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Abstract

We present two hierarchical identity-based encryption (HIBE) schemes, denoted as H1 and H2, from
Type-3 pairings with constant sized ciphertexts. Scheme H1 is anonymous and H2 is non-anonymous.
The constructions are obtained by extending the IBE scheme recently proposed by Jutla and Roy (Asi-
acrypt 2013). Security is based on the standard decision Symmetric eXternal Diffie-Hellman (SXDH)
assumption. In terms of provable security properties, all previous constructions of constant-size ci-
phertext HIBE schemes had one or more of the following drawbacks: secure in the weaker model of
selective-identity attacks; exponential security degradation in the depth of the HIBE; and use of non-
standard assumptions. The security arguments for H1 and H2 avoid all of these drawbacks. Along with
theoretically satisfying security, the parameter sizes and efficiencies of the different algorithms of the
two schemes compare very well with all previously known constructions. Based on currently known
techniques, H1 and H2 fill an important gap in the state-of-the-art on efficient (anonymous) HIBE con-
structions.
Keywords: hierarchical identity-based encryption (HIBE), constant-size ciphertext HIBE, asymmetric
pairings, standard assumptions, dual-system encryption
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1 Introduction

Identity-based encryption (IBE) is a form of public key encryption where a recipient’s identity itself is
her public key. The corresponding decryption key is generated and securely transmitted by a trusted
authority called private key generator (PKG). The concept of IBE was introduced by Shamir [Sha84]
and the first constructions were proposed by [Coc01, BF03]. In order to reduce the communication and
computation overhead of the PKG, [GS02, HL02] introduced Hierarchical IBE (HIBE). HIBE imposes a
tree-like structure on entities within the system and provides the higher level entities the ability to delegate
key generation to lower-level entities without the involvement of the PKG.

This work presents two new HIBE schemes called H1 and H2. The literature already contains several
different HIBE schemes. So, the question arises as to why new schemes are needed? We argue below that
all previous schemes had one or more drawbacks related to either efficiency or security. The new schemes
overcome all these issues and are the candidates of choice for any practical deployment. To understand
this, we need to discuss the different efficiency and security issues that arise in the constructions of HIBE
schemes.

Efficiency. A pairing is a bilinear, non-degenerate and efficiently computable map e ∶ G1 × G2 to GT ,
where G1,G2 and GT are groups of the same order. Practical instantiations of such maps are obtained
by suitably choosing G1 and G2 to be groups of elliptic curve points and GT to be a subgroup of the
multiplicative group of a finite field. Practical constructions of HIBE schemes are obtained from such
maps.

Type-3 Pairings: There are different types of pairings which can be obtained from elliptic curves. Pair-
ings where the common group order is prime and it is computationally infeasible to find an iso-
morphism between G1 and G2 are called Type-3 pairings. Such pairings have the most efficient
implementations, both in terms of computation and representation [CM11, SV07, GPS08]. Less effi-
cient alternatives are when G1 and G2 are same (called Type-1 pairings) or when the common group
order is a composite number (called composite-order pairings).

Constant-Size Ciphertexts: Recall that in a HIBE scheme, an individual entity can obtain a private
key from either the PKG or from a lower-level entity. In the later case, the complete identity of the
entity is obtained by appending its individual identity to the identity of the entity from which it
obtains the private key. As a result, identities in a HIBE set-up are variable length tuples of strings.
For some HIBE schemes, including the initial ones [GS02] and later works [BB04, Wat05, CS06a,
Wat09, RCS12], the length of a ciphertext grows linearly with the length of the identity. As a result,
an encryption to an entity which is further away from the PKG incurs a communication penalty
compared to an encryption to an entity which is closer to the PKG. In practical terms, such artificial
asymmetry in communication overhead is undesirable. The solution to this is to have a HIBE scheme
where the size of the ciphertext is independent of the length of the identity tuple. We refer to such
schemes as constant-size ciphertext HIBE (denoted CC-HIBE) schemes.

The discussion above suggests that from an efficiency point of view, HIBE schemes with constant-size
ciphertexts that can be instantiated with Type-3 pairings would offer the best performances.

The first construction for CC-HIBE was given by Boneh, Boyen and Goh [BBG05]. This work
introduced a way to hash identity vectors into the pairing groups. Almost all known CC-HIBE
schemes that appeared later have either used this technique or a variant [CS06b, CS07, LW10, SKOS09,
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DCIP10, PL13, LPL13, RS13]. Since we are interested in CC-HIBE, we do not consider the line of
work [GS02, BB04, Wat05, CS06a, Wat09, RCS12] where the length of the ciphertext depends on the
length of the identity tuple.

Security. There are several security-related issues that crop up while building HIBE schemes.

Security Model: In terms of security, the goal is to obtain (H)IBE schemes which are secure against
adaptive-identity attacks [BF03, GS02, SW08]. The first HIBE construction [GS02] (though not a
CC-HIBE) indeed achieved this, but, the security argument was based on the use of random oracles.
Later works could avoid the use of random oracles, but, some of them could only be proved secure in
the much weaker model of selective-identity attacks. The first CC-HIBE scheme [BBG05] is secure
only under this weaker model.

Anonymity: Another important security notion is anonymity [ABC+05] which requires that a ciphertext
does not reveal any information about the recipient’s identity. Anonymous (H)IBE schemes are useful
in constructing public key encryption with keyword search (PEKS) which further extends to more
sophisticated primitives such as public key encryption with temporary keyword search (PETKS) and
identity-based encryption with keyword search (IBEKS) [ABC+05].

Hardness Assumptions: Security proofs are essentially reductionist arguments that are based on the
assumption that some problems are computationally hard to solve. Certain problems, such as the de-
cision Diffie-Hellman (DDH) problem over appropriate groups have widespread use in cryptography.
Other examples are the decision bilinear Diffie-Hellman (DBDH) problem, the decision linear (DLin)
problem and the decision symmetric external Diffie-Hellman (SXDH) problem. Schemes whose se-
curity is based on the hardness of such problems are said to be based on standard assumptions. In
contrast, certain schemes are based on less well-studied problems which are tailor-made to suit the
requirements of the particular scheme. These assumptions are referred to as non-standard. Further,
such assumptions are sometimes parametrised by a quantity (such as the maximum length of an
identity tuple) arising in the construction. Such assumptions are called non-static.

Degradation: Proofs of security (for HIBE schemes) are reductions of the following form. If an algorithm
running in time t breaks the security of the scheme with “advantage” ε, then some computational
problem Π can be solved in time t′ with advantage ε′. The ratio δ of t′/ε′ to t/ε is the tightness gap
and the reduction is said to have a degradation of δ. Depending upon the scheme and the reduction,
δ could be a constant or could depend on quantities such as the security parameter, the maximum
number of corrupt users, the maximum length of an identity tuple and possibly other parameters.
Designing schemes that have low degradation is important.

Prior to [GH09] all HIBE schemes suffered from a degradation which is exponential in the depth of the
HIBE. The construction in [GH09] is very complicated and the security is based on an unnatural assump-
tion. The first practical method of constructing HIBE schemes whose security does not degrade with the
depth of the HIBE is due to Waters [Wat09] who introduced the very important technique of dual-system
encryption. The work [LW10] provided the first CC-HIBE scheme following the dual-system approach.

The known non-anonymous CC-HIBE schemes are listed in Table 1. It can be seen that all schemes
prior to H2 had one or more of the following security drawbacks: selective-id secure, non-standard/non-
static assumption, degradation exponential in the depth of the HIBE. Similarly, the known anonymous
HIBE schemes are listed in Table 2 and H1 is the only scheme among these that achieves all the properties
mentioned above. We emphasise that the provable security properties achieved for H1 and H2 have not
been simultaneously achieved earlier, either for composite-order pairings, or, for prime-order pairings.
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Possible Approaches to the Construction of HIBE Schemes. We have argued above that among
HIBE schemes, it is CC-HIBE which is of practical importance and among the known CC-HIBE schemes,
H1 and H2 are the most suitable ones for practical deployment. As mentioned earlier, both schemes are
based on the recently proposed IBE due to Jutla and Roy [JR13] (abbreviated JR-IBE). It is quite natural
that the construction of a HIBE scheme will be based on an IBE scheme. Below we mention other candidate
IBE schemes and why their extensions to HIBE schemes do not achieve the same security and efficiency
as H1 or H2.

To start with, it is desirable to avoid a security degradation which is exponential in the depth of the
HIBE. In the current state of the art, this means that one has to follow the dual-system approach. So,
any attempt to construct a CC-HIBE should start with an IBE which has been proved secure using the
dual-system technique. In the dual-system proof technique for both IBE and HIBE, ciphertext and key
in the scheme itself are called normal. As part of the proof, alternate forms of ciphertext and key are
defined. These are called semi-functional. In the proof, these are simulated using instances of some hard
problem and the argument proceeds by showing that an adversary’s ability to distinguish between normal
and semi-functional components can be translated into an algorithm to solve the problem. During the
simulation, it is essential to ensure that the semi-functional components have proper distributions. The
discussion below mentions the known IBE schemes which have security proofs based on the dual-system
approach and the difficulties in extending these to CC-HIBE.

The IBE constructions of Waters [Wat09] and its variants [RCS12] do not have a structure that is
suitable for extension to CC-HIBE. This is because both the ciphertext and keys have associated tags that
are public and play a crucial role in dual system arguments. It is precisely these tags that cause the problem
in extending these IBEs to CC-HIBEs. While extending to a CC-HIBE, sufficient information should be
provided in either the public parameters or the keys to support rerandomisation during key delegation.
The tags either cannot be rerandomised or the elements needed to enable their rerandomisation, when
given out, lead to insecure schemes.

Lewko and Waters [LW10] presented a new variant of dual system technique by shifting the role of tags
into the semi-functional components. This enabled them to obtain a CC-HIBE scheme over composite
order pairing groups. They converted the IBE version of the scheme to the prime-order asymmetric pairing
setting but not the HIBE scheme. Security of both their IBE schemes (for composite-order pairings as well
as for Type-3 pairings) are based on non-standard assumptions. Two works [LPL13, RS13] independently
obtained a CC-HIBE scheme from Lewko-Waters’ IBE in prime-order groups. Again, the drawback is that
the security of the scheme is based on non-standard assumptions.

Another IBE scheme following the dual-system approach is due to Chen et.al. [CLL+12]. This work
uses dual pairing vector spaces (DPVSs) [OT08, OT09]. These are algebraic structures that have properties
found in composite order groups such as cancelling and parameter-hiding which are useful for dual system
arguments [Lew12]. The Chen et.al. IBE can be seen as a translation of Lewko-Waters’ composite-
order pairing-based IBE [LW10] to the setting of asymmetric pairing using DPVS. It is then natural to
ask whether the Lewko-Waters composite-order CC-HIBE can be similarly translated using the DPVS-
approach to a CC-HIBE. Unfortunately, such a transformation does not yield a CC-HIBE. This is due to
the fact that for the proof to work, the dimension of the vector spaces becomes proportional to the HIBE
depth. Since ciphertexts contains vectors from such spaces, the constant-size feature cannot be attained.

More recently, Chen and Wee [CW13] have introduced new techniques for parameter-hiding in DPVS-
based constructions. The work describes an IBE scheme and mentions that the full version will describe
a compact HIBE. At the time of the writing of this paper, the full version of [CW13] had not appeared
and a request to the authors about the details of the HIBE did not receive any response. So, at this point
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of time, we are not able to determine the possible HIBE scheme mentioned in [CW13] and compare its
efficiency and security to that of H1.

Extending JR-IBE to CC-HIBE. Schemes H1 and H2 extend the JR-IBE to anonymous and non-
anonymous CC-HIBEs respectively. At a top level, the identity-hashing technique of Boneh-Boyen-
Goh [BBG05] (BBG-hash) is applied on JR-IBE. We work in the setting of asymmetric pairings where
ciphertext components are elements of G1 and key components are elements of G2. BBG-hash of the
identity is required to be computed in both G1 and G2. During encryption, the BBG-hash is required to
be computed in G1 and this requires adding some elements of G1 to the public parameters.

In previous CC-HIBE schemes in the prime-order setting within the dual system framework [LPL13,
RS13], anonymity appears as a by-product of the HIBE extension. The basic difficulty was due to the
following dichotomy concerning key delegation. The BBG-hash for the key is computed in G2. The hash
is defined using certain elements of G2. During key delegation, the hash has to be rerandomised and so
the elements should be publicly available. On the other hand, information about these elements must
not be leaked because they form the source of randomness which are used to generate the semi-functional
components during simulation.

The problem described above does not arise in case of JR-IBE. The feature of JR-IBE that makes
extension to the non-anonymous CC-HIBE H2 possible is as follows. The master secret consists of two
elements whose linear combination is used to mask the message during encryption. This is unlike previous
(H)IBE schemes where a single element was used for the purpose. The two elements would be information
theoretically hidden from an attacker’s view. So the secret randomness for the semi-functional ciphertext
space is provided by one of the two elements.

Anonymity is achieved by keeping the elements required to compute the BBG-hash in G2 to be secret
and instead provide suitably randomised copies of these elements in the user keys. Problems then arise
while defining semi-functional components and arguing about their well-formedness during simulation.
Fortunately, it turns out that the problems can be handled by using appropriate algebraic relations. The
technique of keeping certain elements hidden and providing their randomised version in the user keys closely
follow the ideas introduced in [BW06] to obtain anonymity. In H1 the elements that are kept hidden are
exactly the ones required to create the BBG-hash in G2. As a result, an adversary is unable to create an
identity hash in G2 and cancel it out with the BBG-hash of the same identity in G1. This naturally leads
to the scheme H1 being anonymous.

We note that a single-level instantiation of H2 provides a non-anonymous variant of the JR-IBE with
rerandomisable keys.

Detailed Comparison to Existing HIBE Schemes. Table 1 provides a comparison of H2 with all
previously proposed non-anonymous CC-HIBE schemes. In terms of security, there is no scheme comparable
to H2. The security of the construction in [LW10] is based on sub-group decision assumptions that cannot
be considered to be standard assumptions. Table 2 compares H1 with all previously proposed anonymous
HIBE schemes. Again, in terms of security, there is no construction that is comparable to H1.

In absolute terms, the number of group elements required for composite-order based schemes is less
than that required in the new HIBE schemes. However, only counting group elements is not a proper
comparison. One has to consider the actual size for representing a single group element at a desired
security level.

For concreteness, let us consider a security level of 128 bits. For Type-3 pairings, using Table-2
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Scheme [BBG05] [CS06b] [CS07] [LW10] H2

Pairing Type-1 Type-1 Type-1 Composite Type-3

Security selective-id adaptive-id selective+-id adaptive-id adaptive-id

Assump.
Decision
h-wBDHI

h-wDBDHI* h-wDBDHI*
Subgroup
Decision

XDH

Deg. 1 O((kq2N/k)h) 1 O(q) O(q)
#pp (h + 4,0) (h + 3 + hk,0) (2h + 3,1) (h + 3,1) (3h + 9,1)
#msk 1 1 1 1 2

#cpr 2 2 3 2 3

#key h − ` + 2 (k + 1)(h − `) + 2 2(h − ` + 1) h − ` + 2 2(h − `) + 5

Enc (` + 2,1) (2,1) (` + 2,1) (` + 2,1) (` + 4,1)
Dec 2 2 2 2 3

KGen h + 2 2(h − ` + 1) 2h − ` + 2 2h − ` + 4 2h + 5

Deleg. ` + 2 2(h − `) 2h − ` + 1 2h − ` + 6 2h + 9

Table 1: Comparison of non-anonymous CC-HIBE schemes based on pairings without random oracles. h: maximum depth
of the HIBE; `: length of the identity tuple; q: no. of key extraction queries; N ([CS06b]): number of bits in an identity;
k ([CS06b]): number of blocks of N/k bits; #pp, #msk, #cpr, #key - number of group elements in the public parameters,
master secret, ciphertext and key respectively. Enc, Dec, KGen, Deleg - efficiency of encryption, decryption, key generation
and delegation algorithms. Type-3 pairing based schemes - PP and ciphertexts consist elements of G1;MSK and keys consist
elements of G2. #pp = (a, b) means that there are a elements of G1 and b elements of GT ; Enc = (a, b): a scalar multiplications
in G1 and b exponentiations in GT ; Dec: #pairings; KGen: #scalar multiplications in G2; Deleg: #scalar multiplications in
G2. Assump: underlying complexity assumptions; Deg: security degradation; Zero-ID: whether the scheme allows zero to be
an identity component or not.

Scheme [BW06] [SKOS09] [DCIP10] [PL13] [LPL13],[RS13] H1

Pairing Type-1 Composite Composite Type-1 Type-3 Type-3

Security selective-id selective-id adaptive-id selective-id adaptive-id adaptive-id

Assump. DLin,DBDH
`-wBDH*,
`-cDH

Subgroup
Decision

h-BDHE
Aug. h-DLin

LW1,LW2,DBDH
[LPL13]:3-DH,XDH

[RS13]:A1
XDH

Deg. O(1) O(1) O(q) O(1) O(q) O(q)
#pp (2(h2 + 3h + 2),1) (h + 6,1) (h + 4,1) (h + 6,1) (3h + 6,1) (h + 4,1)
#msk h2 + 5h + 7 h + 4 2 4 h + 6 2h + 6

#cpr 2h + 5 3 2 4 6 3

#key (h + 3)(3h − ` + 5) 3(h − ` + 3) 2(h − ` + 2) 3(h − ` + 4) 6(h − ` + 2) 4(h − `) + 10

Enc (2(` + 3)(h + 2) + 1,1) (` + 6,1) (` + 4,1) (` + 5,1) (3(` + 2),1) (` + 4,1)
Dec 2h + 3 4 2 4 6 3

KGen
h3 + h2(5 − `)+
h(7 − 3`) − 2` + 2

3h − 2` + 2 4(h + 2 − 3`)(h + 2(h − ` + 8)) 6h − 5` + 12 2(2h − 2` + 5)

Deleg. 5(h + 2)(h + 3) + 1 6(h − `) + 214(h − `) + 11 (4(h − `) + 25) 2(h − ` + 3) 4(h − ` + 5)

Table 2: Comparison of anonymous HIBE schemes based on pairings without random oracles.

of [CHKM10], elements of G1 and G2 can be represented using 257 and 513 bits respectively. In contrast,
the order of G1 = G2 for composite-order pairings is a product of at least three primes. The basic security
requirement is that this group order should be hard to factor. To attain 128-bit security level, the length
of the bit representation of the group order should be about 3000 bits (or more). So, for schemes based
on composite-order groups, the length of representations of elements of G1 (and G2) will be about 3000
bits. This is about 12 times (resp. 6 times) more than the length of bit representation of elements of G1

(resp. G2) using Type-3 pairings. The wide difference in the length of representations of group elements
more than adequately compensates for the absolute number of group elements in composite-order HIBE
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schemes being lesser than that in the newly proposed HIBE scheme.

For example, ciphertexts in H1 (or H2) consist of 3 elements of G1 which is about 770 bits whereas
ciphertexts in the HIBE of [LW10] will be about 9000 bits (3 elements each having length about 3000 bits).
Similar considerations apply to public parameters (PP), master secret key (MSK) and decryption keys.
The larger length of the parameters also lead to a significant slow down in the basic operations of scalar
multiplication and pairing computation leading to much slower algorithms for encryption, decryption, key
generation and key delegation.

From the two tables and the above discussion, one can conclude that among anonymous HIBE schemes,
H1 is the most efficient scheme with all the standard provable properties; and that among non-anonymous
HIBE schemes a similar statement can be made about H2. Regarding comparison to non-CC HIBE schemes,
clearly H1 and H2 will be superior in terms of lower ciphertext size. Further, even though we do not provide
the details, we do note that the other parameters of H1,H2 also compare very favourably to important
previous non-CC HIBE constructions satisfying similar security [Wat09, RCS12].

2 Preliminaries

Some basic notation, definitions and the complexity assumptions used in our proofs are presented in this
section. Definition of HIBE and security notions are provided in Appendix A.

2.1 Notation

The notation x1, . . . , xk ∈R X (or x1, . . . , xk
R←Ð X ) indicates that elements x1, . . . , xk are sampled in-

dependently from the set X according to some distribution R. The two notation are used interchange-
ably. U denotes the uniform distribution. For two integers a < b, the notation [a, b] represents the set
{x ∈ Z ∶ a ≤ x ≤ b}. If G is a finite cyclic group, then G× denotes the set of generators of G.

2.2 Asymmetric Pairings and Hardness Assumptions

A bilinear pairing is given by a 7-tuple G = (p,G1,G2,GT , e, P1, P2) where G1 = ⟨P1⟩, G2 = ⟨P2⟩ are written
additively and GT , a multiplicatively written group, all having the same order p and e ∶ G1 × G2 → GT

is a bilinear, non-degenerate and efficiently computable map.In an asymmetric pairing, G1 ≠ G2. If no
efficiently computable isomorphisms between G1 and G2 are known, then such pairings are called Type-3
pairings. The terms ‘Type-3 pairing’ and ‘asymmetric pairing’ are used interchangeably in the rest of the
paper.

Let G = (p,G1,G2,GT , e, P1, P2) be an asymmetric pairing and A , a probabilistic polynomial time
(PPT) algorithm A that outputs 0 or 1. We now describe the decision Diffie-Hellman (DDH) assumptions
in groups G1 and G2, called DDH1 and DDH2 respectively.

Assumption DDH1. Define a distribution D as follows: P1
U←Ð G×

1 ; P2
U←Ð G×

2 , a, s
U←Ð Zp, γ

U←Ð Zp;
D = (G, P1, aP1, asP1). The advantage of A in solving the DDH1 problem is given by

AdvDDH1
G (A ) = ∣Pr[A (D, sP1) = 1] −Pr[A (D, (s + γ)P1) = 1]∣.
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Essentially, A has to decide whether γ = 0 or γ ∈U Zp given (D, (s + γ)P1). The (ε, t)-DDH1 assumption

holds in G if for any adversary A running in time at most t, AdvDDH1
G (A ) ≤ ε.

Assumption DDH2. Let a distribution D be defined as follows: P1
U←Ð G×

1 ; P2
U←Ð G×

2 , r, c
U←Ð Zp,

µ
U←Ð Zp;

D = (G, P1, P2, rP2, cP2).

A ’s advantage in solving the DDH2 problem is given by

AdvDDH2
G (A ) = ∣Pr[A (D, rcP2) = 1] −Pr[A (D, (rc + µ)P2) = 1]∣.

The (ε, t)-DDH2 assumption is that, for any t-time algorithm A , AdvDDH2
G (A ) ≤ ε.

3 Jutla-Roy IBE with Ciphertexts in G1

In the IBE scheme of Jutla-Roy [JR13] (JR-IBE), ciphertext consists of elements in G2 and keys contain
elements from G1. For Type-3 pairings, elements of G1 have a shorter representation compared to the
elements of G2. To reduce the length of the ciphertext, one has to interchange the roles of the two groups.
In contrast, for a signature scheme, it would be advantageous to have the signature to consist of elements
from G1. Since the JR-IBE is obtained from NIZK via the idea of signatures, the scheme results in
ciphertext elements being in G1.

This section describes a “dual” of the Jutla-Roy [JR13] (JR-IBE-D) where ciphertexts live in G1 and
keys in G2. We use a compact notation to denote normal and semi-functional ciphertexts and keys. The
group elements shown in curly brackets { } are the semi-functional components. To get the scheme itself,
these components should be ignored.

Parameters: Choose P1
U←Ð G×

1 , P2
U←Ð G×

2 , ∆1,∆2,∆3,∆4, c, d, u, e
U←Ð Zp, b

U←Ð Z×p , and set U1 =
(−∆1b + d)P1, V1 = (−∆2b + e)P1, W1 = (−∆3b + c)P1, gT = e(P1, P2)−∆4b+u. The parameters are given by

PP ∶ (P1, bP1, U1, V1,W1, gT )
MSK ∶ (P2, cP2,∆1,∆2∆3,∆4, d, u, e)

Ciphertext:

tag, s
U←Ð Zp, {γ U←Ð Zp}

C0 =m ⋅ (gT )s{e(P1, P2)uγ},
C1 = sP1{+γP1}, C2 = sbP1, C3 = s(U1 + idV1 + tagW1){+(d + ide + tagc)P1}.

Key:

r
U←Ð Zp, {µ,π U←Ð Zp}

K1 = rP2, K2 = rcP2{+µP2}, K3 = (u + r(d + ide))P2{+µπP2},
K4 = −r∆3P2{−µbP2}, K5 = (−∆4 − r(∆1 + id∆2))P2{−µπb P2},

Note: In JR-IBE [JR13], b is mentioned to be an element of Zp. This is an oversight and b should be an
element of Z×p as we have mentioned above. This is because if b is zero, then division by b and consequently
the definitions of the semi-functional components will not be meaningful.
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4 Our CC-HIBE Constructions

Both schemes H1 and H2 are based on a Type-3 prime-order pairing with group order p. Identities are
variable length tuples of elements from Z×p with maximum length h.

As is typical with BBG-type extensions the element V1 is replaced with h elements V1,1, . . . , V1,h – one
for each level of an identity. The set U1, (V1,j)j∈[1,h] is used to create the identity hash – for an identity

id = (id1, . . . , id`), the hash is given by U1 + ∑`j=1 idjV1,j . Element W1 will be retained to append the
tag-component to the hash. This replaces the hash in JR-IBE-D ciphertext without affecting the number
of elements in the ciphertext. Moreover, since the hash is embedded in a single ciphertext component,
only one tag is required. Note that the keys in JR-IBE-D have two sub-hashes that when combined during
decryption cancels with the hash of the ciphertext.

In JR-IBE-D, each of U1, V1,W1 is split into two components kept as part of the master secret. The two
sets of components determine the sub-hashes required in generating keys. Similarly, for the HIBE, we need

to split V1,j for all j ∈ [1, h] as V1,j = b∆2,j + ej where ∆1,j , ej
U←Ð Zp. So the sub-hashes are determined by

the vectors v1 = (d, e2,1, . . . , e2,h) and v2 = (∆1,∆2,1, . . . ,∆2,h). Rerandomisation of keys during delegation
can be done in two possible ways – make the encodings of vectors v1,v2 along with ∆3, c in G2 public; or
provide appropriately randomised copies of these elements in the key.

The second method retains the anonymity property leading to the scheme H1. This is because the
vectors v1,v2 can be used to test whether a given ciphertext is encrypted to a particular identity or not.
Keeping them secret naturally leads to anonymity. The former method leads to the scheme H2 that has
shorter keys and faster algorithms compared to H1. But the efficiency comes at the cost of losing anonymity.

4.1 Scheme H1

We define H1 = (H1.Setup,H1.Encrypt,H1.KeyGen,H1.Delegate,H1.Decrypt) where the algorithms are as
follows.

H1.Setup(κ): Generate a Type-3 pairing (p,G1,G2,GT , e, F1, F2) based on the security parameter κ. Com-
pute parameters as follows.

P1
U←Ð G×

1 , P2
U←Ð G×

2

∆1,∆3,∆4, c, d, u, (∆2,j , ej)hj=1
U←Ð Zp, b

U←Ð Z×p ,

U1 = (−∆1b + d)P1, V1,j = (−∆2,jb + ej)P1 for j = 1, . . . , h, W1 = (−∆3b + c)P1,

gT = e(P1, P2)−∆4b+u,

PP ∶ (P1, bP1, U1, (V1,j)hj=1,W1, gT )
MSK ∶ (P2, cP2,∆1,∆3,∆4, d, u, (∆2,j , ej)hj=1)

H1.Encrypt(PP,m, id = (id1, . . . , id`)): Pick tag, s
U←Ð Zp and set the ciphertext C = (C0,C1,C2,C3, tag)

where

C0 =m ⋅ (gT )s, C1 = sP1, C2 = sbP1, C3 = s(U1 +∑`j=1 idjV1,j + tagW1).

H1.KeyGen(MSK, id = (id1, . . . , id`)): Pick r1, r2
U←Ð Zp and compute the secret key SKid = (S1,S2) for

id, with S1 = ((Ki)i∈[1,5], (D1,j ,E1,j)j∈[`+1,h]) and S2 = ((Ji)i∈[1,5], (D2,j ,E2,j)j∈[`+1,h]) where
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K1 = r1P2, K2 = r1cP2, K3 = (u + r1(d +∑`j=1 idjej))P2,

K4 = −r1∆3P2, K5 = (−∆4 − r1(∆1 +∑`j=1 idj∆2,j))P2,

D1,j = r1ejP2, E1,j = −r1∆2,jP2 for j = ` + 1, . . . , h,

J1 = r2P2, J2 = r2cP2, J3 = r2 (d +∑`j=1 idjej)P2,

J4 = −r2∆3P2, J5 = −r2(∆1 +∑`j=1 idj∆2,j)P2,

D2,j = r2ejP2, E2,j = −r2∆2,jP2 for j = ` + 1, . . . , h

H1.Delegate(id = (id1, . . . , id`), id`+1): Let id ∶ id`+1 = (id1, . . . , id`+1). SKid∶id`+1 is generated from SKid as
follows.

r̃1, r̃2
U←Ð Z×p ,

K1 ←K1 + r̃1J1, K2 ←K2 + r̃1J2, K3 ← (K3 + id`+1D1,`+1) + r̃1(J3 + id`+1D2,`+1),
K4 ←K4 + r̃1J4, K5 ← (K5 + id`+1E1,`+1) + r̃1(J5 + id`+1E2,`+1),
D1,j ←D1,j + r̃1D2,j , E1,j ← E1,j + r̃1E2,j for j = ` + 2, . . . , h,

J1 ← r̃2J1, J2 ← r̃2J2, J3 ← r̃2(J3 + id`+1D2,`+1),
J4 ← r̃2J4, J5 ← r̃2(J5 + id`+1E2,`+1),
D2,j ← r̃2D2,j , E2,j ← r̃2E2,j for j = ` + 2, . . . , h,

setting r1 ← r1 + r̃1r2 and r2 ← r̃2r2. Note that the distribution of SKid∶id`+1 is same as that of a freshly
generated key for id ∶ id`+1 via the H1.KeyGen algorithm.

H1.Decrypt(C,SKid): Return m′ computed as:

m′ = C0 ⋅ e(C3,K1)
e(C1, tagK2 +K3)e(C2, tagK4 +K5)

.

Correctness: For all C and SKid such that C ← H1.Encrypt(m, id), SKid ← H1.KeyGen(MSK, id) and
m′ = H1.Decrypt(C,SKid), it holds that m′ = m. The following computation substantiates this claim.
Let (C = (C0,C1,C2,C3)) = H1.Encrypt(m, id; s) and (SKid = (S1,S2)) = H1.KeyGen(MSK, id; r1, r2) with
id = (id1, . . . , id`).

C0 ⋅ e(C3,K1)
e(C1, tagK2 +K3)e(C2, tagK4 +K5)

=
m ⋅ gsT ⋅ e(s(U1 +∑`

j=1 idjV1,j + tagW1), r1P2)
e(sP1, tag ⋅ r1cP2 + (u + r1(d +∑`

j=1 idjej))P2) ⋅ e(sbP1,−tag ⋅ r1∆3P2 − (∆4 + r1(∆1 +∑`
j=1 idj∆2,j))P2)

=
m ⋅ gsT ⋅ e(−∆1b −∑`

j=1 idj∆2,jb − tag∆3b + d +∑`
j=1 idjej + tag ⋅ c,P2)r1s

e(sP1, (u + tag ⋅ r1c)P2 + r1(d +∑`
j=1 idjej)P2) ⋅ e(sP1,−∆4b − tag ⋅ r1∆3bP2 − r1(∆1b +∑`

j=1 idj∆2,jb)P2)

=
m ⋅ gsT ⋅ e(−∆1b −∑`

j=1 idj∆2,jb − tag∆3b + d +∑`
j=1 idjej + tag ⋅ c,P2)r1s

e(P1, (u −∆4b)P2)s ⋅ e(sP1, P2)tag⋅r1c+r1(d+∑
`
j=1 idjej) ⋅ e(sP1, P2)−tag⋅r1∆3b−r1(∆1b+∑`

j=1 idj∆2,jb)

=
m ⋅ gsT ⋅ e((−∆1b −∑`

j=1 idj∆2,jb − tag∆3b + d +∑`
j=1 idjej + tag ⋅ c)P1, P2)r1s

gsT ⋅ e((−∆1b −∑`
j=1 idj∆2,jb − tag∆3b + d +∑`

j=1 idjej + tag ⋅ c)P1, P2)r1s

=m.

The above holds as well for all SKid derived from secret keys for higher level identities through the
H1.Delegate algorithm.
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4.2 Scheme H2

We define H2 = (H2.Setup,H2.Encrypt,H2.KeyGen,H2.Delegate,H2.Decrypt) where the algorithms are as
follows.

H2.Setup(κ): Generate a Type-3 pairing (p,G1,G2,GT , e, F1, F2) based on the security parameter κ. Com-
pute parameters as follows.

P1
U←Ð G×

1 , P2
U←Ð G×

2

∆1,∆3,∆4, c, d, u, (∆2,j , ej)hj=1
U←Ð Zp, b

U←Ð Z×p ,

U1 = (−∆1b + d)P1, V1,j = (−∆2,jb + ej)P1 for j = 1, . . . , h, W1 = (−∆3b + c)P1,

gT = e(P1, P2)−∆4b+u,

PP ∶ (P1, bP1, U1, (V1,j)hj=1,W1, P2,∆1P2,∆3P2, dP2, cP2, (∆2,jP2, ejP2)hj=1, gT )
MSK ∶ (∆4, u)

H2.Encrypt(PP,m, id = (id1, . . . , id`)): Pick tag, s
U←Ð Zp and set the ciphertext C = (C0,C1,C2,C3, tag)

where

C0 =m ⋅ (gT )s, C1 = sP1, C2 = sbP1, C3 = s(U1 +∑`j=1 idjV1,j + tagW1).

H2.KeyGen(MSK, id = (id1, . . . , id`)): Pick
U←Ð Zp and compute the secret key SKid =

((Ki)i∈[1,5], (D1,j ,E1,j)j∈[`+1,h]) for id where,

K1 = rP2, K2 = rcP2, K3 = (u + r(d +∑`j=1 idjej))P2,

K4 = −r∆3P2, K5 = (−∆4 − r(∆1 +∑`j=1 idj∆2,j))P2,

D1,j = rejP2, E1,j = −r∆2,jP2 for j = ` + 1, . . . , h.

H2.Delegate(id = (id1, . . . , id`), id`+1): Let id ∶ id`+1 = (id1, . . . , id`+1). SKid∶id`+1 is generated from SKid as
follows.

r̃
U←Ð Z×p ,

K1 ←K1 + r̃P2, K2 ←K2 + r̃cP2, K3 ← (K3 + id`+1D1,`+1) + r̃(d +∑`+1
j=1 idjej)P2,

K4 ←K4 − r̃∆3P2, K5 ← (K5 + id`+1E1,`+1) − r̃(∆1 +∑`+1
j=1 idj∆2,j)P2,

D1,j ←D1,j + r̃ejP2, E1,j ← E1,j − r̃∆2,jP2 for j = ` + 2, . . . , h,

setting r ← r + r̃. Note that the distribution of SKid∶id`+1 is same as that of a freshly generated key for
id ∶ id`+1 via the KeyGen algorithm.

H2.Decrypt(C,SKid): Return m′ computed as:

m′ = C0 ⋅ e(C3,K1)
e(C1, tagK2 +K3)e(C2, tagK4 +K5)

.

Note:

1. The encryption and decryption algorithms of H1 and H2 are identical and hence the correctness of
decryption for H2 follows from that of H1.

2. The KeyGen and Delegate algorithms for H2 are identical to the portion of the corresponding algo-
rithms for H1 which modify the S1-components of the key. The S2 components of the key in H1 are
not required in H2.
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Discussion: Setting h = 1 in H2 yields a non-anonymous variant of JR-IBE-D. The resulting IBE has
efficiency comparable to JR-IBE-D but has seven extra elements from G2 in public parameters. It is inter-
esting to note that H2 is the only known HIBE within the dual system framework which has rerandomisable
keys. The same holds for the corresponding IBE as well.

5 Security of H1

The scheme H1 is proved secure in the sense of ANO-IND-ID-CPA (described in Appendix A.3). We first
provide algorithms H1.SFEncrypt and H1.SFKeyGen that generate semi-functional ciphertexts and keys
(respectively) required for the dual system proof. In addition, we need an algorithm PSFKeyGen that
generates partial semi-functional keys.

H1.SFEncrypt(MSK,C): Let (C = (C0,C1,C2,C3)) ← H1.Encrypt(m, id = (id1, . . . , id`)). Pick γ
U←Ð Zp and

modify the components of C as follows.

C0 ← C0 ⋅ e(P1, P2)uγ , C1 ← C1 + γP1, C2 ← C2, C3 ← C3 + γ(d +
`

∑
j=1

idjej + tag ⋅ c)P1.

Return the modified ciphertext C = (C0,C1,C2,C3).
H1.SFKeyGen(MSK,SKid): This algorithm takes in a normal secret key SKid = (S1,S2) for identity
id = (id1, . . . , id`) and generates a semi-functional key as follows.

µ1, µ2, π, σ, (πj , σj)hj=1
U←Ð Zp,

K1 ←K1, K2 ←K2 + µ1P2, K3 ←K3 + µ1πP2, K4 ←K4 − (µ1

b
)P2, K5 ←K5 − (µ1π

b
)P2,

D1,j ←D1,j + µ1πjP2, E1,j ← E1,j − (µ1πj

b
)P2 for j = ` + 1, . . . , h,

J1 ← J1, J2 ← J2 + µ2P2, J3 ← J3 + µ2σP2, J4 ← J4 − (µ2

b
)P2, J5 ← J5 − (µ2σ

b
)P2,

D2,j ←D2,j + µ2σjP2, E2,j ← E2,j − (µ2σj

b
)P2 for j = ` + 1, . . . , h,

The resulting key SKid = (S1,S2) is returned.

PSFKeyGen(MSK,SKid): Returns a key SKid for identity id with S1-components having semi-functional
terms (generated according to H1.SFKeyGen algorithm) and S2-components being normal (as returned by
H1.KeyGen algorithm).

Discussion. It is natural to ask whether it is at all required to define semi-functional terms for S2

components of a key that do not play any role in decryption. The answer is yes and the reason is as
follows. Since all the elements required to create the id-hash in G2 are hidden, there is no way to test
the identity to which a ciphertext is encrypted. The scheme seems to be anonymous but to prove it, we
need to ensure that a semi-functional encryption to a target identity is indistinguishable from a semi-
functional encryption to a random identity vector. (We need semi-functionality in order to deal with the
key extraction queries.)

Normally, the K-components of the key are used for decrypting a ciphertext. When these are paired
with the ciphertext components we obtain the blinding factor for the message that only depends on ∆4, u
and the randomiser s. Instead if we try decrypting using J-components of the key (which do not have
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∆4 and u terms), we get 1T , the identity of GT . Hence the J-components help in testing whether the
ciphertext is indeed encrypted under id or not. The presence of such a test does not help in proving
anonymity property. Therefore, it is essential to make S2-components of all keys semi-functional before
arguing about anonymity.

It is straightforward to see that decryption of a semi-functional ciphertext by a normal key or that of a
normal ciphertext with a semi-functional key succeeds. When both ciphertext and key are semi-functional,
decryption results in an extra masking factor of e(P1, P2)µγ(tag+π) on the message. Decryption is only
successful if π = −tag whence the ciphertext and key become nominally semi-functional.

The following theorem states precisely the security guarantee we obtain for H1.

Theorem 5.1. If (εDDH1, t1)-DDH1 and (εDDH2, t2)-DDH2 assumptions hold in G1 and G2 respectively,
then H1 is (ε, t)-ANO-IND-ID-CPA-secure where ε ≤ εDDH1 + 2q ⋅ εDDH2, t1 = t +O(hρ) and t2 = t +O(hρ). ρ
is the maximum time required for one scalar multiplication in G1 and G2.

Proof. Consider a sequence of games Greal, G0,1, (Gk,0,Gk,1)qk=1, Gfinal between an adversary A and a
challenger with the games defined as follows.

• Greal: the actual HIBE security game ano-ind-cpa (described in Appendix A.3).

• Gk,0, 1 ≤ k ≤ q: challenge ciphertext is semi-functional; first k − 1 keys are semi-functional and k-th
key is partial semi-functional.

• Gk,1, 0 ≤ k ≤ q: challenge ciphertext is semi-functional; first k keys are semi-functional.

• Gfinal: challenge ciphertext is a semi-functional encryption of a random message under a random
identity vector; all keys are semi-functional.

Let X◻ denote the event that A wins in G◻. Clearly, the bit β is statistically hidden from the attacker in
Gfinal, which means that Pr[Xfinal] = 1/2.

In Lemmas 5.1, 5.2, 5.3 and 5.4, we show that ∣Pr[Xreal] −Pr[X0,1]∣ ≤ εDDH1, ∣Pr[Xk−1,1] −Pr[Xk,0]∣ ≤
εDDH2, ∣Pr[Xk,0]−Pr[Xk,1]∣ ≤ εDDH2 and Pr[Xq,1] = Pr[Xfinal] respectively. The advantage of A in breaking
the security of H1 is thus given by

Advano-ind-cpa
H1

(A ) = ∣Pr[Xreal] −
1

2
∣

= ∣Pr[Xreal] −Pr[Xfinal]∣

≤ ∣Pr[Xreal] −Pr[X0,1]∣ +
q

∑
k=1

(∣Pr[Xk−1,1] −Pr[Xk,0]∣ + ∣Pr[Xk,0] −Pr[Xk,1]∣)

+ ∣Pr[Xq,1] −Pr[Xfinal]∣
≤ εDDH1 + 2qεDDH2.

In the sequel, B1 (resp. B2) is a DDH1-solver (resp. DDH2-solver). We argue that B1, using
the adversary’s ability to distinguish between Greal and G0,1, can solve DDH1. Similarly, A ’s power to
distinguish between Gk−1,1 and Gk,0 (or Gk,0 and Gk,1) for k ∈ [1, q], can be leveraged to build a DDH2-solver
B2.
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Lemma 5.1. ∣Pr[Xreal] −Pr[X0,1]∣ ≤ εDDH1.

Proof Sketch: B1 simulates the game using a DDH1 instance (G, P1, bP1, sbP1, P2, (s+γ)P1). The element
b of the instance correspond to scalar b of the scheme. B1 sets up the system normally since it has all
information required to do so. The master secret is also known since none of its components depend on b.
Furthermore, it cannot create semi-functional keys as an encoding of b in G2 is not provided. All the key
extract queries are answered normally. B1 sets the randomiser for the challenge ciphertext Ĉ to be s (of
the instance). Ĉ will be normal or semi-functional depending on whether the instance is real i.e., γ = 0, or
random (γ ∈U Zp). Details of the proof can be found in Appendix B.

Lemma 5.2. ∣Pr[Xk−1,1] −Pr[Xk,0]∣ ≤ εDDH2.

Proof Sketch: The DDH2-solver B2 obtains an instance (G, P1, P2, rP2, cP2, (rc+µ)P2. Here c corresponds
to the scalar c inMSK. Elements d, (ej)j∈[1,h] are set to random degree-1 polynomials in c and b is chosen
randomly from Z×p . Let y = (d, e1, . . . , eh). The public parameters are created differently since y is not
known. Only its encoding in G2 i.e, yP2 is known. Specifically U1, V1,j ,W1 are chosen at random from G1.
Depending on these and y, the corresponding ∆’s are implicitly set. The encodings ∆’s can be computed
only in G2. This enables normal key generation as well as semi-functional key generation. In its response
to the k-th key extract query, B2 maps r from the instance to the randomiser r1 in the key. Accordingly
it generates the key choosing r2 at random. If µ = 0, the key will be normal. Otherwise the key is partial
semi-functional and µ corresponds to the randomiser µ1 in the semi-functional part. Moreover, a linear
polynomial f(idk) in idk-components is embedded in the semi-functional scalar π. This polynomial is
determined by the co-efficients of c in y. The coefficients of c in ej also determine πj respectively. For the
challenge ciphertext, B2 has to create semi-functional components which depend on y. But y depends on
c and encoding of c in G1 is not known. The only way out is to set tag = −f(îdβ) so that terms depending
on c vanish. A consequence is that B2 can only generate nominally semi-functional ciphertext for idk. We
then argue that the simulation is perfect. Refer to Appendix C for details.

Lemma 5.3. ∣Pr[Xk,0] −Pr[Xk,1]∣ ≤ εDDH2.

The proof is similar to that of Lemma 5.2. The difference is that B2 creates a partial semi-functional
key for idk, the k-the identity queried by A , and then embeds the DDH2 instance in S2-portion of the
key. B2 advantage in solving DDH2 will now depend on whether the A can determine whether SKidk

is
partial or fully semi-functional.

Lemma 5.4. ∣Pr[Xq,1] = Pr[Xfinal]∣.

Proof Sketch: It is required to show that Gq,1 and Gfinal are statistically indistinguishable from the at-
tacker’s point of view. The generation of public parameters and keys provided to A are changed ensuring
that their form is equivalent to that in Gq,1 and they are independent of the scalars u, d, (ej)j∈[1,h]. Con-
sequently the challenge ciphertext is the only place where these scalars come into play, especially in those
components that consist of the identity-hash and the message. Basically, the message and the id-hash are
masked by random quantities so that Gfinal is simulated. The full proof is provided in Appendix D

6 Note on the Security of H2

The security of H2 is very similar to that of H1. We only highlight the main differences and omit the details
of the proof.
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The definition of semi-functional ciphertexts remains the same. The semi-functional components in
keys are defined as for S1 in H1. Keys in H2 do not contain the second set of components S2. Hence, the
notion of partial semi-functionality is not required.

The game sequence is Greal, G0, (Gk)qk=1, Gfinal, where Greal is the actual HIBE CPA-security game
ind-cpa (defined in Appendix A.2). In G0, challenge ciphertext is semi-functional and all keys are normal.
Gk, 0 ≤ k ≤ q is similar to G0 except that the first k keys are semi-functional and the rest are normal. In
Gfinal, challenge ciphertext is a semi-functional encryption of a random message and all keys are semi-
functional. The theorem below summarises the exact security guarantee obtained for H2.

Theorem 6.1. If (εDDH1, t1)-DDH1 and (εDDH2, t2)-DDH2 assumptions hold in G1 and G2 respectively,
then H2 is (ε, t)-IND-ID-CPA-secure where ε ≤ εDDH1 + q ⋅ εDDH2, t1 = t +O(hρ) and t2 = t +O(hρ). ρ is the
maximum time required for one scalar multiplication in G1 and G2.

Since the structure of the ciphertext in H2 and H1 are identical, so is the first reduction (based on
DDH1). The second reduction is also similar; it is only needed to show that the elements in G2 that
are made public can indeed be generated. The third reduction has one difference. We no longer need
to argue about the independence of all information provided to the attacker with respect to the elements
d, (ej)j∈[1,h]. In H1, this was required to show anonymity i.e, the hash of the identity is masked by a random
quantity. We only need to show that the message to be masked by a random quantity in the last game
and this is done by arguing that the adversary’s view (excluding the challenge ciphertext) is independent
of the scalar u.

7 Conclusion

We obtain two HIBE schemes with constant-size ciphertexts and full security from the IBE scheme of
Jutla and Roy. One achieves anonymity while the other is non-anonymous with shorter keys. Compared to
previous HIBE schemes our constructions provide very good efficiency with just 3 pairings for decryption
and 3 groups elements in the ciphertext. These are also the only CC-HIBEs achieving security under
standard assumptions and degradation independent of the HIBE depth. In HIBE-related literature focussed
on either constant-size ciphertexts or anonymity or both, we believe that our constructions complete the
picture.
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A Hierarchical Identity-Based Encryption

A.1 Definition

A HIBE scheme consists of five probabilistic polynomial time (in the security parameter) algorithms –
Setup, Encrypt, KeyGen, Delegate and Decrypt.

• Setup: based on an input security parameter κ, generates and outputs the public parameters PP
and the master secret MSK.

• KeyGen: inputs an identity vector id and master secret MSK and outputs the secret key SKid

corresponding to id.

• Encrypt: inputs an identity id, a message M and returns a ciphertext C.

• Delegate: takes as input a depth ` identity vector id = (id1, . . . , id`), a secret key SKid and an identity
id`+1; returns a secret key for the identity vector (id1, . . . , id`+1).

• Decrypt: inputs a ciphertext C, an identity vector id, secret key SKid and returns either the corre-
sponding message M or � indicating failure.

A.2 CPA-Security

Security against a chosen plaintext attack for HIBE schemes is modelled by the following security game,
called ind-cpa [GS02].

Setup: The challenger runs the Setup algorithm of the HIBE and gives the public parameters to A .

Phase 1: A makes a number of key extraction queries adaptively. For a query on an identity vector id,
the challenger responds with a key SKid.
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Challenge: A provides two message m0,m1 and and identity îd as challenge with the restriction that no
prefix of îd has been queried in Phase 1. The challenger then chooses a bit β uniformly at random from
{0,1} and returns an encryption Ĉ of Mβ under îd to A .

Phase 2: A issues more key extraction queries as in Phase 1 with the restriction that no queried identity
id is a prefix of îd.

Guess: A outputs a bit β′.

If β = β′, then A wins the game. The advantage of A in breaking the security of the HIBE scheme in
the game ind-cpa given by

Advind-cpa
HIBE (A ) = ∣Pr[β = β′] − 1

2
∣ .

The HIBE scheme is said to be (ε, t, q)-IND-ID-CPA secure if every t-time adversary making at most q
queries has Advind-cpa

HIBE (A ) ≤ ε.

A.3 CPA-Security and Anonymity

The security game defined below captures both anonymity and security against a chosen plaintext attack
for HIBE schemes. This model, which we call ano-ind-cpa, is equivalent to the standard security notions
for CPA-security and anonymity and has been used earlier in [Duc10, DCIP10].

Setup: The challenger runs the Setup algorithm of the HIBE and gives the public parameters to A .

Phase 1: A makes a number of key extraction queries adaptively. For a query on an identity vector id,
the challenger responds with a key SKid.

Challenge: A provides two message-identity pairs (M0, îd0) and (M1, îd1) as challenge with the restric-
tion that neither îd0, îd1 nor any of their prefixes should have been queried in Phase 1. The challenger
then chooses a bit β uniformly at random from {0,1} and returns an encryption Ĉ of Mβ under the identity
îdβ to A .

Phase 2: A issues more key extraction queries as in Phase 1 with the restriction that no queried identity
id is a prefix of either îd0 or îd1.

Guess: A outputs a bit β′.

If β = β′, then A wins the game. The advantage of A in breaking the security of the HIBE scheme in
the game ano-ind-cpa given by

Advano-ind-cpa
HIBE (A ) = ∣Pr[β = β′] − 1

2
∣ .

The HIBE scheme is said to be (ε, t, q)-ANO-IND-ID-CPA secure if every t-time adversary making at most
q queries has Advano-ind-cpa

HIBE (A ) ≤ ε.

B Proof of Lemma 5.1

Let (G, P1, bP1, sbP1, P2, (s+γ)P1) be the instance of DDH1 that B1 has to solve i.e., decide whether γ = 0
or γ ∈U Zp. The phases of the game are simulated by B1 as described below.

Setup: Choose c, d, u,∆1,∆3,∆4, (ej ,∆2,j)hj=1
U←Ð Zp and set parameters as:
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U1 = −∆1(bP1) + dP1, V1,j = −∆2,j(bP1) + ejP1 for j = 1, . . . , h, W1 = −∆3(bP1) + cP1,

gT = e(bP1, P2)−∆4e(P1, P2)u
PP ∶ (P1, bP1, U1, (V1,j)hj=1,W1, gT )

All the secret scalars present in the MSK are known. B1 can thus create normal keys. However, B1’s
lack of knowledge of the scalar b or its encoding in G2 does not allow it to create semi-functional keys.

Key Generation Phases 1 & 2: B1 answers all of A ’s queries with normal keys generated by the
H1.KeyGen algorithm.

Challenge: A sends two message-identity pairs (m0, îd0), (m1, îd1). B1 chooses β
U←Ð {0,1}, encrypts

mβ under îdβ and sends the resulting ciphertext Ĉ = (Ĉ0, Ĉ1, Ĉ2, Ĉ3, t̂ag) to A . Let îdβ = (îd1, . . . , îd̂̀). Ĉ
is computed as:

t̂ag
U←Ð Zp,

Ĉ0 =mβ ⋅ e(sbP1, P2)−∆4e((s + γ)P1, P2)u =mβ ⋅ gsTe(P1, P2)uγ ,

Ĉ1 = (s + γ)P1 = sP1 + γP1,

Ĉ2 = sbP1,

Ĉ3 = (−∆1 −∑
̂̀
j=1 ∆2,j îdj − t̂ag ⋅∆3)(sbP1) + (d +∑̂̀

j=1 ej îdj + t̂ag ⋅ c)(s + γ)P1

= (−∆1b + d +∑
̂̀
j=1 îdj(−∆2,jb + ej) + t̂ag(−∆3b + c))(sP1) + (d +∑̂̀

j=1 ej îdj + t̂ag ⋅ c)(γP1)
= s(U1 +∑

̂̀
j=1 îdjV1,j + t̂agW1) + γ(d +∑

̂̀
j=1 ej îdj + t̂ag ⋅ c)P1.

Observe that Ĉ is normal if γ = 0 and semi-functional when γ ∈U Zp.

Guess: A outputs its guess β′ and halts.

B returns 1 if A ’s guess is correct i.e., β = β′; otherwise B1 returns 0. The advantage of B1 in solving
the DDH1 instance is given by

AdvDDH1
G (B1) = ∣Pr[B1 returns 1∣γ = 0] −Pr[B1 returns 1∣γ ∈U Zp]∣

= ∣Pr[β = β′∣γ = 0] −Pr[β = β′∣γ ∈U Zp]∣
= ∣Pr[Xreal] −Pr[X0,1]∣.

Since AdvDDH1
G (B1) ≤ εDDH1, we have ∣Pr[Xreal] −Pr[X0,1]∣ ≤ εDDH1.

C Proof of Lemma 5.2

B2 is given an instance (G, P1, P2, rP2, cP2, (rc + µ)P2) of DDH2 and asked to decide whether µ = 0 or
µ ∈U Zp. It simulates the game as described below.

Setup: Pick scalars u,∆′
1,∆

′
3,∆

′
4, d1, d2, (ej,1, ej,2,∆′

2,j)hj=1
U←Ð Zp and b

U←Ð Z×p and (implicitly) set

d = d1 + cd2, ∆1 =
∆′

1 + d
b

, ∆3 =
∆′

3 + c
b

, ∆4 =
∆′

4 + u
b

,

ej = ej,1 + cej,2, ∆2,j =
∆′

2,j + ej
b

for j = 1, . . . , h.

Parameters are generated as follows.

U1 = −∆′
1P1, V1,j = −∆′

2,jP1 for j = 1, . . . , h, W1 = −∆′
3P1,
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gT = e(P1, P2)−∆′
4

PP ∶ (P1, bP1, U1, (V1,j)hj=1,W1, gT )
The elements ∆1,∆2,j ,∆3, d, ej that are part of the MSK are not available to B2. Even without these,
B2 can generate keys as explained in the simulation of the key generation phases.

Key Generation Phases 1 & 2: A queries on identities id1, id2, . . . , idq. B responds to the i-th query
(i ∈ [1, q]) considering three cases.

Case 1: i > k
B2 returns a normal key, SKidi

= (S1,S2) with S1 = ((Ki)i∈[1,5], (D1,j ,E1,j)j∈[`+1,h]) and S2 =
((Ji)i∈[1,5], (D2,j ,E2,j)j∈[`+1,h]). The master secret is not completely available to B2 and hence the
H1.KeyGen needs a modification. The S1-components are computed as shown below.

r1, r2
U←Ð Zp,

K1 = r1P2, K2 = r1(cP2),

K3 =
⎛
⎝
u + r1

⎛
⎝
d1 +

`

∑
j=1

idjej,1
⎞
⎠
⎞
⎠
P2 + r1

⎛
⎝
d2 +

`

∑
j=1

idjej,2
⎞
⎠
(cP2) =

⎛
⎝
u + r1

⎛
⎝
d +

`

∑
j=1

idjej
⎞
⎠
⎞
⎠
P2,

K4 = −b−1r1(∆′
3P2 + cP2) = −r1 (

∆′
3 + c
b

)P2 = −r1∆3P2,

K5 = −b−1 ⎛
⎝

∆′
4 + u + r1

⎛
⎝

∆′
1 + d1 +

`

∑
j=1

idj(∆′
2,j + ej,1)

⎞
⎠
⎞
⎠
P2 − b−1r1

⎛
⎝
d2 +

`

∑
j=1

idjej,2
⎞
⎠
(cP2)

= b−1 ⎛
⎝
−∆′

4 − u − r1
⎛
⎝

∆′
1 + d +

`

∑
j=1

idj(∆′
2,j + ej)

⎞
⎠
⎞
⎠
P2

=
⎛
⎝
−∆′

4 + u
b

− r1
⎛
⎝

∆′
1 + d
b

+
`

∑
j=1

idj (
∆′

2,j + ej
b

)
⎞
⎠
⎞
⎠
P2

=
⎛
⎝
−∆4 − r1

⎛
⎝

∆1 +
`

∑
j=1

idj∆2,j
⎞
⎠
⎞
⎠
P2,

for j = ` + 1, . . . , h,
D1,j = r1(ej,1P2 + ej,2(cP2)) = r1ejP2,

E1,j = −r1b
−1(∆′

2,j + ej,1)P2 − r1b
−1ej,2(cP2) = −r1 (

∆′
2,j + ej
b

)P2 = −r1∆2,jP2.

S2-components are generated in a similar fashion using a randomiser r2
U←Ð Zp and leaving out the

scalars u and ∆′
4. Details are omitted.

Case 2: i < k
In this case, B2 first creates a normal key SKidi

and runs H1.SFKeyGen on SKidi
. This is possible

because the only scalar used in H1.SFKeyGen is b which is known to B2.

Case 3: i = k
Let SKidk

= (S1,S2) be the key that B2 generates for idk. Elements of S2 are created normally
(as indicated in Case 1). In the S1-portion of SKidk

, B2 embeds the DDH2 instance (consisting of
P2, cP2, rP2, (rc + µ)P2) by generating the components as:
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K1 = rP2, K2 = (rc + µ)P2,

K3 = uP2 +
⎛
⎝
d1 +

`

∑
j=1

idjej,1
⎞
⎠
(rP2) +

⎛
⎝
d2 +

`

∑
j=1

idjej,2
⎞
⎠
(rc + µ)P2

= uP2 + r
⎛
⎝
d1 +

`

∑
j=1

idjej,1 + c
⎛
⎝
d2 +

`

∑
j=1

idjej,2
⎞
⎠
⎞
⎠
P2 + µ

⎛
⎝
d2 +

`

∑
j=1

idjej,2
⎞
⎠
P2

=
⎛
⎝
u + r

⎛
⎝
d +

`

∑
j=1

idjej
⎞
⎠
⎞
⎠
P2 + µ

⎛
⎝
d2 +

`

∑
j=1

idjej,2
⎞
⎠
P2,

K4 = −b−1(∆′
3rP2 + (rc + µ)P2) = −r (

∆′
3 + c
b

)P2 − (µ
b
)P2 = −r∆3P2 − (µ

b
)P2,

K5 = −b−1 ⎛
⎝

∆′
1 + d1 +

`

∑
j=1

idj(∆′
2,j + ej,1)

⎞
⎠
(rP2) − b−1 ⎛

⎝
d2 +

`

∑
j=1

idjej,2
⎞
⎠
(rc + µ)P2

= −b−1r
⎛
⎝

∆′
1 + d +

`

∑
j=1

idj(∆′
2,j + ej)

⎞
⎠
P2 − b−1µ

⎛
⎝
d2 +

`

∑
j=1

idjej,2
⎞
⎠
P2

= −r
⎛
⎝

∆′
1 + d
b

+
`

∑
j=1

idj (
∆′

2,j + ej
b

)
⎞
⎠
P2 − (µ

b
)
⎛
⎝
d2 +

`

∑
j=1

idjej,2
⎞
⎠
P2

= −r
⎛
⎝

∆1 +
`

∑
j=1

idj∆2,j
⎞
⎠
P2 − (µ

b
)
⎛
⎝
d2 +

`

∑
j=1

idjej,2
⎞
⎠
P2,

for j = ` + 1, . . . , h,
D1,j = ej,1(rP2) + ej,2(rc + µ)P2 = rejP2 + µej,2P2,

E1,j = −b−1(∆′
2,j + ej,1)rP2 − b−1ej,2(rc + µ)P2

= −r (
∆′

2,j + ej
b

)P2 − (µej,2
b

)P2

= −r∆2,jP2 − (µej,2
b

)P2.

When µ = 0, SKidk
is normal with r1 = r; otherwise, it is partial semi-functional with

r1 = r, µ1 = µ,

π = d2 +∑`j=1 idjej,2 and

πj = ej,2 for j = ` + 1, . . . , h

set implicitly.

Challenge: B2 obtains two message-identity pairs (m0, îd0), (m1, îd1) from A . It then picks β
U←Ð

{0,1}, s, γ
U←Ð Zp and generates a semi-functional encryption of mβ under îdβ = (îd1, . . . , îd̂̀) given by

Ĉ = (Ĉ0, Ĉ1, Ĉ2, Ĉ3, t̂ag) where

t̂ag = −d2 −
̂̀
∑
j=1

îdjej,2,

Ĉ0 =mβ ⋅ gsT ⋅ e(P1, P2)uγ ,

Ĉ1 = sP1 + γP1,

Ĉ2 = sbP1,

Ĉ3 = s (U1 +∑
̂̀
j=1 îdjV1,j + t̂agW1) + γ (d1 +∑

̂̀
j=1 îdjej,1)P1
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= s (U1 +∑
̂̀
j=1 îdjV1,j + t̂agW1)

+γ ((d1 + cd2) +∑
̂̀
j=1 îdj(ej,1 + cej,2) + t̂ag ⋅ c)P1 − γ (d2c +∑

̂̀
j=1 îdjej,2c)P1 − t̂ag ⋅ cγP1

= s (U1 +∑
̂̀
j=1 îdjV1,j + t̂agW1)

+γ (d +∑̂̀
j=1 îdjej + t̂ag ⋅ c)P1 + cγ (−d2 −∑

̂̀
j=1 îdjej,2 − t̂ag)P1

= s (U1 +∑
̂̀
j=1 îdjV1,j + t̂agW1) + γ (d +∑̂̀

j=1 îdjej + t̂ag ⋅ c)P1.

The last step follows due to the fact that t̂ag = −d2 −∑
̂̀
j=1 îdjej,2. Note that Ĉ is properly formed. Also,

this is the only way B2 can generate a semi-functional ciphertext since no encoding of c is available in the
group G1. An implication is that B2 can only create a nominally semi-functional ciphertext for idk since
the relation tag = −π will hold, thus providing no information to B2 about the semi-functionality of SKidk

.

Guess: A returns its guess β′ of β.

B2 outputs 1 if A wins and 0 otherwise. Also, B2 simulates Gk−1,1 if µ = 0 and Gk,0 if µ ∈U Zp.
Therefore, the advantage of B2 in solving the DDH2 instance is given by

AdvDDH2
G (B2) = ∣Pr[B2 returns 1∣µ = 0] −Pr[B2 returns 1∣µ ∈U Zp]∣

= ∣Pr[β = β′∣γ = 0] −Pr[β = β′∣γ ∈U Zp]∣
= ∣Pr[Xk−1,1] −Pr[Xk,0]∣.

It now follows that ∣Pr[Xk−1,1] − Pr[Xk,0]∣ ≤ εDDH2 from the fact that AdvDDH2
G (B) ≤ εDDH2 for all t-time

adversaries B. What remains is to show that all the information provided to the adversary have the
correct distribution. The scalars b, u,∆′

1,∆
′
3,∆

′
4, d1, d2, (ej,1, ej,2,∆′

2,j)hj=1 chosen by B2 and r, c, µ from the
instance are uniformly and independently distributed. As a consequence the following quantities have the
correct distribution.

• r1, µ1 for the k-th key

• ∆4,∆3

• d, (ej)hj=1 and hence ∆1, (∆2,j)hj=1

The same scalars also determine π, (πj)hj=`+1 for k-th identity and t̂ag for challenge ciphertext which are
required to be uniform and independent quantities. We now argue that this is indeed the case. Let
idk = (id1, . . . , idh) and îdβ = (îd1, . . . , îdh) where, for convenience we assume that id`+1 = ⋯ = idh = îd̂̀+1 =
⋯îdh = 0. Without loss of generality, we consider the case ` = 1 since identity vectors are of length at least
1. The quantities π, (πj)hj=2, t̂ag are given by the following equation.

⎛
⎜⎜⎜⎜⎜⎜
⎝

π
π2

⋮
πh
t̂ag

⎞
⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 id1 id2 id3 id4 ⋯ idh
0 0 1 0 0 ⋯ 0
0 0 0 1 0 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 0 0 ⋯ 1

−1 −îd1 −îd2 −îd3 −îd4 ⋯ −îdh

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

d2

e1,2

e2,2

⋮
eh−1,2

eh,2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(1)

Observe that

• the first and last rows in the above matrix are linearly independent since identity components are in
Z×p and idk ≠ îdβ. All other rows are linearly independent of these two rows. Hence the matrix has
rank h + 1.
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• d2, e1,2, . . . , eh,2 are information theoretically hidden from A and also chosen from uniform and in-
dependent distributions over Zp.

Conditioned on these observations, we conclude that π, (πj)hj=2, t̂ag are uniformly and independently dis-
tributed in A ’s view.

D Proof of Lemma 5.4

In Gq,1, all the keys returned to A are semi-functional and so is the challenge ciphertext. To argue that
Pr[Xq,1] = Pr[Xfinal]∣, we modify the H1.Setup and H1.SFKeyGen algorithms so that the modification results
in Gfinal and the distribution of information provided to the adversary before and after the modification
are statistically indistinguishable.

H1.Setup: Pick scalars ∆′
1,∆

′
3,∆

′
4, u, c, d, (ej ,∆′

2,j)hj=1
U←Ð Zp and b

U←Ð Z×p and compute parameters as:

U1 = −∆′
1P1, V1,j = −∆′

2,jP1 for j = 1, . . . , h, W1 = −∆′
3P1,

gT = e(P1, P2)−∆′
4

PP ∶ (P1, bP1, U1, (V1,j)hj=1,W1, gT )
setting

∆1 =
∆′

1 + d
b

, ∆3 =
∆′

3 + c
b

, ∆4 =
∆′

4 + u
b

,

∆2,j =
∆′

2,j + ej
b

for j = 1, . . . , h.

H1.SFKeyGen: Choose r1, r2, π
′, σ′, (π′j , σ′j)hj=`+1

U←Ð Zp, µ1, µ2
U←Ð Z×p and compute the individual compo-

nents as follows.

K1 = r1P2, K2 = r1cP2 + µ1P2, J1 = r2P2, J2 = r2(cP2) + µ2P2,

K3 = π′P2, J3 = σ′P2,

K4 = −r1 (
∆′

3 + c
b

)P2 − (µ1

b
)P2, J4 = −r2 (

∆′
3 + c
b

)P2 − (µ2

b
)P2,

K5 = −
1

b

⎛
⎝
π′ +∆′

4 + r1
⎛
⎝

∆′
1 +

`

∑
j=1

idj∆
′
2,j

⎞
⎠
⎞
⎠
P2, J5 = −

1

b

⎛
⎝
σ′ + r2

⎛
⎝

∆′
1 +

`

∑
j=1

idj∆2,j
⎞
⎠
⎞
⎠
P2,

for j = ` + 1, . . . , h,

D1,j = π′jP2, D2,j = σ′jP2,

E1,j = −(
r1∆′

2,j + π′j
b

)P2, E2,j = −(
r2∆′

2,j + σ′j
b

)P2.

The setting of K3 = π′P2 fixes the product µ1π that appear in its semi-functional form i.e.,
(u + r1 (d +∑`j=1 idjej) + µ1π)P2. The other component where π′ is used is K5 that also fixes µ1π in
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its semi-functional term. It is necessary to ensure that these two are equal. We show below that K5 is
indeed well-formed in this sense.

K5 = −
1

b

⎛
⎝
π′ +∆′

4 + r1
⎛
⎝

∆′
1 +

`

∑
j=1

idj∆
′
2,j

⎞
⎠
⎞
⎠
P2

= −1

b

⎛
⎝
u + r1

⎛
⎝
d +

`

∑
j=1

idjej
⎞
⎠
+ µ1π +∆′

4 + r1
⎛
⎝

∆′
1 +

`

∑
j=1

idj∆
′
2,j

⎞
⎠
⎞
⎠
P2

= −1

b

⎛
⎝
(∆′

4 + u) + r1
⎛
⎝
(∆′

1 + d) +
`

∑
j=1

idj(∆′
2,j + ej)

⎞
⎠
⎞
⎠
P2 + µ1πP2

= −
⎛
⎝

∆′
4 + u
b

+ r1
⎛
⎝

∆′
1 + d
b

+
`

∑
j=1

idj (
∆′

2,j + ej
b

)
⎞
⎠
⎞
⎠
P2 + µ1πP2

= −
⎛
⎝

∆4 + r1
⎛
⎝

∆1 +
`

∑
j=1

idj∆2,j
⎞
⎠
⎞
⎠
P2 + µ1πP2,

Similarly, setting D1,j = π′jP2 fixes µ1πj since D1,j has the form r1ej +µ1πj . E1,j is computed using π′j and
we justify below that is is properly formed.

E1,j = −(
r1∆′

2,j + π′j
b

)P2

= −(
r1∆′

2,j + r1ej + µ1πj

b
)P2

= −r1 (
∆′

2,j + ej
b

)P2 −
µ1πj

b
P2

= −r1∆2,jP2 −
µ1πj

b
P2

The scalars π′, (π′j)hj=1 define the products µ1π, (µ1πj)hj=1 respectively. Since µ1 is chosen uniformly from

Z×p , π, (πj)hj=1 are uniformly and independently distributed in Zp. Similarly, it is possible to show that

J5, (E2,j)hj=`+1 are well-formed and σ, (σj)hj=1 have the proper distribution.

So, the scalars π,σ, (πj , σj)hj=`+1 are implicitly set to independent random values in Zp. Furthermore, all

the elements are generated independent of u, d, (ej)hj=1 that determines the independence of the ciphertext
from the key. Let us now take a look at the challenge ciphertext:

Ĉ0 =mβ ⋅ gsT ⋅ e(P1, P2)uγ ,

Ĉ1 = sP1 + γP1,

Ĉ2 = sbP1,

Ĉ3 = −s (∆′
1 +∑

̂̀
j=1 îdj∆

′
2,j + t̂ag∆′

3)P1 + γ (d +∑̂̀
j=1 îdjej + t̂ag ⋅ c)P1,

where t̂ag, γ, s
U←Ð Zp. Recall that u, d, (ej)hj=1 are chosen independently and uniformly at random from Zp.

Consequently, components Ĉ0 and Ĉ1 are randomly distributed in GT and G1 respectively. Also these two
components are independent of all other information (including keys and public parameters) provided to
A . Therefore the bit β is information theoretically hidden from the adversary implying that the resulting
game (obtained by modifying H1.SFKeyGen) is Gfinal. Also, since the distribution of keys and parameters
remains the same, the two games Gq,1 and Gfinal are statistically indistinguishable.
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