
Proofs of Space: When Space is of the Essence

Giuseppe Ateniese1,2, Ilario Bonacina1, Antonio Faonio1, and Nicola Galesi1

1 Sapienza - University of Rome, Italy
{ateniese,bonacina,faonio,galesi}@di.uniroma1.it

2 Johns Hopkins University, USA

Abstract. Proofs of computational effort were devised to control denial of service
attacks. Dwork and Naor (CRYPTO ’92), for example, proposed to use such proofs
to discourage spam. The idea is to couple each email message with a proof of work
that demonstrates the sender performed some computational task. A proof of work
can be either CPU-bound or memory-bound. In a CPU-bound proof, the prover must
compute a CPU-intensive function that is easy to check by the verifier. A memory-
bound proof, instead, forces the prover to access the main memory several times,
effectively replacing CPU cycles with memory accesses.
In this paper we put forward a new concept dubbed proof of space. To compute such
a proof, the prover must use a specified amount of space, i.e., we are not interested
in the number of accesses to the main memory (as in memory-bound proof of work)
but rather on the amount of actual memory the prover must employ to compute the
proof. We give a complete and detailed algorithmic description of our model. We
develop a full theoretical analysis which uses combinatorial tools from Complexity
Theory (such as pebbling games) which are essential in studying space lower bounds.

Keywords: Space Complexity, Proof of Work, Pebbling Game, Random Oracle Model.

Proofs of Space 1

1 Introduction

Space has a special meaning in Computer Science. It refers to the number of cells of
the working tape used by a Turing Machine (TM). While a TM computes a function,
it will make several steps (relevant to time complexity) and use a certain number of
tape cells (relevant to space complexity).

In [15], Dwork and Naor proposed to employ proof of work (PoW) to discourage
spam and, in general, to hinder denial of service attacks. Before any action (such
as sending an email), the prover must perform some work and generate a proof
of it that can be efficiently verified. Proofs of work are currently being used to
implement a publicly verifiable ledger for Bitcoin, where transactions are registered
and verified by a community of users to avoid the double-spending problem [28]. The
work performed by the prover can be CPU-bound, in which the work represents the
number of steps made by a TM, or memory-bound, in which the work represents the
times a TM access the working tape. The motivation behind memory-bound PoW
is that, while CPU speed may differ significantly among distinct platforms, memory
latencies vary much less across machines and may prove to be more equitable and
egalitarian. We stress that memory-bound function complexity measures the number
of memory accesses and does not take into account the actual amount of memory
employed. That is, a TM may read and mark a single cell several times to reach a
certain complexity level but it will still end up using only one cell.

In this work we define the notion of Proof of Space (PoSpace). PoSpace forces
the prover to use at least a specified amount of memory. This means, for instance,
that a TM must now use a predetermined number of distinct tape cells to be able to
respond to a challenge. We will show that our PoSpace construction is also a memory-
bound PoW under the definition provided in [14,16], while in general a PoW cannot
be a PoSpace under our definition. The state of the art memory-bound PoW was
described in [16] by Dwork, Goldberg, and Naor. Their scheme requires both the
prover and the verifier to store a large table T but they devised ways to mitigate
this problem via either hash trees or public-key signatures. We view PoSpace as a
valid alternative to various flavors of PoWs. In PoSpace the spotlight is turned on
the amount of space rather than on CPU cycles or memory accesses as in PoWs.
In addition, PoSpace solves problems where PoW is not applicable. For instance, we
believe PoSpace can be employed in forensic analysis or device attestation to confirm
remotely that an embedded device has been successfully wiped. That is, a remote
device could be instructed to respond to a wipe command with PoSpace as evidence
that its functional memory is now overwritten.

Straw Man Solutions. Memory-bound functions were first introduced by Abadi et
al. [1]. In the main construction of memory-bound PoW given in [14], both the
prover and the verifier share a large random table T . The prover must compute
a function by making several memory accesses to uniformly random positions in
T . With proper parameters, the prover is forced to reserve an amount of memory
which is proportional to S. In another construction, the authors of [14] show that
the verifier does not have to store T . The idea is to sign all pairs (i, T [i]) and then
challenge the prover on ` positions of T . The prover will return the ` values T [i]
along with an aggregate signature that can be checked by the verifier to ensure the
prover is holding the table T .

2 Giuseppe Ateniese, Ilario Bonacina, Antonio Faonio, and Nicola Galesi

We first remark that it is possible to harness recent advances in proof of storage
schemes, such as PDP [4] and POR [32], to reduce the message complexity from
O(`) to essentially constant. This solution improves upon the one in [14] and, as
long as the initialization phase is performed only once, would meet our efficiency
requirements for PoSpace. However, proof of storage does not satisfy our definition
of PoSpace since the running time of the verifier depends on the size of T . The only
way to avoid linear dependency is to run a PDP-based scheme with spot checking [4],
but then the prover either must use more space than required or won’t access all
the memory locations. Intuitively, the reason why a solution with proof of storage
will not work rests upon the interpretation of what proof of space really means.
Proof of storage applied to our context satisfies the notion that “the prover can
access space”. PoSpace instead captures the stronger notion that “the prover can
handle space”, i.e., the prover possesses, controls, and manipulates space directly. In
particular, we distinguish between a prover that can only read memory and a prover
that can read and write memory. This is important because, among other things,
write operations cannot be parallelized within classical computer architectures. We
will provide a formal definition later and make this intuition rigorous.

We also remark that the adversarial model considered in [1, 14] contemplates
the existence of a small but fast cache memory that must be saturated to force
the prover to dispense with the cache and use traditional RAM memory. Thus,
the constructions in [1, 14, 16] do provide a form of proof of space where the space
coincides with the cache memory. But, as for proof-of-storage schemes, these schemes
satisfy the weaker notion of PoSpace where the prover can only read memory.

Other Related Work. Proof of work is also known as cryptographic puzzle in the
computer security literature. Puzzles were devised to improve on the proposal by
Back [6] and employed to thwart denial of service attacks. In particular, it is im-
portant to make them hard to precompute (see [24] and references therein). Waters
et al. [34] suggest to outsource the creation of puzzles to an external secure entity.
Abliz and Tznati [2] introduce the concept of network-bound puzzles where clients
collect tokens from remote servers before querying the service provider. They argue
that network latency provides a good solution to the resource disparity problem.

All solutions above deal with proof of effort and cannot be adapted to prove
possession of space in the way it is meant and defined in this paper.

Litecoin (litecoin.org) is a variant of Bitcoin that employs scrypt [29] to certify
a public ledger. scrypt is defined as a sequential memory-hard function and originally
designed as a key derivation function, but it is used as a proof of effort in litecoin to
hinder the use of specialized hardware. Technically, scrypt is not a memory-bound
function as defined in [1] since no lower bound on the memory used by the function
can be guaranteed. Thus, it is not even a PoSpace. We also note it requires both the
prover and the verifier to dedicate a possibly large amount of memory, while ideally
only the prover should reserve and use actual memory (as in our construction to be
presented later).

Dziembowski et al. [20] have independently suggested a notion of proof of space.
Their original construction generalizes the hash-based PoW of Cash [6] and does not
employ the pebbling framework of [16] (cf. Appendix A of [17]). A major overhaul
version of their paper later appeared on the IACR Crypto Eprint repository [17],
along with ours [3]. Their new version does use pebbling and adopts techniques

litecoin.org

Proofs of Space 3

similar to ours. More in details, their constructions corresponds to a weak PoSpace
(wPoSpace) in our definition, they propose two different family of graphs: the first
one is exactly the same of ours, the second one is a very elegant construction of graphs
that allows more efficient protocol in term of “space gap”. The space gap for a proof
of space is defined as the ratio between the actual space needed by an honest prover
to carry on the protocol and the amount of space proved. A naive implementation for
our protocol has space gap O(logS) while their second construction has space gap
O(1). It is possible to implement the prover algorithm in our construction in order
to have space gap O(1). However, in the context of wPoSpace, this implementation is
more inefficient in term of time complexity respect to the construction given in [17].
We recall that PDP [4] and POR [32] can already be used to give wPoSpace with
the same level of efficiency both for space gap and time complexity of [17], however
the construction in [17] is more general since it doesn’t need any setup assumptions.
We notice that in the context of PoSpace, our construction and (an adapted version
of) the second construction in [17] have essentially the the same efficiency in term of
both space gap and time complexity. In the end, both works are of interest in their
own right.

General ideas behind our protocol. We cast PoSpace in the context of delegation of
computation, where a delegator outsources to a worker the computation of a function
on a certain input. Securely delegating computation is a very active area [11,12,21,23]
thanks also to the popularity of cloud computing where weak devices use the cloud
to compute heavy functions. In the case of PoSpace, a function f is first selected
satisfying the property that there exists a space lower bound for any TM computing
it. Then, the verifier chooses a random input x and delegates to the prover the
computation of f(x). Specifically, we will turn to the class of functions derived
from the“graph labeling problem” already used in cryptography (see for example
[16,18,19]). Important tools in delegation of computation are interactive proof (and
argument) systems. The delegation problem, as described in [27], can be solved
as follows: The worker computes y := f(x) and proves using an interactive proof
system that indeed y = f(x). While interactive proofs with statistical soundness
and non-trivial savings in verification time are unlikely to exist [8, 9, 22], Kilian
showed [25] that proof systems for NP languages with only computational soundness
(i.e., argument systems [7]) and succinctness 3 do exist. The construction in [25] relies
on Merkle trees and PCP proofs. However, in the context of PoSpace, the PCP
machinery is an overkill. In fact, the prover does not have to prove the statement
f(x) = y, but only that a space-consuming computation was carried out. Therefore,
we replace the PCP verification with an ad-hoc scheme that results in a very efficient
overall construction (while PCP-based constructions are notoriously impractical).

Our Contributions. We introduce a formal definition of Proof of Space (PoSpace
Definition 2) capturing the intuitive idea of proving to be able to handle (read/write)
at least a specified amount of space. We provide two PoSpace protocols in the ROM.
In addition, we provide a weaker form of PoSpace (wPoSpace) and prove that it is
indeed a separate notion. Most of previous work on proof of storage [4,5,32] and on

3 I.e., the total amount of communication and the verification time are both less than their respec-
tive values required to transmit and check the NP-witness.

4 Giuseppe Ateniese, Ilario Bonacina, Antonio Faonio, and Nicola Galesi

memory-bound PoW, as defined in [1,14,16], can somehow be adapted to meet this
weaker definition.

Structure of the paper. Section 2 contains some preliminary definitions. Section 3
contains the formal definition of PoSpace and provide two PoSpace protocols. Section
5 contains the definition of a weak variant of PoSpace that captures read-only provers
and a separation result between PoSpace and this weaker variant.

Open Problems. It is not clear if in general PoSpace implies the standard definition
of PoW in the sense of [15]. The major barrier in proving a positive result resides
in showing Non-Amortizability. Roughly speaking, non-amortizable means that the
“price” of computing the function for l different inputs is comparable to l times
the “price” of computing the function once. In the context of PoWs the “price” is
measured in terms of computation time. Technically, the naive idea is that a PoSpace
prover for S space as a computation time proportional to S, thus we would like to
reduce an adversary for l different protocol executions to an adversary for a single
execution which spends less than S computational time. The point is that in order
to carry on l executions the prover needs S space, because the space is reusable,
and it is not sure that it has used l × S computational time, because it could be
the case that something already computed for one instance can be used to compute
the proof for another instance. On the other hand the second protocol we present
can be adapted to merge the definition of PoW. The point is that the protocol uses
the Random Oracle thus it is easy to show that two instance of the protocol are
uncorrelated. In the authors’ opinion in order to show a negative result one has to
come out with a PoSpace in the standard model which anyway seems very hard to
achieve.

2 Notations and Preliminary Definitions

Graph Notation. Given a directed acyclic graph (DAG) G, the set of successors
and predecessors of v in G are respectively Γ+(v) and Γ−(v). We will implicitly
assume a topological ordering on its vertex set and a boolean encoding of the vertices
respecting that ordering. If Γ+(v) = ∅ then v is an output-node and T(G) is the
set of all output-nodes of G. Analogously if Γ−(v) = ∅ then v is an input-node and
S(G) is the set of all input-nodes of G.

Sampling, Interactive Execution, and Space. Let A be a probabilistic TM. We write
y ← A(x) to denote y sampled from the output of A on input x. Moreover, given
σ ∈ {0, 1}∗, we write y := A(x;σ) to denote the output of A on input x fixing
the random coins to be σ. We write ppt for the class of probabilistic polynomial
time algorithms. Let A, B be two probabilistic interactive TMs. An interactive joint
execution betweenA, B on common input x is specified via the next message function
notation: let b1 ← B(x), ai ← A(x, b1, . . . , bi), and bi+1 ← B(x, a1, . . . , ai), then
〈A,B〉 (x) denotes a joint execution of A and B on common input x. If the sequence
of messages exchanged is (b1, a1, . . . , bk, ak, bk+1) we say that k is the number of
rounds of that joint execution and we denote with 〈A,B〉 (x) = bk+1 the last output
of B in that joint execution of A and B on common input x.

Proofs of Space 5

With Space(A, x), we denote the maximal amount of space used by the deter-
ministic TM A on input x without taking into account the length of the input and
output. More formally, we say that A(x) has space s (or Space(A, x) = s) if and
only if at most s locations on A’s work tapes (excluding the input and the output
tapes) are ever written by A’s head during its computation on x. In the case of
probabilistic TM A, the function Space(A, x) is a random variable that depends on
A’s randomness.

Similarly, given two interactive TMs A and B, we can define the space occupied
byA during a joint execution on common input x as follows. Let (b1, a1, . . . , bk, ak, bk+1)
the sequence of messages exchanged during 〈A,B〉 (x), then:

SpaceA(〈A,B〉 , x) := max
i=1,...,n

{Space (A, x, b1, . . . , bi))}

As before, ifA and B are probabilistic interactive TM then the function SpaceA(〈A,B〉 , x)
is a random variable that depends on the randomness of both A and B. For simplic-
ity, when the inputs of A (or 〈A,B〉) are clear from the context, we write Space(A)
(or SpaceA (〈A,B〉)).

Merkle Trees. Merkle Trees (MT) are classical tools in cryptography. A MT enables
a party to succinctly commit itself to a string l = (l1, . . . , ln) with li ∈ {0, 1}k.

The term “succinctly” here means that the MT-commitment has size k which
is independent respect to n the size of l. In a later stage, when a party opens
the MT-commitment, it is guaranteed that the “opening” can yield only the string
l committed before (the binding property). Moreover l can be succinctly opened
location-by-location: the party can open li for any i giving the certificate attesting
the value of li. Here we use succinctly to mean that the “opening”, i.e. the certificate,
has size log n× k (sub-linear in n) respect to the size of l.

Abstractly, we define a Merkle Tree as a tuple of three algorithms (GenCRH ,
MT,Open) where the first algorithm is a key generation algorithms for a collision
resistance hash (CRH) function. Suppose that GenCRH outputs a key s. Then MT
takes as input s and a sequence of strings l and outputs the commitment C for l,
i.e., C = MTs(l). Open, takes as input the key s, a sequence of strings l, an index i
(this is denoted as Opens(l, i)) and outputs the string li within the opening for the
i-th element in the sequence l.

Usually, the term “commitment” refers to a scheme that is both hiding (i.e., the
receiver cannot infer any knowledge on l from the commitment) and binding. The
MT scheme that we use does not provide the hiding property but we still refer to it
as a commitment.

A full description of the Merkle Tree is deferred to Appendix E.

Pebbling Games with wildcards. The following definition of pebbling game with wild-
cards is a modification of the standard definition of pebbling game that can be
found, for instance, in [26]. Given a DAG G = (V,E), we say that a sequence
P = (P0, . . . , PT) of subsets of V is a pebbling sequence on G with m wildcards if
and only if P0 = ∅ and there exists a set W ⊆ V of size m such that, for each
i ∈ {1, . . . , T}, exactly one of the following holds:

– Pi = Pi−1 ∪ {v} if Γ−(v) ⊆ Pi−1 ∪W (pebbling) or

6 Giuseppe Ateniese, Ilario Bonacina, Antonio Faonio, and Nicola Galesi

– Pi ⊆ Pi−1 (unpebbling).

If a set of vertexes Γ is such that Γ ⊆
⋃T
i=0 Pi, we say that P pebbles Γ. If

P pebbles T(G) then we say that P is a pebbling game on G with m wildcards.
Moreover we say that the pebbling time of P is T and the pebbling space of P
is maxi |Pi|. Intuitively, a pebbled node is a node for which we have made some
computations. Instead, W represents complimentary nodes, for which we have made
no computations.

One of the main ingredients for the correctness of our constructions is the the
Pebbling Theorem [26] that proves that stacks of superconcentrators graphs (Pip-
penger [30]) have exponential pebbling space-time trade off.

Theorem 1 (Pebbling Theorem). There exist a family of efficiently sampleable
directed acyclic graphs {GN,k}k,N∈N with constant fan-in d, N input nodes, N output
nodes and kN logN nodes in total, such that:

1. Any pebbling sequence that pebbles ∆ output nodes has pebbling space at most S
pebbles and m wildcards, where |∆| > 4S+2m+1, has pebbling time T such that

T > |∆|
(
N − 2S −m
2S +m+ 1

)k
.

2. There exists a pebbling sequence that pebbles the graph GN,k has pebbling space
N + 2 and needs time O(kN logN).

3. For any node v ∈ V (GN,k), the incoming nodes of v and the position of v in first
lexicographic topologically order of GN,k are computable in O(k logN).

More detail about the construction and the proof of this theorem are given in
Appendix A.

Graph Labeling Problem with faults. We adopt the paradigm where the action of
pebbling a node in a DAG G is made equivalent to the action of having calculated
some labeling on it. This paradigm was introduced in [16] and also recently used
in [18, 19]. We make use of a Random Oracle (RO) H to build a labeling on G
according to the pebbling rules.

Definition 1 (H-labeling with faults). Given a DAG G with a fixed ordering
of the nodes and a random oracle function H, we say that ` : V (G) → {0, 1}∗ is a
(partial) H-labeling of G with m faults if and only if there exists a set M ⊆ V (G)
of size m such that for each v ∈ V (G) \M

`(v) := H(v‖`(v1)‖ . . . ‖`(vd)) where {v1, . . . , vd} = Γ−(v). (1)

Given a label ` and a node v we say that ` well-label v if only if the equation (1)
holds for ` and v.

Our framework generalize the paradigm of [16] by introducing the concept of “faults”.
As it is shown in Section 3.1, dealing with “faults” is necessary because an adversary
challenged on a labeling function could cheat by providing an inconsistent label on
some nodes (which, indeed, are then referred to as “faults”).

Proofs of Space 7

The use of a random oracle H provides two important benefits to our construc-
tion: First, given many instances H(x1), . . . ,H(xk), the compression rate of H(x) is
still very poor; second, in order to H-label the graph, any TM must follow a pebble
strategy. In particular, to label a node v, a TM must necessarily calculate and store
the label values of all the predecessors `(v1), . . . , `(vd) of the node v. If the graph G
needs at least S pebbles to be pebbled efficiently in a pebbling game, then a TM
needs to store at least S labels (i.e., RO outputs) to compute an H-labeling of G.
This general strategy is proven sound in [16] and referred to as the Labeling Lemma.
In our context, however, we provide m degrees of freedom and, given a partial H-
labeling ` of G with m faults and a H-labeling `′ of G, it will likely be the case that
`(v) 6= `′(v) for each node v that is a descendant of a not well-labeled node. For this
reason, we must state a more general version of the Labeling Lemma in [16] and its
proof is provided in Appendix B.

Lemma 1 (Labeling Lemma). Given a DAG G with degree d and a TM A with
advice h and access to a random oracle H : {0, 1}∗ → {0, 1}k computing a H-labeling
` with m faults of G. If h is independent of H, with overwhelming probability, there
exists a pebbling sequence P = (P1, . . . , PT) for the DAG G with m wildcards having
pebbling space S such that:

– S 6 1
k Space(A) + d,

– T 6 (d+ 2)σ, where σ is the number of queries of A to H.

In particular T is a lower bound for the execution time of A.

3 Proof-of-Space Protocols

In this section we define the notion of PoSpace, then we provide two constructions
that meet the definition. We later define a second notion of a weak form of PoSpace
and show a separation result between the two notions. In our definition below, we
allow the adversary to access extra information to model the case in which the
adversary may outsource storage and computation to an external provider.

We model the write permission on the storage by providing a precomputation
phase to the adversary. That is, the adversary can use as much space as needed to
produce an hint. The hint, that may depends on the public parameters of PoSpace,
can be read during the interactive phase (i.e., when the protocol is started). In
contrast, wPoSpace does not provide the adversary with a precomputation phase.

Definition 2 (PoSpace). Suppose we are given Σ = (Gen,P,V), where Gen is a ppt
TM, P and V are interactive ppt TMs and k ∈ N is a security parameter. Suppose
that the following points hold :

(Completeness) For all pk ∈ Gen(1k) and for all S ∈ N, S > k it holds 〈P,V〉 (pk, 1S) =
1, time complexity of P is O(poly(k, S);

(Succinctness) For all S ∈ N, S > k the time and space complexity of V and the
message complexity of 〈P,V〉, as functions of k and S, are O(poly(k) ·poly logS);

(Soundness) For any ppt adversary A and for any ppt TM with advice A′ such
that pk← Gen(1k) and h← A′(pk, 1S), the following event:

SndA,A
′

Σ,S (k) := 〈A(h),V〉 (pk, 1S) = 1 ∧ SpaceA(〈A(h),V〉 , pk, 1S) < S

has negligible probability (as a function of k) for all S ∈ N, S > k.

8 Giuseppe Ateniese, Ilario Bonacina, Antonio Faonio, and Nicola Galesi

Then, we say that Σ = (Gen,P,V) is a Proof of Space (PoSpace). To be concise, we

could say informally that A wins when the event ∃S ∈ N : SndA,A
′

Σ,S (k) occurs.

Notice that in the completeness part we set just a very mild upper bound on the
space complexity of P. This is done on purpose to allow comparison among different
PoSpace protocols. In particular a useful measure on a PoSpace protocol (Gen,P,V)
is the following space gap, the ratio Space(P(pk, 1S))/S.

Notice that A′ is a space-unbounded ppt TM that models the fact that there
might be information that can be efficiently computed that the space-bounded ad-
versary A can exploit somehow to compromise PoSpace.

It is easy to see that the PoSpace definition implicitly provides sequential com-
posability. In fact, the adversary A′ gives to A a hint which is a function of the public
key, therefore the adversary A′ can computes all the previous execution of protocol
“in his head”. We give a 4-messages PoSpace protocol in the Random Oracle Model
(ROM) without any computational assumption. Applying the Fiat-Shamir paradigm
to the scheme, we obtain a 2-message non-interactive PoSpace.

3.1 A 4-message PoSpace protocol

The protocol Σ4 = (Gen,V,P) is described in Figure 3.1 and it is a 4-message
protocol.

The protocol follows in some way Kilian’s construction of argument systems [25].
For any string α ∈ {0, 1}∗, let Hα(·) be defined as H(α‖·). The verifier chooses a
random α and asks the prover to build a Hα labeling of graph GN,k, where N
depends on S. The purpose of α is to “reset” the random oracle. That is, any
previous informations about H is now useless with overwhelming probability. The
labeling is the witness that the prover has handled at least S memory cells. The
prover then commits the labeling and sends the commitment to the verifier. At this
point, the verifier asks to open several random locations in the commitment and
then it checks locally the integrity of the labeling. For a commitment C and for any
node that the verifier has challenged, the prover sends what we call a C-proof for
the node (defined next).

Definition 3 (C-proof). Given a DAG G, a commitment C, and a random oracle
H, we say that a string π = (π0, . . . , πd) is a C-proof for a vertex v ∈ V (G) w.r.t.
H if only if given Γ−G (v) = {w1, . . . , wd} the following points hold:

1. π0 is a C-opening for v, let x be the value π0 is opening to;
2. for each i = 1, . . . , d, πi is a C-opening for wi, let xi be the value πi is opening

to;
3. x = H(v‖x1‖ . . . ‖xd).

We omit C, G, and H, when they are clear from the context, saying that π is a
proof.

In the definition of C-proof, the points 1 and 2 refer to the commitment C while
point 3 ensures the integrity of the labeling. Note that the size of π is O(kd logN).

We remark that when TM B takes as input a RO H, it is intended that B has
oracle access to H and the length of the input of B does not take into account the
(exponentially long) length of H.

Proofs of Space 9

Generator Gen takes as input 1k and outputs pk := ({GN,k}N∈N,H, s),
where {GN,k}N∈N is a family of graphs satisfying the Pebbling Theorem (Theorem 1),

equipped with the natural lexicographic topological ordering on its vertex set,
H is a RO and s is a key for CRH H.

Common input: k, S, pk
N := d4γ(d+ S/k) + γe, where d is the degree of GN,k and γ ∈ R, γ > 1.

Verifier V Prover P

1. Pick α← {0, 1}k α

C

Let ` be a Hα-labeling of GN,k,
where Hα(·) := H(α‖·).

Commit C := MTs(`).

2. Pick (v1, . . . , vl) ← V l

uniformly at random, where
l = bk ln2 k logNc and
V = V (GN,k)

3. Check for any i 6 l if
Πi is a C-proof for vi wrt
the Hα-labeling `

(v1, . . . , vl)

(Π1, . . . , Πl)

For any vi, πi := Opens (`, vi):
For any vji ∈ Γ

−(vi):
πji := Opens

(
`, vji

)
Πi :=

(
πi, π

1
i , . . . , π

d
i

)
Send (Π1, . . . , Πl)

Fig. 3.1. The 4-message PoSpace protocol Σ4.

Theorem 2. The protocol Σ4 in Figure 3.1 is a PoSpace.

We start giving the intuition behind the proof of the Theorem. Completeness is
trivial. Succinctness follows easily from point (3) of the Pebbling Theorem (Theorem
1). For Soundness, we first prove that the protocol Σ4 is a Proof-of-Knowledge (PoK)
of a partial labeling with “few” faults. By the PoK property, we can extract from
a winning adversary a partial labeling with few faults. Thus, with overwhelming
probability, the adversaryA computes a partial labeling. We then exploit the binding
property of the Merkle-Tree and show that the adversary has computed the labeling
during the round (1) of the protocol. By appropriately fixing the randomness of
the protocol, we ensure that the hint h is independent of H, thus meeting all the
hypothesis of the Labeling Lemma (Lemma 1) . We obtain then a pebbling strategy
that has pebbling space and pebbling time roughly upper-bounded by the respective
space and time complexity of the adversary A. Since the adversary uses strictly
less space than S and A is ppt then, by our choice of the parameters, there is a
contradiction with the point (1) of the Pebbling Theorem (Theorem 1).

Proof. We focus on the Soundness. We divide the proof in two parts. First, in the
PoK Lemma, we prove that the Protocol Σ4 is a PoK for a partial labeling with
“few” faults, and that the partial labeling has been computed during the round
(1), i.e., after the verifier V sent the message α and before the adversary sent the

10 Giuseppe Ateniese, Ilario Bonacina, Antonio Faonio, and Nicola Galesi

commitment message C. Then we sum up the PoK Lemma with the Labeling Lemma
and the Pebbling Theorem to reach a contradiction assuming that there exists an
winning ppt adversary.

We stress that the knowledge extractor doesn’t need to be efficient since we do
not rely on any computational assumption.

Lemma 2 (PoK Lemma). Consider the protocol Σ4 = (Gen,V,P), a ppt ad-
versary A, a ppt Turing Machine with advice A′, a space parameter S, and a se-
curity parameter k. Sample a random pk ← Gen(1k) and let h ← A′(pk, 1S). If

Pr
[
SndA,A

′

Σ4,S
(k)
]

is noticeable (where the probability is taken over the randomness

of pk, h and all the randomness used during the protocol execution between A and
the verifier) then, for a noticeable probability over the choice of pk, there exist a
first verifier message α̃ and a adversary’s randomness ρ̃ such that A(h) calculates a
Hα̃-labeling ` of GN,k with m faults such that the following holds:

– the hint h is independent of Hα̃,
– m = O

(
N
ln k

)
and

– for any well-labeled node u in ` we have (α̃‖u‖`(u1)‖ . . . ‖`(ud)) ∈ Q,

where Q is the set of queries to H made by A when fed with randomness ρ̃ during
round (1) of the protocol Σ4, and {u1, . . . , ud} = Γ−(u).

For space reason the proof of the Lemma is deferred in Appendix C.
By contradiction, suppose there exists an adversary A for the protocol Σ4.
By applying Lemma 2, we extract with noticeable probability a partial Hα̃-

labeling, ensure that A(h) computed that labeling during round (1) and the hint h
is independent of Hα̃. Hence, satisfying the hypotheses of Lemma 1.

This gives us, with overwhelming probability, a pebbling sequence P of GN,k
with m wildcards having pebbling space S′ = S

k + d, m = O(N
ln k). In addition, the

pebbling time of P is a lower bound for the execution time of A during round (1).
To apply Theorem 1, we fix N such that

N − l > 4S′ + 2m+ 1, (2)

where l denotes the number of wildcards that are in T(GN,k).
Given c ∈ (0, 1) and ε > 0, we have that (2 + ε)m + l 6 cN . If we find N such

that
N > 4S′ + cN + 1,

(hence N > 4γS′+ γ, where γ = 1/(1− c)) then the inequality (2) will follow. (This
is main reason why we have set N := d4γS′ + γe in the Protocol Σ4.)

By applying Theorem 1, the execution time T of A is such that

T > (N − l)
(
N − 2S′ −m
2S′ +m+ 1

)k
> c′(1 + ε)k, (3)

where c′ is a constant that is a lower bound for N − l. The value (1 + ε)k derives
from the fact that, eventually,

N − 2S′ −m > (1 + ε)(2S′ +m+ 1).

Equation (3) shows that the execution time of A is exponential in k. This is not
possible as, by hypothesis, A is ppt. ut

Proofs of Space 11

On the Space Gap of the Protocol. The prover algorithm can be implemented ba-
sically in two way. The most natural implementation is to first build the labeling
for all the nodes in the graph then apply the merkle tree, keeping in memory the
labeling which is reused during the second phase of the prover algorithm. Applying
this algorithm the space gap of the prover is O(logS) while the time complexity is
essentially dominated by the one labeling phase. A second way to implement the
prover algorithm is by computing the labeling and the merkle tree simultaneously
in this way the algorithm can reuse space implementing a strategy which has space
gap O(1). Anyway in the second implementation the prover has to build the labeling
twice (the first time to build the commitment the second time during the challenge
phase).

4 A 2-messages PoSpace protocol

We apply the standard Fiat-Shamir paradigm to the PoSpace scheme given in Sec-
tion 3.1 by using two independent random oracles H,L:

– H : {0, 1}∗ → {0, 1}k is used by the prover for the labeling of the graph;

– L : {0, 1}k → V l given the commitment C as input, it yields the second verifier’s
message (of the protocol Σ4).

Let (Σ4.Gen, Σ4.P, Σ4.V) the PoSpace defined in Figure 3.1. We define in Figure
4.1 a 2-messages PoSpace: we call Σ2 = (Gen,P,V) this protocol. Furthermore, let
H′ : {0, 1}∗ → {0, 1}k be a RO then the function f(x) := Σ2.P(pk, 1S ,H′(x)) is a
non-interactive PoSpace meeting the syntactic definition of PoWs in [15].

Generator Gen on input 1k tosses out pk′ := (pk,L),
where pk← Σ4.Gen(1k) and L is a RO

Common input: k, S, pk

Verifier V Prover P

1. Pick α← {0, 1}k

2. Let v = L(C)
Check Σ4.V(pk, 1S , α, C,v, Π) = 1

α

(C,Π)

C := Σ4.P(pk, 1S , α)
v := L(C)

Π := Σ4.P(pk, 1S , α,v)

Fig. 4.1. The 2-messages PoSpace protocol Σ2 = (Gen,P,V).

Theorem 3. The Protocol Σ2 in Figure 4.1 is a PoSpace.

For space reason we defer the proof of the theorem to Appendix D.

12 Giuseppe Ateniese, Ilario Bonacina, Antonio Faonio, and Nicola Galesi

5 Weak Proof-of-Space

The concept of proof of space can lead to multiple interpretations. The main interpre-
tation formalized in the PoSpace definition requires that the prover can handle (i.e.,
read/write) space. In this section we provide a definition for a weaker alternative of
PoSpace we call weak -Proof-of-Space (wPoSpace). This captures the property that
the prover can just access space and formalizes what could effectively be achieved by
properly adapting previous work on proof of storage [4,5,32] and on memory-bound
PoW as defined in [1,14] (where the adversary model contemplates the existence of
cache memory) . The definition of wPoSpace is similar to the Definition of PoSpace
(Definition 2) (the only change is in the Soundness part). We will provide a protocol
which is a wPoSpace but not a PoSpace, hence wPoSpace is a strictly weaker notion
than PoSpace.

Definition 4 (wPoSpace). Suppose we are given Σ = (Gen,P,V) where Gen is a
ppt TM, P and V are interactive ppt TMs, k ∈ N is a security parameter, and
pk← Gen(1k). Suppose that the following points hold for all S ∈ N, S > k:

(Completeness) and (Succinctness) the same as in the PoSpace definition,

(weak-Soundness) For any ppt A adversary the following event:

wSndAΣ,S(k) := 〈A,V〉 (pk, 1S) = 1 ∧ SpaceA(〈A,V〉 , pk, 1S) < S,

has negligible probability (as a function of k).

Then we say that Σ is a Weak Proof of Space (wPoSpace).

In the Soundness of PoSpace, the adversary can take advantage of an unbounded
space machine which is then unavailable during the protocol execution. In the Sound-
ness of wPoSpace, instead, this is disallowed. Notice that a wPoSpace’s adversary can
make some precomputation before the execution of the protocol (i.e., before send-
ing/receiving the first message), however, such a precomputation cannot exceed the
space bound given.

Theorem 4. There exists a protocol which is a wPoSpace but not a PoSpace.

Proof. We start by providing a protocol which is not a PoSpace. Consider the pro-
tocol Σ4 in Figure 3.1 where the first message α sent by V is always the same, say
0k. We call Σ3 this modified version of Σ4.

The protocol Σ3 is not a PoSpace. For any k and S ∈ N, consider the hint h
which is the H0k -labeling of GN,k plus the complete Merkle-Tree of that labeling. We
define an adversary that sends the commitment C that is in h and, for any verifier’s
second message v, reads the right answer from h. That adversary needs to access
only h in read-only mode, hence without using any additional working space.

The protocol Σ3 is a wPoSpace. The structure of the proof is the same as the
one of Theorem 2. We give a particular case of the PoK Lemma (Lemma 2) where
the hint h is the empty string and α̃ is 0k. For the sake of clarity, we restate the
PoK Lemma for this particular setting.

Proofs of Space 13

Lemma 3. Given the protocol Σ3 = (Gen,V,P), a ppt adversary A, a space pa-
rameter S and a security parameter k such that pk← Gen(1k). If Pr

[
wSndAΣ3,S(k)

]
is noticeable, then there exists a randomness ρ̃ such that A fed with the randomness
ρ̃ during the round (1) of the protocol Σ3 calculates a H0k-labeling ` of GN,k with m
faults such that the following holds:

– m = O
(
N
ln k

)
and

– for any well-labeled node u in ` we have (α̃‖u‖`(u1)‖ . . . ‖`(ud)) ∈ Q,

where Q is the set of queries to H made by A when fed with randomness ρ̃ until the
end of round (1) and {u1, . . . , ud} = Γ−(u).

By contradiction, suppose there exists an adversary A for the protocol Σ3. By
applying Lemma 3 we extract a partial H0k -labeling, ensuring that A computed that
labeling during round (1). Hence satisfying the hypotheses of Lemma 1.

This gives us, with overwhelming probability, a pebbling sequence P of GN,k
with m wildcards and with pebbling space S′ = S

k + d, m = O(N
ln k). The pebbling

time of P is a lower bound for the execution time of A before round (2). The rest
of the proof follows exactly the same structure of the proof of Theorem 2 and it is
therefore omitted. ut

References

1. Martin Abadi, Mike Burrows, Mark Manasse, and Ted Wobber. Moderately hard, memory-
bound functions. ACM Trans. Internet Technol., 5(2):299–327, May 2005.

2. Mehmud Abliz and Taieb Znati. A guided tour puzzle for denial of service prevention. In
ACSAC, pages 279–288. IEEE Computer Society, 2009.

3. Giuseppe Ateniese, Ilario Bonacina, Antonio Faonio, and Nicola Galesi. Proofs of space: When
space is of the essence. Cryptology ePrint Archive, Report 2013/805, 2013. http://eprint.

iacr.org/.
4. Giuseppe Ateniese, Randal Burns, Reza Curtmola, Joseph Herring, Lea Kissner, Zachary Pe-

terson, and Dawn Song. Provable data possession at untrusted stores. In Proceedings of the
14th ACM conference on Computer and communications security, CCS ’07, pages 598–609, New
York, NY, USA, 2007. ACM.

5. Giuseppe Ateniese, Seny Kamara, and Jonathan Katz. Proofs of storage from homomorphic
identification protocols. In ASIACRYPT, pages 319–333, 2009.

6. Adam Back. Hashcash - a denial of service counter-measure. Technical report, 2002.
7. Boaz Barak and Oded Goldreich. Universal arguments and their applications. In IEEE Con-

ference on Computational Complexity, pages 194–203. IEEE Computer Society, 2002.
8. R. B. Boppana, J. Hastad, and S. Zachos. Does co-np have short interactive proofs? Inf.

Process. Lett., 25(2):127–132, May 1987.
9. Lúıs Caires, Giuseppe F. Italiano, Lúıs Monteiro, Catuscia Palamidessi, and Moti Yung, editors.

Automata, Languages and Programming, 32nd International Colloquium, ICALP 2005, Lisbon,
Portugal, July 11-15, 2005, Proceedings, volume 3580 of Lecture Notes in Computer Science.
Springer, 2005.

10. Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols.
IACR Cryptology ePrint Archive, 2000:67, 2000.

11. Ran Canetti, Ben Riva, and Guy N. Rothblum. Refereed delegation of computation. Informa-
tion and Computation, 226(0):16 – 36, 2013.

12. Kai-min Chung, Yael Kalai, and Salil Vadhan. Improved Delegation of Computation Using
Fully Homomorphic Encryption. pages 483–501, 2010.

13. Yevgeniy Dodis, Leonid Reyzin, and Adam Smith. Fuzzy extractors: How to generate strong
keys from biometrics and other noisy data. In Christian Cachin and JanL. Camenisch, editors,
Advances in Cryptology - EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer
Science, pages 523–540. Springer Berlin Heidelberg, 2004.

http://eprint.iacr.org/
http://eprint.iacr.org/

14 Giuseppe Ateniese, Ilario Bonacina, Antonio Faonio, and Nicola Galesi

14. Cynthia Dwork, Andrew Goldberg, and Moni Naor. On memory-bound functions for fighting
spam. Advances in Cryptology-Crypto 2003, 2003.

15. Cynthia Dwork and Moni Naor. Pricing via processing or combatting junk mail. Advances in
CryptologyCRYPTO’92, pages 139–147, 1993.

16. Cynthia Dwork, Moni Naor, and Hoeteck Wee. Pebbling and proofs of work. Advances in
CryptologyCRYPTO 2005, pages 37–54, 2005.

17. Stefan Dziembowski, Sebastian Faust, Vladimir Kolmogorov, and Krzysztof Pietrzak. Proofs
of space. Cryptology ePrint Archive, Report 2013/796, 2013. http://eprint.iacr.org/.

18. Stefan Dziembowski, Tomasz Kazana, and Daniel Wichs. Key-evolution schemes resilient to
space-bounded leakage. In CRYPTO, pages 335–353, 2011.

19. Stefan Dziembowski, Tomasz Kazana, and Daniel Wichs. One-time computable self-erasing
functions. In Proceedings of the 8th conference on Theory of cryptography, TCC’11, pages
125–143, Berlin, Heidelberg, 2011. Springer-Verlag.

20. Stefan Dziembowski, Krzysztof Pietrzak, and Sebastian Faust. Proofs of space and a greener
bitcoin. talk presented at Workshop on Leakage, Tampering and Viruses, Warsaw 2013, 2013.

21. Dario Fiore and Rosario Gennaro. Publicly verifiable delegation of large polynomials and matrix
computations, with applications. Proceedings of the 2012 ACM conference on Computer and
communications security - CCS ’12, page 501, 2012.

22. Oded Goldreich and Johan Hastad. On the complexity of interactive proofs with bounded
communication. Information Processing Letters, 1998.

23. Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation: inter-
active proofs for muggles. In Proceedings of the 40th annual ACM symposium on Theory of
computing, STOC ’08, pages 113–122, New York, NY, USA, 2008. ACM.

24. Ari Juels and John G. Brainard. Client puzzles: A cryptographic countermeasure against
connection depletion attacks. In NDSS. The Internet Society, 1999.

25. Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract). In
Proceedings of the twenty-fourth annual ACM symposium on Theory of computing, STOC ’92,
pages 723–732, New York, NY, USA, 1992. ACM.

26. Thomas Lengauer and Robert E. Tarjan. Asymptotically tight bounds on time-space trade-offs
in a pebble game. Journal of the ACM (JACM), 29(4):1087–1130, 1982.

27. Silvio Micali. Computationally sound proofs. SIAM Journal on Computing, 30(4):1253–1298,
2000.

28. Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. May 2009.
29. Colin Percival. Stronger key derivation via sequential memory-hard functions. presented at

BSDCan ’09, 2009.
30. Nicholas Pippenger. Superconcentrators. SIAM J. Comput., 6(2):298–304, 1977.
31. R.E.A.C.Paley and A.Zygmund. A note on analytic functions in the unit circle. page 266272,

1932.
32. Hovav Shacham and Brent Waters. Compact proofs of retrievability. In Proceedings of the

14th International Conference on the Theory and Application of Cryptology and Information
Security: Advances in Cryptology, ASIACRYPT ’08, pages 90–107, Berlin, Heidelberg, 2008.
Springer-Verlag.

33. Martin Tompa. Time-space tradeoffs for computing functions, using connectivity properties of
their circuits. In Proceedings of the tenth annual ACM symposium on Theory of computing,
STOC ’78, pages 196–204, New York, NY, USA, 1978. ACM.

34. Brent Waters, Ari Juels, J. Alex Halderman, and Edward W. Felten. New client puzzle out-
sourcing techniques for dos resistance. In Proceedings of the 11th ACM conference on Computer
and communications security, CCS ’04, pages 246–256, New York, NY, USA, 2004. ACM.

http://eprint.iacr.org/

Proofs of Space 15

A Proof of the Pebbling Theorem (Theorem 1)

This section is devoted to the proof of the Pebbling Theorem. For the sake of con-
venience we re-write the statement of that theorem here. For the definitions about
pebbling games, pebbling space and pebbling time we refer the reader to Section 2.

Pebbling Theorem (Theorem 1). There exist a family of efficiently sampleable
directed acyclic graphs {GN,k}k,N∈N with constant fan-in d, N input nodes, N output
nodes and kN logN nodes in total, such that:

1. Any pebbling sequence that pebbles ∆ output nodes has pebbling space at most S
pebbles and m wildcards, where |∆| > 4S+2m+1, has pebbling time T such that

T > |∆|
(
N − 2S −m
2S +m+ 1

)k
.

2. There exists a pebbling sequence that pebbles the graph GN,k has pebbling space
N + 2 and needs time O(kN logN).

3. For any node v ∈ V (GN,k), the incoming nodes of v and the position of v in first
lexicographic topologically order of GN,k are computable in O(k logN).

The family of graphs GN,k we build is made up by DAGs that are k layered stack
of superconcentrators [30] with N inputs and N outputs.

Definition 5 (superconcentrator). We say that a directed acyclic graph G =
(V,E) is an N -superconcentrator if and only if

1. |S(G)| = |T(G)| = N ,
2. for each S ⊆ S(G) and for each T ⊆ T(G) such that |S| = |T | = ` there exists `

vertex-disjoint paths from S to T , i.e. paths such that no vertex in V is in two
of them.

Definition 6 (stack of superconcentrators). Given an N-superconcentrator G
we define the graph G×k, the stack of k copies of G, inductively as follows: G×1 = G
and G×k is obtained from G×(k−1) and G first renaming the vertexes of G so that they
do not appear in the vertexes of G×(k−1) obtaining a graph G′ and then identifying
T(G×(k−1)) with S(G′).

Not any k layered stack of superconcentrators satisfy points 2 and 3 of the Pebbling
Theorem. To obtain those properties we use the following well-known superconcen-
trator: the Butterfly Graph BN built by putting together two FFT graphs with N
inputs and outputs [33]. An example of such construction (for N = 16) is given in
Figure A.1.

It is easy to see that the family of graphs GN,k := B×kN satisfy points 2 and
3 of the Pebbling Theorem and it is a k layered stack of N -superconcentrators. It
remains to prove only point 1.

For superconcentrator graphs we can prove a tradeoff between pebbling space
and pebbling time, even for pebbling games with wildcards. This result is based on
a variation of the “Basic Lower Bound Argument” (BLBA) by Tompa [33].

16 Giuseppe Ateniese, Ilario Bonacina, Antonio Faonio, and Nicola Galesi

Fig. A.1. An example of 16-superconcentrator: the Butterfly Graph

Lemma 4 (BLBA with wildcards). Suppose we are given an N -superconcentra-
tor G, a set M ⊆ T(G) and a pebbling sequence P = (P0, . . . , P`) with m wildcards
that pebbles M . Let A be the set of all elements of S(G) pebbled and unpebbled at
some point in P. If |M | > |P0|+ |P`|+m+ 1 then |A| > N − |P0| − |P`| −m.

Proof. By contradiction suppose that |A| < N − |P0| − |P`| − m, this means that
|Ac| > |P0|+|P`|+m+1 and every element in Ac, by definition, is not pebbled and un-
pebbled. Take anyB ⊆ Ac such that |B| = |M | then, asG is anN -superconcentrator,
we have π1, . . . , π|M | vertex disjoint paths from B to M . Let W a set of m fault for
P. By construction |M | > |P0 ∪P` ∪W | so we have some path π from some element
v of B to some element w of M such that π ∩ (P0 ∪ P` ∪W) = ∅. By definition
of Ac, and hence of B, v is not pebbled and unpebbled and v 6∈ P0 ∪ P` ∪W , so
v 6∈ Pi for each i ∈ [`]. As π ∩ (P0 ∩W) = ∅ then we must have that π ∩ Pi = ∅ for
each i ∈ [`]. But then the vertex w is not in

⋃
i∈[`] Pi contradicting the fact that P

pebbles M . ut

Theorem 5 (Pebbling Theorem (point 1)). Let G×k be a stack of k copies of
an N -superconcentrator G, ∆ ⊆ T(G×k) and P a pebbling sequence for G×k with m
wildcards that pebbles ∆. Let S the pebbling space of P and T the pebbling time of
P. If |∆| > 4S + 2m+ 1 then

T > |∆|
(
N − 2S −m
2S +m+ 1

)k
.

Proof. Let G1, . . . , Gk be the k copies of G that form G×k. Suppose we want to
pebble a set M ⊆ T(Gi) such that |M | > 2S +m+ 1 and let A1, . . . , An be disjoint
subsetes of M such that A1 are the first 2S+m+1 elements of M to be pebbled in P,
A2 are the second 2S +m+ 1 elements of M to be pebbled in P and so on. Clearly

we have that the number of these sets is n =
⌊

|M |
2S+m+1

⌋
. By Lemma 4 we have

that for each Aj there exists a set β(Aj) in S(Gi), whose elements are pebbled and

Proofs of Space 17

unpebbled, of size at least N−2S−m. So we have that the total number of elements

in S(Gi) that have been pebbled and unpebbled is at least (N − 2S−m)
⌊

|M |
2S+m+1

⌋
.

Notice now that each β(Aj) ∈ T(Gi−1) so we can repeat the argument above to it.
Provided that for each j, |β(Aj)| > N − 2S −m > 2S + m + 1 and this is implied
by the fact that N > |∆| > 4S + 2m+ 1. So starting from T(Gk) = T(G×k) we can
prove by induction, going back to G1, that at least

|∆|
(
N − 2S −m
2S +m+ 1

)k
actions of pebbling and unpebbling take place on S(G1) = S(G×k). As each action
is an elementary step in the pebbling game P we have that the result follows. ut

B Proof of the Labeling Lemma (Lemma 1)

Before proceeding with the proof of the Lemma, we recall the definitions of min-
entropy and conditional average min-entropy as stated in [13]. For any random
variable X we define the min-entropy of X as

H∞(X) := − log

(
max
B TM

Pr [B() = X]

)
and we define the conditional average min-entropy of X given another random vari-
able Y as

H̃∞ (Y |X) := − log

(
max
B TM

Pr [B(X) = Y]

)
.

The following chaining rule for conditional average min-entropy holds [13]:

H̃∞ (Y |X) > H∞ (Y)− |X|.

Lemma 1. Given a DAG G with degree d and a TM A with advice h and access
to a random oracle H : {0, 1}∗ → {0, 1}k computing a H-labeling ` with m faults of
G. If h is independent of H, with overwhelming probability, there exists a pebbling
sequence P = (P1, . . . , PT) for the DAG G with m wildcards having pebbling space
S such that:

– S 6 1
k Space(A) + d,

– T 6 (d+ 2)σ, where σ is the number of queries of A to H.

In particular T is a lower bound for the execution time of A.

Proof. Let W be the set of not well-labeled nodes by the partial labeling `, in
particular |W | = m. We look at the ordered set of queries Q = {Q1, . . . , Qτ} of A to
H of the form Qi :=

(
wi‖`(w1

i)‖ . . . ‖`(wdi)
)

where ∀i wi ∈ V (G) and ∀j wji ∈ Γ−(wi).
Notice that by costruction τ 6 σ.

Let Si = Si−1 ∪ {wi} ∪ Γ−(wi). As ` is a partial H-labeling and H a RO, we
have that with overwhelming probability Γ−(wi) ⊆ Si−1 ∪ W ∪ S(G). Hence the
sequence (S1, . . . , Sσ) can be interpolated to a pebbling sequence adding source
vertexes when needed. This would make a pebbling sequence P̃ of length at most

18 Giuseppe Ateniese, Ilario Bonacina, Antonio Faonio, and Nicola Galesi

(d+1)τ . Interpolating P̃ with suitable unpebbling moves after each Si, i.e., removing
all unnecessary pebbles following the informal rule “unpebble as soon as possible”, we
can obtain a pebbling sequence P using minimal space. This is the desired pebbling
sequence P = (P1, . . . , PT) with as set of wildcards W . Notice that by construction
T = (d + 2)τ 6 (d + 2)σ, hence we have only to focus on bounding the pebbling
space of P.

Let S̃ = Space(A), suppose for simplicity that k divides S̃ and, by contradiction,
suppose that there are S̃/k+d+1 pebbles at some time t∗ in P. This time t∗ should
correspond to a query to H. After the unpebble operation, by the rule “unpebble
as soon as possible”, there are left at least S̃/k + 1 pebbles at time t∗ + 1. We
look at the labels of the nodes of G having at time t∗ + 1 one of the S̃/k + 1
pebbles: by the use of a RO H, their labels correspond to an uniformly random
string L := `1‖ . . . ‖`S̃/k+1 ∈ {0, 1}

S̃+k.

Let M be the content of the memory of A at time t∗+1. Note that M is a random
variable in {0, 1}S̃−1. By the chaining rule of the conditional average min-entropy,
we have that

H̃∞ (L|M,h) = H̃∞ (L|M) > H∞ (L)− S = k, (4)

where the first equality comes from the independence of H from h.

We want to upperbound H̃∞ (L|M,h). To do this we define B a TM that on
input M and h executes A from the state where she was at time t∗ + 1, writing in
the A’s working tape the string M and on the input tape the hint h and simulating
the random oracle H. Notice that, as we unpebble as soon as possible then, for any
1 6 i 6 S/k + 1, the following cases occur:

1. A is going to query (as substring of queries to H) the value `i with overwhelming
probability. In fact if this is not the case then in P it would be already deleted4.
The overwhelming probability comes from the fact that A could guess `i. Hence
B can collect all of those labels `1, . . . , `S̃/k+1 by looking at the queries made
by A to H. Moreover B can reply to all the queries to H uniformly choosing
strings in {0, 1}k and storing those values to reply accordingly in the future.
This simulation is possible as h is independent from H.

2. A won’t query H with a string which corresponds to a successor of `i before
having tossed out `i as a query to H with overwhelming probability. Otherwise
in P it would already have been deleted. The overwhelming probability comes
from the fact that there could be a collision in the RO H. Hence the simulation
of H stores the labels `1, . . . , `S̃/k+1 before using them as replies to A, therefore
the simulation is indistinguishable from A’s point of view. Eventually B outputs
all the labels collected.

The existence of B implies that − log(1− ν(k)) > H̃∞ (L|M,h) , where ν(k) is a
negligible function. This give an immediate contradiction with equation (4). Hence
the pebbling space of P is at most S̃/k + d. ut

4 This is the reason why we apply this information-theoretical argument to time t∗ + 1 and not to
time t∗. In fact it would be the case that at time t∗ we are pebbling a vertex w but none of the
vertexes in Γ−(w) would be used again.

Proofs of Space 19

C Proof of the Labeling Lemma (Lemma 2)

Let

Q′ := {α ∈ {0, 1}k | A′(pk, 1S) made at least a query to H with prefix α}.

We say that a first message α is good iff

Pr
[
〈A(h),V〉 (pk, 1S) = 1 | V sends α as first message

]
is noticeable. By Markov’s inequality, the probability that “a uniformly random first
message α is good” is noticeable. On the other hand, the probability that a uniformly
random first message α is in Q′ is bounded by poly(k, S)/2k. Thus, there exists α̃
that is both good and not in Q′. Since α̃ 6∈ Q′ then h ← A′(pk, 1S) is independent
of Hα̃. Let V = V (GN,k) be the vertex set of GN,k and let WC(v) be the following
event:

“A(h, pk, α̃) sends the commitment C at the end of round (1)
and makes the verifier V accept

when challenged with the vector v ∈ V l during round (2)”.

The event WC(v) depends on the public key pk, A’s randomness, and the challenge
v ← V l, where l is the length of the message as defined in the protocol Σ4.

A commitment string sent by A(h, pk, α̃) to the verifier V at the end of round
(1) is a good commitment iff Pr[WC(v)] is noticeable. We have that with noticeable
probability A(h, pk, α̃) sends a good commitment at the end of round (1).

It might be the case that A(h, pk, α̃), instead of computing the labeling through
the RO queries, guesses the correct one. However, A’s guess is correct with proba-
bility at most 2−k. Hence, with noticeable probability during round (1):

– A(h) is not making any guesses and
– A(h) sends a good commitment.

Thus, there exists a randomness ρ̃ such that A(h, pk, α̃) satisfies the two prop-
erties above when fed with ρ̃. To simplify the notation, we call such an adversary
Ã.

So we have a deterministic adversary Ã that, with noticeable probability over pk
and over the challenge v, makes the verifier accept. Let C be the good commitment
sent by Ã. Now we focus on round (2). Let

E :=

{
u ∈ V | Pr

pk,v

[
Ã challenged on v ∈ V l

sends a C-proof for u
∧ u ∈ v

]
< r(k)

}
,

where r(k) ∈ poly(k).
There exists a procedure to compute the set E (recall that the extraction process

doesn’t need to be efficient). Notice that by construction the nodes of V \ E can
be C-opened with noticeable probability, hence they C-open to fixed labels with
noticeable probability (otherwise an efficient sampling procedure can invalidate the
binding property of the underlying Merkle-Tree).

For each u ∈ V \E, there exists a randomness ρu such that Ã sends to the verifier
V a C-proof for u that C-opens u to the most probable label. Here, it is assumed
that A(h) is using ρu as source of randomness during round (2).

20 Giuseppe Ateniese, Ilario Bonacina, Antonio Faonio, and Nicola Galesi

If we collect all those values, we obtain a Hα̃-labeling with at most |E| faults.

We now prove the second item of the lemma, i.e., the upper-bound for m = |E|,
notice that m is a random variable that depends on pk. For any p̃k let m̃ := m(p̃k),
the following chain of inequalities hold:

Pr
v

[
WC(v) | pk = p̃k

]
= Pr

v

[
WC(v) ∧ ∀vi ∈ v vi 6∈ E | pk = p̃k

]
+

+ Pr
v

[
WC(v) ∧ ∃vi ∈ v vi ∈ E | pk = p̃k

]
6Pr

v

[
∀vi ∈ v vi 6∈ E| pk = p̃k

]
+
∑
u∈E

Pr
v

[
WC(v) ∧ u ∈ v| pk = p̃k

]
6

(
1− m̃

|V |

)l
+
∑
u∈E

Pr
v

[
Ã challenged on v ∈ V l

sends a C-proof for u
∧ u ∈ v

∣∣∣∣ pk = p̃k

]
6 e

− m̃
|V | ·l +

∑
u∈E

Pr
v

[
Ã challenged on v ∈ V l

sends a C-proof for u
∧ u ∈ v

∣∣∣∣ pk = p̃k

]
Taking the expected value over pk, we obtain:

Pr
pk,v

[WC(v)] 6 E
pk

[
e
− m
|V | ·l
]

+
∑
u∈E

Pr
pk,v

[
Ã challenged on v ∈ V l

sends a C-proof for u
∧ u ∈ v

]
< E

pk

[
e
− m
|V | ·l
]

+ |V |r(k).

There exists a constant c ∈ N such that, for k >> 1, Pr [WC(v)] > k−c. Hence, if
we select r(k) = (|V |2kc)−1, we obtain that

E
pk

[
e
− m
|V | ·l
]
>

1

2kc
.

Via the Paley-Zygmund inequality [31], we have:

Pr
pk

[
e
− m
|V | ·l >

1

4kc

]
>

1

8k2c
.

So with noticeable probability over pk:

m

|V |
· l < ln 4 + c ln k.

Notice that, in the graph family {GN,k}, |V | = kN logN . Thus, since l =
k ln2 k logN , we achieve the required upper-bound for m.

We now prove the third item of the Lemma, i.e., for any assignment ρ of the
randomness of A for the round (1) such that (a) the commitment C is a good
commitment and (b) A has not made any guess, we have that for any u ∈ V \ E,
Qu := (α̃‖u‖`(u1)‖ . . . ‖`(ud)) ∈ Q, where Q is the set of queries made by A to H
until the end of round (1) and {u1, . . . , ud} = Γ−(u).
If that would not be the case, we can define a reduction that violate the binding
property of the Merkle Tree. The probability that a uniformly random assignment

Proofs of Space 21

of the randomness of A has the properties (a) and (b) and a uniformly random first
message of V is good and not in Q′ is noticeable: let p(k) ∈ poly(k) a lower-bound
for that probability.

By contradiction suppose there exists a u such that the query Qu 6∈ Q. By the
choice of α̃, Qu 6∈ Q′ hence it must have be made in the round (2) of the protocol.

Suppose for now that the reduction knows the values `(u1),. . . ,`(ud), then:

(a) it can choose an assignment of the randomness ρ of A for the round (1) and a first
message α ∈ {0, 1}k both uniformly at random. Then, it executesA(h, pk, 1S , α; ρ)
to obtain a commitment C;

(b) V challenges A in round (2) with an uniformly random vector v ∈ V l containing
u. A will make the query Qu to H and the reduction responds to it with a
uniformly random string in {0, 1}k;

(c) it rewinds A to the point corresponding to the end of round (1) of the protocol,
then runs again point (b).

A will C-open the node u in points (b) and (c) of the reduction with two different
values with a probability at least p(k) · (r(k)2 − 2−k).

In general the reduction doesn’t know the values `(u1), . . . , `(ud) and it can’t figure
out which of the queries made by A in the round (2) of the protocol is Qu. But A
is ppt so we can find a q(k) ∈ poly(k, S) that upper-bounds the number of queries
made by A to H during round (2).

A will C-open the node u, by guessing the exact point in time Qu is queried,
with two different values with a probability at least q(k)−1 · p(k) · (r(k)2 − 2−k).
Hence, this reduction violates the binding property of the Merkle Tree. ut

D The Protocol Σ2 in Figure 4.1 is a PoSpace.

Completeness and Succinctness follow from the fact that Σ4 is a PoSpace as proved
in Theorem 2. To prove Soundness, we reduce an adversary A for the scheme Σ2 to
an adversary B for the scheme Σ4 (of Figure 4.1). Suppose, by contradiction, there
exists an adversary A, a hint h← A(pk′) and a value S such that for k large enough:

Pr
[
SndA,A

′

Σ2,S
(k)
]
> k−c.

Let q(k) a polynomial that upper-bounds the number of queries made by A to
the RO L. For each 0 6 i < q(k), let Qi be the i-th query made by A to the
oracle L. Without loss of generality, we can assume that all the Qi’s are different
and A verifies her output certificate before sending it: if A hasn’t found a valid
certificate, she outputs the empty string. Thus, either there exists an index m such
that (C,Π) ← A(h, pk′, α; ρ), with Qm = C and Σ4.V

(
pk, 1S , α, C,L(C), Π

)
= 1,

or A(h, pk′, α; ρ) outputs the empty string. Moreover:

Pr[(C,Π)← A(h, pk′, α) ∧Qm = C] > k−c · q(x)−1.

Notice that the probability above states that the outputs of A will be the same
value asked by A to L at the m-th call. However, the value Qm is a random variable
that may depend on all the randomness used until the m-th call. We divide the

22 Giuseppe Ateniese, Ilario Bonacina, Antonio Faonio, and Nicola Galesi

randomness used by A into two parts ρ1 and ρ2: ρ1 is the randomness used by A
before she has made the m-th query to the oracle L, ρ2 is the remaining randomness.

By an averaging argument, there exists a setting of ρ1 such that the following
equation holds

Pr
ρ2,H,L

[
(C,Π) := A(h, pk′, α; ρ1‖ρ2) ∧Qm = C

]
> k−c · q(x)−1 (5)

Now the value Qm is a random variable that depends only on the randomness of
the challenge α, the ROs H and L, and ρ1. Therefore, by repeating many times the
TM A(h, pk′, α; ρ1‖ρ2) for a uniformly random ρ2 using the same oracles H, L, we’ll
get the same value Qm as the m-th query to L. We define the ppt TM with advice
B′ that on input pk and advice ρ1,m outputs the hint h̃ := (A′(pk,L),Q′,m, ρ1),
where Q′ is the set of RO queries made by A′ to H and L.

Define B(h̃, pk, 1S) :

– Wait for the message α;
– Compute A(h̃, pk, α; ρ1) and reply to RO queries from A via H or L respectively;

until she makes the m-th RO query to L. Let Qm be such a query;
– Pause the machine A;
– if Qm ∈ Q′ abort.
– Send Qm to Σ4.V;

– Wait for the message v from Σ4.V;
– choose ρ2 uniformly at random;
– Resume A and reply to the query Qm with v and use as randomness ρ2;
– If A outputs the empty string, send the empty string to Σ4.V;

else let (C,Π) be the output of A;
– if C = Qm then send Π to Σ4.V

else send the empty string to Σ4.V.

First, we show that the value Qm has high min-entropy. Since |Q′| ∈ poly(k, S),
this implies that B will abort with negligible probability.

By the equation (5), there exists a Hα-labeling ` with m = O(N/ ln k) faults
such that Qm = MTs(`). Let R′ be the set of RO replies made by H and L to the
RO queries of A′. As α is uniformly random in {0, 1}k then

H̃∞(` |R′, α) > (|V (GN,k)| −m− 1) · k.

In fact only with negligible probability in k the set Q′ contains queries to H with
prefix α. The min-entropy of Qm is ω(log k) because MT is collision resistant. The
probability that Qm is in Q′ is then negligible.

When B doesn’t abort the simulation of the protocol, Σ2 is perfect. Also notice
that B needs space S′ = S + O(log(poly(k))) where S is from the emulations of A
and O(log poly(k)) for the auxiliary indexes. Moreover, if the event in equation (5)
holds, then B will not send the empty string to Σ4.V. Hence, it follows that the
adversary B, accessing the hint function h̃ and using space S′ for k large enough, is
such that:

Pr
[
SndB,B

′

Σ4,S′
(k)
]
> k−c · q(k)−1 − negl(k).

Therefore, we reach the contradiction that B is a winning adversary against protocol
Σ4 which was proved to be a PoSpace (Theorem 2). ut

Proofs of Space 23

E Merkle Tree

Consider the complete binary tree T over n leaves. Without loss of generality we
can suppose that n is a power of 2 by using padding if necessary. Label the i-th leaf
with li, then, use a collision resistant hash (CRH) function Hs : {0, 1}2k → {0, 1}k
with random seed s to propagate the labeling l of the leaves to a labeling φ along
the tree T up to the root according to the following rules:

1. φ(v) := li if v is the i-th leaf of T ,
2. φ(v) := Hs(φ(v1)‖φ(v2)) where v1, v2 are the two childrens of v.

Then the commitment for a string l is the label φ(r) of the root of the tree: we
denote it with MTs(l). The commitment is succinct in fact it has size k which is
independent of n.

An opening for the i-th element in the sequence l is an ordered sequence formed
by elements of {0, 1}k that are intended to be the label li of the i-th leaf of T together
with the labels φ(vj) for each vj that is a sibling of vertices in the path from the
root of the tree to the i-th leaf. An example of opening is shown in Figure E.1.

e

c

b a

d

Fig. E.1. An example of opening: c = (a, b, c, d, e)

We denote with Opens(l, i) the opening formed by li together with all the φ(vj).
Notice that from Opens(l, i) it is possible to compute φ(w) for each vertex w in
the path from the root to the leaf at the i-th position. In particular it is efficient to
compute MTs(l). The opening is succinct in fact it has size k · log n which is (almost)
independent of n. In general given an opening c = (c1, . . . , clogn) for some position
i we can behave as if it is Opens(l, i) and compute the label of the root according
to the given c and position i. If this value is equal to MTs(l) we say that c opens
the i-th position to c1. As H is a CRH function, then for any i, it is guaranteed that
MTs(l) can open the i-th position only to li.

	Proofs of Space: When Space is of the Essence
	Introduction
	Notations and Preliminary Definitions
	Proof-of-Space Protocols
	A 4-message PoSpace protocol

	A 2-messages PoSpace protocol
	Weak Proof-of-Space
	Proof of the Pebbling Theorem (Theorem 1)
	Pebbling Theorem (Theorem 1).

	Proof of the Labeling Lemma (Lemma 1)
	Lemma 1.

	Proof of the Labeling Lemma (Lemma 2)
	The Protocol 2 in Figure 4.1 is a PoSpace.
	Merkle Tree

