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Abstract

Indistinguishability-based definitions of cryptographic primitives such as encryption, commit-
ments, and zero-knowledge proofs are proven to be impossible to realize in scenarios where parties
only have access to non-extractable sources of randomness (Dodis et al., FOCS 2004). In this work
we demonstrate that it is, nevertheless, possible to quantify this secrecy loss for non-extractable
sources such as the (well-studied) Santha–Vazirani (SV) sources. In particular, to establish
meaningful security guarantees in scenarios where such imperfect randomness sources are used, we
define and study differential indistinguishability, a generalization of indistinguishability inspired
by the notion of differential privacy.

We analyze strengths and weaknesses of differential indistinguishability both individually
as well as under composition, and we interpret the resulting differential security guarantees for
encryption, commitments, and zero-knowledge proofs.

Surprisingly, indistinguishability with uniform randomness carries over to differential indistin-
guishability with SV randomness: We show that all primitives that are secure under a traditional
indistinguishibility-based definition are differentially secure when they use (a bounded amount
of) SV randomness instead of uniform randomness.
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1 Introduction

Most cryptographic protocols are designed and proven secure under the assumption that the protocol
parties have access to perfect (uniform) randomness. Unfortunately, physical randomness sources
that are employed in cryptographic implementations of those protocols are rarely the unbiased and
independent perfect sources that are assumed in the security proofs of the protocols. In many cases
such sources are not perfect, but only random in a weaker sense, e.g., they provide a certain amount
of entropy. Moreover, many sources are found to be not extractable [13, 28], i.e., it is impossible to
deterministically extract a super-logarithmic amount of nearly uniform randomness from them.

Santha–Vazirani (SV) sources [28] (and their generalizations [9,13,31]) are a prominent example
of such non-extractable sources of randomness: a SV source produces an infinite bit sequence where
each bit has almost one bit of entropy, but can have a small bias that might depend on all prior bits.

Although SV sources are non-extractable, their (reasonably high) entropy was found to be
sufficient for simulating probabilistic algorithms [1,9,28,31] and for implementing some cryptographic
primitives [11, 13, 23] such as message authentication codes and signatures. Intuitively, the security
of these primitives resides in the impossibility of predicting a whole bitstring, and consequently a
high entropy is sufficient to render this task computationally hard.

However, many cryptographic definitions rely on the well-established notion of indistinguishability,
i.e., an attacker only needs to distinguish two scenarios to break the cryptographic definition. Weak
sources such as SV sources have been found to be insufficient [5, 13,24] to achieve these definitions.
More precisely, McInnes and Pinkas [24] show that unconditionally secure symmetric encryption
of even a single bit cannot be based on a weak source. Dodis et al. [13] prove that block sources
(a generalization of SV sources) are not sufficient for realizing any cryptographic primitive that
requires a secrecy guarantee that is based on indistinguishability. In particular, traditional secrecy
guarantees cannot be given for primitives such as encryption, commitments, zero-knowledge proofs,
and secret sharing, even against a computationally bounded adversary.

This line of work indicates a gap between cryptographically secure primitives and their usage
with imperfect randomness. The following points are currently unclear:

• Is it possible to quantify the secrecy loss of cryptographic primitives, e.g., encryption schemes,
if they use imperfect randomness sources such as SV sources? How can we give meaningful
quantitative guarantees in such cases?

• Do these quantitative guarantees require new constructions, or do they apply to existing
schemes?

• Given that these quantitative guarantees are necessarily weaker than traditional cryptographic
guarantees, what practical risks and drawbacks do they impose on the security of cryptographic
systems?

1.1 Our Contributions

New Notion: Differential Indistinguishability. To address the first question, we define
differential indistinguishability, a generalization of cryptographic indistinguishability in the spirit of
(computational) differential privacy [25] and pseudodensity [27]. Differential indistinguishability
quantifies the secrecy loss of cryptographic primitives in scenarios where uniform randomness is not
available. To describe those scenarios we make use of a generalized form of the Santha-Vazirani (SV)
randomness sources [28] that allows for reasoning about blocks of randomness at once (instead of
working on a bit-by-bit basis). We show that traditional indistinguishability (under the assumption
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of uniform randomness) suffices to guarantee differential indistinguishability if a generalized SV
source is used instead of the uniform source. We instantiate differential indistinguishability by
several (indistinguishability-based) security definitions for cryptographic primitives such as the
hiding property for commitment schemes, indistinguishability against adaptive chosen ciphertext
attacks (IND-CCA-II) for encryption, or zero-knowledge for interactive proof systems.

Guarantees for Cryptographic Primitives. We present quantitative guarantees for all cryp-
tographic constructions that are used with a generalized SV source, given that the construction
has been proven secure on uniform randomness. This enables us to present a non-trivial lower
bound for the security in cases where a general impossibility result by Dodis et al. [13] has ruled
out traditional indistinguishability guarantees. Interestingly, new constructions for these primitives
are not necessary in order to obtain such guarantees. We present theorems that reason immediately
about all existing primitives whose security definitions are based on (information-theoretical or
computational) indistinguishability, as long as the amount of non-uniform randomness can be
bounded.

To demonstrate the general applicability of our results, we first show that commitment schemes
that are information-theoretically hiding with uniform randomness are differentially indistinguishable
against unbounded adversaries if they rely on a generalized SV source instead. This result is useful
for security protocols such as electronic voting that promise everlasting privacy [26]. Second,
we show that public-key encryption schemes that are indistinguishable under adaptive chosen
ciphertext attack also are differentially indistinguishable under adaptive chosen-ciphertext attack
if a generalized SV source is used instead of uniform randomness. This result applies both for
the case when a generalized SV source is used for generating the keys as well as the case when it
is used for encrypting a message. Third, we demonstrate that differential indistinguishability is
applicable to zero-knowledge proofs as well. We show that proof systems that are zero-knowledge in
the traditional sense are differentially zero-knowledge if the prover uses a generalized SV source
instead of uniform randomness. For non-interactive zero-knowledge proofs, we also consider an
imperfectly sampled common reference string.

The applicability to commitments, encryption and zero-knowledge proofs demonstrates how
traditional indistinguishability-based definitions can be extended to achieve guarantees whenever
a generalized SV source is employed in practice. We note that both our notions and our proofs
can directly be applied to other indistinguishability-based security such as semantic security for
encryption and computational hiding for commitments, and to other primitives such as secret
sharing, pseudorandom generators, and oblivious transfer. Our analysis can also be used in scenarios
in which one cannot influence the randomness source (anymore), e.g., for analyzing the security of a
voting system after the election is over.

Risks and Drawbacks. We evaluate the relation between differential indistinguishability and
the well-studied notion of differential privacy [15,25]. Notably, we show that differential indistin-
guishability is composable in a similar way as differential privacy, i.e., from a guarantee for a single
execution one can derive a guarantee for several (serial) executions. This composition comes with a
loss of secrecy that is linearly bounded in the number of executions, similar as when composing
several database queries in differential privacy.

1.2 An Overview of Our Results

Our differential indistinguishability notion is structurally related to differential privacy [15], which
originally quantifies the privacy loss of a probabilistic statistical algorithm f by the probability of
guessing on which of two similar input databases (D,D′) the algorithm is executed. Recall that
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a statistical algorithm f : D → R is ε-differentially private [15] if for all neighboring databases
D,D′ and every set S ⊆ R of possible results of f , Pr [f(D) ∈ S] ≤ eε Pr [f(D′) ∈ S], where ε ≥ 0
is a “reasonably small” constant that quantifies the privacy loss of the statistical algorithm. In
contrast to traditional information-theoretical or computational indistinguishability for differential
privacy, the probability of guessing right can be non-negligibly higher than the probability of guessing
wrong. However, as long as the disclosure is within a small multiplicative factor eε, the algorithm is
considered to be differentially private. Such a weaker guarantee for statistical algorithms is necessary
as traditional indistinguishability is not possible if the algorithms are to output (useful) statistics.
Differential Indistinguishability. For cryptographic primitives that are used with imperfect
randomness a similar impossibility result applies. Dodis et al. [13] show that in the case of imperfect
randomness, traditional indistinguishability is provably impossible for cryptographic primitives
that have a secrecy requirement, e.g., encryption, commitments, and zero-knowledge proofs. As
differential privacy avoids the impossibility of traditional indistinguishability for (useful) statistics
about databases, we aim for a similar relaxation of the security guaranteed by the aforementioned
cryptographic primitives in order to avoid the impossibility in the case of imperfect randomness.

To this end, we introduce differential indistinguishability, a generalization of cryptographic
indistinguishability in the spirit of computational differential privacy [25] and pseudodensity [27]. Two
games, i.e., the interactions with two machines X0 and X1, are (ε, δ)-differentially indistinguishable
if for all interactive distinguisher machines A, the output probabilities for all outputs are related by

Pr [〈A|X0〉 = x] ≤ eε Pr [〈A|X1〉 = x] + δ,

where x is a possible output of A. Intuitively, δ remains a negligible function, whereas ε ≥ 0 is a
reasonably small constant.

As our main contribution we show that traditional indistinguishability (for uniform randomness)
implies differential indistinguishability for imperfect randomness. Consequently, all primitives
that are secure for uniform randomness are also differentially secure for imperfect randomness.
To give this strong result we first show that SV distributions and the uniform distribution are
(ε, 0)-differentially indistinguishable with ε depending on the maximal bias of the distribution,
even for a computationally unbounded distinguisher A (Lemma 1). We then extend this lemma
to show our main technical result (Lemma 2), which states that two games/machines X0 and
X1 are (ε, δ)-differentially indistinguishable for SV distributions with a negligible δ, if they are
indistinguishable for the uniform distribution.

This result holds for arbitrary classes of adversaries and thus allows for deriving results for both
information-theoretically as well as computationally indistinguishable schemes. One can instantiate
the games from Lemma 2 with the indistinguishability games that are to be analyzed and directly
compute the results.
An Illustrative Example. Moran and Naor [26] introduce the notion of everlasting privacy for
electronic voting (e-voting) using information-theoretically hiding commitments. However, if the
randomness employed for commitments is not perfect, traditional cryptographic indistinguishability
notions cannot make a statement. Using our notion of differential indistinguishability, Lemma 2
gives meaningful bounds for the privacy loss of the vote for all generalized SV sources. Moreover,
for SV sources the scheme still satisfies a weaker (non coercive) form of deniability in the following
sense:

For any given vote a certain candidate, e.g., Alice, might appear more likely, but it could very
well be a vote for any other candidate.
Interpretation. The non-negligible multiplicative factor in differential indistinguishability may
weaken the security guarantees, and similar to differential privacy it needs to be interpreted
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carefully in the respective context. To derive quantitative guarantees, we require that the amount
of (imperfect) randomness used by the challenger in the indistinguishability game for a scheme
has to be polynomially bounded in terms of the security parameter. This requirement is natural,
given that our goal is to reason about the influence of the randomness. Surprisingly, this is the only
requirement if we consider SV sources. This leads to the observation that all existing primitives that
use a bounded amount of randomness can immediately be analyzed and their secrecy loss can be
quantified by an additional multiplicative factor that depends on the quality of the random source,
without any need for new constructions, although in some cases better constructions could reduce
the impact of imperfect randomness significantly.

As the parameter ε is a multiplicative parameter, the guarantee is not trivial, even for small
constants ε. It is easy to see that a multiplicative bound can always be transformed into an additive
bound, but the converse is not true.

Compostion. Recall that the privacy loss in differential privacy linearly accumulates under
composition, which leads to the notion of a “privacy budget”. Intuitively, such a budget describes the
number of queries (executions of the algorithm) that are allowed on the sensitive database. The same
argumentation applies to differential indistinguishability guarantees when we compose cryptographic
primitives. We can easily give guarantees for the composition of two or more primitives, but
the amount of used randomness and thus the “secrecy loss” increases linear in the number of
compositions. This is critical, because in contrast to the traditional setting this secrecy loss is not
negligible; thus, a “secrecy budget” (the counterpart of the “privacy budget”) is necessary.

Future Directions. Our work presents a novel view on the relation between imperfect random-
ness and indistinguishability. This naturally leads to many more interesting questions. Which
properties of indistinguishability propagate to differential indistinguishability? For example, many
indistinguishability-based definitions such as indistinguishability under chosen plaintext attack and
semantic security for public-key encryption have been shown to be equivalent. Which of these
equivalences hold for their differential counterparts? What happens if a (programmable) random
oracle provides imperfect randomness? For which sources other than SV sources can one give
differential guarantees? Is differential indistinguishability helpful towards improving results on
leakage-resilient cryptographic schemes [6, 17]? For example, can one give differential guarantees in
cases where the adversary learns more than is considered by the existing leakage-resilient schemes?

1.3 Related Work

The effect of imperfect randomness on traditional cryptography is well studied. On the negative
side, several papers demonstrate the inherent limitations of indistinguishability-based cryptographic
guarantees with imperfect randomness [2,5,13,14]. Most closely related to our work, Dodis et al. [13]
show that traditional indistinguishability required for encryption, commitment, secret sharing, and
zero-knowledge cannot be realized if a SV source is used. More precisely, they prove that no protocol
for any of these primitives can be secure against certain block sources, which include SV sources.
These sources sample blocks (i.e., several bits at once) that are 1/poly(k) close to the uniform
distribution [9, 13,28] for an arbitrary polynomial, where k is the security parameter.

This impossibility result has been refined and generalized over the last few years. Dodis,
Pietrzak, and Przydatek [14] proved that using imperfect randomness, secure encryption implies
secure (2, 2)-secret sharing; however, the converse does not hold. Bosley and Dodis [5] showed that
information-theoretically secure encryption of more than log(n) bits is possible only if more than
log(n) almost-uniform bits can be extracted from the source in the first place. Recently, Austrin et.
al. [2] refined the impossibility result [13] to show that it holds even when “efficient SV adversaries”

5



are considered. They also consider a min-entropy-based multiplicative factor in their tamper-resilient
signature analysis, which is an instantiation of our unbreakability analysis.

On the positive side, one line of research examines the extraction of (almost) perfect randomness
from several kinds of imperfect randomness sources [4,9,10,21,29,30]. However, extraction generally
requires the source to have a certain degree of independence, whereas the only main requirement for
SV sources and their variants is to provide some entropy. Aiming at particular applications, some
works have shown that a few primitives can be securely instantiated even if only imperfect randomness
is available [12,13,19,20]. Dodis et al. [13] prove that signatures can be successfully instantiated
using a block source instead of uniform randomness. Goldwasser, Sudan, and Vaikuntanathan [19]
show that Byzantine agreement is possible for some suitable imperfect randomness. Dodis et al. [12]
prove that differential privacy of statistical queries can be preserved even when the noise is generated
using an imperfect random source. In particular, they ask the interesting question of whether or not
differential privacy is possible if no uniform randomness is available, and give a positive answer for
SV sources by presenting a γ-differentially private algorithm that works on these sources. Relevant
to our observations, they note that traditional indistinguishability-based privacy is a stronger notion
as compared to, e.g., unforgeability.

Kamara and Katz [20] propose a notion of security for symmetric-key encryption that is able
to cope with imperfect randomness. However, their notion applies only if the challenge messages
are encrypted using uniform randomness. We consider their work orthogonal to ours and refer to
Appendix A.1 for more thoughts about a combination of the works. In the universal composability
(UC) setting, Canetti, Pass, and Shelat [8] showed that even for (sampleable) sources for which a
deterministic extractor exists, UC-secure commitments are not possible. Instead, they present a
UC-secure commitment scheme assuming a collision-resistant hash function, dense cryptosystem
and one-way function (with sub-exponential hardness), and requiring access to O(1) instances of
a gray-box source with sufficient entropy. Finally, Brandao et al. [7] show that in the quantum
setting, single sources of SV randomness can be improved, where the running time is polynomial in
the inversed distance to the uniform distribution. This result indicates that SV sources that are
1/poly(k) close to the uniform distribution for some polynomial and the security parameter k might
be a reasonable assumption for cryptography in general.

2 Preliminaries

We denote sampling an element r from a distributionD by r ← D. The probability of the probabilistic
event F (r), where r is sampled from the distribution D, is denoted by Pr [F (r) | r ← D] or more
compactly by Pr [F (D)]. To keep the notation simple, we may write fk for the value of a function
f(·) applied to k. We denote by {D`k}k∈N a family of distributions such that for each k ∈ N the
distribution D`k samples elements from {0, 1}`k . In particular, {U`k}k∈N is the family of uniform
distributions, where U`k is the uniform distribution over {0, 1}`k .

Throughout the paper we consider interactive Turing machines that have access to a uniform
random tape, even if they additionally get an input drawn from some distribution. Unless we
mention that they run in probabilistic polynomial time (ppt), those machines are not bounded. We
write x← 〈X|Y〉 for denoting the interaction of the two machines X and Y. The output x is always
the output of the first machine X. We also shorten this to 〈X|Y〉 = x0 for denoting the event x = x0,
where x← 〈X|Y〉.

Randomness Sources. We focus on randomness sources that are a generalization of Santha–
Vazirani (SV) sources [28] to block sources [9,13]. Block sources are well-suited to describe both
physical random sources as well as certain random sources that have been “tampered with” by an
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adversary [2].

Definition 1 (Block source) A tuple of distributions D = (D1, . . . , Dt), each over the set {0, 1}n
of bitstrings of length n, is (n, γ)-Santha–Vazirani (SV) (for 0 < γ < 1) if for all 0 ≤ i ≤ t and for
all x1, . . . , xi ∈ {0, 1}n,

(1− γ) · 2−n ≤ Pr
[
Di = xi|x1 ← D1, . . . , xi−1 ← Di−1

]
≤ (1 + γ) · 2−n.

The original SV sources are a special case of Definition 1 that arises if we set n = 1. Note that
if we consider the probability for yielding a combined string x ∈ {0, 1}nt from all distributions
(D1, . . . , Dt), the probability for x is bounded by ((1− γ) · 2−n)t ≤ Pr [D = x] ≤ ((1 + γ) · 2−n)t.

SV Sources. We call a family of distributions {Dtknk
}k∈N an (n, γ)-SV source, if every element

Dnktk can be described by a (nk, γ)-SV block distribution consisting of tk distributions, each over
{0, 1}nk .

3 Main Results

In this section we present our main lemmas that can be applied to a variety of cryptographic notions.
We begin by describing and proving an important fact about SV distributions, namely that they
are differentially hard to distinguish from the uniform distribution.

Although an (n, γ)-SV distribution is not negligibly close to a uniform distribution, the parameter
γ gives a bound on the discrepancy between the uniform distribution and the γ-SV distribution if
we restrict the number of queries (“samples”) that a distinguisher is allowed to make by a positive
polynomial t. The following lemma shows that there is no adversary that is able to distinguish the
distributions better than with a multiplicative factor of eε, depending on the number of bits and
the parameter γ of the distribution.

Lemma 1. Let {Dnktk}k∈N be a family of (n, γ)-SV sources over {0, 1}nktk with γ < 1/2, and let
{Unktk}k∈N be a family of uniform sources over {0, 1}nktk . For all probabilistic machines A and for
all possible outputs x of A,

Pr
[
A(1k, Dnktk) = x

]
≤ etkγk Pr

[
A(1k, Unktk) = x

]
(a)

and Pr
[
A(1k, Unktk) = x

]
≤ e2tkγk Pr

[
x← A(1k, Dnktk) = x

]
. (b)

Proof. Let a (n, γ)-SV distribution {Dnktk}k∈N with γ < 1/2 over a set {0, 1}nktk be given. Let A
be any probabilistic machine. Essentially, we have to prove the following: No matter which test A
performs on a value r ∈ {0, 1}nktk , the probability that r has been generated by Dnktk is very close
to the probability that r has been generated by Unktk .

We start by proving (a): Note that for all values r0 ∈ {0, 1}nktk the probability Pr [Dnktk = r0]
is strictly larger than zero. For all values r0 ∈ {0, 1}nktk ,

log
(Pr [Dnktk = r0]

Pr [Unktk = r0]

)
≤ log

(
(2−nk(1 + γk))tk

2−nktk

)
= tk · log (1 + γk) ≤ tkγk.

Let rA be the arbitrary but fixed random choices of A from the randomness tape (i.e., not the input).
By A(r, rA) we denote the machine that simulated A on input r such that A takes the random
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choices rA. Using this equation we can show (i) as follows. For all possible outputs x of A,

Pr
[
A(1k, Dnktk) = x

]
=

∑
r0∈{0,1}nktk

Pr
[
A(1k, r0) = x

]
Pr [Dnktk = r0]

≤
∑

r0∈{0,1}nktk

Pr
[
A(1k, r0) = x

]
etkγk Pr [Unktk = r0]

= etkγk Pr
[
A(1k, Unktk) = x

]
.

This shows (a). For (b), note that for all values r0 ∈ {0, 1}nktk the probability Pr [Dnktk = r0] is
strictly larger than zero. For all values r0 ∈ {0, 1}nktk ,

log
(Pr [Unktk = r0]

Pr [Dnktk = r0]

)
≤ log


(

1
2nk

)tk(
1

2nk (1− γk)
)tk


= −tk · log (1− γk)

≤ tk ·
(

γk
1− γk

)
≤ 2tkγk,

where the last two bounds hold because γk < 1/2. Thus, using this inequality, we obtain for all
possible outputs x of A and γk < 1/2 that

Pr
[
A(1k, Unktk) = x

]
=
∑
r0

Pr
[
A(1k, r0) = x

]
· Pr [Unktk = r0]

≤
∑
r0

Pr
[
A(1k, r0) = x

]
· e2tkγkPr [Dnktk = r0]

= e2tkγk Pr
[
A(1k, Dnktk) = x

]
.

This completes the proof.

3.1 Differential Indistinguishability

Traditional cryptography defines two machines X0 and X1 to be indistinguishable for a certain class
of distinguishers A, if no distinguisher A ∈ A in this class is able to notice a difference between an
interaction with X0 and an interaction with X1. Formally, the concept of “noticing a difference”
is captured by saying that any possible view of a distinguisher is (almost) equally likely for both
X0 and X1, i.e., the difference of the probability that A outputs any given view in the interaction
with X0 from the probability of outputting the same view in the interaction with X1 is negligible.
We consider a variant of indistinguishability that allows these probabilities to be related also by a
multiplicative factor eε > 1, similar to the concept of mutual pseudodensity [27] employed, e.g., for
computational differential privacy [25].

Definition 2 (Differential Indistinguishability) Two probabilistic machines X0 and X1 are (ε,δ)-
differentially indistinguishable over a distribution {D`k}k∈N over {0, 1}`k for a positive polynomial `
and a class A of adversaries (probabilistic machines), if for all A ∈ A, for all sufficiently large k,
for all possible outputs x of A, and for all b ∈ {0, 1},

Pr
[〈

A(1k)
∣∣∣Xb(1k, Dnktk)

〉
= x

]
≤ eε Pr

[〈
A(1k)

∣∣∣X1−b(1k, Dnktk)
〉

= x
]

+ δk.
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This definition is constructed to be very general, which allows it to describe many of the traditional
cryptographic indistinguishability notions [18, 22]. For the traditional case of ε = 0 we speak of
δ-indistinguishability. The definition covers interactive and non-interactive notions, as well as
simulation-based notions. For information-theoretic secrecy, the class A of adversaries is the class
of all probabilistic (possibly unbounded) machines and we have δk = 0. Statistical secrecy can be
expressed by the same class of adversaries for δk > 0. Cryptographic (computational) secrecy can be
achieved with the class Apoly of probabilistic polynomial-time machines with δk being a negligible
function. This differential definition additionally allows for a quantitative factor of ε > 0 that can
(and has to) be interpreted carefully.

For SV distributions, differential indistinguishability is directly implied by traditional indis-
tinguishability (under uniform randomness). The following lemma is the main result we base our
analysis on. It allows us to easily give guarantees for cryptographic primitives, whenever their
security notions can be expressed in terms of Definition 2.

Lemma 2. If two probabilistic machines X0 and X1 are δ-indistinguishable for a class of probabilistic
machines A and the family of uniform sources {Unktk}k∈N over {0, 1}nktk , then X0 and X1 are also
(ε, eεδk)-differentially indistinguishable for A and any family of (n, γ)-SV sources {Dnktk}k∈N, where
γk ≤ min{1/2, ε/3tk}.

Proof. Let {Dnktk}k∈N be a (n, γ)-SV source, and {Unktk}k∈N be the uniform source, both over
{0, 1}nktk . Furthermore, let X0, X1, be probabilistic (not necessarily polynomially bounded) machines,
and let A ∈ A be an adversary machine such that for a function δ

Pr
[〈

A(1k)
∣∣∣X0(1k, Unktk)

〉
= x

]
≤ Pr

[〈
A(1k)

∣∣∣X1(1k, Unktk)
〉

= x
]

+ δk.

Using Lemma 1 we show that A behaves similarly on D, as otherwise a machine that simulates〈
A(1k)

∣∣∣X0(1k, r)
〉

(or
〈
A(1k)

∣∣∣X1(1k, r)
〉

) could distinguish {Dnktk}k∈N and {Unktk}k∈N.

Pr
[〈

A(1k)
∣∣∣X0(1k, Dnktk)

〉
= x

]
≤ etkγk Pr

[〈
A(1k)

∣∣∣X0(1k, Unktk)
〉

= x
]

(1)

≤ etkγk Pr
[〈

A(1k)
∣∣∣X1(1k, Unktk)

〉
= x

]
+ etkγkδk (2)

≤ e3tkγk Pr
[〈

A(1k)
∣∣∣X1(1k, Dnktk)

〉
= x

]
+ etkγkδk (3)

Here, inequalities (1) and (3) follow from inequalities (a) and (b) in Lemma 1, respectively. The
remaining inequality (2) holds by assumption.

Intuition on the counter direction of Lemma 2. Differentially private mechanisms are an
intuitive example that shows why the counter direction of Lemma 2 does not hold. If a mechanism
is differentially private, it is not necessarily computationally or even information-theoretically
indistinguishable, as that would conflict with a reasonably high utility. Such a mechanism might
reach a given value for ε when using imperfect randomness (as in [12]). However, this does not
imply that with access to uniform randomness the mechanism is δ-indistinguishable for neighboring
databases for a negligible function δ.

3.2 Unbreakability

We further analyze how imperfect randomness influences the probability for guessing a whole bit-
string, e.g., breaking the binding property of a commitment. The corresponding security definitions
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typically require that no adversary has more than a negligible chance to reach a certain bad event.
We generalize the intuition of breaking a scheme by dividing a game Z into two parts. The “normal
game” Z0 and a judge Z1 that decides whether or not a given string constitutes a break of the
scheme.

Definition 3 (Unbreakability) Let Z = (Z0,Z1) be a probabilistic machine that may keep state.
We say that Z is δ-unbreakable for a class A of adversaries and for a distribution {D`k}k∈N over
{0, 1}`k , if for all A ∈ A and for sufficiently large k,

Pr
[
Z1(a) = 1

∣∣∣ a← 〈
A(1k)

∣∣∣Z0(1k, D`k)
〉]
≤ δk.

We can show that for all games that can be described as a unbreakability game and for which the
probability to win is negligible under uniform randomness, the probability is still negligible if a SV
source with matching parameters is used.

Lemma 3. If a probabilistic machine Z = (Z0,Z1) that may keep state is δ-unbreakable for a class of
probabilistic machines A and uses a uniform randomness source {Unktk}k∈N over {0, 1}nktk , then Z is
(eεδ)-unbreakable for A if it uses a (n, γ)-SV source {Dnktk}k∈N instead, where γ ≤ min{1/2, ε/3tk}.

Proof. We reduce this lemma to Lemma 1 as follows: Let Z = (Z0,Z1) be a probabilistic (not
necessarily polynomially bounded) machine that may keep state. Given any adversary A ∈ A, we
construct a probabilistic machine B on input r ∈ {0, 1}nktk as follows. B simulates the interaction
between A and Z0(1k, r), yields an output a and simulates Z1 on a. If Z0 keeps state for Z1, B also
simulates this behavior. It holds that

Pr
[
Z1(a) = 1

∣∣∣ a← 〈
A(1k)

∣∣∣Z0(1k, Dnktk)
〉]

= Pr
[
B(1k, Dnktk) = 1

]
≤ etkγk Pr

[
B(1k, Unktk) = 1

]
(4)

= etkγk Pr
[
Z1(a) = 1

∣∣∣ a← 〈
A(1k)

∣∣∣Z0(1k, Unktk)
〉]

≤ etkγk δk, (5)

where inequality (4) holds by Lemma 1 and inequality (5) follows by assumption.

In the remainder of this paper we first give some intuition about how differential indistinguisha-
bility can be interpreted, how it relates to differential privacy and how and why there is a secrecy
loss under composition. Finally we exemplify the instantiability of differential indistinguishability
in Section 5 by presenting differential guarantees for commitments, encryption and zero-knowledge
proofs.

4 Interpretation and Analysis

Impact of Multiplicative Factor. Similar to differential privacy, differential indistinguishability
adds a multiplicative factor to the inequality used in the traditional indistinguishability notion. We
observe that a multiplicative bound may express properties that are inexpressible by an additive
bound. While every multiplicative bound of the form Pr [A] ≤ eε Pr [B]+δk implies a purely additive
bound Pr [A] ≤ Pr [B]+δk+eε−1 ≈ Pr [B]+δk+ε, the converse does not hold in general. No matter
which additive bound can be shown between two probabilistic events, there does not necessarily
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exist a multiplicative bound. In particular, there are machines that are δ-indistinguishable for some
δ but not (ε, δ′)-indistinguishable for any ε such that δ′ < δ. We refer to Appendix B.1 for a formal
counterexample.

For secrecy properties, traditional indistinguishability intuitively states that no adversary can
learn any information about the secret, except with negligible probability. Our multiplicative factor
generalizes indistinguishability to additionally allow the adversary to learn information about the
secret with more than a negligible probability, as long as the loss of secrecy is bounded; e.g., if ε is
a small constant then differential indistinguishability ensures that the owner of the secret retains
deniability by introducing doubt for the adversary.

As an illustrative example, consider the e-voting protocol based on a commitment scheme that
is (ε, 0)-differentially hiding such that ε is a small constant or decreases with the security parameter.
Assume that, among two candidates (say) Alice and Bob, a voter voted for Alice. In the traditional
indistinguishability case, a non-negligible additive difference would have resulted in a non-negligible
probability for leaking the vote. The multiplicative factor in differential indistinguishability, however,
does not lead to such events. A multiplicative factor means that two cases (i.e., the case where
the vote was casted for Alice and the case where it was casted for Bob) can be differentiated
with a (possibly) non-negligible advantage, but both cases are still almost equally probable. No
distinguisher can be sure that it has observed a vote for Alice or a vote for Bob. In other words,
there cannot be a distinguisher that is certain of its answer. Consider a distinguisher that only
outputs (say) 1 if it is certain that the vote was casted for Alice, and that outputs 0 in all other
cases. Such a distinguisher is affected by the multiplicative bound as the output 1 is almost equally
probable in all cases. Moreover, if the probability of outputting 1 is zero when the vote was casted
for Bob, then differential indistinguishability implies that the probability of outputting 1 is zero
when the vote was casted for Alice.

Notice that the same analysis applies if a negligible additive value δ 6= 0 is present. In this case,
there might be a negligible chance for the adversary to be certain about the vote (e.g., if one bit of
the vote is leaked), but in all other cases deniability is preserved.

Relation to Differential Privacy and Sensitivity. The close relation of differential indistin-
guishability to differential privacy (DP) is helpful in interpreting the guarantees and in understanding
the drawbacks. Differential privacy is influenced by the sensitivity of a statistical function, i.e.,
the amount of influence individual database records can have on the function. The sensitivity is
directly proportional to the amount of randomness to be added to the output of the function in
order to guarantee a certain ε-level of privacy. Consequently, the sensitivity directly influences to
what degree the utility of the noisy output is decreased (in comparison to the original function).

Although there are neither databases nor the concept of utility (in the same sense as DP) in our
setting, we can regard distinguishing individual blocks of an (n, γ)-SV distribution from uniform
blocks as a DP game. We can then consider the sensitivity of a scheme corresponding to a security
definition as the number of randomness blocks that are necessary for honest parties in the definition;
e.g., for an encryption scheme that uses `k random bits from a (1, γ)-SV source, the sensitivity
would be `k.

A practical implication of this relation is that the sensitivity is directly connected to γ of the
source and ε of the guarantee. The higher the sensitivity (i.e., the more randomness is drawn by
honest parties) the smaller γ must be to allow for guaranteeing ε-differential indistinguishability.
Clearly, the bias in a (1, γ)-SV source can be arbitrarily increased by drawing more random bits;
e.g., by drawing three bits and taking the majority vote. Although this technique does not make a
difference for uniform randomness, it may increase the bias of the bits for imperfect randomness.
Therefore, the amount of randomness (and the sensitivity) is a necessary parameter in the definition
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of differential indistinguishability.

Composability. Traditional indistinguishability with a negligible function δ and ε = 0 allows
for polynomially many compositions, i.e., seeing multiple samples does not help the adversary
substantially, because a polynomial factor does not influence the negligibility. For differential
indistinguishability, this argument does not apply as the (non negligible) multiplicative factors
can be accumulated as well. On the positive side, if a scheme is indistinguishable and composable,
and there is a bound on the number of executions, then Lemma 2 allows for directly deriving a
guarantee for an (n, γ)-SV source. On the negative side, the composition increases the sensitivity
linearly in the number of executions, like for DP. As a result, to guarantee (ε, eεδ)-differential
indistinguishability for q compositions (using Lemma 2) for a (n, γ)-SV source, γ must decrease
faster in comparison to the case without composition, i.e., γk ≤ min{1/2, ε/(3q · tk)}.

In real-life scenarios, where an adversary might have auxiliary information, this concern is
important; e.g., consider our illustrative example of e-voting with everlasting privacy [26] with a SV
source. If an adversary observes, e.g., several everlastingly private votes of members from the same
family, and knows that all family members have voted for the same party, then the adversary can
improve its success probability (ε is increased at most by a factor of 5).

On the other hand, similar to DP, as long as an individual security game (e.g., a challenge
commitment) is independent from other observations, the (ε, δ)-guarantee holds. Thus, we can speak
of “neighboring scenarios” (in the DP terms) in which tuples of (independent) games (X1

0, . . . ,X
q
0)

and (X1
1, . . . ,X

q
1) that might only differ in one element Xi0 6= Xi1, and are the same otherwise.

Reduction Proofs on Differential Indistinguishability. Reduction proofs are a typical way
for proving a scheme secure, if this scheme is based on secure primitives. In such a reduction proof
we usually assume an adversary against the scheme and construct an adversary against the primitive.
While this technique is still possible if a differentially indistinguishable scheme is used in a black-box
manner, the quantitative guarantee naturally degenerates if the primitive is used more than once.
The sensitivity of the scheme can be derived depending on the number of times the primitive is
used within the reduction. The reduction itself is usually assumed to draw uniform randomness,
even if the underlying primitive relies on imperfect randomness. If the reduction itself makes use of
imperfect randomness, these guarantees can further decrease.

5 Cryptographic Primitives

In this section we instantiate differential indistinguishability with several popular secrecy definitions,
namely hiding (for commitment schemes), indistinguishabilily under chosen ciphertext attacks (for
encryption schemes) and zero-knowledge (for interactive proofs). We refer the reader to Appendix
A.3 for results for pseudorandom generators. These definitions serve as examples for how to
instantiate the notion and how to apply our main results to quantify the secrecy loss.

5.1 Commitments

An (interactive) commitment scheme C = (S,R) is a pair of ppt machines S and R that interact with
each other over two phases, called Commit and Open. In the Commit phase, the sender S commits
to a message m in the message space M. We write Commit

〈
R(1k)

∣∣∣S(1k,m)
〉

to denote the random
variable that describes the output of R during the commit phase (in interaction with the sender
that commits to m). In the Open phase, the sender S sends m to the recipient R and proves that m
indeed is the content of the commitment.
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A commitment is hiding if the Commit phase does not leak information about the message m.
We formalize this intuition with a general hiding notion that allows for a multiplicative secrecy loss.

Definition 4 (ε-differentially hiding commitment) A commitment scheme C = (S,R) over a
message space M is ε-differentially hiding for a random source {D`k}k∈N, if for all messages
m0,m1 ∈M, for every probabilistic receiver machine R∗ interacting with the sender machine S, and
for all possible outputs x of R∗ during the Commit phase,

Pr
[
Commit

〈
R∗(1k)

∣∣∣S(1k,m0, D`k)
〉

= x
]
≤ eε Pr

[
Commit

〈
R∗(1k)

∣∣∣S(1k,m1, D`k)
〉

= x
]
.

For ε = 0 and a uniform random source this is a standard definition for information-theoretically
hiding commitments. With the notion of differential hiding at hand, we can calculate a quantitative
guarantee on the security of a information-theoretically hiding commitment scheme if it is used with
an SV source.

Theorem 4. Let C = (S,R) be any commitment scheme that is information-theoretically hid-
ing (i.e., 0-hiding) and requires the sender S to use nktk bits of uniform randomness. C is
ε-differentially hiding if S uses an (n, γ)-SV randomness source {Dtknk

}k∈N instead of uniform
randomness, where γk ≤ min{1/2, ε/3tk}.

We refer to Appendix B.2 for a proof. Note that Theorem 4 covers non-interactive commitments.
The same analysis holds for statistically and computationally hiding commitments with the difference
that in the former case, we introduce an additive negligible value δ on the right hand side of Definition
4, in the latter case we further only consider ppt adversaries.

Discussion. If a commitment scheme is ε-differentially hiding, the adversary may learn that the
probability that a commitment contains a message m0 is eε times higher than the probability that it
contains another message m1. However, if ε is reasonably small, e.g., ε = 0.001 (and thus eε ≈ 1.001),
both m0 and m1 are a plausible content of the commitment. In particular, the adversary cannot
reasonably believe or even convince a third party that m0 is the value that has been committed to.
On the other hand, the sender S, no matter if she has committed to m0 or m1, retains (a weak form
of) deniability: She could indeed have committed to any certain message.

Although Theorem 4 presents guarantees for single commitments, it can be extended for the
composition of multiple commitments. We refer to Section 4 for a discussion about composability.

Binding Property with Imperfect Randomness. Whenever Theorem 4 is used to show a
scheme to be ε-differentially hiding for an (n, γ)-SV source, the binding property is preserved (with
a constant factor of eε). The reason is that binding is an “unbreakability property” (Definition 3)
and thus Lemma 3 can be applied (and the source fulfills it).

5.2 Public-Key Encryption

Differential indistinguishability makes it possible to relax standard security definitions for public-key
encryption, e.g., indistinguishability under adaptive chosen ciphertext attack (IND-CCA-II) [18].

Definition 5 ((ε, δ)-DIF-IND-CCA-II) A public-key encryption scheme E = (Gen,Enc,Dec) has
(ε, δ)-differentially indistinguishable encryptions under adaptive chosen ciphertext attack if for
every pair of ppt oracle machines A = (A0,A1) and for all sufficiently large k and bitstrings z of
polynomial length in k, it holds that Pr

[
P(0)
k,z = 1

]
< eε Pr

[
P(1)
k,z = 1

]
+δk, where P (i)

k,z is the following
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probabilistic machine:

P(i)
k,z
··= (e, d)← Gen(1k)

((x0, x1), s)← ADec(d,·)
0 (1k, e, z)

c← Enc(e, xi)

return ADecc(d,·)
1 (1k, s, c)

Here, s denotes an internal state of the adversary, and Decc(d, ·) denotes an encryption oracle that
answers on all ciphertexts except for c, where it returns an error symbol ⊥.

Note that (0, δ)-DIF-IND-CCA-II security is just IND-CCA-II security if δ is a negligible function.

Encryption with Imperfect Randomness. Both the encryption algorithm and the key genera-
tion algorithm require randomness. First, we consider the case that the encryption key is generated
with uniform randomness, but the messages are encrypted with an SV source.

Theorem 5. Let E = (Gen,Enc,Dec) be any IND-CCA-II secure public-key encryption scheme that
requires the encryption algorithm Enc to use at most nktk bits of uniform randomness. E is (ε, eεδ)-
DIF-IND-CCA-II secure if Enc uses an (n, γ)-SV source Dnktk instead of uniform randomness, where
γk ≤ min{1/2, ε/3tk}.

Although Theorem 5 presents a guarantee for a single encryption, it can be extended for the
composition of multiple encryptions. We refer to Section 4 for a discussion about composability.
This composability comes with a loss of secrecy (ε increases linearly in the number of compositions).

Key Generation with Imperfect Randomness. We can also give a positive result for the case
that the key is generated with an SV source but the encryption algorithm uses proper randomness.

Theorem 6. Let E = (Gen,Enc,Dec) be any IND-CCA-II secure public-key encryption scheme that
requires the key generation algorithm Gen to use at most nktk uniform random bit. E is also
(ε, eε δ)-DIF-IND-CCA-II secure if Gen uses an (n, γ)-SV source instead of uniform randomness,
where γk ≤ min{1/2, ε/3tk}.

We refer to Appendix B.3 for the proofs of Theorems 5 and 6.
Theorem 6 implies that imperfect randomness for key generation can be less problematic than

imperfect randomness used in the encryption algorithm. The number of messages that are encrypted
with a single imperfect key does not increase the randomness that is drawn for generating this
key and thus will only influence δ (in the same way it is influenced in the traditional setting),
whereas for Theorem 5 our analysis on composability from Section 4 applies. Theorems 5 and
6 can also be combined to yield a result for a scenario where both the key was generated using
imperfect randomness and the encryption uses imperfect randomness (naturally the linear loss for
composability that applies to Theorem 5 carries over).

Discussion. We have seen that it is still possible to give some guarantees if a IND-CCA-II secure
encryption scheme uses imperfect randomness. Encryption schemes suffer from the same compos-
ability problems as commitment schemes: the guarantees become much worse if an adversary is
allowed to send multiple challenge queries. This renders encryption schemes which use imperfect
randomness for encrypting large quantities of messagescompletely insecure if the encrypted messages
are not sufficiently independent of each other.

Other Security Definitions and Private-Key Encryption. Although we focus on IND-CCA-II
for public-key encryption schemes in this section, our results are analogously applicable to, e.g.,
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information-theoretically secure schemes and of course schemes that are secure under chosen
plaintext attack (IND-CPA) as well as schemes that are secure under a priori chosen ciphertext
attack (IND-CCA), both in the public-key setting and (under some constraints) in the private-key
setting, which we discuss in Appendix A.1 in detail.

5.3 Zero-Knowledge Proofs

We can also relax traditional definitions for zero-knowledge (ZK) proofs. The relaxation applies to
the indistinguishability of real views and simulated views: An (ε, δ)-ZK proof system is secure in the
sense that the output of a simulator is almost indistinguishable, i.e., mutually (ε, δ)-differentially
indistinguishable, from the output of a verifier interacting with the real prover. In other words, a
distinguisher that has access to the output of the verifier can have only a small chance (quantified
by ε) to claim to a third party that an interaction with the real prover has been taken place, i.e.,
that new knowledge could have been learned at all. For sufficiently small values of ε, such a claim is
not convincing at all. For a malicious verifier, that means that everything that has been learned
about the witness could have been learned from the simulator with almost the same probability.

An interactive proof system P = (P,V) for an NP-language L is a pair of ppt machines P and
V that both run on the same input x ∈ L. The prover P gets a witness w from the set W (x) of
witnesses for x as additional input, whereas the verifier V gets an auxiliary string z of polynomial
length, capturing previous knowledge.

Definition 6 ((ε, δ)-Differential Zero-Knowledge1) A proof system P = (P,V) is (ε, δ)-differentially
zero-knowledge for a randomness source {D`k}k∈N if for every polynomial p and every ppt verifier
machine V∗, there is a ppt machine S (the simulator), such that the following distribution ensembles
are (ε, δ)-differentially indistinguishable in k = |x| for all ppt adversaries:

1. {〈P (x,w,D`k)|V∗(x, z)〉}x∈L,z∈{0,1}pk , i.e., the output of V∗ (for arbitrary w ∈W (x))
2. {S(x, z)}x∈L,z∈{0,1}pk

For ε = 0 and a negligible function δ, this is the definition for computational ZK [18].

Theorem 7. Let P = (P,V) be any proof system that is computationally ZK (i.e., (ε, δ)-ZK for
negligible δ) and requires the prover to use nktk bits of uniform randomness. P is (ε, δ′)-differentially
ZK if the prover P uses an (n, γ)-SV randomness source instead of a uniform randomness source,
where δ′k = etkγkδk and γk ≤ min{1/2, ε/3tk}.

The proof can be found in Appendix B.4. Note that the theorem includes ZK proofs of knowledge
because they do not differ from proofs of existence in the ZK property (but only in the existence of
an extractor).

Soundness. The soundness property is preserved if the proof system uses SV randomness instead
of uniform randomness, similar to the binding property of commitments.

Randomness Source of the Simulator. Definition 6 assumes that the simulator has access to
uniform randomness. The intuition behind the definition of ZK is that everything that is generated
from an interaction with the prover could have been generated without any interaction, using the
simulator. Given that uniform randomness is available in general, but the prover does not use it,
the same intuition applies if we allow the simulator to access uniform randomness. In contrast, a
variant of the definition where the simulator has only access to imperfect randomness, is at least

1Note that our definition is distinct from the related concept of ε-knowledge [16], which allows the probabilities of
the output bits of a distinguisher to be related by a non-negligible additive constant instead of a multiplicative factor.
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as strong as Definition 6 if the imperfect randomness source is efficiently sampleable. However,
Lemmas 1 and 2 are not applicable to constant-round ZK proof systems that are secure in the
traditional sense, i.e., with ε = 0 using a uniform source of randomness. The reason is that for those
systems, the bound on the running time of the simulator is not strict, i.e., the simulator only runs
in expected polynomial time.2 Consequently, we cannot bound the amount of randomness drawn by
these simulators.

Non-interactive ZK proofs. Our results are also applicable to the case of non-interactive proof
systems, in particular to the case, where the common reference string is drawn from a SV source.
We refer to Appendix A.2 for a discussion.
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A Other Cryptographic Primitives

A.1 Private-Key Encryption

In the case of private-key encryption, the adversary usually has access to an encryption oracle.
For analyzing the influence of imperfect randomness on such schemes, the following strategies are
possible. One can assume that the encryption oracle has access to uniform randomness or, one can
restrict the number of encryption queries, or one can use stronger notions.

Uniform encryption oracles. If the encryption oracle uses uniform randomness, the analysis
from Section 5.2 can be applied without any need for modification. This guarantee corresponds
to a (maybe unrealistic) scenario where an adversary might see several encryptions, but only the
randomness used to encrypt a single message is not uniform.

Restricting the queries. An adversary that makes at most qk queries to the encryption oracle
for a given security parameter k can be covered by an analysis much similar to the one from 5.2.
However, now the machines X and X1 use (qk + 1) · nktk many bits from the randomness source to
answers all qk oracle queries and to compute the challenge ciphertext. Consequently, a private-key
encryption scheme is ε-secure against adversaries that only make qk oracle queries when using an
(n, γ)-SV source, if γk ≤ min{1/2, ε/3tkqk}.

Stronger notions. Another possibility is to rely on security definitions that are explicitly intro-
duced to handle improper randomness, e.g., indistinguishability against chosen randomness attack
(CRA) [20]. In a private-key encryption that is secure under this definition, the adversary can
choose the randomness for the encryption queries Enc on its own (and thus the encryption oracle
does not need to sample randomness). Originally, the CRA challenger uses uniform randomness to
encrypt the challenge message (which is the opposite to our first strategy). We can show now that
any CRA secure scheme is also ε-CRA, if the challenge is encrypted using an (n, γ)-SV distribution,
if γ ≤ min{1/2, ε/3tk}.

A.2 Non-interactive Zero-Knowledge Proofs

Similar to interactive zero-knowledge proofs (Section 5.3), a differential relaxation is also possible
for the security definition of non-interactive zero-knowledge proofs.

Definition 7 (Non-interactive (ε, δ)-differential-zero-knowledge) A non-interactive proof system
P = (P,V) is single-theorem adaptive (ε, δ)-differential zero-knowledge if there exists a polynomially
bounded simulator machine S = (S1, S2) such that for every function F (which is supposed to get the
CRS σ and select a statement x and a witness w ∈W (x) adaptively) the following two ensembles
are (ε, δ)-differentially indistinguishable.

1. {(σ, F (σ), π) | π ← P(x,w), (x,w)← F (σ), σ ← Utknk
}k∈N

2.
{

(σ, F (σ), π)
∣∣∣ π ← S2(x, s), (x,w)← F (σ), (σ, s)← S1(1k)

}
k∈N

Note that, for the sake of simplicity, we consider adaptive single-theorem definitions, i.e., the CRS
can only be used once. Additionally, we do not consider auxiliary input that is available to the
adversary. It is straight-forward to extend our results to a variant with auxiliary input as well as to
the multi-theorem setting. In the latter, the security guarantees decrease similar as described in
Section 4 if the prover (aside from the CRS) uses imperfect randomness.

Theorem 8 (δ-NIZK with {Utknk
}k∈N =⇒ (ε, δ′)-NIZK with {Dtknk

}k∈N) Let P be a prover
machine that is δ-zero-knowledge if it uses the uniform source {Utknk

}k∈N on {0, 1}tknk and the CRS
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is generated based on input from a uniform source. If P uses a (n, γ)-SV-distribution {Dtknk
}k∈N

(with γ(k) < 1
2) over {0, 1}tk·nk , and the CRS has been generated based on distinct random bits from

the same source,3 then P is (ε, δ′)-zero-knowledge with δ′k = etkγkδk.

Proof. The proof is analogous to the proof of Theorem 7.

A.3 Pseudorandom Generators

Differential indistinguishability can also be instantiated by the definition of pseudorandomness. For
the definitions of pseudorandom generators we follow the notation of [22].

Definition 8 ((ε, δ)-Pseudorandomness) A source {D`k}k∈N is (ε, δ)-pseudorandom, if it is (ε, δ)-
indistinguishable from {U`k}k∈N. We call {D`k}k∈N ε-pseudorandom, if it is (ε, δ′)-pseudorandom
for a negligible function δ′.

Definition 9 (Pseudorandom generators) Let `out be a positive polynomial and let G be a de-
terministic polynomial-time machine, where for all x it holds that |G(x)| = `out(|x|). G is a
(ε, δ)-pseudorandom generator for a distribution {D`k}k∈N, if

1. for every k ∈ N, it holds that `out(k) > `(k).
2. {Gk(Dk)}k∈N is (ε, δ)-pseudorandom.

Theorem 9. If G is a pseudorandom generator for the uniform source {Unktk}k∈N over {0, 1}nktk

and {Dnktk}k∈N is a (n, γ)-SV distribution, then G is a ε-pseudorandom generator on {Dnktk}k∈N,
where γk ≤ min{1/2, ε/3tk}.

Proof. Let G be a pseudorandom generator on the uniform distribution {Unktk}k∈N and let
{Dnktk}k∈N be a (n, γ)-SV distribution. Let X0(1k, r) ··= G(r) and let X1(1k, ·) ··= U`k . Since G is
pseudorandom, there is a negligible function δ such that G on uniform input is δ-indistinguishable
from U`k .

(i) G is pseudorandom if and only if X0 and X1 are indistinguishable.

(ii) G is (ε, δ)-pseudorandom if and only if X0 and X1 are (ε, δ)-differentially indistinguishable.

The theorem directly follows from Lemma 2 and from the fact that for all constant ε and all
negligible functions δ, the function δ′k ··= eεδk is still negligible.

B Postponed Proofs

B.1 On Additive and Multiplicative Bounds

No matter which additive bound can be shown between two probabilistic events, there does not
necessarily exist a multiplicative bound. In particular, there are machines that are δ-indistinguishable
for some δ but not (δ′, ε)-indistinguishable for any ε and δ′ < δ. That means, e.g, that for every for
0 ≤ δ ≤ 1 there is a commitment scheme that is δ-hiding but not (ε, δ′)-differentially hiding for any
value δ′ < δ.

3Note that the theorem also holds if the SV sources of the prover and of the trusted party that generates the CRS
are independent, because the combination of sources can be considered as one single source.
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Proof. Given any arbitrary function δ with 1 ≥ δk > 0, we construct a counter example, i.e., a
commitment scheme C such that for every adversary there is an additive bound of δ (C is δ-hiding), but
there is no pair (ε, δ′) with δ′k < δk (for sufficiently large k) such that C is (ε, δ′)-differentially hiding.

Let CIT be an information theoretically hiding commitment scheme. We construct C = (S,R) from
CIT as follows. For security parameter k, C behaves like CIT but with probability δk, the algorithm
S additionally leaks the message. Clearly the scheme is δ-hiding. Consider the distinguisher A that
sends two messages m0,m1 to the challenger for the hiding game. Only if S leaks m0, A outputs 0.
In all other cases, A outputs 1. Let ε ≥ 0 and δ be functions with δ′k < δk for sufficiently large k.
For such k,

Pr
[〈

A(1k)
∣∣∣S(1k,m0)

〉
= 0

]
= δk

> δ′k

= eεk 0 + δ′k

= eεk Pr
[〈

A(1k)
∣∣∣S(1k,m1)

〉
= 0

]
+ δ′k.

Consequently, C is not (ε, δ′)-differentially hiding.

B.2 Proof of Theorem 4 (Commitments)

Proof. Let C = (S,R) be an information-theoretically hiding interactive commitment scheme over
the message set M such that the sender S uses at most {0, 1}nktk random bits. Let {Dnktk}k∈N be
an (n, γ)-SV-randomness distribution over {0, 1}nktk and Unktk be the uniform distribution over
{0, 1}nktk . Furthermore, let m0,m1 ∈ M be two arbitrary messages, and let A be the set of all
probabilistic (not necessarily polynomially bounded) machines.

We define X0(1k, r) ··= S(1k,m0, r) and X1(1k, r) ··= S(1k,m1, r). Observe that by our definition
of X and X1, the following two statements hold:

(i) X0 and X1 are indistinguishable for the class A of adversaries and only if C is information-
theoretically hiding.

(ii) X0 and X1 are (ε, 0)-differentially indistinguishable for the class A of adversaries if and only if
C is ε-differentially hiding.

Thus, the theorem follows immediately from Lemma 2.

B.3 Proof of Theorem 5 (Public-Key Encryption)

Proof (of Theorem 5). Let E = (Gen,Enc,Dec) be a public-key encryption scheme, let Apoly be the
class of pairs of probabilistic polynomial-time machines with decryption oracles (Definition 5), and
let {Dnktk}k∈N be an (n, γ)-SV distribution family. To simplify the notation we write P (b,r)

k,z for
simulating P

(b)
k,z and using r ∈ {0, 1}nktk as the randomness for Enc. Let X0(1k, r) ··= P

(0,r)
k,z and

X1 ··= P
(1,r)
k,z . The rest of the proof is analogous to the proof of Theorem 4. Observe that by our

definition of X0 and X1, the following two statements hold:

(i) X0 and X1 are indistinguishable for the class Apoly of adversaries if and only if E is IND-CCA-II.

(ii) X0 and X1 are (ε, δ)-differentially indistinguishable for the class Apoly of adversaries if and
only if E is (ε, δ)-DIF-IND-CCA-II.

21



Thus, the claim follows immediately from Lemma 2.

The proof of Theorem 6 is analogous to the previous proof.

B.4 Proof of Theorem 7 (Zero-Knowledge Proofs)

Proof. Let A be a machine in the class Apoly of all probabilistic polynomial-time adversaries. Further,
let F be a function that maps each security parameter k to a triple (x,w, z) consisting of a statement
x ∈ L with |x| = k, a corresponding w ∈W (x), and a auxiliary string z of pk for a polynomial p.

We define machines X0(1k, r) and X1(1k, r) as follows: Both X0 and X1 use F (1k) to generate
a triple (x,w, z). X0(1k, r) runs V∗(x, z, r) in 〈P(x,w)|V∗(x, z)〉 and sends the output of V∗(x, z),
whereas X1(1k, r) ignores r, runs S(x, z) and sends its output. (Recall that the simulator has access
to uniform randomness.)

Observe that X0 and X1 are (ε, δ)-indistinguishable if and only if (P,V) are (ε, δ)-zero-knowledge.
In particular, the goal of the polynomially bounded A is to distinguish between the machines X0
and X1, which simulate {〈P (x,w;D`k)|V∗(x, z)〉}x∈L,z∈{0,1}pk and {S(x, z)}x∈L,z∈{0,1}pk , respectively.
Note that A has access to the statement x and the auxiliary string z, because it can be contained in
the output of V∗(x, z).

Thus, Lemma 2 implies the claim. Note that F might not be computable. However, it can be
verified that Lemma 2 as well as the underlying Lemma 1 hold even in the case that the adversary
has to distinguish between the outputs of general functions. We have chosen to present the current
formulation to stay consistent with common notions.
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