
On the Security of Recently Proposed RFID
Protocols

Mete Akgün-1,2, M. Ufuk Çaǧlayan2

1Tübitak UEKAE, 41470, Kocaeli, Turkey
makgun@uekae.tubitak.gov.tr

2Computer Engineering Department, Boǧaziçi University, İstanbul, Turkey
caglayan@boun.edu.tr

Abstract. RFID authentication protocols should have a secret updat-
ing phase in order to protect the privacy of RFID tags against tag tracing
attacks. In the literature, there are many lightweight RFID authentica-
tion protocols that try to provide key updating with lightweight cryp-
tographic primitives. In this paper, we analyse the security of two re-
cently proposed lightweight RFID authentication protocol against de-
synchronization attacks. We show that secret values shared between the
back-end server and any given tag can be easily desynchronised. This
weakness stems from the insufficient design of these protocols.

Key words: RFID, authentication protocols, de-synchronization at-
tacks.

1 Introduction

Radio Frequency Identification (RFID) technology utilizes radio frequency in
order to remotely identify people or objects. RFID systems typically consists of
three elements: tags, readers and a back-end server. Many people in the world
are aware of the benefits of this technology. However, these people have concerns
about security and privacy problems of this technology. In the past, many au-
thentication protocols have been proposed in order to provide adequate security
and privacy level. However, many studies showed that authentication protocols
that are suitable for low-cost RFID tags have serious security and privacy vul-
nerabilities.

Recently, two different authentication protocols have been proposed by Gao
et al. [1] and Pang et al. [4]. It is claimed that these protocols provides almost
all security properties in the literature. Nevertheless we show that their pro-
posal have security weaknesses against de-synchronization attacks. These two
protocols are vulnerable to the same attack type. The weak point of these pro-
tocols is that they do not use any random value that are created by the tag in
their key-updating mechanism. The success probability of the proposed attack
is significant and the attack complexity is polynomial.

2 Gao et al.’s Protocol

Gao et al. [1] proposed an ultralightweight RFID authentication protocol that
utilizes CRC-16 and permutation (LPCP) functions. The authors formally ver-
ify the security of their protocol by using Simple Promela Interpreter (SPIN).
They claim that their protocol provides resistance to the following attacks: de-
synchronization attacks, tracing attacks, replay attack and secret disclosure at-
tack.

2.1 Protocol Description

In Gao et al.’s protocol, each tag Ti is assigned with four parameters (TIDi,
KeyHi, KeyLi, KeyMi). The server stores two entry for the tag Ti: (TIDold

i ,
KeyHold

i , KeyLoldi , KeyMold
i) and (TIDnew

i , KeyHold
i , KeyLoldi , KeyMold

i).
Parameters represented with new substring are the current secrets of Ti and
parameters represented with old substring are the last successfully verified secrets
of Ti. At the system initialization, these two entry equals each other. Table 6
gives the notations used in describing the proposed protocol. The details of the
authentication process are composed of the following six steps:

Table 1. Notations for Gao et al.’s Protocol

Notation Description

TIDi The secure identity of the tag Ti
KeyXi The secret keys of the tag Ti
xnew The current value of x
xold The previous value of x
CRC The cyclic redundancy check operation
Per The permutation operation
⊕ The bit-wise XOR operation
∈ Random choice operator
← The substitution operation

1. The reader R sends a Hello message to the tag Ti.
2. Upon receiving the Hello message, Ti sends TIDi to R.
3. R gets the entry in the index Ti and generates a random number R1. R

computes α and β and sends them to Ti.
α← CRC(Per(KeyMi,KeyHi))⊕R1

β ← CRC(Per(KeyMi⊕KeyHi, CRC(KeyMi⊕R1))⊕Per(KeyLi, CRC(KeyMi⊕
R1)))

4. Upon receiving α and β, Ti extracts R1 from α and checks the validity of
β in order to authenticate R. If it is valid, Ti computes γ and sends it to
R.

γ ← CRC(Per(CRC(KeyHi⊕R1), CRC(R1⊕KeyMi))⊕Per(CRC(KeyMi⊕
KeyLi), CRC(R1 ⊕KeyLi)))

5. When receiving γ, R checks the validity of γ in order to authenticate Ti. If Ti
is authenticated, R generates a random number R2 and computes δ and ζ.
Then δ and ζ are sent to Ti. If TIDi = TIDnew

i , R updates the old secrets of
Ti with the new secrets of Ti otherwise old secrets of Ti remains unchanged.
Then R updates the new secrets of Ti.
δ ← CRC(Per(KeyMi,KeyLi))⊕R2

ζ ← CRC(Per(CRC(KeyHi⊕R1), CRC(R2⊕KeyMi))⊕Per(CRC(KeyMi⊕
R2), CRC(R1 ⊕KeyLi)))
if TIDi = TIDnew

i then
TIDold

i ← TIDnew
i

KeyMold
i ← KeyMnew

i

KeyHold
i ← KeyHnew

i

KeyLold
i ← KeyLnew

i

end if
TIDnew

i ← CRC(Per(TIDnew
i , R1⊕R2)⊕KeyHold

i ⊕KeyMold
i ⊕KeyLold

i)
KeyHnew

i ← CRC(Per(KeyHold
i , R1)⊕KeyMold

i)
KeyMnew

i ← CRC(Per(KeyMold
i , R2)⊕KeyHold

i)
KeyLnew

i ← CRC(Per(KeyLold
i , R1 ⊕R2)⊕ TIDold

i)

6. Upon receiving δ and ζ, Ti extracts R2 from β and checks the validity of ζ.
If it is valid, Ti updates it secrets.

TIDi ← CRC(Per(TIDi, R1⊕R2)⊕KeyHi ⊕KeyMi ⊕KeyLi)
KeyHi ← CRC(Per(KeyHi, R1)⊕KeyMi)
KeyMi ← CRC(Per(KeyMi, R2)⊕KeyHi)
KeyLi ← CRC(Per(KeyLi, R1 ⊕R2)⊕ TIDi)

2.2 De-synchronization Attack

An adversary A performs the following attack in order to de-synchronize the
secrets shared between R and Ti. For simplicity, we assume that the attack
begins after the last successful authentication session s− 1. At the beginning of
the attack, the states of the reader R and the tag Ti are shown in Table 2.

Table 2. State of R and Ti at the beginning of the
attack

Reader Rnew [TIDi, KeyHi, KeyLi, KeyMi]
s

Reader Rold [TIDi, KeyHi, KeyLi, KeyMi]
s−1

Tag Ti [TIDi, KeyHi, KeyLi, KeyMi]
s

1. In a protocol session s between R and Ti, A prevents Ti from taking last
message flow and eavesdrops αs, βs, δs and ζs.

Reader Tag Ti

[TIDold
i , KeyHold

i , KeyLold
i , KeyMold

i]
[TIDnew

i , KeyHnew
i , KeyLnew

i , KeyMnew
i]

[TIDi, KeyHi, KeyLi, KeyMi]

Hello
-

TIDi

�
R1 ∈ {0, 1}l
α = CRC(Per(KeyMi, KeyHi))⊕ R1

β = CRC(Per(KeyMi ⊕
KeyHi, CRC(KeyMi ⊕ R1))⊕
Per(KeyLi, CRC(KeyMi ⊕ R1)))

α, β
-

γ = CRC(Per(CRC(KeyHi ⊕
R1), CRC(R1 ⊕KeyMi))⊕
Per(CRC(KeyMi ⊕KeyLi), CRC(R1 ⊕
KeyLi)))

γ
�

R2 ∈ {0, 1}l
δ = CRC(Per(KeyMi, KeyLi))R2

ζ = CRC(Per(CRC(KeyHi ⊕
R1), CRC(R2 ⊕KeyMi))⊕
Per(CRC(KeyMi ⊕ R2), CRC(R1 ⊕
KeyLi)))

δ, ζ
-

if TIDnew
i is received TIDi = CRC(Per(TIDi, R1⊕ R2)⊕

KeyHi ⊕KeyMi ⊕KeyLi)

TIDold
i = TIDnew

i ,

KeyMold
i = KeyMnew

i

KeyHi =
CRC(Per(KeyHi, R1)⊕KeyMi)

KeyHold
i = KeyHnew

i ,

KeyLold
i = KeyLnew

i

KeyMi =
CRC(Per(KeyMi, R2)⊕KeyHi)

TIDnew
i = CRC(Per(TIDnew

i , R1⊕
R2)⊕KeyHold

i ⊕KeyMold
i ⊕KeyLold

i)

KeyLi =
CRC(Per(KeyLi, R1 ⊕ R2)⊕ TIDi)

KeyHnew
i =

CRC(Per(KeyHold
i , R1)⊕KeyMold

i)
KeyMnew

i =

CRC(Per(KeyMold
i , R2)⊕KeyHold

i)
KeyLnew

i =

CRC(Per(KeyLold
i , R1 ⊕R2)⊕ TIDold

i)

Fig. 1. Gao et al.’s Protocol

2. At the end of the protocol session s, R updated the secrets related with Ti.
However, Ti did not update its secrets because it did not receive the last
message flow. The states of the reader R and the tag Ti are shown in Table
3.

Table 3. State of R and Ti at the end of the session
s

Reader Rnew [TIDi, KeyHi, KeyLi, KeyMi]
s+1

Reader Rold [TIDi, KeyHi, KeyLi, KeyMi]
s

Tag Ti [TIDi, KeyHi, KeyLi, KeyMi]
s

3. In a protocol session s+ 1 between R and Ti, A prevents Ti from taking last
message flow.

4. At the end of the protocol session s+ 1, R updated the secrets related with
Ti. However, Ti did not update its secrets because it did not receive the last
message flow. The states of the reader R and the tag Ti are shown in Table
4.

Table 4. State of R and Ti at the end of the session
s+ 1

Reader Rnew [TIDi, KeyHi, KeyLi, KeyMi]
s+2

Reader Rold [TIDi, KeyHi, KeyLi, KeyMi]
s

Tag Ti [TIDi, KeyHi, KeyLi, KeyMi]
s

5. A broadcasts a Hello message and Ti sends its TIDs
i to A.

6. A sends αs and βs to Ti. A passes the check by the tag Ti because αs and
βs are generated with the current secrets of Ti and they are not generated
with random values created by Ti. Therefore, Ti sends γs to A.

7. A sends δs and ζs to Ti. A passes the check by the tag Ti because δs and
ζs are generated with the current secrets of Ti and they are not generated
with random values created by Ti. Ti updates its secrets by using TIDs

i ,
KeyHs

i , KeyLsi , KeyM
s
i , Rs1 and Rs2 values from the session s. The states

of the reader R and the tag Ti are shown in Table 5. In the next session, R
will not be able to authenticate the tag.

Table 5. State of R and Ti at the end of the attack

Reader Rnew [TIDi, KeyHi, KeyLi, KeyMi]
s+2

Reader Rold [TIDi, KeyHi, KeyLi, KeyMi]
s

Tag Ti [TIDi, KeyHi, KeyLi, KeyMi]
s+1

In the above, we show that the adversary A breaks synchronization between
R and Ti. A impersonates the valid reader by using the messages eavesdropped
in the session s and makes the tag to update its keys. At the end of the attack,
the secret values at server side and the tag side are shown in Table 5.

3 Pang et al.’s Protocol

Pang et al. [4] proposed a lightweight RFID authentication protocol. This pro-
tocol utilized cyclic redundancy check (CRC) and PRNG to create a new tag
indexing method, called the two-layer tag indexing mechanism. The authors
claim that their protocol provides the following security and privacy properties:

Server Reader Tag Ti

[Kold
i , Knew

i , SIDi, Di] [Ki, SIDi]

r ∈ {0, 1}l
r
-

r1 ∈ {0, 1}l
m1 = CRC(Ki||SIDi||r1)
m2 =
PRNG((Ki⊕SIDi)||r||r1)

r, r1,m1,m2 r1,m1,m2

� �
Search for a tag with
(K′i, SIDi)
satisfying m1 and m2

if found

R ∈ {0, 1}l
nright =

CRCright(Ki||SIDi||R||r)
R,nright, Di R,nright

- -
if Ki = Knew

i check the validity of nright

Kold
i = Knew

i if nright is valid

Knew
i = Kold

i ⊕ nleft Ki = Ki ⊕ nleft

Fig. 2. Pang et al.’s Protocol

tag information privacy, tag location privacy, forgery resistance, replay attack,
de-synchronization resistance, backward security and forward security. However,
Safkhani and Bagheri [3] presented de-synchronization attack and traceability
attack against this protocol by using the following linear property of CRC func-
tion [2, 5]:

CRC(A||B) = CRC(A� n)⊕ CRC(B) (1)

Safkhani and Bagheri [3] also strengthened Pang et al.’ protocol by using
PRNG instead of CRC. The de-synchronization attack presented in Section 3.2
can be applied both Pang et al.’ protocol and its revised version by Safkhani
and Bagheri.

3.1 Protocol Description

In Pang et al.’s protocol, each tag Ti is assigned with two parameters (Ki, SIDi).
The server stores an entry for the tag Ti: (Kold

i , Knew
i , SIDi, Di). K

new
i is the

current secret of Ti and Kold
i is the last successfully verified secret of Ti. At

the system initialization, Kold
i = Knew

i . Table 6 gives the notations used in
describing the proposed protocol. The details of the authentication process are
composed of the following six steps:

1. The reader R generates a random number r and sends it to the tag Ti.
2. Upon receiving r, Ti generates a random number r and computes m1 =
CRC(Ki||SIDi||r1) and m2 = PRNG((Ki ⊕ SIDi)||r||r1). Ti sends r1, m1

and m2 to R.

Table 6. Notations for Pang et al.’s Protocol

Notation Description

SIDi The secure identity of the tag Ti
Di The detailed information of the tag Ti
Ki The secret key of the tag Ti
xnew The current value of x
xold The previous value of x
xleft The left part of the massage x
xright The right part of the massage x
CRC The cyclic redundancy check operation
PRNG The pseudorandom number generator
⊕ The bit-wise XOR operation
|| The concatenation operator
∈ Random choice operator
← The substitution operation

3. R forwards r, r1, m1 and m2 to the back-end server S.

4. S searches its database in order to identify Ti by checking the validity of m1

and m2. If S identifies Ti, it generates a random number R and computes
nright = CRCright(Ki||SIDi||R||r) and sends R, the detailed information Di

and nright to R. S updates Kold
i with Knew

i and Knew
i with Knew

i ⊕ nleft.
5. R forwards R and nright to Ti.
6. Ti checks the validity of nright in order to authenticate R. If it is valid, Ti

updates Ki with Ki ⊕ nleft.

3.2 De-synchronization Attack

An adversary A performs the following attack in order to de-synchronize the
secrets shared betweenR and Ti. For simplicity, we assume that the attack begins
after the last successful authentication session s− 1. R stores Kold

i = Ks−1
i and

Knew
i = Ks

i . Ti stores Ki = Ks
i .

1. In a protocol session s between R and Ti, A prevents Ti from taking last
message flow and eavesdrops rs, Rs and nsright.

2. At the end of the protocol session s, R updated the secrets related with Ti.
However, Ti did not update its secrets because it did not receive the last
message flow. R stores Ks

i and Ks+1
i . Ti stores Ks

i .

3. In a protocol session s+ 1 between R and Ti, A prevents Ti from taking last
message flow.

4. At the end of the protocol session s+ 1, R updated the secrets related with
Ti. However, Ti did not update its secrets because it did not receive the last
message flow. R stores Ks

i and Ks+2
i . Ti stores Ks

i .

5. A sends rs to Ti and Ti sends r1,m1 and m2 to A.

6. A sends Rs and nsright to Ti. A passes the check by the tag Ti because nsright
was generated with the current secret Ks

i of Ti and random values rs and
Rs. It is not generated with the random value r1 created by Ti. Therefore,
Ti updates its secret Ks

i by using nsright. R stores Ks
i and Ks+2

i . Ti stores

Ks+1
i . In the next session, R will not be able to authenticate the tag.

In the above, we show that the adversary A breaks synchronization between
R and Ti. A impersonates the valid reader by using the messages eavesdropped
in the session s and makes the tag to update its keys. At the end of the attack,
the secret values at server side are Knew

i = Ks+2
i and Kold

i = Ks
i , and the secret

value at the tag side is Ki = Ks+1
i .

4 Conclusion

In this paper, we presented de-synchronization attacks on recently proposed
lightweight authentication protocols. The weak point of these protocols is that
they do not use any random value that are created by the tag in their key-
updating mechanism. The success probability of the proposed attack is signifi-
cant and the attack complexity is polynomial. Our attack needs two consecutive
protocol sessions in which an adversary prevents the tag from taking the last
message flow of the protocol. Right after the last interaction between the reader
and the tag, the adversary starts a session with the tag by using the messages
that are eavesdropped in the first blocked session and makes the tag to update
its keys.

References

1. Gao, L., Ma, M., Shu, Y., Wei, Y.: An ultralightweight {RFID} authentication pro-
tocol with {CRC} and permutation. Journal of Network and Computer Applications
(2013) –

2. Han, D., Kwon, D.: Vulnerability of an RFID Authentication Protocol Conforming
to EPC Class 1 Generation 2 Standards. Comput. Stand. Interfaces 31 (2009)
648–652

3. Masoumeh Safkhani, N.B.: For an EPC-C1 G2 RFID compliant Protocol, CRC with
Concatenation : No; PRNG with Concatenation : Yes. Cryptology ePrint Archive,
Report 2013/490 (2013) http://eprint.iacr.org/.

4. Pang, L., Li, H., He, L., Alramadhan, A., Wang, Y.: Secure and efficient lightweight
RFID authentication protocol based on fast tag indexing. International Journal of
Communication Systems (2013)

5. Peris-Lopez, P., Hernandez-Castro, J.C., Estevez-Tapiador, J.M., Ribagorda, A.:
Cryptanalysis of a Novel Authentication Protocol Conforming to EPC-C1G2 Stan-
dard. Comput. Stand. Interfaces 31 (2009) 372–380

