m1, . . . ,mk) = m∗ (where
m1, . . . ,mk are the vectors signed by the simulator in response to signing queries) is
negligible and so we can extract a 2-3CDH solution as in the previous case. This is true
because, in response to a signing query, the adversary is not even given the message
that the simulator chooses at random, but only a handle. So the only information the
adversary learns about those messages are the outputs of the reveal queries (where it
can basically choose a vector f = (α1, . . . , αk) and learn m such that m =

∏k
i=1m

αi
i .

Therefore, by the definition of this case, f∗(m1, . . . ,mk) is information theoretically
hidden from the adversary, and it can only guess it with negligible probability.

C A scalar scheme secure under CMA

Let G, GT be groups of prime order p such that e : G×G→ GT is a bilinear map, let
l ← dlog pe and H = {HK : {0, 1}∗ → {0, 1}l} be a family of collision resistant hash
functions.

KeyGen(1λ, k): Chooses two random generators g, g2 ∈ G and picks an hash func-
tion HK from H
Picks random α,w1, w2

$← Zp and sets g1 = gα,W1 ← gw1 ,W2 ← gw2 .

Selects random group elements A1, . . . Al, h
(1)
1 , . . . , h

(k)
1 , h

(1)
2 , . . . , h

(k)
2

$← G.

Sets vk← (g, g1, g2,W1,W2, A0, . . . , Al, h
(1)
1 , . . . , h

(k)
1 , h

(1)
2 , . . . , h

(k)
2 ,K) as the pub-

lic verification key and sk = (w1, w2, g
α
2) as the secret signing key.

Sign(sk,m,fid, i): Stores a list L of all previously returned dataset identifiers fid (to-
gether with the related secret information r and public information σ, τ, s defined
below) and works according to the type of fid it is given in input:

If fid 6∈ L, then it chooses r1, r2, s
$← Zp and sets σ1 ← gr1 , σ2 ← gr2 , t ←

HK(fid‖σ1‖σ2), fid← HK(gths), τ ← gα2 (A0
∏l
ζ=1Aζ

[fid]ζ)r1+r2 .
Else if fid ∈ L, then it retrieves the associated r1, r2, s, σ1, σ2, τ from memory.

The message m to be signed is written as m1m2 by choosing random m1
$← M

and computing m2 ← m(m1)−1. Then it sets M1 ← m1
w1 ,M2 ← m2

w2 , T1 ←
(h

(1)
i M1)r1 , T2 ← (h

(2)
i M2)r2 (if a signature for the same fid and the same index

i was already issued, then it aborts). Finally it outputs the signature Sign ←
(fid, σ1, σ2, τ, T1, T2,m1,M1,M2, s, ej), where ei is the i-th vector of the canonical
base of Zk

Verify (vk,m,Sign,f): Parses the signature Sign as (fid, σ1, σ2, τ, T1, T2,m1,M1,M2, s)
and f as (f1, . . . , fk), computes fid ← HK(gHK(fid‖σ1‖σ2)hs) and m2 ← mm−1

1 .
Then it checks that:

e(τ, g) = e(g2, g1) · e(A0

l∏
ζ=1

A
[fid]ζ
ζ , σ1σ2)

e(M1, g) = e(m1,W1)

23

e(M2, g) = e(m2,W2)

e(T1, g) = e(
k∏
i=1

h
(i)
1

fi
M1, σ1)

e(T2, g) = e(
k∏
i=1

h
(i)
2

fi
M2, σ2)

If all the above equations hold outputs 1, else outputs 0.
Eval (vk,α,Sign1, . . . ,Signk): Parse α as (α1, . . . , αk) and Signi as

(fidi, σ
(i)
1 , σ

(i)
2 , τ (i), T

(i)
1 , T

(i)
2 ,m

(i)
1 ,M

(i)
1 ,M

(i)
2 , si) ∀i = 1, . . . , k.

Then check that all Signi share the same fid, σ1, σ2, τ, s components and, if

not, reject. Otherwise, compute T1 ←
∏k
i=1 T

(i)
1

αi
, T2 ←

∏k
i=1 T

(i)
2

αi
, M1 ←∏k

i=1M
(i)
1

αi
,M2 ←

∏k
i=1M

(i)
2

αi
and m1 ←

∏k
i=1m

(i)
1

αi
. Finally output Sign =

(fid, σ1, σ2, τ, T1, T2,m1,M1,M2, s).

Theorem 16. If 2-3CDH and the discrete logarithm (DL) assumptions hold and H
is a family of collision resistant hash functions than the scheme described above is
a linearly homomorphic structure preserving signature scheme unforgeable against a
chosen message attack.

Proof. Let m∗,Sign∗ = (fid∗, σ∗1, σ
∗
2, τ
∗, T ∗1 , T

∗
2 ,m

∗
1,M

∗
1 ,M

∗
2 , s
∗), f∗ be the forgery re-

turned by the adversary A, Q the set of answers returned to A in response to its reveal
queries, and let Qfid∗ = {(hη, (fid∗,mη, ση, fη))}η=1,...,ν ⊆ Q be the set of signatures
seen by A for which fid = fid∗.
Then (at least) one of the following conditions hold:

Case 1: Qfid∗ is empty.

Case 2: Qfid∗ is not empty, but (σ∗1, σ
∗
2, τ
∗, s∗) 6= (σ

(η)
1 , σ

(η)
2 , τη, sη) for all η = 1, . . . , ν

Case 3: Qfid∗ is not empty, (σ∗1, σ
∗
2, τ
∗, s∗) = (σ

(η)
1 , σ

(η)
2 , τη, sη) for all η = 1, . . . , ν,

the function f∗ (interpreted as a vector) is in the span of {f1, . . . , fν} but, for any
α1, . . . , αν such that f =

∑ν
η=1 αηfη, it holds m∗ 6=

∏ν
η=1m

αη
η .

Case 4: Qfid∗ is not empty, (σ∗1, σ
∗
2, τ
∗, s∗) = (σ

(η)
1 , σ

(η)
2 , τη, sη) for all η = 1, . . . , ν and

f∗ (interpreted as a vector) is not in the span of {f1, . . . , fν}.
As one can notice, the simulator can guess in which case he will be in advance with
probability at least 1/4.

Case 1. In this case we construct a simulator B that solves CDH using an adversary
A against the signature scheme described above. The simulator receives as input
(g, ga, gb) (for a and b he does not know), and behaves as follows:

Key Generation It sets g1 ← ga, g2 ← gb (thus implicitly defining part of the se-

cret key as ga2 = gab) and picks an hash function HK
$← H. Then it chooses

w1, w2
$← Zp and sets W1 ← gw1 ,W2 ← gw2 , selects random group elements

h
(1)
1 = gl

(1)
1 , . . . , h

(k)
1 = gl

(k)
1 , h

(1)
2 = gl

(1)
2 , . . . , h

(k)
2 = gl

(k)
2 , h = g` ∈ G for random

`, l
(1)
1 , . . . , l

(k)
1 , l

(1)
2 , . . . , l

(k)
2 ∈ Zp.

Next it chooses A0, A1, . . . , Al in the same way as in security proof of Waters’
signature [45]. Because of this choice, there exist two functions J,K : {0, 1}l → Z

24

(these functions are all kept internal to the simulator) hidden to the adversary

such that, for any string fid ∈ {0, 1}l, the expression Y (fid) := A0
∏l
ζ=1A

[fid]ζ
ζ can

be written as Y (fid) = g
J(fid)
2 gK(fid). In addition, it was proven that for any distinct

τ, τ1, . . . , τq ∈ {0, 1}l we will have J(τ) = 0 mod p and J(τi) 6= 0∀i ∈ {1, . . . , q}
with non negligible probability η = 1

8q(l+1) .

Finally, B creates two empty tables T and Q (used to store the output of signing
and reveal queries, as explained in the security definition) and gives vk to A.

Signing queries When A asks a new signing query (m,fid, i) for a message m w.r.t.
dataset identifier fid and index i, B does the following:

if fid ∈ T , it retrieves the corresponding (σ1, σ2, r, τ, s) from memory.

if fid 6∈ T , it chooses a random γ ∈ Zp and sets fid ← HK(gγ). if J(fid) = 0

mod p it aborts. Else it chooses random r1, r2
$← Zp and sets8

τ ← (Y (fid))r1+r2g
−K(fid)

J(fid)

1

σ1 ← gr1g
− 1
J(fid)

1 ; σ2 ← gr2

Then B sets t← HK(fid‖σ1‖σ2) and s← γ−t
`

The rest of the signature is computed as follows. First B chooses a random λ
$← Zp

and sets m1 = gλ, m2 = m/m1. Then it sets M1 ← mw1
1 , M2 ← mw2

2 , T1 ←

σ
l
(i)
1 +λ1w

1 =
(
h

(i)
1 M1

)r′1
, T2 ←

(
h

(i)
2 M2

)r′2
. The signature (fid, σ1, σ2, τ, T1, T2,m1,M1,M2, s)

and the message m are not directly returned to A, but associated with a new han-
dle h (together with the trivial function ei) and stored in the table T .

Derivation and Reveal Queries are handled as in the real experiment
Forgery Once A provides a forgery Sign∗ = (fid∗, σ∗1, σ

∗
2, τ
∗, T ∗1 , T

∗
2 ,m

∗
1,M

∗
1 ,M

∗
2 , s
∗)

B computes J(fid
∗
) and aborts if J(fid

∗
) 6= 0

From this forgery, A can extract a CDH solution as follows. First, notice that by
correctness the components τ∗,σ∗1 and σ∗2 of the forgery will be of the form

τ∗ = gab
(
Y (fid

∗
)
)r′1+r′2

σ∗1 = gr
′
1 σ∗2 = gr

′
2

Thus the solution of the CDH instance can be computed as

gab = τ/(σ∗1σ
∗
2)K(fid∗)

Case 2. In this case, the adversary produces a forgery for a fid it has seen a signature
about, but the part of the forgery used to verify the fid, namely (σ∗1, σ

∗
2, τ
∗, s∗), is

different from what the simulator stored in the table Q (to fix the notation, we will
assume (m,Sign = (fid∗, σ1, σ2, τ, T1, T2,m1,M1,M2, s), f) is recorded in Q during
the simulation).

Let t∗ ← HK(fid∗‖σ∗1‖σ∗2),fid
∗ ← HK(gHK(fid∗‖σ∗1‖σ∗2)hs

∗
),and let t,fid the corre-

sponding values computed from (m,Sign) (as in the real experiment, signatures in
Qfid∗ will all lead to the same values). Depending on these quantities, we have three
different sub-cases:
8 These values are correctly distributed, as one can easily check that they can be written as τ =
gab(Y (fid))r

′
1+r′2 , σ1 = gr

′
1 , σ1 = gr

′
2 where r′1 = r1 − a

J(fid)
, r′2 = r2.

25

2.a fid∗ = fid and t∗ = t
2.b fid∗ = fid and t∗ 6= t
2.c fid∗ 6= fid

Case 2.a. It is easy to build a simulator against the collision resistance ofH. Namely,
the simulator B receives in input an hash key k′ and has to come up with a couple of
elements (y1, y2) such that Hk′(y1) = Hk′(y2). Supposing he will get a forgery in this
sub-case, B can just run the ideal experiment but set K ← k′ as the hashing key inside
vk. When A outputs a forgery (fid∗, σ∗1, σ

∗
2, τ
∗, T ∗1 , T

∗
2 ,m

∗
1,M

∗
1 ,M

∗
2 , s
∗), by the fact that

fid∗ = fid, we have HK(gt
∗
hs
∗
) = HK(gths). So if s 6= s∗, because t = t∗, we already

have a collision (here we require that each element of the group G and each value in
Zp have a unique encoding). Otherwise, if s = s∗, it must be that (σ∗1, σ

∗
2) 6= (σ1, σ2)

(if this was not the case, then it must be that τ∗ = τ and therefore this cannot be a
case 2 forgery).
So we have that HK(fid∗‖σ∗1‖σ∗2) = t∗ = t = HK(fid∗‖σ1‖σ2) but fid∗‖σ∗1‖σ∗2 6=
fid∗‖σ1‖σ2, and B can return those values as a collision against the hash function.

Case 2.b. In this case, we can build a simulator B that breaks the DL problem. B
receives in input a couple (g′, h′), and its goal is to output β such that g′β = h′. B can
run the simulation as follows:

Key Generation B sets g ← g′, h ← h′, and computes the other elements of the
public key vk as in the real case. Then it gives vk to A and stores the secret key
sk.

Queries All types of queries are handled as in the real experiment.
Forgery Suppose A returns a type 2.b forgery. Then it must be that HK(gt

∗
hs
∗
) =

HK(gths) and t∗ 6= t. If gt
∗
hs
∗ 6= gths then we have a collision for HK (and we

can run a simulation similar to the previous case). If gt
∗
hs
∗

= gths, then B can
return β = t−t∗

s∗−s as a solution for the DL instance (note that it can’t be s∗ = s
because otherwise t∗ = t).

Case 2.c. Suppose A returns a 2.c type forgery. In this case, we want to reduce the
security of this scheme to the one of Waters’ weak signature scheme, by showing how
to construct a simulator B that uses A to break that scheme. B receives in input a
public key vk = (g, g1, g2, A0, A1, . . . , Al) for Waters’ weak signature scheme. It needs
to output a valid forgery for this scheme.

Key Generation B chooses HK ← H, a
$← Zp and sets h ← ga. Then it chooses

w1, w2
$← Zp and setsW1 ← gw1 ,W2 ← gw2 , selects random l

(1)
1 , . . . , l

(k)
1 , l

(1)
2 , . . . , l

(k)
2 ∈

Zp and sets h
(1)
1 ← gl

(1)
1 , . . . , h

(k)
1 ← gl

(k)
1 , h

(1)
2 ← gl

(1)
2 , . . . , h

(k)
2 ← gl

(k)
2 . Finally a B

gives toA the public key vk1 = (g, g1, g2,W1,W2, A0, . . . , Al, h
(1)
1 , . . . , h

(k)
1 , h

(1)
2 , . . . , h

(k)
2 ,K).

Signing Queries Each time A asks for a new query (m,fid, i) on a message m w.r.t.
dataset fid and index i, B responds in this way.
if fid ∈ T it retrieves the corresponding (σ1, σ2, τ, s) from the memory.

if fid 6∈ T it sets fid = HK(gβ) for β
$← Zp; then it asks its challenger for a

signature on fid and receives (σ1, τ1). Next it chooses a random r2
$← Zp and

sets σ2 ← gr2 t← Hk(fid‖σ1‖σ2), s← β−t
a . Then it chooses λ

$← Zp and sets:

m1 ← gλ; m2 ← m/m1

26

M1 ← (m1)w1 ; M2 ← (m2)w2

T1 ← σ
l
(i)
1 +λw1

1 ; T2 ← (h
(i)
2 M2)r2

τ ← τ1(A0

l∏
ζ=1

A
[fid]ζ
ζ)r2 .

As in the real experiment, the signature (fid, σ1, σ2, τ, T1, T2,m1,M1,M2, s) is
stored in the table T together with an handle h which is returned to A.

Derivation and Reveal Queries are handled as in the real experiment.
Forgery When A returns a type 2.c forgery (fid∗, σ∗1, σ

∗
2, τ
∗, T ∗1 , T

∗
2 ,m

∗
1,M

∗
1 ,M

∗
2 , s
∗),

B computes t∗ ← Hk(fid∗, ‖σ∗1‖σ∗2), fid∗ ← H(gths
∗
) and outputs (fid∗, σ∗1σ

∗
2, τ
∗)

as a forgery against Waters’ scheme.

We stress that this is a valid forgery for the signature scheme, as no other signature
has been requested by the simulator for fid∗. In fact, by definition of this subcase we
have that fid∗ 6= fid (where fid is the one computed from the signatures in Qfid∗). In

addition, if there were another fid′ ∈ Q such that fid∗ = fid′ then it would be trivial
to find a collision for HK .

Case 3. First of all one can notice that, by definition of a valid forgery, it must be
that

M∗1 = (m∗1)w1 and T ∗1 =

(
M∗1

k∏
i=1

(h
(i)
1)α

∗
i

)r1

M∗2 = (m∗2)w2 and T ∗2 =

(
M∗2

k∏
i=1

(h
(i)
2)α

∗
i

)r2
Moreover, the same two equations must also hold for the honestly computed signa-

ture for the function f∗ computed on the messages originally signed by the simulator
(we call m =

∏k
i=1(m(i))α

∗
i ,Sign such couple, and (m(i),Sign(i)) each of the mes-

sage/signature made by the simulator in response to a query for index i and dataset
fid∗) . So it must be that:

T ∗1 T
−1
1 =

(
M∗1

k∏
i=1

M
(i)
1

−α∗i
)r1

, T ∗2 T
−1
2 =

(
M∗2

k∏
i=1

M
(i)
2

−α∗i
)r2

(1)

By the assumption of this subcase, it cannot be that both the left hand sides of these
equations are 1. In fact

m∗1m
∗
2 = m∗ 6= m = m1m2 =

k∏
i=1

(m
(i)
1)

α∗i
(m

(i)
2)

α∗i

and therefore

m∗b

k∏
i=1

m
(i)
b

−α∗i 6= 1

for at least one value of b ∈ {1, 2}. In this case, we describe a simulator B that uses A
to break the 2-3CDH assumption. B works as follows. It takes in input a 2-3CDH tu-
ple (g, gw, gr) and guesses9 the dataset identifier fid′ for which it will receive a forgery

9 The probability of guessing correctly is polynomial. See footnote 7 for details.

27

and the value b ∈ {1, 2} for which the previous inequality will hold. For the sake of
simplicity (and wlog), in the following we will assume it chooses bit b = 1

Key Generation B chooses a random hash key HK
$← H and random elements

g2, h
$← G, sets W1 ← gw (so w1 = w is not known by the simulator but

is implicitly part of the secret key), α
$← Zp and g1 ← gα. Next it chooses

bi
$← Zp for i = 1, . . . , k and for each bi it computes m

(i)
1 ← gbi , M

(i)
1 ←

m
(i)
1

w1
= W1

bi , h
(i)
1 ← gδim

(i)
1

−w1
, for random δ1, . . . , δk

$← Zp. Finally it picks

random a0, a1, . . . , al
$← Zp and defines Ai ← gai , i = 0, . . . , l. The other parts

of the public key are generated as in the real experiment. Finally B gives vk =

(g, g1, g2,W1,W2, A0, . . . , Al, h, h
(1)
1 , . . . , h

(k)
1 , h

(1)
2 , . . . , h

(k)
2 ,K) to A and stores all

the other computed values in memory.
Signing Queries To answer to the queries (m(i), fid′, i) about identifier fid′ and index

i asked by A, B works as follows.
First, if this is the first query asked for identifier fid′ by A, it chooses random

s, r2
$← Zp, sets σ1 ← gr (note that it does not know r) and computes

σ2 ← gr2 , t← HK(fid′‖σ1‖σ2), fid′ ← HK(gths),

τ ← gα2

σa0
1

l∏
ζ=1

σaζ [fid′]ζ

A0

l∏
ζ=1

A
[fid′]ζ
ζ

r2

= gα2

A0

l∏
ζ=1

A
[fid′]ζ
ζ

r+r2

.

Otherwise, it retrieves all this information from memory.

Then, it fetches the values m
(i)
1 ,M

(i)
1 generated in the previous phase from mem-

ory and computes m
(i)
2 ← m(i)/m

(i)
1 (so that m(i) = m

(i)
1 m

(i)
2), M

(i)
2 ←

m
(i)
2 , T

(i)
1 ← σδi1 , T

(i)
2 ← (h

(i)
2 M

(i)
2)r2 (it is easy to check that the signature is

valid and each of its components is correctly distributed).

To answer queries (m(i),fid, i) about an identifier fid 6= fid′, B works in a different
way.
First, if this is the first query asked for identifier fid by A, it chooses random

s, r1, r2
$← Zp and sets

σ1 ← gr1 , σ2 ← gr2 ,

t← HK(fid‖σ1‖σ2), fid← HK(gths), τ ← gα2 (A0

l∏
ζ=1

A
[fid]ζ
ζ)r1+r2

Otherwise, it retrieves all this information from memory.

Then, it chooses c
$← Zp, and computes m

(i)
1 ← gc,m

(i)
2 ← m(i)/m

(i)
1 (so that

m(i) = m
(i)
1 m

(i)
2),

M
(i)
1 ←W c

1 , M
(i)
2 ← (m

(i)
2)

w2
, T

(i)
1 ← (h

(i)
1 M

(i)
1)r1 , T

(i)
2 ← (h

(i)
2 M

(i)
2)r2 .

In both cases, the signatures are not directly returned to A but associated with
a new handle h and stored in a table T .

Derivation and Reveal Queries are handled as in the real experiment.

28

Forgery Assume that the adversary A produced a forgery Sign∗ for the function
f∗ = (α∗1, . . . , α

∗
k) and the identifier fid∗. If fid∗ was not guessed correctly, B

aborts.
Otherwise it proceeds as follows.
Consider the signature Sign = (fid∗, σ∗1, σ

∗
2, τ
∗, T1, T2,m1,M1,M2, s

∗) for the func-

tion f∗ and the messagem =
∏k
i=1 (m(i))

α∗i computed using the Eval algorithm on

the couples (m(i),Sign(i)) stored in T in response to the signing queries made by
A. Then, by the assumption of this subcase and supposing B guessed the correct

index b (otherwise it aborts), it must be that m∗b
∏k
i=1 (m

(i)
b)
−α∗i 6= 1). Therefore

B can extract a 2-out-of-3 CDH solution by computing

(
m∗b∏k

i=1 (m
(i)
b)

α∗
i
,
T ∗b
Tb

)
(this

can be easily verified by recalling equation 1).

Case 4. The idea to handle this case is the same as the one used in the analogous
case 4 of theorem 12. Basically, we use the same simulator of case 3, because the prob-

ability that f∗(m
(1)
b , . . . ,m

(k)
b) = m∗b is negligible (as in this case f∗(m

(1)
b , . . . ,m

(k)
b) is

information theoretically hidden from the adversary).

D Examples of Vector Σ Protocols

As special case of vector sigma protocol we introduce the 1-n vector sigma protocol
notion.

Definition 17 (1-n vector sigma protocol). Let (G1, ◦1), (G2, ◦2) two computa-
tional groups and let ChSp⊆ Gn

2 . A 1-n vector sigma protocol consists of four PPT
algorithm Σn = (Σn-Setup,Σn-Com,Σn-Resp,Σn-Verify) defined as follows:

Σn-Setup (1λ, n,R)→ (x,w). It takes as input a security parameter λ, a vector size
n and a relation Rn over an Ln language. It returns a vector of statements and
witnesses (x1, . . . , xn, w1, . . . , wn).

Σn-Com (x)→ (R, r). It’s a PPT algorithm run by the prover to get the first message
R to send to the verifier and some private state to be stored. We require that
R ∈ G1.

Σn-Resp (x,w, r, c) → s. It’s a PPT algorithm run by the prover to compute the
last message of the protocol. It takes as input the statements and witnesses (x,w)
the challenge string c ∈ChSp (sent as second message of the protocol) and some
state information r. It outputs the third message of the protocol, s.

Σn-Verify (x, R, c, s)→ {0, 1}. It’s the verification algorithm that on input the mes-
sage R, the challenger c ∈ChSp and a response s it outputs 1 (accept) or 0
(reject).

A 1-n vector sigma protocol is called group homomorphic if it satisfies the properties
in definition 13
Now we present some simple variants of the well known identification protocol by
Schnorr and show that it is actually an (homomorphic) vector Σ protocol. Those
protocols are 1-n Vector Sigma protocol according to definition 17.

Definition 18 (Schnorr Vector Σ-Protocol). Let G a group of prime order p and
R the DL relation on G, DL= {(x,w)|x = (p, g, h), h = gw}. Let g ∈ G a group
generator. We define DLg = {(x,w)|x = gw} the restriction of the DL relation to

29

g = g.
The vector Schnorr Σ-Protocol consist of four PPT algorithm Σn = (Σn-Setup,
Σn-Com, Σn-Resp, Σn-Verify) defined as follows:

Σn-Setup(1λ, n,R) It chooses a random group generator g ∈ G and a vector of

witnesses w = (w1, . . . , wn)
$← Znp . Then it computes the vector of statements

(x1, . . . , xn)← (gw1 , . . . , gwn) and sets x← (x1, . . . , xn, g). Next it outputs (x,w).
Obviously the couple (xj , wj) ∈ DLg ∀j = 1, . . . , n.

Σn-Com(x) It chooses a random r ∈ Zp, sets R← gr and returns (r,R).
Σn-Resp(x,w, r, c) Let c ∈ Znp be the second message of the protocol. It computes

s← (r + c1w1, . . . , r + cnwn) and outputs the vector s.
Σn-Verify(x, R, c) It checks that

gsj = Rx
cj
j ∀j = 1, . . . , n.

If all the above equations hold outputs 1, else outputs 0.

Theorem 19. The protocol described in definition 18 it’s a 1-n group homomorphic
vector sigma protocol.

Combining theorems 19, 14, 12 we obtain a practical instantiation of an on-line/off-
line linearly homomorphic signature scheme. In particular, as anticipated in remark
8, the scalar LHSPS scheme presented in section 3.1 allows us to change the fid in the
online phase in an efficient way. Namely, suppose one wants to convert a signature
issued with respect to fid into one with respect to fid′. The signer can do so, by first

choosing h ← gq for a random q
$← Zp during the key generation phase (as opposed

to randomly picking it from G). Then, once it has a signature w.r.t. fid, it can use q
to compute a new value s′ such that gHK(fid‖σ)hs = gHK(fid′‖σ)hs

′
, by setting

s′ ← s+
HK(fid‖σ)−HK(fid′‖σ)

q

It is easy to see that this modification does not affect the validity of the signature.

To further improve efficiency without affecting the security guarantees of our gen-
eral construction of LHOOS , we now introduce a modified version of the special
soundness property for vector sigma protocols. Roughly speaking, the extractor is
now given the witnesses for all but one statements of the vector x and has to come
up with a witness for the remaining one.

Definition 20 (Strong (Vector) Special Soundness). Let Σ = (Σ-Setup,Σ-
Com,Σ-Resp,Σ-Verify) a vector sigma protocol for a relation Rn. We say that Σ
has the Strong Special Soundness property if there exist an efficient extractor algorithm
Σn-Ext such that ∀x ∈ Ln, ∀j∗ ∈ {1, . . . , n}, ∀ R, c, s, c′, s′ such that (c, s) 6= (c′, s′),
Σn-Verify(x, R, c, s) = 1 and Σn-Verify(x, R, c′, s′) = 1, outputs wj∗ ←Σn-Ext
(x, R, c, s, c′, s′, {wj}j 6=j∗) such that (xj∗ , wj∗) ∈ R.

Remark 21. Theorems 14 and 15 can be easily proved also in the case when the vec-
tor sigma protocol Σn satisfies this Strong Special Soundness property instead of the
standard one presented in section 4.1.
As an example, this is a modified version of Schnorr Sigma protocol that has the
Strong (Vector) Special Soundness property. Note how the third message of the pro-
tocol consists of a single integer value, as opposed to a vector of n integers in the
previous construction.

30

Definition 22 (Strong Schnorr Vector Σ-Protocol). Let G a group of prime
order p and R the DL relation on G, DL= {(x,w)|x = (p, g, h), h = gw}. Let g ∈ G a
group generator. We define DLg = {(x,w)|x = gw} the restriction of the DL relation
to g = g.
The Strong Schnorr Vector Σ-Protocol consists of four PPT algorithm Σn = (Σn-
Setup, Σn-Com, Σn-Resp, Σn-Verify) defined as follows:

Σn-Setup(1λ, n,R) It chooses a random group generator g ∈ G and a vector of

witnesses w = (w1, . . . , wn)
$← Znp . Then it computes the vector of statements

(x1, . . . , xn) ← (gw1 , . . . , gwn) and sets x ← (x1, . . . , xn, g). Then it outputs
(x,w). Obviously the couple (xj , wj) ∈ DLg ∀j = 1, . . . , n.

Σn-Com(x) It chooses a random r ∈ Zp, sets R← gr and returns (r,R).
Σn-Resp(x,w, r, c) Let c ∈ Znp the second message of the protocol. This algorithm

outputs s← r +
∑n

j=1 cjwj .
Σn-Verify(x, R, c) It checks that

gs = R
n∏
j=1

x
cj
j .

If the above equation holds, it outputs 1, else outputs 0.

