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Abstract. Yoneyama et al. introduced Leaky Random Oracle Model
(LROM for short) at ProvSec2008 in order to discuss security (or inse-
curity) of cryptographic schemes which use hash functions as building
blocks when leakages from pairs of input and output of hash functions
occur in the experiment of security definition. This kind of leakages oc-
curs due to various attacks caused by sloppy usages or implementations.
Their results showed that this kind of leakages may threaten the security
of some cryptographic scheme. However, an important fact is that such
attacks would leak not only pairs of input and output of hash functions,
but also the secret key. Therefore, LROM is very limited in the sense that
it considers leakages from pairs of input and output of hash functions
alone, instead of taking into consideration other possible leakages from
the secret key simultaneously. On the other hand, many recent leakage
models mainly concentrate on leakages from the secret key and ignore
leakages from hash functions for a cryptographic scheme exploiting hash
functions. This is a weakness of these leakage models and there exist
some schemes in these leakage models but is not secure any more when
leakages from hash functions occur.

In this paper, we present an augmented model of both LROM and
some leakage models. In our new model, both the secret key and pairs
of input and output of hash functions can be leaked. Furthermore, the
secret key can be leaked continually during the whole lifecycle of a cryp-
tographic scheme. Hence, our new model is more universal and stronger
than LROM and some leakage models (e.g. only computation leaks mod-
el and bounded memory leakage model). As an application example, we
also present a public key encryption scheme which is provably IND-CCA
secure in our new model.

Keywords: Leaky Random Oracle Model, secret key, hash list, Cramer-
Shoup cryptosystem, Leakage Resilient Cryptography.



1 Introduction

Hash functions are one of the most important building blocks of cryptographic
schemes. For example, public key encryption scheme, digital signature, authen-
ticated key exchange etc.

On one hand, hash functions can be exploited to construct cryptographic
schemes in the standard model (SM). For example, Cramer-Shoup cryptosystem
[9] is a public key encryption scheme which is based on universal one-way hash
function family in SM. On the other hand, for a cryptographic scheme in the
random oracle model [1] (ROM), it usually exploits a hash function to instantiate
the random oracle.

If possible, a cryptographic scheme will be implemented on some device in
practice. A fact that cannot be neglected is that any implementation of a cryp-
tographic scheme can be threatened by attacks caused by sloppy usages or im-
plementations (For example, physical attacks such as side-channel attacks [6,7,8]
and cold boot attacks [4]). These attacks may leak sensitive information in the
cryptographic scheme.

In [5], Yoneyama et al. applied this view to hash functions. They considered
the situation that all contents of pairs of input and output of hash functions used
by a cryptographic scheme can be leaked to an adversary. These leakages may
also caused by sloppy usages or implementations. A possible example of sloppy
usages is that pairs of input and output of hash functions may remain in some
insecure area of the memory for reuse of hash values in order to reduce compu-
tational costs or for failing to release temporary memory area, then contents of
the memory may be revealed without advanced implementation attacks [5]. If a
cryptographic scheme is implemented without any sloppy usages, an adversary
can also try to attack its implementation and may obtain pairs of input and out-
put of hash functions by side-channel attacks [6,7,8], cold boot attack1 [4], and
malicious Trojan Horse programs etc. Thus, even if we successfully developed
exceedingly secure hash functions, such kind of leakages might be possible. In
[5], Yoneyama et al. formulated Leaky Random Oracle Model (LROM) capturing
this kind of leakages in order to discuss security (or insecurity) of cryptographic
schemes which use hash functions as building blocks when such kind of leakages
occurs in the experiment of security definition2.

Yoneyama et al. have analyzed the security of five prevailing cryptographic
schemes in LROM including Full Domain Hash [1], Optimal Asymmetric En-
cryption Padding [17], Cramer-Shoup cryptosystem, Kurosawa-Desmedt cryp-
tosystem [18] and NAXOS [19].

1 Because the fact that some intermediate computation result will be remained in
memory.

2 We suggest the reader should have a look at the paper of Yoneyama et al. [5] for
more details in order to understand our paper clearer.
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1.1 Motivation

An important fact is that an adversary can obtain not only leakages from pairs
of input and output of hash functions, but also leakages from the secret key of a
cryptographic scheme from attacks caused by sloppy usages or implementations.
For example, most side channel attacks target the secret key of a cryptograph-
ic construction because the secret key is fixed in every invocation and can be
revealed easier than pairs of inputs or outputs of hash functions. In addition,
Halderman et al. [4] put forward cold boot attack in which an adversary can
learn a (noisy) version of the entire memory1 even if no computation is going
on. What’s more, malicious Trojan Horse programs can be designed to obtain
both the secret key and pairs of input and output of hash functions by an adver-
sary easily. In these scenarios, an adversary can obtain both leakages from the
secret key and leakages from hash functions.

On one hand, LROM only considers leakages from hash functions and the
secret key of a scheme that is secure in LROM will not be leaked to an ad-
versary by the assumptions of LROM. However, in many real world settings,
leakages from the secret key completely compromises the security of many cryp-
tographic schemes. Therefore, it is very difficult to guarantee the security of any
cryptographic scheme that is secure in LROM when the adversary can obtain
additional leakages from the secret key. In these senses, LROM is very limited.

On the other hand, many other leakage models [2,3,10,11,13,15,16,20,27,28,29,
30] which mainly concentrate on leakages from the secret key are given out in
recent years. However, the result of the paper [5] shows that leakages from hash
functions used by a cryptographic scheme that is secure in these leakage models
may threaten its security. A specific example is the public key encryption scheme
in Section 4 of the paper [2] when the scheme is instantiated by a hash function2.
If all contents of pairs of input and output of the hash function are leaked, the
above scheme will not be secure any more. Therefore, this is a weakness of these
leakage models which ignore leakages from hash functions3.

In order to improve both LROM and other leakage models, we try to for-
mulate a new leakage model where both the secret key and pairs of input and
output of hash functions can be leaked. We believe that our new model is more
universal and stronger than LROM due to leakages from the secret key and
some leakage models due to leakages from hash functions. We also try to build
provably secure cryptographic schemes in our new model.

1.2 Our Contribution

The main contributions of this paper are two-fold as follows. First, we introduce
a new leakage model which is more universal and stronger than LROM and some

1 Note that the secret key must be in the memory.
2 Note that any family of pairwise independent hash functions is an average-case strong
extractor [14].

3 Here we assume the secret key is not an input or an output of hash functions used
by a cryptographic scheme in these leakage models.
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other leakage models. Second, we give out a public key encryption scheme that
is provably secure in this new model.
Our New Model For a cryptographic scheme which exploits hash functions,
our new model allows an adversary to obtain both leakages from the secret key
continually and leakages from pairs of input and output of the hash functions
in the same way as LROM. Any cryptographic scheme which is secure in our
new model will be also secure in LROM. However, for any cryptographic scheme
which is secure in LROM, it is very difficult to guarantee its the security in
our new model. Therefore, our new model is more universal and stronger than
LROM. Moreover, our new model is more universal and stronger than some
leakage models [2,3,10,13] when a cryptographic scheme in these leakage models
exploits hash functions (both in SM and ROM). Because these leakage models
ignore leakages from hash functions and only consider bounded leakages from the
secret key.
A Public Key Encryption Scheme in Our New Model We also construct
a public key encryption scheme which is IND-CCA secure in our new model
without any complex assumptions and cryptographic tools. Our new public key
encryption scheme is based on Cramer-Shoup cryptosystem, Hiding Subspaces
principle [11,12] and a new assumption has been proven equivalent to the Deci-
sional Diffie-Hellman (DDH) assumption. This new scheme is better than some
practical leakage resilient schemes because it can tolerate more leakages and
has higher security strength. Furthermore, the new scheme can be implemented
easily in practice. Therefore, we believe it can be used wildly.

1.3 Related Works

Work on tolerating leakages was initiated by Rivest and Boyko [21,22] in the
context of increasing the cost of brute-force attacks on block ciphers and effi-
ciency issues. Then exposure-resilient cryptography [23,24,25] considers simple
leakage functions that reveal a subset of the bits of the secret key or the internal
memory of the cryptographic device. In contrast to these works, more powerful
leakage function (i.e. efficiently computable leakage function) that can perform
some global computation on the secret key are used to describe leakages from the
secret key. Micali et al. [26] proposed to construct and study formal models that
capture this general types of leakage. This study has led to two distinct strands
of work as follows.

Bounded Leakage Models This line of work considers the leakage models that
allow an adversary to obtain the output of any efficiently computable leakage
function f , of his choice, to the secret key SK. The unique restriction of f is
that the output f(SK) “does not reveal the entire secret key”. For example,
Akavia et al. [10] restrict the output length of f is bounded by the length of the
secret key, i.e. |f(SK)| ≪ |SK|. Many other work can be found in these leakage
models [2,3,10,13,16,27,28,29].

Continual Leakage Models This line of work considers the case where leakages
are continual, i.e. a bounded amount of information about the secret key is
leaked in each time period, but the overall leakages in the whole lifecycle of
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a cryptographic scheme is unbounded. It is easy to see that to guarantee any
security in this model the secret key must necessarily be stateful which means
that the secret key must be updated between time-periods while the public
key remains unchanged. Micali et al. [26] proposed to study security against
continual leakages under the “only computation leaks information” assumption.
A lot of work [31,32] design leakage resilient cryptographic schmemes under this
assumption. Furthermore, there exist several work [11,20,30] in the continual
leakage model without the “only computation leaks information” assumption.

However, none of the above work consider leakages from the secret key and
leakages from pairs of input and output of hash functions simultaneously.

1.4 Organization of This Paper

The remainder of the paper is organized as follows. In section 2, we introduce
some basic notations and concepts. We present our new leakage model in sec-
tion 3. Our provable secure public key encryption scheme in our new model is
introduced in section 4. In section 4, we also prove the security of this scheme.
We conclude this paper in section 5.

2 Preliminaries

In this section, we first present some notations and concepts used throughout the
paper. Second, we review LROM. Third, we introduce the security of Cramer-
Shoup cryptosystem in SM and LROM. Finally, we introduce the computational
assumptions which is used in this paper.

2.1 Symbols and Notations

The statistical distance between two random variables X and Y is defined by

SD(X,Y ) = 1
2

∑
x |Pr[X = x] − Pr[Y = x]|. We write X

s≈ϵ Y to denote

SD(X,Y ) ≤ ϵ and just plain X
s
≈ Y if the statistical distance is negligible

in the security parameter. In the latter case, we say that X,Y are statistically
indistinguishable.

Let Gen be a probabilistic polynomial-time algorithm that takes as input a
security parameter and outputs a triple (G, q, g), where G is a group of order
q and is generated by g ∈ G. Let v = (v1, v2, . . . , vn), vi ∈ Zq is a vector,
we use gv to denote the vector (gv1 , gv2 , . . . , gvn). If t = (t1, t2, . . . , tn) and
s = (s1, s2, . . . , sn) are two vectors in Zn

q , we use ⟨t, s⟩ = t1s1+ t2s2+ · · ·+ tnsn
to denote the inner product of the two vectors. For a random number r ∈ Zq,
rt = (rt1, rt2, . . . , rtn) is also a vector in Zn

q . Let vector 1n = (1, 1, . . . , 1), there
exist n components in the vector. If A ∈ Zn×m

p is a n×m matrix of scalars, we
use colspan(A) to denote the subspaces spanned by the columns of A.

5



2.2 Leaky Random Oracle Model

In order to concentrate on effects of leakages, LROM supposes that hash func-
tions are ideal as a random oracle without considering any internal structure
of a real hash function but pairs of input and output of the hash function can
be leaked to an adversary [5]. In LROM, pairs of input and output of a hash
function are stored in a hash list. The hash list is a virtual notion and is used for
describing leakages. The hash list is not kept in memory by a normal real user.
However, an adversary can still obtain all contents of the hash list by various
attacks1. On the other hand, some sloppy usages of the hash function (See the
example in Section 1.) cause direct leakages of the hash list. LROM is shown in
the following.

Definition 1. (Leaky Random Oracle Model) LROM is a model assuming
the leaky random oracle. We suppose a hash function H : X → Y such that
xi ∈ X, yi ∈ Y (i is an index), and X and Y are both finite sets. Also, let LH

be the hash list of H. We say H is a leaky random oracle if H can be simulated
by the following procedure:

Initialization: LH ← ⊥
Hash query: For a hash query xi to H, behave as follows:
If xi ∈ LH , then find yi corresponding to xi and output yi as the answer to

the hash query. If xi /∈ LH , then choose yi randomly, add pair (xi, yi) to LH and
output yi as the answer to the hash query.

Leak hash query:2 For a leak hash query to H, output all contents of the
hash list LH .

If a cryptographic scheme is not secure in LROM, the cryptographic scheme
must not be secure against various attacks caused by sloppy usages or implemen-
tations when it uses any real hash functions. If a cryptographic scheme is secure
in LROM, it may still be insecure when it uses a real hash function against these
attacks. Therefore, Cramer-Shoup cryptosystem is considered in this idealized
model (LROM) in [5].

2.3 The Security of Cramer-Shoup Cryptosystem

We ignore the description of Cramer-Shoup cryptosystem and only introduce its
security here. In [9], the security of Cramer-Shoup cryptosystem in SM stated
in the following lemma:

Lemma 1 (Security of Cramer-Shoup cryptosystem in SM). If the hash
function H is chosen from a family of universal one-way hash functions and the

1 For example, side-channel attacks, cold boot attack, and malicious Trojan Horse
programs.

2 The leak hash query is identical to the leak query in Definition 1 in [5]. We rename the
leak query as leak hash query here because we will define leakage query in Definition
2 in Section 3 of this paper.
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DDH assumption of the group G holds, then Cramer-Shoup cryptosystem satis-
fies IND-CCA secure.

In [5], the security of Cramer-Shoup cryptosystem in LROM is analysed.
Cramer-Shoup cryptosystem is also secure in LROM.

Lemma 2 (Security of Cramer-Shoup cryptosystem in LROM). If the
DDH assumption of the group G holds, then Cramer-Shoup cryptosystem satisfies
IND-CCA secure where H is modeled as a leaky random oracle.

2.4 Computational Assumption

In this paper, we use an assumption which is equivalent to the DDH assumption
as follows.

The Generalized Diffie-Hellman assumption. The Generalized Decisional
Diffie-Hellman (GDDH) assumption is that the two ensembles

{G, {g1, . . . , gn}, {gn+1, . . . , g2n}, {gr1, . . . , grn}, {grn+1, . . . , g
r
2n}},

{G, {g1, . . . , gn}, {gn+1, . . . , g2n}, {gr11 , . . . , gr1n }, {g
r2
n+1, . . . , g

r2
2n}}

are computationally indistinguishable, where (G, q, g) ←Gen(1k), and the ele-
ments g1, g2, . . . , g2n ∈ G and r, r1, r2 ∈ Zq are chosen independently and uni-
formly at random.

The GDDH assumption is not mentioned in previous work. We show that
the GDDH assumption and the DDH assumption are equivalent in Theorem 1.
The proof of Theorem 1 is in Appendix A.

Theorem 1. The GDDH assumption and the DDH assumption are equivalent.

3 Our New Model

In this paper, we use the same notions and assumptions as LROM. In our new
model, we consider both leakages from the secret key and leakages from the hash
lists of hash functions.

The secret key is stateless means that it is stored in memory and remains
unchanged during the whole lifecycle of a cryptographic scheme. It is well known
that if the secret key is leaked to an adversary entirely, no leakage resilient
cryptographic scheme can be designed. Therefore, for a leakage model where the
secret key is stateless, only a part of information of the secret key can be leaked
to the adversary during the whole lifecycle of a cryptographic scheme in this
leakage model.

However, this leakage scenario is not suitable for our new model. During the
whole lifecycle of a cryptographic scheme, our new model allows the adversary
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can obtain all contents of the hash list as that in LROM. It is unreasonable to
assume the adversary can obtain only a part of information of the secret key
during the whole lifecycle of a cryptographic scheme. But the adversary can not
obtain the secret key entirely. Therefore, in our new model, the secret key must
be stateful (Like the schemes in Continual Leakage Models) and be updated
before the adversary obtains enough information about the secret key to carry
out various attacks. The amount of information about the secret key leaked in
each time period is bounded, but the overall leakages from the secret key in the
whole lifecycle of a cryptographic scheme are unbounded.

In our new model, we use an efficiently computable leakage function Leak
to describe leakages from the secret key in each time period. The input of Leak
is the secret key SK. The only restriction of Leak is that the output length of
it is bounded by the length of the secret key (i.e. |Leak(SK)| ≪ |SK|). The
leakage function in LROM can be viewed as an identity function. If we use a
simpler leakage function f which can only output a subset of the bits of the
secret key, the leakage function about the secret key and the leakage function
about the hash list are unified. Clearly, the two leakage functions in our leakage
model are not only unified, but also more powerful than the above case. Because
the leakage function Leak is an efficiently computable leakage function which is
more powerful than the simpler leakage function f .

Put this all together, the leakage pattern about the secret key and the leakage
pattern about the hash functions in our new model are unified.

We call our new model Continual Key Leakages and Hash Function Leakages
Model (KHLM for short). As an example, we consider a public key encryption
scheme which achieves IND-CCA security in KHLM. Similarly, we can define a
IND-CPA secure public key encryption scheme or a signature scheme which is
existentially unforgeable under an adaptive chosen-message attack in KHLM. A
public key encryption scheme in KHLM consists of the following algorithms:

– KeyGen(1k): Takes as input the security parameter k and outputs a public
key PK, a secret key SK (denoted by SK0) and an update key UK.

– Encrypt(PK,M): The input is a public key PK and a message M . The
output is a ciphertext CT .

– Decrypt(SKi, CT ): The input is a secret key SKi and a ciphertext CT .
The output is a decrypted message M .

– Update(UK,SKi): The input is an update key UK and an old secret key
SKi. The output is an updated secret key SKi+1.

Note that the output of Update(UK,SKi) (i.e. SKi+1) and SKi are corre-
sponding to the same public key PK. This means that for a ciphertext CT
which is encrypted by PK (CT =Encrypt(PK,M)), we have

Decrypt(SKi, CT )=Decrypt(SKi+1, CT )=M .

Moreover, the size of the secret key should be unchanged after the update opera-
tion (i.e. |SKi| = |SKi+1|). The secret key space of a public key should be large
enough. Let L(k) be a function of the security parameter and L(k)≪ |SKi|.
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Our new model is as follows. In Definition 2, we simply assume the scheme
Π uses one hash function. For a scheme uses more than one hash function, our
new model allows the hash lists of all the hash functions can be leaked similarly.

Definition 2. We say that a public key encryption scheme Π is L(k)-IND-CCA
secure in KHLM if for any probabilistic polynomial time adversary A, it holds
that

AdvLCCA
Π,A (k) =

∣∣∣Pr[ExptLCCA
Π,A (0) = 1]− Pr[ExptLCCA

Π,A (1) = 1]
∣∣∣

is negligible in k, where ExptLCCA
Π,A (b) is defined as follows:

– Let LH denotes the hash list of a hash function H used by Π. Initialization:
LH ← ⊥

– Challenger chooses (PK,UK,SK0)← KeyGen(1k) and sends PK to A.
– The adversary A may ask for the following four queries:

Leakage query: Each such query consists of an efficiently computable leak-
age function Leak : {0, 1}|SK| → {0, 1}L(k) with L(k) bits output. On the ith

such query with Leaki, the challenger gives the value Leaki(SKi) to A and
computes the updated secret key SKi+1 ← Update(UK,SKi).
Hash query: For a hash query ai to H, behave as follows:
If ai ∈ LH , then find bi corresponding to ai from LH and output bi to A. If
ai /∈ LH , then choose bi randomly, add pair (ai, bi) to LH and output bi to
A.
Leak hash query: For a leak hash query to H, output all contents of the
hash list LH to A.
Decryption query: For a decryption query with a ciphertext CT , decrypt
CT with the current secret key SKi and output Decrypt(SKi, CT ) to A.

– At some point A gives the challenger two messages M0,M1 and |M0| = |M1|.
The challenger computes CT ∗ ← Encrypt(PK,Mb). Then the challenger
sends CT ∗ to A.

– The adversary A can not ask the leakage query after he gets CT ∗. The adver-
sary A can also ask the hash query, the leak hash query and the decryption
query. But he can not ask the decryption query with CT ∗.

– The adversary A outputs a bit b′. If b′ = b, then the experiment outputs 1,
otherwise, the experiment outputs 0.

Note that, the adversary in KHLM is not allowed to ask the leakage query
after the challenge phase. This restriction is necessary as many other leakage
models [2,10,11,13,20,30]: the adversary can clearly encode the decryption algo-
rithm, the challenge ciphertext, and the to messages M0 and M1 into a leakage
function that outputs the bit b.

Additionally, in KHLM, we assume the randomness used by the challenger to
compute CT ∗ ← Encrypt(PK,Mb) can not be leaked to the adversary even if a
part of information of it. Otherwise, the adversary can break the security easily1

and no leakage resilient cryptographic scheme can be designed in this model.

1 For example, the adversary can obtain a part of information of Encrypt(PK,M0; r)
(r is the randomness.) which can be used to determine b.

9



In KHLM, the adversary can get not only leakages from hash functions,
but also continual leakages from the secret key. Hence, our new model is more
universal and stronger than both LROM and some leakage models in [2,10,13]1.

In next section, we will present a public key encryption scheme which is
L(k)-IND-CCA secure in our new model.

4 A Provably Secure Public Key Encryption Scheme in
Our New Model

In this section, we first introduce our public key encryption scheme in KHLM
and then prove the security of it. Our public key encryption scheme in KHLM
is denoted by PKE and is based on Cramer-Shoup cryptosystem. The PKE is
shown in the following.

KeyGen: On input security parameter k, generate a k bit prime q. Let G
is a group of prime order q. The generator of G is g. Choose A1,A2 uni-

formly and independently at random from Zn×(n−1)
q (denoted by A1,A2

∗←
Zn×(n−1)
q ) and two random vectors t = (t1, t2, . . . , tn), ti ∈ Zq, i = 1, 2, . . . , n

and s = (s1, s2, . . . , sn), si ∈ Zq, i = 1, 2, . . . , n satisfy ker(t) = colspan(A1)
and ker(s) = colspan(A2). This requirement can be satisfied easily without neg-
ligible probability. Let t =

∑n
i=1 ti mod q and s =

∑n
i=1 si mod q and g1 =

gt, g2 = gs. Generating five vectors x1,x2,y1,y2, z uniformly and indepen-
dently at random from Zn

q . Let x1, x2, y1, y2, z be five numbers in Zq and sat-
isfy ⟨t,x1⟩ mod q = tx1 mod q, ⟨s,x2⟩ mod q = sx2 mod q, ⟨t,y1⟩ mod q =
ty1 mod q, ⟨s,y2⟩ mod q = sy2 mod q, and ⟨t, z⟩ mod q = tz mod q. The group
elements c = gx1

1 gx2
2 , d = gy1

1 gy2

2 , h = gz1 are computed. A hash function H is
chosen from the family of universal one-way hash functions.

Chooses β1,β3,β5 ∈ ker(t) and β2,β4 ∈ ker(s) uniformly and indepen-
dently at random. Let matrix UP = [β1,β2,β3,β4,β5]

⊤ be a n × 5 matrix.
The public key PK is (gt, gs, c, d, h,H). The secret key SK (i.e. SK0) is a n× 5
matrix and SK = [x1,x2,y1,y2, z]

⊤ + UP . The update key UK is (t, s).

Remark 1. The values t, s, x1, x2, y1, y2, z should be deleted after the key gen-
eration process so that the adversary can not obtain them by attacks caused by
sloppy usages or implementations.
Remark 2. For convenience, we use the same symbol [x1,x2,y1,y2, z]

⊤ to de-
note every secret key SKi, (i = 0, 1, 2, . . .). Note that, for any i ̸= j, we have

1 In KHLM, the adversary asks the leakage query non-adaptively (See [10] for the
definition and more details.). For a chosen-plaintext attacks adversary, the security
definition of a public key encryption scheme in our new model is equivalent to a
security definition in which the adversary can ask the leakage query adaptively [10].
However, it is not clear that whether the same equivalence holds when we extend
the definition to consider a chosen-ciphertext attacks adversary. If the equivalence
holds, KHLM is also stronger than the leakage models in [2,10,13] where a chosen-
ciphertext attacks adversary is considered.
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SKi ̸= SKj except negligible probability.

Encrypt: For input a message M ∈ G, choose r ∈ Zp at random, compute
u1 = gr⟨t,1n⟩ = gr1, u2 = gr⟨s,1n⟩ = gr2, e = hrM , α = H(u1, u2, e) and
v = crdrα. Output a ciphertext (grt, grs, e, v).

Decrypt: Given a ciphtertext (grt, grs, e, v), compute u1 = g⟨rt,1n⟩, u2 =
g⟨rs,1n⟩, α = H(u1, u2, e) and verify whether g⟨rt,x1⟩+α⟨rt,y1⟩+⟨rs,x2⟩+α⟨rs,y2⟩ =
v holds or not by using [x1,x2,y1,y2]. If the verification holds, then output the
message M = e/g⟨rt,z⟩ by using z. Else if, reject the decryption as an invalid
ciphertext ⊥.

Update: Given an old secret key SKi = [x1,x2,y1,y2, z]
⊤, Chooses β1,β3,

β5 ∈ ker(t) and β2,β4 ∈ ker(s) uniformly and independently at random. Let
matrix UP = [β1,β2,β3,β4,β5]

⊤ be a n × 5 matrix. The new updated secret
key is SKi+1 = SKi + UP . Outputs SKi+1.

Since we have g⟨rt,x1⟩+⟨rs,x2⟩ = grx1
1 grx2

2 = cr, g⟨rt,y1⟩+⟨rs,y2⟩ = gry1

1 gry2

2 =
dr, and g⟨rt,z⟩ = grz1 = hr. The test performed by the decryption algorithm will
pass and the output will be e/hr = M . Therefore, the correctness of PKE can
be verified. Second, we verify that the updated secret key can also decrypt a
ciphertext correctly. For example, let’s consider the vector x1. It is clear that

g
⟨t,x1+β1⟩
1 = g⟨t,x1⟩+⟨t,β1⟩ = g⟨t,x1⟩, because β1 ∈ ker(t). Similarly, x2,y1,y2, z
can be updated correctly.

The following theorem establishes the security of the scheme PKE:

Theorem 2. If the hash function H is chosen from a family of universal one-
way hash functions and the GDDH assumption of the group G holds, then the
PKE is L(k)-IND-CCA secure in KHLM, as long as L(k) < (n − 4)log(q) −
ω(log(k)).

Proof. We define a new experiment ExptRLCCA
Π,A (b) for a public key encryp-

tion Π and any probabilistic polynomial time adversary A. The experimen-
t ExptRLCCA

Π,A (b) is identical to the experiment ExptLCCA
Π,A (b) except that the

challenger chooses random numbers (denoted by URi) with the same size of the
secret key and sends Leaki(URi) to the adversary in the leakage query. The real
secret key SK is updated normally. For our scheme PKE it holds that

AdvLCCA
PKE,A (k) =

∣∣∣Pr[ExptLCCA
PKE,A (0) = 1]− Pr[ExptLCCA

PKE,A (1) = 1]
∣∣∣

≤
∣∣∣Pr[ExptLCCA

PKE,A (0) = 1]− Pr[ExptRLCCA
PKE,A (0) = 1]

∣∣∣
+
∣∣∣Pr[ExptRLCCA

PKE,A (0) = 1]− Pr[ExptRLCCA
PKE,A (1) = 1]

∣∣∣
+
∣∣∣Pr[ExptRLCCA

PKE,A (1) = 1]− Pr[ExptLCCA
PKE,A (1) = 1]

∣∣∣.
11



We will prove this theorem by the following three claims.
Claim 2.1 If the GDDH assumption of the group G holds and L(k) < (n −
4)log(q)− ω(log(k)), it holds that∣∣∣Pr[ExptLCCA

PKE,A (0) = 1]− Pr[ExptRLCCA
PKE,A (0) = 1]

∣∣∣ < µ1(k)

, where µ1(k) is negligible in k.
Proof. By the following lemmas, as long as L(k) < (n − 4)log(q) − ω(log(k)),
the leakages from the real secret key SKi is distinguishable with the leakages
from URi for any leakage function Leaki.
Lemma 3 Let n ≥ m, m ≥ l1, and m ≥ l2 be integers. Let Leak : {0, 1}∗ →
{0, 1}L(k) be some arbitrary function and let X1 ∈ Zn×l1

q , X2 ∈ Zn×l2
q be ar-

bitrary matrixes. For randomly sampled A1
∗← Zn×m

q , E1
∗← Zm×l1

q , UR1
∗←

Zn×l1
q , A2

∗← Zn×m
q , E2

∗← Zm×l2
q , UR2

∗← Zn×l2
q we have:

(Leak(A1E1 +X1,A2E2 +X2),A1,A2)
s
≈ (Leak(UR1,UR2),A1,A2),

as long as (m − max{l1, l2})log(q) − L(k) = ω(log(k)), n = poly(k), and q =
kω(1).
Proof. This lemma can be proved based on Corollary 8 in the paper of S.
Agrawal et al. [12]. We prove the lemma by the following two lemmas.
Lemma 4 Let n ≥ m, m ≥ l1, and m ≥ l2 be integers. Let Leak : {0, 1}∗ →
{0, 1}L(k) be some arbitrary function and let X1 ∈ Zn×l1

q , X2 ∈ Zn×l2
q be ar-

bitrary matrixes. For randomly sampled A1
∗← Zn×m

q , E1
∗← Zm×l1

q , UR1
∗←

Zn×l1
q , A2

∗← Zn×m
q , E2

∗← Zm×l2
q we have:

(Leak(A1E1+X1,A2E2+X2),A1,A2)
s
≈ (Leak(UR1,A2E2+X2),A1,A2),

as long as (m− l1)log(q)− L(k) = ω(log(k)), n = poly(k), and q = kω(1).
Proof. We first prove that

(Leak(A1E1 +X1,A2E2 +X2),A1)
s
≈ (Leak(UR1,A2E2 +X2),A1).

Now assume that there is some function Leak and an (unbounded) distin-
guisher D that has a non-negligible distinguishing advantage for the two distri-
butions

(Leak(A1E1 +X1,A2E2 +X2),A1)
s
≈ (Leak(UR1,A2E2 +X2),A1).

Then we can define a function Leak′ and a distinguisher D′ which breaks the
problem of Corollary 8 in [12]. The matrixes X2, A2, and E2 are chosen u-
niformly and independently at random and satisfy the requirement of Lemma
4. Let A2E2 + X2 be a fixed matrix. Given C = A1E1 + X1 or C = UR1,
the function Leak′ outputs ans := Leak(C,A2E2 +X2). The distinguisher D′

is given (ans,A1) and outputs D(ans,A1). The distinguisher D′ has the same

12



advantage as D. Therefore, indistinguishability holds as long as L(k) satisfies
the requirement.

Then, using the fact that applying the same function to two distributions
cannot increase their statistical distance, we obtain

(Leak(A1E1+X1,A2E2+X2),A1,A2)
s
≈ (Leak(UR1,A2E2+X2),A1,A2).

2.
Similarly, we can prove the following lemma and we ignore the proof here.

Lemma 5 Let n ≥ m, m ≥ l1, and m ≥ l2 be integers. Let Leak : {0, 1}∗ →
{0, 1}L(k) be some arbitrary function and let X2 ∈ Zn×l2

q be an arbitrary matrix.

For randomly sampled UR1
∗← Zn×l1

q , A1
∗← Zn×m

q , A2
∗← Zn×m

q , E2
∗← Zd×l2

q ,

UR2
∗← Zn×l2

q we have:

(Leak(UR1,A2E2 +X2),A1,A2)
s
≈ (Leak(UR1,UR2),A1,A2),

as long as (m− l2)log(q)− L(k) = ω(log(k)), n = poly(k), and q = kω(1).
From Lemma 4 and Lemma 5, we can see that Lemma 3 holds. 2
Note that, in our scheme, the matrixes A1 and A2 in the key generation

process are chosen uniformly and independently at random from Zn×(n−1)
q . In the

update process, the old secret key SKi = [x1,x2,y1,y2, z]
⊤ and the new secret

key SKi+1 is generated by A1E1 + [x1,y1,z]
⊤ and A2E2 + [x2,y2]

⊤, where

E1
∗← Zm×l1

q and E2
∗← Zm×l2

q . Furthermore, similar to the situation of Cramer-
Shoup cryptosystem, the secret key can not be leaked from the decryption query
except negligible probability and can not be obtained from the public information
and leakages from hash list. Therefore, by Lemma 3, the leakages from the real
secret key SKi and the leakages from a random matrix URi in Zn×5

p can not be
distinguished as long as L(k) < (n− 4)log(q)− ω(log(k)), (i = 0, 1, . . .). In this
way, Claim 2.1 is proved.2
Claim 2.2 If the GDDH assumption of the group G holds, we have∣∣∣Pr[ExptRLCCA

PKE,A (0) = 1]− Pr[ExptRLCCA
PKE,A (1) = 1]

∣∣∣ < µ2(k)

, where µ2(k) is negligible in k.
The details of the proof of Claim 2.2 can be found in Appendix B. The main

idea of the proof is as follows. On one hand, the leakage query in the two exper-
iments does not leak the real secret key SKi and only leaks URi. For a random
matrix URi = [ur1, . . . ,ur5]

⊤, the probability of ⟨t,ur1⟩ mod q = tx1 mod q
equals to 1/q and is negligible in k. Therefore, the adversary obtains even a part
of leakage information about the real secret key with probability 1− (1− 1/q)5

which is negligible in k. On the other hand, Cramer-Shoup cryptosystem is
IND-CCA secure in LROM (Lemma 2). Although our scheme PKE is a variant
of Cramer-Shoup cryptosystem with a different way of mathematical implemen-
tation, the theorical principle of our scheme is identical to Cramer-Shoup cryp-
tosystem except that the basic assumptions of the two schemes are different but
are equivalent (See section 2 for more details.). Hence Claim 2.2 holds.
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Claim 2.3 If the GDDH assumption of the group G holds and L(k) < (n −
4)log(q)− ω(log(k)), it holds that∣∣∣Pr[ExptLCCA

PKE,A (1) = 1]− Pr[ExptRLCCA
PKE,A (1) = 1]

∣∣∣ < µ3(k)

, where µ3(k) is negligible in k.
Proof. The proof of Claim 2.3 is similar to the proof of Claim 2.1. 2

Therefore, our new scheme PKE is L(k)-IND-CCA secure in KHLM. 2

Our scheme PKE is much stronger than the scheme in Section 4 of the paper
[2] because our scheme can tolerate more leakages and has higher security level.
If the equivalence of adaptive leakages and non-adaptive leakages holds for a
chosen-ciphertext attacks adversary, our scheme PKE is still better than the
scheme in Section 6.3 of the paper [3] because our scheme can tolerate more
leakages.

5 Conclusion and Future Work

In this paper, we introduce a new leakage model where both the secret key and
the hash lists of hash functions can be leaked. Moreover, the secret key can be
leaked continually and refreshed. Therefore, we believe that our new model is
more universal and stronger than the LROM and some other leakage models
[2,10,13]. We also present a new public key encryption scheme PKE which is
L(k)-IND-CCA secure in this new model. In future work, one may try to consider
additional leakages from the key generation process and/or the update process.
Leakage resilient signature scheme in KHLM is also expected.
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Appendix A: The Proof of Theorem 1

Proof. We will prove Theorem 1 by the following two claims.
Claim 1.1 The GDDH assumption implies the DDH assumption.
Proof. Let A be an adversary who can break the DDH assumption. We can
construct an adversary B who can break the GDDH assumption using A. The
adversary B is as follows. When B gets an input ensemble S1:

{G, {g1, . . . , gn}, {gn+1, . . . , g2n}, {gr1, . . . , grn}, {grn+1, . . . , g
r
2n}},

he sends {G, g1, gn+1, g
r
1, g

r
n+1} to A and runs A as a subroutine. When A out-

puts b ∈ {0, 1}, then B outputs b. When B gets an input ensemble S2:

{G, {g1, . . . , gn}, {gn+1, . . . , g2n}, {gr11 , . . . , gr1n }, {g
r2
n+1, . . . , g

r2
2n}},

he sends {G, g1, gn+1, g
r1
1 , gr2n+1} to A and runs A as a subroutine. When A

outputs b ∈ {0, 1}, then B outputs b. Clearly, we have

Pr[B(S1) = 1] = Pr[A(G, g1, gn+1, g
r
1, g

r
n+1) = 1],

Pr[B(S2) = 1] = Pr[A(G, g1, gn+1, g
r1
1 , gr2n+1) = 1].

Due to A can break the DDH assumption, then B can break the GDDH assump-
tion. Therefore, Claim 1.1 holds. 2
Claim 1.2 The DDH assumption implies the GDDH assumption.
Proof. Let A be an adversary who can break the GDDH assumption. We can
construct an adversary B who can break the DDH assumption using A. The
adversary B is as follows. When B gets an input ensemble {G, g1, g2, g

r
1, g

r
2} (r is

chosen uniformly at random from Zq), he chooses ai, bi ∈ Zq, i = 1, 2, . . . , n− 1
independently and uniformly at random and computes η1 = g1, ηi = g

ai−1

1 , ηri =

g
rai−1

1 , ηn+1 = g2, ηn+i = g
bi−1

2 , ηrn+1 = gr2, η
r
n+i = g

rbi−1

2 , i = 2, . . . , n. Thus, B
has the ensemble S1:

{G, {η1, . . . , ηn}, {ηn+1, . . . , η2n}, {ηr1, . . . , ηrn}, {ηrn+1, . . . , η
r
2n}}

and sends it to the adversary A. B runs A as a subroutine. When A out-
puts b ∈ {0, 1}, then B outputs b. Similarly, when B gets an input ensemble
{G, g1, g2, g

r1
1 , gr22 } (r1, r2 are chosen uniformly at random from Zq), he choos-

es ai, bi ∈ Zq, i = 1, 2, . . . , n − 1 independently and uniformly at random and

computes η1 = g1, ηi = g
ai−1

1 , ηr1i = g
r1ai−1

1 , ηn+1 = g2, ηn+i = g
bi−1

2 , ηr2n+1 =

gr22 , ηr2n+i = g
r2bi−1

2 , i = 2, . . . , n. Thus, B has the ensemble S2:

{G, {η1, . . . , ηn}, {ηn+1, . . . , η2n}, {ηr11 , . . . , ηr1n }, {η
r2
n+1, . . . , η

r2
2n}}

and sends it to the adversary A. B runs A as a subroutine. When A outputs
b ∈ {0, 1}, then B outputs b. Clearly, we have
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Pr[B(G, g1, gn+1, g
r
1, g

r
n+1) = 1] = Pr[A(S1) = 1],

Pr[B(G, g1, gn+1, g
r1
1 , gr2n+1) = 1] = Pr[A(S2) = 1].

Due to A can break the GDDH assumption, it is clearly that B can break the
DDH assumption. Therefore, the Claim 1.2 holds. 2

This concludes the proof of the theorem. 2

Appendix B: The Proof of Claim 2.2

Proof. Equivalently, we redefine the advantage of the adversary as follows:

AdvRLCCA′

PKE,A (k) = 2
∣∣∣Pr[ExptRLCCA′

PKE,A (k) = 1]− 1

2

∣∣∣,
where ExptRLCCA′

PKE,A (k) is as follows:

– Let LH denotes the hash list of a hash function H used by Π. Initialization:
LH ← ⊥

– Challenger chooses (PK,UK,SK0)← KeyGen(1k) and sends PK to A.
– The adversary A may ask for the following four queries:

Leakage query: Each such query consists of an efficiently computable leak-
age function Leak : {0, 1}|SK| → {0, 1}L(k) with L(k) bits output. On the ith

such query with Leaki, the challenger chooses URi from Zn×5
q uniformly at

random and gives the value Leaki(URi) to A. Then, the challenger computes
the updated secret key SKi+1 ← Update(UK,SKi).
Hash query: For a hash query ai to H, behave as follows:
If ai ∈ LH , then find bi corresponding to ai from LH and output bi to A. If
ai /∈ LH , then choose bi randomly, add pair (ai, bi) to LH and output bi to
A.
Leak hash query: For a leak hash query to H, output all contents of the
hash list LH to A.
Decryption query: For a decryption query with a ciphertext CT , decrypt
CT with the current secret key SKi and output Decrypt(SKi, CT ) to A.

– At some point A gives the challenger two messages M0,M1 and |M0| =
|M1|. The challenger chooses b ∈ {0, 1} uniformly at random and computes
CT ∗ ← Encrypt(PK,Mb). Then the challenger sends CT ∗ as the challenge
ciphertext to the adversary A.

– The adversary A can not ask the leakage query after he gets CT ∗. The adver-
sary A can also ask the hash query, the leak hash query and the decryption
query. But he can not ask the decryption query with CT ∗.

– The adversary A outputs a bit b′. If b′ = b, the experiment outputs 1, other-
wise, the experiment outputs 0.

If AdvRLCCA′

PKE,A (k) is negligible, then Claim 2.2 can be proved. We will prove

that AdvRLCCA′

PKE,A (k) is negligible in the following.

17



Assume that AdvRLCCA′

PKE,A (k) is non-negligible and the hash family is universal
one-way. Then there exists an adversary A that can break the scheme PKE. We
will show how to use the adversary A to construct an adversary B for the GDDH
assumption.

Define the set D as follows
{({g1, . . . , gn}, {gn+1, . . . , g2n}, {gr1, . . . , grn}, {grn+1, . . . , g

r
2n})|g1, . . . , g2n

∗← G,

r
∗← Zq}

and the set R as follows
{({g1, . . . , gn}, {gn+1, . . . , g2n}, {gr11 , . . . , gr1n }, {g

r2
n+1, . . . , g

r2
2n})|g1, . . . , g2n

∗←
G, r1, r2

∗← Zq}.
We will show that if the input of the adversary B comes from D, the simula-

tion of B will be nearly perfect, and so the adversary A will have a non-negligible
advantage in guessing the hidden bit b. We will also show that if the input of
B comes from R, then the adversary A’s view is essentially independent of b,
and therefore the adversary A’s advantage is negligible. Therefore, B can dis-
tinguish D from R with non-negligible advantage which contradicts with the
GDDH assumption.

We now give the details of B. The input to B is

({g1, . . . , gn}, {gn+1, . . . , g2n}, {gr11 , . . . , gr1n }, {g
r2
n+1, . . . , g

r2
2n}).

The adversary B chooses vectors

x1 = (x11, . . . , x1n) ∈ Zn
q ,x2 = (x21, . . . , x2n) ∈ Zn

q ,

y1 = (y11, . . . , y1n) ∈ Zn
q ,y2 = (y21, . . . , y2n) ∈ Zn

q ,

z1 = (z11, . . . , z1n) ∈ Zn
q , z2 = (z21, . . . , z2n) ∈ Zn

q

independently and uniformly at random. Then the adversary B computes

c = gx11
1 gx12

2 · · · gx1n
n gx21

n+1g
x22
n+2 · · · g

x2n
2n ,

d = gy11

1 gy12

2 · · · gy1n
n gy21

n+1g
y22

n+2 · · · g
y2n

2n ,

h = gz111 gz122 · · · gz1nn gz21n+1g
z22
n+2 · · · g

z2n
2n .

The adversary B also chooses a hash function H at random. The adversary
B sends {(g1, . . . , gn), (gn+1, . . . , g2n), c, d, h,H} as the public key to A. The se-
cret key is [x1,x2,y1,y2, z1, z2]

⊤. Note that the adversary B’s key generation
algorithm is slightly different from the key generation algorithm of the actual
cryptosystem; in the latter, we essentially fix z2 = 0.

The adversary B answers the leakage query as follows: chooses URi ∈ Zn×5
q

uniformly at random, and sends Leaki(URi) to A. Note that, due to URi is
sampled uniformly at random from Zn×5

q , it has no relation with the actual secret
key except negligible probability. Therefore, Leaki(URi) leaks no information
about the actual secret key [x1,x2,y1,y2, z1, z2]

⊤ except negligible probability.
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The adversary B answers the hash query and the leaky hash query normally.
Note that the leaky hash query in KHLM cannot be advantage of adversaries.
The reason is that all input and output of the hash function H are publicly
known to the adversary because a ciphertext contains (u1, u2, e) which are the
inputs to the hash function. Naturally, adversaries can know the input and the
output in each session.

The adversary B answers the decryption query as follows: For a decryp-

tion query ((g
r′1
1 , . . . , g

r′1
n ), (g

r′2
n+1, . . . , g

r′2
2n), e

′, v′)1 from A, asks the hash query

(g
r′1
1 g

r′1
2 · · · g

r′1
n , g

r′2
n+1g

r′2
n+2 · · · g

r′2
2n, e

′, v′) to H, obtain α′ and verify whether

g
r′1x11

1 · · · gr
′
1x1n

n g
α′r′1y11

1 · · · gα
′r′1y1n

n g
r′2x21

n+1 · · · g
r′2x2n

2n g
α′r′2y21

n+1 · · · gα
′r′2y2n

2n = v′

holds or not by using [x1,x2,y1,y2]. If the verification holds, then output the

message m = e′/(g
r′1z11
1 g

r′1z12
2 · · · gr

′
1z1n

n g
r′2z21
n+1 g

r′2z22
n+2 · · · g

r′2z2n
2n ) by using [z1,z2].

Else if, reject the decryption as an invalid ciphertext ⊥.
When the adversary B obtains two message M0 and M1 from A, he chooses

b ∈ {0, 1} at random, and computes

e = gr1z111 gr1z122 · · · gr1z1nn gr2z21n+1 gr2z22n+2 · · · g
r2z2n
n+2 Mb,

α = H(gr11 gr12 · · · gr1n , gr2n+1g
r2
n+2 · · · g

r2
n+2, e),

v = gr1x11
1 · · · gr1x1n

n gαr1y11

1 · · · gαr1y1n
n gr2x21

n+1 · · · g
r2x2n
2n gαr2y21

n+1 · · · gαr2y2n

2n ,

and sends ({gr11 , . . . , gr1n }, {g
r2
n+1, . . . , g

r2
2n}, e, v) as the challenge ciphertext to A.

Let g be the generator of the group G. We know that there exist ti ∈
Zq such that gi = gti , i = 1, . . . , n. There exist si ∈ Zq such that gn+i =
gsi , i = 1, . . . , n. Let

∑n
i=1 ti mod q = t and

∑n
i=1 si mod q = s, there also exist

x1, x2, y1, y2, z1, z2 ∈ Zq such that

t1x11+ t2x12+ · · ·+ tnx1n ≡ tx1 mod q, s1x21+ s2x22+ · · ·+ snx2n ≡ sx2 mod q
t1y11 + t2y12 + · · ·+ tny1n ≡ ty1 mod q, s1y21 + s2y22 + · · ·+ sny2n ≡ sy2 mod q
t1z11 + t2z12 + · · ·+ tnz1n ≡ tz1 mod q, s1z21 + s2z22 + · · ·+ snz2n ≡ sz2 mod q.

The adversary B does not know t1, . . . , tn, s1, . . . , sn, t, s, x1, x2, y1, y2, z1, z2.
However, these values are really existent. Due to the vectors x1,x2,y1,y2, z1, z2
are chosen independently and uniformly at random, the values x1, x2, y1, y2, z1, z2
are chosen independently and uniformly at random from Zq. The adversary B
can answer A’s all queries correctly without knows these values.

As we will see, when the input to the adversary B comes from D, the chal-
lenge ciphertext is a perfectly legitimate ciphertext; however, when the input to
adversary B comes from R, the challenge ciphertext will not be legitimate, in
the sense that r1 ̸= r2.

Claim 2.2 now follows immediately from the following two lemmas.

1 If r′1 = r′2, then the ciphertext is valid.
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Lemma 6 When the adversary B’s input comes from D, the joint distribution
of the adversary A’s view and the hidden bit b is statistically indistinguishable
from that in the actual attack.
Proof. Consider the joint distribution of the adversary A’s view and the bit b
when the input comes from D. In this case, the challenge ciphertext is correct,
because grx11

1 · · · grx1n
n grx21

n+1 · · · g
rx2n
2n = cr, gry11

1 · · · gry1n
n gry21

n+1 · · · g
ry2n

2n = dr, and
grz111 · · · grz1nn grz21n+1 · · · g

rz2n
2n = hr; indeed, these equations imply that e = hrMb

and v = crdrα, and α itself is already of the right from.
To complete the proof, we will show that the output of the decryption oracle

has the right distribution. We call ((g
r′1
1 , g

r′1
2 , . . . , g

r′1
n ), (g

r′2
n+1, g

r′2
n+2, . . . , g

r′2
2n), e

′, v′)
a valid ciphertext if r′1 = r′2 (an invalid ciphertext if r′1 ̸= r′2). Note that if a
ciphertext is valid, with (gr

′

1 , gr
′

2 , . . . , gr
′

n ) and (gr
′

n+1, g
r′

n+2, . . . , g
r′

2n), then hr′ =

gr
′z11

1 gr
′z12

2 · · · gr′z1nn gr
′z21

n+1 gr
′z22

n+2 · · · g
r′z2n
2n ; therefore, the decryption oracle outputs

e/hr′ , just as it should. Consequently, the lemma follows immediately from the
following:
Claim A.1 The decryption oracle in both an actual attack against the cryptosys-
tem and in an attack against simulator B rejects all invalid ciphertexts, except
with negligible probability.
Proof. We now prove this claim by considering the distribution of the point
P = (x1, x2, y1, y2) ∈ Z4

q, conditioned on the adversary’s view. We know that
there exists w ∈ Zq such that gs = gwt. Let log() deonte loggt(). From the
adversary’s view, P is a random point on the plane P formed by intersecting the
hyperplanes

log(c) = x1 + wx2 (1) and log(c) = y1 + wy2 (2).

These two equations come from the public key. The challenge ciphertext dose
not constrain P any further, as the hyperplane defined by

log(v) = rx1 + wrx2 + αry1 + αrwy2 (3)

contains P. Now suppose the adversary A submits an invalid ciphertext

((g
r′1
1 , g

r′1
2 , . . . , g

r′1
n ), (g

r′2
n+1, g

r′2
n+2, . . . , g

r′2
2n), e

′, v′)

to the decryption oracle, where r′1 ̸= r′2. The decryption oracle will reject, unless
P happens to lie on the hyperplane H defined by

log(v′) = r′1x1 + wr′2x2 + α′r′1y1 + α′r′2y2, (4)

where α′ = H(g
r′1
1 g

r′1
2 · · · g

r′1
n , g

r′2
n+1g

r′2
n+2 · · · g

r′2
2n, e

′). Note that the equations (1),
(2), and (4) are linearly independent, and so H intersects the plane P at a line.

It follows that the first time the adversary submits an invalid ciphertext,
the decryption oracle rejects with probability 1 − 1/q. This rejection actually
constrains the point P, puncturing theH at a line. Therefore, for i = 1, 2, . . . , the
ith invalid ciphertext submitted by the adversary will be rejected with probability
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at least 1− 1/(q − i+ 1). From this it follows that the decryption oracle rejects
all invalid ciphertexts, except with negligible probability.
Lemma 6 When adversary B’s input comes from R, the distribution of the
hidden bit b is (essentially) independent from the adversary A’s view.
Proof. The input of the adversary B is

({g1, . . . , gn}, {gn+1, . . . , g2n}, {gr11 , . . . , gr1n }, {g
r2
n+1, . . . , g

r2
2n}).

We may assume that r1 ̸= r2, because this occurs except with negligible
probability. The lemma follows immediately from the following two claims.
Claim A.2 If the decryption oracle rejects all invalid ciphertexts during the
attack, then the distribution of the hidden bit b is independent of the adversary’s
view.
Proof. To see this, consider the point Q = (z1, z2) ∈ Z2

q. At the beginning of
the attack, this is a random point on the line

log(h) = z1 + wz2, (5)

determined by the public key. Moreover, if the decryption oracle only decrypts
valid ciphertext ((gr

′

1 , gr
′

2 , . . . , gr
′

n ), (gr
′

n+1, g
r′

n+2, . . . , g
r′

2n), e
′, v′), then the adver-

sary obtains only linearly dependent relations r′log(h) = r′z1 + r′wz2. Thus, no
further information about Q is leaked.

Consider now the challenge ciphertext sent by adversary B to adversary A.
We have that e = γ ·Mb, where γ = gr1z111 gr1z122 · · · gr1z1nn gr2z21n+1 gr2z22n+2 · · · g

r2z2n
n+2 .

Now, consider the equation

log(γ) = r1z1 + wr2z2 (6)

Clearly, equation (5) and equation (6) are linearly independent, and so the
conditional distribution of γ conditioning on b and everything in the adversary’s
view other than e is uniform. In other words, γ is a perfect one-time pad. It
follows that b is independent of the adversary A’s view.
Claim A.3 The decryption oracle will reject all invalid ciphertexts, except with
negligible probability.
Proof. We study the distribution of P = (x1, x2, y1, y2) ∈ Z4

q, conditioned on
the adversary A’s view. From the adversary A’s view, this is a random point on
the line L formed by intersecting the hyperplanes (1), (2), and

log(v) = r1x1 + wr2x2 + αr1y1 + αwr2y2. (7)

Now assume that the adversary submits an invalid ciphertext

((g
r′1
1 , . . . , g

r′1
n ), (g

r′2
n+1, . . . , g

r′2
2n), e

′, v′) ̸= ((gr11 , . . . , gr1n ), (gr2n+1, . . . , g
r2
2n), e, v),

where r′1 ̸= r′2. Let α
′ = H(g

r′1
1 · · · g

r′1
n , g

r′2
n+1 · · · g

r′2
2n, e

′).
There are three cases we consider.
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Case 1. ((g
r′1
1 , . . . , g

r′1
n ), (g

r′2
n+1, . . . , g

r′2
2n), e

′) = ((gr11 , . . . , gr1n ), (gr2n+1, . . . , g
r2
2n), e) In

this case, the hash values are the same, but v′ ̸= v implies that the decryption
oracle will certainly reject.

Case 2. ((g
r′1
1 , . . . , g

r′1
n ), (g

r′2
n+1, . . . , g

r′2
2n), e

′) ̸= ((gr11 , . . . , gr1n ), (gr2n+1, . . . , g
r2
2n), e)

and α′ ̸= α.
The decryption oracle will reject unless the point P lies on the hyperplane

H defined by (4). However, the equations (1), (2), (7), and (4) are linearly
independent. This can be verified by observing that

det


1 w 0 0
0 0 1 w
r1 wr2 αr1 αwr2
r′1 wr′2 α′r′1 α′wr′2

 = w2(r2 − r1)(r
′
2 − r′1)(α− α′) ̸= 0.

Thus, H intersects the line L at a point, from which it follows (as in the proof of
Lemma 4) that the decryption oracle rejects, except with negligible probability.

Case 3. ((g
r′1
1 , . . . , g

r′1
n ), (g

r′2
n+1, . . . , g

r′2
2n), e

′) ̸= ((gr11 , . . . , gr1n ), (gr2n+1, . . . , g
r2
2n), e)

and α′ = α. We argue that if this happens with non-negligible probability, then
in fact, the family of hash functions is not universal one-way. Therefore, there
exists a contradiction.

Therefore, Claim 2.2 holds. 2
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