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Abstract

Smooth Projective Hash Functions are one of the base tools to build interactive protocols; and this notion has lead to the
construction of numerous protocols enjoying strong security notions, such as the security in the Bellare-Pointcheval-Rogaway
(BPR) model or even Universal Composability (UC).

Yet, the construction of SPHF has been almost limited to discrete-logarithm or pairing type assumptions up to now. This
stands in contrast with domains such as homomorphic encryption or functional encryption, where Lattice Based Cryptography
has already caught up and overtook discrete-log/pairing based cryptography. So far, work in the direction of UC based on
lattices is almost restricted to a paper from Peikert, Vaikuntanathan, and Waters (Crypto 2008) dealing with Oblivious Transfer
in the UC framework, and work in the direction of password-authenticated key exchange protocols (PAKE) to one from Katz
and Vaikuntanathan (Asiacrypt 2009) on a 3-round Password-Authenticated Key Exchange, but restraining itself to the BPR
model. It seems that dealing with errors in those contexts is not as easy as it is for encryption.

In this work, we identify the problem at its source, namely, the lattice version of Diffie-Hellman key exchange protocol:
the key agreement is only approximate. We explicit a simple folklore trick to obtain true, errorless, one-round key exchange
from LWE. We then show that this trick can be adapted to various lattice encryption schemes, leading, with some techni-
calities, to errorless SPHF’s. From there, we derive three new results, namely the first lattice-based following protocols: a
one-round PAKE secure in the BPR model, a 3-round PAKE secure in the UC model, and a UC commitment scheme, all of
them based on SIS and LWE assumptions.

Keywords: LWE encryption, Lattices, Universal Composability, Password-Authenticated Key-Exchange, UC Commitment,
Smooth Projective Hash Functions

1 Introduction
In the recent years, lattice based cryptography has been able to mimic many constructions from the discrete-logarithm/pairing
world, and even go beyond. The incentives to switch to lattices are numerous; they offer strong security guarantees, such as
hardness under worst-case assumptions, and potential resistance to quantum algorithms. They also offer better asymptotical
security and good parallelism. And even more interestingly, lattice problems such as LWE have shown to be extremely versa-
tile, allowing the construction of primitives which existence has been a long term open problem, such as Fully Homomorphic
Encryption, following the breakthrough work of Gentry [29]. We also mention the recent proposal of Multi-Linear-Maps
based on a new assumption related to lattice problems [26]. Also in the domain of functional encryption, LWE-based con-
structions have caught-up on, and then improved upon pairing-based cryptography, with the recent results of functional
encryption for arbitrary circuits [31, 27].

Yet, there is one primitive, called Smooth Projective Hash Function, for which LWE based constructions are still far behind
discrete-logarithm constructions. Smooth Projective Hash Functions (or SPHF) were introduced by Cramer and Shoup [21]
in order to achieve IND-CCA security from IND-CPA encryption schemes, and generalised by Gennaro and Lindell [28].
They have recently shown to be quite useful for many other purposes, for example they allow implicit designated-verifier
proofs of membership [2, 11], that is proof that a value verifies some relation, that can only convince one chosen verifier.

A simple application of SPHF —but extremely useful example in practice— is Password-Authenticated Key Exchange
(it was proposed in the works of [35, 28], as part of what is now known as the KOY-GL paradigm). A PAKE is a protocol
similar to key exchange, with the feature that it is successful only if the parties share a common password (which they usually
commit to). This mechanism can offer security against offline dictionary attacks (formally called security in the Bellare-
Pointcheval-Rogoway setting [7]), and therefore protecting users from being impersonated, even if they use low-entropy
passwords.
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Those PAKE protocols have recently reached the ultimate security notion called Universal Composability [18, 2, 37, 8].
The UC framework, introduced by Canetti [15] is a increasingly popular simulation-based security paradigm (but only studied
by Peikert, Vaikuntanathan, and Waters [43] in the context of lattice-based protocols —to construct Oblivious Transfer). It
guarantees that a protocol, possibly running concurrently with arbitrary —even insecure— protocols, proven secure in this
framework remains secure. Such framework allows to split the design of a complex protocol into that of simpler sub-protocols.
It is particularly useful in the case of PAKE, since it ensures that the protocol remains secure even in case a user mistypes or
reuses the password (there is no particular assumption on the distribution of passwords).

PAKE protocols using the KOY-GL paradigm rely on a central cryptographic tool, called commitments. These commit-
ments allow, in a two-phase protocol between two parties, a committer to give the receiver an in silico analogue of a sealed
envelope containing a value m, and then the committer to reveal m so that the receiver can verify it. The security definition
for commitment schemes in the UC framework was presented by Canetti and Fischlin [16]. Several UC-secure commitment
schemes in the CRS model have been proposed since. Ostrovsky, and Sahai [19] proposed inefficient non-interactive schemes
from general primitives. On the other hand, Damgård and Nielsen [22], and Camenisch and Shoup [14] (among others)
presented interactive constructions from several number-theoretic assumptions.

Lindell [39] has recently presented the first very efficient commitment scheme proven in the UC framework. They can
be viewed as combinations of Cramer-Shoup encryption schemes and Σ-protocols. This scheme has recently been revised by
Blazy et al. in [10] where they reduce the number of rounds of the adaptive version. Fischlin, Libert and Manulis [25] adapted
the scheme secure against static corruptions by using non-interactive Groth-Sahai proofs [32] to make it non-interactive.
SPHF is one of the essential ingredients to construct those commitments with very strong properties [2, 1] in particular when
in the context of PAKE schemes.

But as we mentioned earlier, building SPHF’s from lattice assumptions has remained a open problem until now. Precisely
none of the aforementioned constructions are based on worst-case assumption such as the lattice problems LWE or SIS. The
only exception we know of are works of Katz and Vaikuntanathan [36], later improved by Ding and Fan [23]. It is the first
known PAKE in the standard model based on lattices; but it requires 3-rounds an can only be proven secure in the BPR [7]
setting. The authors proceed as follows: first, they construct an approximate SPHF, and from there, derive their PAKE. The
fact that the SPHF is only approximate seems to be at least painful technicality, if not a real issue to construct stronger, or
better schemes.

1.1 This work
In this work we show how to construct an errorless (as opposed to approximate) SPHF from lattice based assumption (namely
LWE and SIS), and derive several applications out of it. To be precise, we call our construction errorless in the sense that the
result is exact most of the time (i.e. except with negligible probability), as opposed to approximate construction, that always
contains a small error.

SPHF construction, Main idea To build such an SPHF, we first analyse where the issue of approximation arise between
the simplest protocols from both the discrete-log world and lattice world. At high level, the so called Regev’s Dual Encryption
scheme, can be seen as a lattice analogue of ElGamal. Changing one’s point of view, allows one to see ElGamal encryption
as key Exchange protocol, precisely, a Diffie-Hellman one-round Key Exchange. If one applies the same change of viewpoint
on Regev’s Dual scheme, one only obtains an approximate key exchange protocol; and to be useful, the parties need an extra
round to get rid of the error. In some more advanced protocols, this error might simply be impossible to handle.

Still, one notices the fact that as an encryption scheme, the Dual Regev cryptosystem is not approximate, and decryption
almost always leads to the original ciphertext. This is due to the use of a simple error correcting code ECC; first step
of decryption leads to a noisy codeword; and by design one can recover from this error: ECC−1(ECC(M) + e) = M
for any message M and small error e ∈ Zq . Yet, to get exact key exchange from this ECC : {0, 1} → Zq one would
require that ECC−1(x + e) = ECC−1(x) for any x and any small errors e. Obviously this would implies that ECC−1 is a
constant function. A folklore workaround is to restrict this requirement to hold only for all but a negligible fractions of the
x’s by tolerating negligible probability of failure of the protocol. This becomes actually doable when the set of the x’s is
superpolynomially larger that the set of errors.

SPHF construction, Additional Technicalities While we warm with building an errorless SPHF on the CPA-secure Dual
Regev Encryption scheme, the real goal for applications is to build and errorless SPHF over a lattice based CCA scheme
(or equivalently, a Tag-Based Encryption scheme). Our construction is based on the trapdoored scheme of Micciancio and
Peikert, yet we need to implement a modifications: to be compatible with SPHF construction, one rather encodes the message
in the higher bits of the ciphertext rather than in the lower bits.

PAKE and LAKE Once those SPHF are created, our new results comes almost generically following techniques intro-
duced in [8, 9]. One just have to supersede the CCA-1 encryption with a Strong-One Time Signature to achieve CCA-2
security, and then adapt the known technique Double Cramer-Shoup [8]. Yet, unlike the analog construction from pairings,
messages are only made of one bit. To compensate the small message space size, we send a linear number of challenges and
parties have to solve all of them at once. This allows us to achieve the first One-Round PAKE on Lattices, and the first PAKE
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UC protocol on Lattices (with only 3 rounds). Both PAKE can even be extended to Language-Authenticated-Key-Exchange
for a certain class of languages.

UC commitment Once we have our Double Micciancio-Peikert like encryption —our lattice Analogue of the Double
Cramer-Shoup— with just an additional twist we can manage to create a UC Commitment by simply adapting Lindell’s
commitment to provide the first Lattice-Based UC-Commitment, furthermore in the adaptive setting.

Closing remarks It is unclear if it is really necessary to get rid of approximation and resort to an errorless SPHF to obtain
such protocols based on lattice problems with security in the UC model. Yet, our new SPHF certainly is a convenient
tool, offering a simpler and more modular interface for the construction, the security proofs, and the understanding of such
advanced protocols. It remains that parts of the proofs needs to be redone, because we lack truly generic result relating SPHF,
PAKE, LAKE and commitments; we believe this would be an interesting open problem.

1.2 Outline of the paper

The construction of the paper is straightforward, we first start in Section 2, by recalling some useful definitions, results and
constructions, then in Section 3, we construct Smooth Projective Hash Functions, first on the Dual Regev Encryption scheme,
and then on an ad-hoc version of the Micciancio-Peikert. In Section 4, we then combine this encryption and the associated
SPHF to create two PAKE, first in 3 rounds in the UC framework, then in 1 round in the BPR model, finally in Section 5, we
also use this encryption to provide the first Lattice-based UC commitment.

Appendices follow a similar order, we first start with additional definitions, results and constructions in the Appendix A,
then present a doubled version of our version of the Micciancio-Peikert encryption in the Appendix B. We then proceed to
introduce the UC framework and the required functionalities in the Appendix C, and give various proofs in the Appendix D.
A Cheat Sheet is given on the last page in the Appendix E to give a clear parallel between classical instantiations on pairing,
on the one we use here on Lattices.

2 Technical preliminaries
In this section, we define some useful tools for our constructions in the following sections. These useful tools include
Approximate Key Exchange, Tag-based Encryption, Trapdoor Commitment and Strong One-Time Signature. All the schemes
here are constructed from Lattice Assumptions. Due to lack of space, we recall the security notions and the corresponding
Lattice Assumptions in Appendix A.

2.1 Lattice Problems

Definition 2.1 (The Short Integer Solution Problem, SIS) The Short Integer Solution problem SISn,m,q,β , withm unknowns,
n ≤ m equations modulo q and norm-bound β is as follows: given a random matrix A ∈ Zn×mq chosen uniformly, find a
non-zero short vector v ∈ Zmq \ {0} such that A · v = 0 and ‖v‖ ≤ β.

Definition 2.2 (The Learning with Errors Problem, dLWE, decisional version) The Learning with Errors Problem, deci-
sional version, dLWEn,m,q,χ, with n unknown, m ≥ n samples, modulo q and with errors distribution χ is as follows: for
a random secret s uniformly chosen in Znq , and given m samples either all of the form (a, b = 〈s,a〉 + e) where e ← χ, or
from the uniform distribution (a, b)← U(Znq × Zq); decide if the samples comes from the former or the latter case.

Worst-case to Average-Case Connection Both SIS and LWE enjoy strong security guarantees for certain range of param-
eters. Precisely, SIS is as hard in the average-case as certain lattice problems (unique-SVP or SIVP) in the worst-case, as
proved originally by Ajtai and later generalized [3, 42, 30]. On the other hand the problem LWE was popularized by the work
of Regev [44], proving similar average-case to worst-case reduction from LWE to gap-SVP, but the reduction is a quantum
algorithm. Of course, the parameters of the underlying lattice problems depends on the parameters of SIS and LWE; see
[44, 42] for the precise statement.

Error Distribution The hardness results of [44] for LWE hold for Discrete Gaussian error distributions χ = DZ,s, where
s denotes (up to a constant factor) the standard deviation. Due to space restriction, we defer definition to appendix, defini-
tion A.8. For our purpose, we only require a bound on the size of vectors sampled according to that distribution:

Lemma 2.3 (Tailcut of discrete Gaussians [5, 42]) For any s > 0 and c > 1/
√

2π, and any m-dimensional lattice L, and
vector x ∈ Rn, ρs((L+ x) \ c · s

√
mB) < 2Cmρs(L), where C = c

√
2πe · e−πc2 < 1, and B is the centered unit ball. In

particular, for x← DZm,s, ‖x‖ ≤ s
√
m except with negligible probability in m.
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Strong LWE. In typical LWE based encryption, the parameters are chosen as follow: n = Ω(λ), q ≤ 2poly(n), m =
O(n log q) and the error distribution to be the discrete Gaussian DZ,s of standard deviation s = q/poly(n). For such
parameters, the best known attacks runs in time 2Θ(λ). Yet, one might use smaller error parameter s, at the cost of some
security; this was necessary for the first constructions of FHE from LWE [12] (but was recently overcome [13]). It was also
the case for the early result of Banerjee et al. [6] to prove the hardness of Learning with Rounding1. Actually, the reason we
need such parameters is similar to the one of [6]: we wish that for a uniform random value x ∈ Zq , adding an error e← Z, s
to x doesn’t modifies its higher bit, except maybe with negligible probability.

Specifically, polynomial attacks are known when s is as small as q/2Θ(n), yet if s ≥ q/f(n) for a sub-exponential
function the best known attacks are subexponential. For the sake of clarity, one could set our parameters to q = 2Θ(n),
and s = q/2Θ(

√
n); for all we know, those parameters may well require 2Θ(

√
n) time to break; and it will guarantee that

our protocols fails with negligible probability 2−Θ(
√
n); that is to obtain λ bits of security on should choose n = Θ(λ2),

which does impact the efficiency in a significant way. It is indeed convenient to think of protocols with negligible probability
of failure in theory, especially in the UC model: it allows one to repeat sequentially or concurrently polynomially many
instances of various protocols, while maintaining overall failure probability negligible. In practice, the situation might not be
so catastrophic: in many scenario an error probability of 2−30 is perfectly acceptable for a 128-bit secure cryptosystem.

2.2 The Crux of Matter: Achieving Errorless Key Exchange

We now discuss the question of approximation in relation to LWE based Key exchange. While the passively secure Key
Exchange protocol presented below is not formally used for our construction, it offers a simple context to give intuition on
problem related to error and our proposed solution.

LWE Encryption and Approximate Key Exchange Before giving formal definitions, let us re-interpret the LWE encryp-
tion scheme of Regev [44] as a “approximate key exchange”. Let n denotes the security parameter, and let q ≤ 2poly(n) and
m = poly(n) be such that m ≥ O(n log(q)). Assuming the parties do have a common reference string parsed as a matrix
A ∈ Zn×mq , it is possible to re-interpret the previous scheme as a an approximate 1-round key exchange protocol as explained
in Figure 1.

Alice Bob
t← U({0, 1}m) s← U(Znq ), e← Dm

Z,s
Compute a = A · t ∈ Zn Calcul b = A> · s + e ∈ Zm

a←−−−−−−−−−−→
b

Compute kA = 〈t,b〉 ∈ Zq Compute kB = 〈a, s〉 ∈ Zq

Figure 1: Approximate Key Exchange from LWE

At the end of this protocol, one notices that we have kA = kB + 〈t, e〉. Since t and e are small, we have kA ≈ kB , yet
for any third party that doesn’t know anything about random values t, s, e, kA and kB are computationally indistinguishable
from random under the decisional LWE assumption.

There are now two ways to use this approximate exchanged key to have an exact shared secret.

LWE Encryption The typical encryption scheme (as in [44]) would use kA as a one-pad together with a (very simple)
error correcting code to build the cipher c = ECC(M) + kA; decryption procedure would use kB to recover the message
M ′ = ECC−1(c−kB) = ECC−1(ECC(M)+ 〈t, e〉). The error-correction for binary messages is simply defined as follow:

Definition 2.4 For any positive integer q, we define the error correcting code ECC and the correcting function ECC−1

ECC(M ∈ {0, 1}) =
⌊q

2

⌋
·M ∈ Zq and ECC−1(x ∈ Zq) =

{
0 if x ∈ {b− q4c . . . b

q
4c}

1 otherwise

One easily verifies that decryption is correct as soon as parameter choice are such that |〈t, e〉| < q/4. In particular, assume the
error is Gaussian of standard deviation s, then, except with probability negligible in n, one has |〈t, e〉| ≤

√
nms: correctness

can be guaranteed for s = q/poly(n). Later on, we will focus on the dual version of that encryption scheme; that is after the
key exchange of Figure 1, Bob encrypt c = ECC(M) + kB and Alice Decrypt.

Both this encryption scheme and its dual naturally leads to an exact two-round Key exchange protocol: one party simply
choose at random the shared key and send it encrypted to the other party.

1It was also partially overcome in [4], but only for bounded amount of LWR samples, which is not enough for the constructions of [6].
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One Round Key Exchange from LWE with super-polynomially small error It is in fact possible to avoid adding a
second round to obtain exact key exchange, by allowing failure to happen with negligible probability, and basing ourself on
the strong version of LWE, that is when the error to modulus ratio s/q is polynomially small.

Notice that at the end of the KE protocol of fig. 1, kA = kB + 〈t, e〉, where kB is uniformly random and 〈t, e〉 is small.
The intuition is that, if we round both kA and kB , there is some probability that both rounded value will be equal. More
precisely, using our previous error correcting code:

Lemma 2.5 Let q ∈ Z and ∆ ≥ 1 be implicit functions of λ such that q/∆ is superpolynomial in λ. Then, for any e ∈ R
such that |e| ≤ ∆, with probability 1− negl(λ) over the choice of x← U(Zq) one has

ECC−1(x+ e) = ECC−1(x) and ECC−1
(
x± bq

2
c+ e

)
− ECC−1(x) = 1 mod 2

Proof: Notice that, x 6∈ {−∆, . . . ,∆} ∪ {b q2c − ∆, . . . , b q2c + ∆} ⇒ ECC−1(x) = ECC−1(x + e). We conclude that
ECC−1(x+ e) = ECC−1(x) holds except with probability 4∆/q = negl(λ). The second equation is similar.

Since kA is uniformly random, we have ECC−1(kA) = ECC−1(kB) except with negligible probability 4∆/q = negl(λ);
in other words, we can obtain exact key exchange that fails only with negligible probability as shown in Figure 2.

Alice Bob
t← U({0, 1}m) s← U(Znq ), e← Dm

Z,s
Compute a = A · t ∈ Zn Compute b = A> · s + e ∈ Zm

a←−−−−−−−−−−→
b

Compute kA = ECC−1(〈t,b〉) ∈ Z2 Compute kB = ECC−1(〈a, s〉) ∈ Z2

Figure 2: Exact Key Exchange from LWE
The previous idea is highly related to the work of [6] especially their hardness proof of LWR; yet we were unable to build

a better key exchange directly from LWR. Indeed, even if, in Figure 1, one replaces Bob’s random errors e by a deterministic
rounding error, the protocol still doesn’t converge exactly.

2.3 Trapdoor Commitment / One Time Signature
In the Appendix A.2.1, we detail the definition and construction of a Trapdoor Commitment, and we explain that such a
commitment is also a Strong One-Time Signature.

As explained in [38, 17], a tag-based encryption scheme can be transferred into a CCA-2 public key encryption by using
a Strong One-time Signature following the construction in Figure 3.

Lemma 2.6 Assuming the TBE scheme is selective-tag chosen-ciphertext secure, the OTS is a strong, one-time signature
scheme, then the public-key encryption scheme presented in Figure 3 is chosen-ciphertext secure.

3 Errorless Smooth Projective Hash Functions from LWE
Smooth Projective Hash functions were initially introduced by Cramer and Shoup [21]. Since then, they have come in
different flavors, up to the [37]-Smooth Projective Hash Functions, and an explicit instantiation in the case of Cramer-Shoup
Ciphertext was given in [8].

In this section, we present a new instantiation of such Smooth Projective Hash Functions on Lattices. These SPHF being
based on Lattices encryption around LWE, they inherit the same drawbacks, and so are limited by the existence of possibly
invalid decommitments, which leads to an approximate correctness. With negligible probability the correctness will not be
fulfilled, but with overwhelming probability the values computed are exactly the same when users are honest.

For the rest of the section, we let ECC be the error correcting code as in Definition 2.4. The parameters will be assumed
to be as follows: n = poly(λ), q = 2Θ(n), m ≥ Θ(nk), and s = q/f(n) where f is superpolynomial but subexponential
in λ, in particular s = q · negl(λ).

Encrypt(ek,M):
Generates: (vk, sk)← OTS.Gen(1n)
Computes:
C ← TBE.Encrypt(ek, vk,M)
σ ← OTS.Sign(sk, C)
Returns C = (C, vk, σ).

Decrypt(dk, (C, vk, σ)):
Check that OTS.Verify(vk, C, σ)
If verifies correctly, computes:
M = TBE.Decrypt(dk, vk, C)

Figure 3: Generic Construction of a CCA-2 encryption from a TBE and a Strong-OTS.
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3.1 SPHF On Dual Regev Encryption
To warm up, we start by presenting an Approximate Smooth Projective Hash Function on LWE encryption. A cheat-sheet
detailing the parallel with SPHF on ElGamal is provided in App. E for readers used to discrete-log based protocols.

3.1.1 Dual Regev Encryption

• KG(1n): Choose a uniform random matrix Ā ∈ Zn×mq and t̄ uniform in {0, 1}m; set a = Ā · t̄ ∈ Znq , and A =

[Ā|a] ∈ Zn×(m+1)
q . Output the key pair (dk = t̄, ek = A).

• Encrypt(M ∈ {0, 1}, ek = A ∈ Zn×(m+1)
q ; wit = (s, e)← U(Znq )×Dm+1

Z,s ): output the ciphertext c = A> · s+ e+

[0m|ECC(M)] ∈ Zm+1
q , where 0m is the zero vector in Zmq .

• Decrypt(c ∈ Zm+1
q , dk = t̄ ∈ {0, 1}m): consider t> = [−t̄>|1], and output M ′ = ECC−1(〈t′, c〉) ∈ {0, 1}

Correctness Let (dk, ek)← KG(1n), c← Encrypt(M, ek = A; (s, e)← U(Znq )×Dm+1
Z,s ) and finallyM ′ = Decrypt(c, dk =

t̄). Note that, by construction of ek = A ∈ Zn×(m+1)
q , that t> = [−t̄>|1] verifies A ·t =

[
Ā|Ā · t̄

]
·
[
−t̄
1

]
= 0n. Therefore

M ′ = ECC−1(〈t, c〉) = ECC−1 (t> · (A> · s + e + [0m|ECC(M)]
)

= ECC−1 (〈t, e〉+ ECC(M)) = M

where the last equality follows from the fact that 〈t, e〉 ≤ s(m + 1) ≤ q/4 (Lemma 2.3 bounds ‖e‖ ≤ s
√
m+ 1 and t is

ternary).

CPA security (sketch). Use Leftover Hash Lemma to argue that a is uniform and independent of Ā: A is uniform, in
particular it looks like a valid LWE matrix. Then the reduction to dLWE is straightforward.

3.1.2 A new SPHF on Dual Regev Encryption

We are now going to present a SPHF on the Dual Regev Encryption, while we are not going to use it directly in our
constructions, this is a nice ground to the see the technical difficulties on building a Smooth Projective Hashing System on
Lattices. For readers that are mostly familiar with discrete-log based protocols, a step by step comparison between how
SPHF on ElGamal and SPHF on Dual Regev is provided in the Appendix E. In our upcoming applications, we are going to
encrypt using an encryption key part of the crs. Users will be expected to do an implicit decommitment of their ciphertext. In
other words, they are going to convince a verifier that their ciphertext is indeed a valid encryption of message M .

To do so, we are now going to build a Smooth Projective Hash Function on language of valid Dual Regev Encryptions of
a message.

• HashKG: Output a uniformly chosen hk = v← Dm+1
Z,ω(
√

log λ)

• ProjKG
(

ek = A ∈ Zn×(m+1),hk = v ∈ Dm+1
Z,ω(
√

log λ)

)
: output hp = w = A · v ∈ Znq

• ProjHash(hp = w ∈ Znq ,wit = s ∈ Znq ): output H ′ = ECC−1(〈w, s〉) ∈ {0, 1}

• Hash(c ∈ Zm+1
q ,M ′,hk = v): output H = ECC−1 (〈v, (c− [0m|ECC(M ′)]>)

〉)
∈ {0, 1}

For correctness and smoothness, we check that

H ′ −H = ECC−1(〈w, s〉)− ECC−1(
〈
v, c− [0m|M ]>

〉
)

= ECC−1(〈A · v, s〉)− ECC−1(
〈
v,A> · s + e + [0m|ECC(M)]− [0m|ECC(M ′)]

〉
).

Correctness We consider the language of honest encryption of M , so we handle only encryption of M with a reasonably
small randomness, by opposition to all ciphertexts that can be decrypted to M . Correctness is here to protect honest prover,
so this restriction still keeps this property. (Invalid) Encryption of M with a randomness too big are part of the language but
are only adversary generated, so their output can be wrong without impacting a normal execution. 2

If M = M ′, we have H ′ − H = ECC−1(〈A · v, s〉) − ECC−1(〈A · v, s〉 + 〈v, e〉). Notice that 〈A · v, s〉 follows a
uniform distribution over Zq the randomness of s, while 〈v, e〉 ≤ ‖v‖ ‖e‖. Since v is binary, we have ‖v‖ ≤

√
m+ 1, while

‖e‖ ≤ 2
√
m+ 1 · s except with probability negligible in n, according to Lemma 2.3. We conclude using Lemma 2.5 that

H = H ′ except with probability negligible in n.

2For reference, [36] call this sub-language L̄ ⊂ L.
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Smoothness We now have to handle two different cases:

• Valid encryption of M 6= M ′, then ECC(M)− ECC(M ′) = ±b q2c; therefore

H −H ′ = ECC−1 (〈A · v, s〉)− ECC−1
(
〈A · v, s〉 ± bq

2
cvm+1 + 〈v, e〉

)
= vm+1 mod 2

where the last equality holds except with negligible probability, following the same argumentation as above based on
Lemmata 2.3 and 2.5. vm+1 is perfectly hidden under the leftover hash lemma, hence an adversary cannot compute a
valid H ′ for a word outside a language with an advantage significantly bigger than a random guess.

• Invalid Encryption of M ′ 6= M , in this case this adversary knows that 〈v, e〉 may not be corrected automatically,
however he now have to determine the value of v̄m+1, so the previous analysis still leads to the smoothness.

Pseudo-Randomness Under the CPA security of the encryption scheme, we can transform a commitment to a word in
the language, to a commitment to a word outside of the language, hence an adversary against the pseudo-randomness either
breaks the smoothness (which, information theoretically he cannot) or the indistinguishability of the encryption.

3.2 SPHF On Micciancio-Peikert CCA
In this section, we detail our construction of a SPHF over the CCA-1 (or equivalently a Tag-Based Encryption scheme)
scheme of Micciancio and Peikert, with the following two key modifications to be compatible with our SPHF. First, for
the correctness of the SPHF, we need to restrict the space of Tag-matrices T in comparison with the original construction3.
Secondly, while the original scheme encodes the message in the lower-order bits of the ciphertext, we need it to be encoded
in the higher order bits following the procedure described earlier.

For the rest of the section, we let G ∈ Zn×nkq be the gadget matrix as defined in [41] and let ECC be the error correcting
code as in Definition 2.4. The parameter will be assumed to be as follows: n = poly(λ) and it is a power of 2, q = 2k for
some integer k = Θ(λ), m̄ = Θ(nk), m = m̄+ nk and finally s = q/f(λ) where f is superpolynomial but subexponential
in λ, in particular s = q · negl(λ).

3.2.1 Micciancio-Peikert CCA scheme as Tag-based Encryption

One of the keystone results of the work of Micciancio and Peikert [41] is the construction of a trapdoor for a tagged LWE
function. It can be stated as follows. Considering space restriction, we limit ourself to this statement, the interested reader
can refer to the article for a detailed construction. Once again, the reader used to discrete-log based SPHF might find our
cheat-sheet in App. E quite helpful.

Theorem 3.1 (Reformulation of Theorem 4 from [41]) With the parameters as above, there exists an implicit functionB =
poly(λ) and an algorithm Invert, that given inputs R ∈ Zm̄×nkq ,A = [Ā| − ĀR] ∈ Zn×mq , an invertible matrix T ∈ Zn×nq

and a vector b = (A + [0|TG])> · s + e ∈ Zm for some (s, e) ∈ Znq × Zmq outputs this couple (s, e) under the condition
that ‖e‖ ≤ q/B

√
s1(R)2 + 1, where s1 denotes the largest singular value of R, except with negligible probability over the

choice of Ā← U(Zm̄×nq ).

Tag space Let T ⊂ Zn×nq denote the tag space. For the constructions of [41], the requirement on the set T are that, for all
T ∈ T , T is invertible; and, for two distinct T,T′ ∈ T , T − T′ is invertible and finally that it is large: |T | ≥ 2O(n). A
construction for such a tag-space is given in [41].

Tag Based Encryption The tag-based encryption scheme [41] is based on the trapdoor generation technique presented in
Lemma A.14. The encryption MP∗ = (KG,Enc,Dec) with message space {0, 1}nk is defined as follows:

• KG(1n): choose a random matrix Ā = U(Zn×m̄q ) and R ← Dm̄×nk
Z,ω(
√

log λ)
. Define the encryption key ek = A =

[Ā| − ĀR] ∈ Zn×mq and the decryption key dk = (R,A).

• Enc(ek = A, tag = T ∈ {0,±1}n×n,M ∈ {0, 1}; wit = (s, e)← U(Znq )×DZm,s): Output

c = (A + [0|TG])> · s + e + [0|ECC(M)]> ∈ Zmq .

• Dec(dk = (R,A), tag = T, c): Compute

3We mention that it is possible to build a SPHF without this requirement, but it would force one to know the Tag used for encryption at the projection
phase ProjKG of the SPHF. While this is not a deal-breaker, it prevents us from achieving PAKE in one round, but would still be acceptable for the 3 round
scheme.
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1. (s0, e0) = Invert(R,A,T, c) and (s1, e1) = Invert(R,A,T, c− [0|ECC(1)]), so that

c = (A + [0|TG])> · s0 + e0 and c = (A + [0|TG])> · s1 + e1 + [0|ECC(1)]

2. If ‖e0‖ ≤ s
√
m output M ′ = 0

3. If ‖e1‖ ≤ s
√
m output M ′ = 1

4. Output ⊥

Correctness From Theorem 3.1, one easily verifies that if c is an encryption of M ∈ {0, 1}, then, (sM , eM ) as defined in
the decryption algorithm above, verifies (sM , eM ) = (s, e), where (s, e) are the random inputs of the encryption algorithm.
In particular ‖eM‖ = ‖e‖ ≤ s

√
m with overwhelming probability. It remains to check that we can’t have both inequalities

‖ei‖ ≤ s
√
m holding at the same time. If it were the case, one would have

2 · (A + [0|TG])>(s0 − s1) + 2 · (e0 − e1) = −2[0|ECC(1)] mod q

Since 2·ECC(1) = 2b q2c = ε = 0 or −1 mod q this would imply the existence of two solutions to (A+[0|TG])>s′+e′ = 0,
namely (s′, e′) = (0,0) and (s′, e′) = (2(s0−s1), 2(e0−e1)+[0|ε]). For both solutions ‖e′‖ ≤ q·negl(λ), which contradicts
Theorem 3.1. indeed this theorem implies that the function (s′, e′) ∈ Zmq ×D 7→ (A+[0|TG])>s′+e′ is invertible, therefore
injective for an error domain D = Zm ∩ r ·B up to an error radius r = q/poly(λ); while he have found a collision for a
radius r = q · negl(λ). In lattice terms, it would mean that the lattice spanned by the columns of (A + [0|TG])> contains a
very short vector.

CCA-1/Tag-Based Security We recall that a CCA-1 scheme can easily be transformed to a CCA-2 scheme using a simple
combination with a Strong OTS (see Section 2.3). In the following the CCA-2 scheme will be called MP and the CCA-1
scheme will be called MP∗.

We now detail the security proof of the modified scheme.

Theorem 3.2 (Security of MP∗) MP∗ is selectively secure against chosen ciphertext attacks if dLWE holds.

The proof is mostly similar to the one of the original scheme of [41]. It is given in appendix D.1.

3.2.2 Adding the SPHF

• HashKG: output a vector chosen from the Gaussian, hk = v ← Dm
Z,ω(
√

log λ)
, where m = m̄ + nk as defined in

Section 3.2.1.

• ProjKG(ek = A ∈ Zn×mq ,G ∈ Zn×nkq ,hk = v ∈ Zm): output hp = (hp1,hp2) where hp1 = w1 = A · v ∈
Znq ,hp2 = w2 = [0n×m̄|G] · v ∈ Znq , where 0n×m̄ is the zero matrix in Zn×m̄q .

• ProjHash(hp = w1,w2 ∈ Znq ,wit = s ∈ Znq ,T ∈ T ): output H ′ = ECC−1(〈w1, s〉+
〈
w2,T

>s
〉
) ∈ {0, 1}.

• Hash(c ∈ Zmq ,T ∈ T ,M ′,hk = v): compute H = 〈v, c− [0|ECC(M ′)]〉, and output H = ECC−1 (H) ∈ {0, 1}.

With this trick, a hk,hp can be computed before knowing the tag T and adapted on the fly once the tag is picked.

Correctness Once again, we only focus on valid encryption of M ′ = M , we have

H ′ = ECC−1(〈w1, s〉+
〈
w2,T

>s
〉
)

= ECC−1(〈A · v, s〉+
〈
[0n×m̄|G]v,T>s

〉
)

= ECC−1(
〈
v,A>s

〉
+
〈
v, [0n×m̄|TG]>s

〉
)

= ECC−1(H− 〈v, e〉)

Notice that H is uniformly random in Zq , while 〈e,v〉 ≤ ‖e‖ ‖v‖ ≤ s · ω(
√

log λ)m, where the bound on ‖e‖ and ‖v‖
follows from Lemma 2.3. Therefore, by Lemma 2.5, H ′ = ECC−1(H− 〈v, e〉) = H except with negligible probability.

8



Smoothness We will detail the case of a valid encryption of M ′ 6= M , the other one being relatively similar: If M 6= M ′,
then ECC(M)− ECC(M ′) = ±b q2c; therefore

H ′ −H = ECC−1 (〈(A + [0n×m̄|TG]) · v, s〉)− ECC−1
(
〈(A + [0n×m̄|TG]) · v, s〉 ± bq

2
cvm + 〈v, e〉

)
= vm mod 2

where the last equality holds except with negligible probability, following the same argumentation as above based on Lem-
mata 2.3 and 2.5. It remains to show that vm mod 2 still has a uniform distribution over {0, 1} despite the knowledge of
hp = (w1,w2). First, one would rewrite

w1 = Ā · (v1 . . . vm̄) + (TG−RĀ) · (vm−nk+1 . . . vm)

and argue, using the leftover hash lemma that Ā · (v1 . . . vm̄) is uniformly random; therefore w1 does not reveal any infor-
mation about the whole subvector (vm−nk+1 . . . vm). Next, we need to take a detailed look at w2 = G · (vm−nk+1 . . . vm)
and especially at the gadget matrix as defined in [41]

G =


· · ·g> · · ·

· · ·g> · · ·
. . .

· · ·g> · · ·

 where g> = (1 2 4 . . . 2k−1)

The only information about vm is carried by the last coordinate w of w2

w = (1 2 4 . . . 2k−2)︸ ︷︷ ︸
ḡ>

· (vm−k+1 . . . vm − 1)>︸ ︷︷ ︸
v̄

+2k−1vm mod q.

We are going to argue that ḡ · v̄ is almost uniform mod q; we recall that q = 2k. Our argument is adapted from [41, Prop.
4.2]. Note that matrix S defined below is a basis of Λ⊥(ḡ>):

S =


2
-1 2

-1
. . .

2
-1 4

 ∈ Zk−1×k−1.

Indeed, we have ḡ> · S = 0 mod q and det(S) = 2k = q; this implies that the smoothing parameter verifies

ηε(Λ
⊥(ḡ>)) ≤ ‖S‖ · ω(

√
log λ) = 4ω(

√
log λ)

for some ε = negl(λ) (see Definition A.9 and Lemma A.11). We conclude by Lemma A.10 that ḡ> · v̄ is negligibly close to
uniform mod q. In particular w = ḡ> · v̄ + 2k−1vm does not reveal any information about vm.

Last, by corollary A.12, vm ← DZ,ω(
√

log λ) taken modulo 2 is negligibly close to the uniform distribution U(Z2).

Remark Here we want to stress that it fulfils the classical Smoothness definition, however in the following we will need
to take special care, because the Hash value is in {0, 1}, so even if an adversary has no advantage in finding the Hash Value
(the best attack is picking at random), he can still manage to do it with probability 0.5. However, as we are going to do a
linear number n of SPHF and do a concatenation of them the probability that all of them are fulfilled goes down to 0.5n if
the adversary tries to guess at random.

Pseudo-Randomness Once again, under the indistinguishability of the encryption, we can transform a commitment to a
word in the language, to a commitment to a word outside of the language, hence an adversary against the Pseudo-Randomness
either break the Smoothness (which, information theoretically he can not) or the indistinguishability of the encryption.

4 Password Authenticated Key-Exchange
The only existing lattice-based construction of PAKE is given in [36, 23]. It is a 3-round protocol, proven in a variant of the
BPR model [7]. We give two improvements of this protocol in this section. First, we give an equivalent 3-round protocol, but
this time proven in the UC framework [15, 18]. To do so, we are going to use the homomorphic properties on the randomness
in the CCA-1 encryption from [41], upgraded to CCA-2 with a strong one-time signature and the previous home-made smooth
projective hash functions. Secondly, we give a one-round protocol in the BPR model [7] by taking advantage of the strong
properties of the SPHF we present in Section 3.2.2. The projection key can indeed be computed before having seen the
corresponding commitment, which enables us to get rid of the other rounds.
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Commit(L, ek,M,N ; r, s) : for (r, s)
$← (Znp )2

(C, C′)← DMPCom(L, ek,M, 0; r, s)
χ = HK

′(C′), C′′ = Trap.Commit(χ; t)
C, C′′−−−−−−→
ζ←−−−−−− ζ ← Dn

Z,ω(
√

log λ)ζ
?

6= 0
z = r + ζs

Decommit(L, C, C′, ζ) : C′, t−−−−−−→ Trap.Open(ck, C′′,HK ′(C′), t)?
Implicit check with a SPHF that MP∗(L, ek,M,T; z)

?≈ C + εC′

Figure 4: DMPCom′ Commitment Scheme for SPHF

4.1 Building Blocks for our UC PAKE
In a nutshell, when dealing with PAKE schemes constructed from the KOY-GL approach (with each player sending a com-
mitment and a projection key for an SPHF), the UC framework requires that the first commitment sent is simultaneously
extractable (in case it is sent by the adversary, the simulator needs to extract the value committed to) and equivocable (in case
it is sent by an honest player, the simulator needs to be able to change its mind later on). The first solution was given in [18]
but requires another commitment sent in a pre-flow and the use of a simulation-sound non-interactive zero-knowledge proof
to ensure that the values committed to are the same in both flows. More recently, it was shown that it is indeed possible to
construct a commitment both extractable and equivocable [2, 39, 8]. We follow their approach here.

Multi-Bits Micciancio Peikert Encryption. One can extend the encryption scheme MP to vectors of k bits. We will denote
it k-MP. It consists in encrypting each bit with independent random coins in Cb but a shared Tag T = HK(L, (vkb)b∈J1,kK).
For readability, we will omit vk in the following as we don’t mention the one-time signature but it is crucial to remember it is
part of the Tag to provide CCA-2.

Double Micciancio Peikert Commitment. To fulfill the equivocability on the first commitment, we need to be able to give
a “doubled” variant of our revision of the Micciancio Peikert (Bit-)Encryption.4 See the Appendix B for more details, but we
briefly present here the commitment scheme that we will use in the rest of this paper in conjunction with SPHF.

To make it equivocable, we double the commitment process, in two steps. The CRS additionally contains an encryption
key for a trapdoor commitment ck (the trapdoor for equivocability is then called ℵ, see Section A.2.1 for more details).

The Double Micciancio Peikert Encryption encryption scheme, denoted DMP and detailed in the Appendix B is

DMP(L, ek,M,N ; r, s) def= (C←MP(L, ek,M ; r), C′←MP∗(L, ek, N,T; s))

where T = HK(L, vk) is computed during the generation of C and transferred for the generation of C′. The difference
between MP and MP∗ resides in the fact we don’t need to include the Strong One-Time Signature to the MP∗ version.

We will use DMPCom to denote the use of DMP with the encryption key ek. The usual commit/decommit processes are
described on Figure 8 in the Appendix B. We clearly cannot do the decommit phase (otherwise we reveal the password used),
so that we need a variant of this commitment, where one can implicitly check the opening with an SPHF. This DMPCom′

scheme can be found on Figure 4. We stress that at this stage, we use χ = HK
′(C′) (for the SPHF implicit check), later in

this paper (see Section 5), when we present our UC Commitment, we use instead χ = HK
′(M, C′) (for the explicit check).

The DMPCom′ scheme in this way is not formally extractable/binding: in DMPCom′, the sender can indeed encrypt M
in C and N 6= 0 in C′, and then, the global ciphertext C + ζC′ contains M ′ = M + ζN 6= M , whereas one would have
extractedM from C. ButM ′ is unknown before ζ is sent, and thus, if one checks the membership ofM ′ to a sparse language,
it will unlikely be true. However, contrary to [39, 8], we do not consider a sparse language here (they consider the language
reduced to one element of a group of big order q). Rather, we here consider a language of bits, making the adversary manage
to find the correct value ofM ′ with probability 1/2. A simple solution is to make the verifier send a number n of challenges ζ
linear in the security parameter. This way, the probability becomes 1/2n, which is negligible. The implicit verification can
still easily be done using a conjunction of SPHF, constructed by standard techniques [2, 8] (this verification fails as soon as
one verification fails). For the sake of simplicity of the notations, even if one has to keep in mind the use of these multiple
challenges, we continue to denote as ζ, C′ and z the list of the corresponding values.

Multi-Bits Double Micciancio Peikert Commitment. One can extend these encryption and commitment schemes to vec-
tors of k bits (see the Appendix B). We will denote them k-DMPCom′ or k-DMPCom for the commitment schemes. They
consist in encrypting each bit with independent random coins in Cb but a shared Tag T = HK(L, (vkb)b∈J1,kK), together with
independent companion ciphertexts C′b,j of 0, still with the same tag for the doubled version. In the latter case, n independent
challenges ζb,j are then sent for each bit of the message, to lead to the full commitments {Cb + ζbjC′b,j}b,j . For the sake of

4This is an artificial tool to allow both extraction and equivocation. Indeed, any IND-CCA labeled encryption scheme can be used as a non-malleable
and extractable labeled commitment scheme. In order to add the equivocability, one can use a technique inspired from [39, 8].
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Pi uses a password Wi and Pj uses a password Wj . We denote L = (sid, ssid, Pi, Pj).

• First Round: Pi (with random tape ωi) first generates a pair of signing/verification keys (SKi,VKi) and a
k-DMPCom′ commitment on Wi in (Ci, C′i), with randomness (ri, r

′
i), under Li = (L,VKi): (Ci, C′i) =

k-DMPCom′(Li, ek,Wi, 0; ri, r
′
i). It also computes a Trapdoor commitment on C′i in C′′i (with randomness

t): χ = HK
′(C′i) and C′′i = Trap.Commit(χ; t). It then sends (VKi, Ci, C′′i ) to Pj ;

• Second Round: Pj (with random tape ωj) computes a k-MP encryption on Wj in Comj = Cj , with witness rj ,
under the label Lj = L: Cj = k-MP(Lj , ek,Wj ; rj). It then generates a challenge ζ on Ci and hashing/projection
keys hki and the corresponding hpi for the equality test on Comi: “Comi is a valid commitment of Wj”. It then
sends (Cj , ζ, hpi) to Pi;

• Third Round: user Pi can compute Comi = Ci + ζC′i and witness z = ri + ζr′i, it generates hashing/projection
keys hkj and hpj for the equality test on Comj . It finally signs all the flows using SKi in σi and sends
(C′i, t,hpj , σi) to Pj ;

• Hashing: Pj first checks the signature and the validity of the Trapdoor commitment (thanks to t), it computes
Comi = Ci + ζC′i. Pi computes Ki and Pj computes Kj as follows:

Ki = Hash(hkj , L′j ,L,Comj)⊕ ProjHash(hpi, Li,Li,Comi; z)

Kj = ProjHash(hpj , Lj ,L,Comj ; rj)⊕ Hash(hki, L′i,Li,Comi)

Figure 5: Password-based Authenticated Key Exchange

simplicity of the notations, we continue to denote by ζ and C′ the list of those values ζb,j and C′b,j in the description of our
PAKE protocol. Again, if one of the companion ciphertext C′b,j does not encrypt 0, the full commitment encrypts a vector
with at least one unpredictable componentM ′b (with the trick explained in the former paragraph, since we use a linear number
of challenges). Several non-unity components in the companion ciphertexts would lead to independent components in the
full commitment. For languages sparse enough, this definitely turns out not to be in the language. The implicit verification
is done with the conjunction of the SPHF for every bit, see details in Section 3.2.2. Again, for the sake of simplicity of the
notations of our PAKE protocol, we only mention the global SPHF used, omitting the details of its construction.

4.2 A Three-Round PAKE with low communication proven in the UC framework
4.2.1 Functionality of Password-Authenticated Key Exchange

We use the functionality of PAKE presented in [18]. We recall it in Appendix C for lack of space.

4.2.2 Construction of our Password-Authenticated Key Exchange Protocol

We use the generic construction given in [8], as described on Figure 5. This protocol consists in three rounds, the first and the
third one being a double Micciancio Peikert commitment sent by Pi. We thus need this player to generate a pair of one-time
signature keys (SKi,VKi) in order to sign his second flow and avoid man-in-the-middle attacks. Since Pj is the second player
to send his flow, a simple Micciancio Peikert commitment, as presented in Section 3.2.1 is enough. Both players also send a
projection key to each other, in order to check the validity of these commitments, and thus that they share the same password.
This will lead to a session key constructed from the two (projected) hash values. Note that the projection key needs to be
sent by Pj before having sent the entire Comi sent by Pi, but the SPHF indeed only depends on Ci, already known by Pj .
Furthermore, the SPHF constructed in Section 3.2.2 has the nice property that the projection key does not depend on the
commitment. This is a stronger property than the one presented in [36]. Speaking in terms of languages to be consistent with
the presentation of our SPHF in Section 3.2.2, Pi uses a password Wi and expects Pj to own the same password, i.e. a word
in the language L′j = Li = {Wi}. Similarly, Pj uses a password Wj and expects Pi to own the same password, i.e. a word
in the language L′i = Lj = {Wj}.

Theorem 4.1 Our PAKE scheme from Figure 5 realizes the FpwKE functionality in the Fcrs-hybrid model, in the presence of
static adversaries, under the LWE and SIS assumptions and the security of the One-Time Signature.

Technically, one can use a CPA encryption for Cj , so for optimization purpose it would be better to use the Dual Regev
Encryption and its associated SPHF in this case, however for a symmetrical approach in design, we use MPon both sides.

4.2.3 Extension to LAKE

Recent works [8, 9] also used SPHF to build protocols more modular than classical PAKE, where they do not restrain the
languages to only words. This primitive, called LAKE for Language Authenticated Key Exchange, allows two users, Alice
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and Bob, each owning a word in a specific language, to agree on a shared high entropy secret if each user knows a word in
the language the other thinks about. This notion supersedes PAKE, verifier-based PAKE, Secret Handshakes, CAKEs, ...

In our case, due to the bit per bit nature of the commitment we can consider only languages of ciphertexts on bitstrings.
Due to the algebraic nature of SPHF, one can use classical techniques to extend this to any conjunction or disjunction of
languages, allowing this way to have advanced-PAKE protocols that handle any polynomial number of conjunctions and
disjunctions of languages of the form LI,J = {w ∈ {0, 1}n|∀i ∈ I, wi = 0,∀j ∈ J , wj = 1}.

4.3 A One-Round PAKE
As explained earlier, Katz and Vaikuntanathan [36] recently proposed the first PAKE protocol based on lattices, using a
general framework following KOY-GL’s approach [35, 28]. As in their article, we consider here the standard notions of
security [7, 35, 28] but we improve the efficiency of their construction by giving a one-round protocol.

The high-level idea follows that of [37, 9]: In the KOY-GL framework, each player sends an encryption of the password,
and then uses an SPHF on the partner’s ciphertext to check whether it actually contains the same password. The two hash
values are multiplied to produce the session key. If the encrypted passwords are the same, the different ways to compute the
hash values (Hash and ProjHash) give the same results. If the passwords differ, the smoothness makes the values computed
by each player independent. To this aim, the authors need an SPHF on a labeled IND-CCA encryption scheme.

Moreover, to allow a one-round PAKE, the ciphertext and the projection key on the partner’s ciphertext should be sent
together, before having seen the partner’s ciphertext: the projection key should thus be independent of the ciphertext. In
addition, the adversary can wait to have received the partner’s projection key before generating the ciphertext, and thus a
stronger smoothness is required. This is exactly why we need a strong type of SPHF, as constructed in Section 3.2.2, in the
one-round PAKE framework. The protocol is presented on Figure 6.

Pi Pj
Ci :k-MP(ek,Wi; ri) Cj :MP(ek,Wj ; rj)
hki ←$,hpi ← ProjKG(Li,hki) hkj ←$,hpj ← ProjKG(Lj ,hkj)

hpj , Cj , σj←−−−−−−−−−−→
hpi, Ci, σi

Verify(σj) Verify(σi)
H ′j :ProjHash(hpj , Ci, wi) H ′i :ProjHash(hpi, Cj , wj)
Hi :Hash(hki, Cj) Hj :Hash(hkj , Ci)
si :Hi ⊕H ′j sj :H ′i ⊕Hj

Figure 6: One-Round Pake

Theorem 4.2 Our one-round PAKE scheme from Figure 6 is secure in the BPR model, under the LWE and SIS assumptions.

Proof: Since the scheme exactly follows the scheme given in [9], we only have to check that our primitives (MP encryption
and SPHF) fulfill the same properties in order to be able to apply modularly the proof given in [9, Theorem 4]. This was
done in Sections 3.2.1 and 3.2.2, which concludes the proof.

5 UC Commitment
On Figure 7 below, we will provide the first UC commitment based on Lattices. This scheme is inspired by the ideas from
[39, 10]. We will consider a bit commitment, and using techniques explained before, this can easily be generalized to any
bitstring.

Functionality of Commitment. We use the functionality of Commitment presented in [16, 39]. We recall it in Appendix C
for lack of space.

Description of the Protocol. The commit phase requires only 3 rounds, and the decommit is straightforward.
As explained when we introduced the DMP scheme in Section 4, we are now going to include the value x in the second

Trapdoor Commitment to prevent the adversary from trying to open his commitment to another value. We stress again that
the verification of the strong one time signature is implied every time someone receives a MP encryption. This is required
to be able to rely on the IND-CCA-2 property in the simulation. We only describe the adaptive version of this protocol, one
can easily switch commitment rounds to the decommitment to obtain a fair comparison with Lindell’s protocol with static
corruption. We describe the version on one bit, once again we could just use multiple commitment to extend to any message.
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We have a CRS, consisting of (ck, ek,HK ,HK
′), respectively the commitment key for a trapdoor commitment, the encryp-

tion key for a Micciancio Peikert like scheme, and randomly drawn from a collision-resistant hash function family H, one
arriving in the tagspace, the other in the bitstring space.
The commit phase. Upon receiving a message (Commit, sid, ssid, Pi, Pj , x), party Pi works as follows, where x ∈ {0, 1}
and sid, ssid ∈ {0, 1}log2(n)/4.

1. Pi picks r, s← Znp and computes (C1, C2) = DMP(x, 0; r, s,T = HK(sid, ssid, vk)) with noise er, es.

Pi picks t1, t2 ← DZm,s.

He computes c1t = Trap.Commit(ξ, (C1); t1), c2t = Trap.Commit(ξ, (x,C2, sid, ssid, Pi, Pj); t2).

He sends (c1t , c
2
t ) to Pj .

2. Pj picks ζ ← D∗Z,ω(
√

log λ)
and sends it to Pi.

3. Pi now computes z = r + ζs, ez = er + ζes, and erases r, s, er, es.

He also opens c1t by sending (C1, t1) to Pj .

4. Pj verifies the consistency of c1t using Trap.Open(ck, C1, c
1
t , t1).

If yes, he stores (sid, ssid, Pi, Pj , C1, ζ, ez, c
2
p) and outputs (receipt, sid, ssid, Pi, Pj).

He ignores any later commitment messages with the same (sid, ssid) from Pi.

The decommit phase. Upon receiving a message (reveal, sid, ssid, Pi, Pj), Pi works as follows:

1. Pi sends (x,C2, t2, z, ez) to Pj .

2. Pj outputs (reveal, sid, ssid, Pi, Pj , x) if and only if c2t is consistent and ez is of appropriate size and:
MP(ek, x;T, z, ez) = C1 + ζC2

Figure 7: Our New Commitment Protocol UC-Secure against Adaptive Adversaries

Theorem 5.1 Our Commitment scheme from Figure 7 realizes the Fmcom functionality in the Fcrs-hybrid model, in the
presence of adaptive adversaries, under the LWE and SIS assumptions.

The complete proof, and the associated simulator can be found in the Appendix D.4.
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A Security Notions and Hardness Assumptions

A.1 Security Definition
Public Key Encryption Scheme. A public key encryption scheme PKE = (KG,Enc,Dec) with message space M is
defined as follows:

• (ek, dk)←$ KG(1n): the randomized key generation algorithm with security parameter n ∈ N;

• c←$ Enc(ek,m): the randomized encryption algorithm encrypts the message m ∈M to get a ciphertext C;

• m ← Dec(dk, c): the (deterministic) decryption algorithm decrypts the ciphertext c to get back the plaintext or a
rejection symbol.

PKE is perfectly correct if for any n ∈ N, all (ek, dk)←$ KG(1n) and all messagesm ∈Mwe have Pr[Dec(dk,Enc(ek,m)) =
m] = 1.

Definition A.1 (Security of Public Key Encryption) Public key encryption scheme PKE is (τ, ε,Q)-secure against adap-
tive chosen ciphertext attacks (CCA-2) if and only if

|Pr[ExpCCA-2
TBE,A,Q(n) = 1]− 1

2
| ≤ ε

holds for any PPT adversary A with running time τ , where ExpCCA-2
PKE,A,Q(n) is defined in Table 1. ODec(c) is an oracle

returns m← Dec(dk, c) and A can only query ODec(·) at most Q = poly(n) times.
Specially, there are two weaker notions on the public key encryption: if Q = 0, then we say the scheme is secure against

chosen plaintext attacks (CPA); if the adversary A is not allowed to query ODec(·) after seeing the challenge ciphertext c∗,
then we say the scheme is secure against non-adaptive chosen ciphertext attacks (CCA-1).

Experiment ExpCCA-2
PKE,A,Q(n)

(ek, dk)←$ KG(1n);
(m0,m1, St)←$ AODec(·)(ek);
b←$ {0, 1}; c∗ ←$ Enc(ek,mb)
b′ ←$ AODec(·)(c∗, St);
If b′ = b then return 1 else return 0.

Table 1: Security Experiment for Public Key Encryption

Tag-based Encryption Scheme. A tag-based encryption [38] is similar to the public key encryption except that the encryp-
tion and decryption operations take an additional tag, which is a binary string of appropriate length and need not have any
particular internal structure. Formally, a tag-based encryption scheme TBE = (KG,Enc,Dec) with tag space T and message
spaceM is defined as follows:

• (ek, dk)←$ KG(1n): the randomized key generation algorithm with security parameter n ∈ N;

• c ←$ Enc(ek, t,m): the randomized encryption algorithm encrypts the message m ∈ M with tag t ∈ T to get a
ciphertext C;

• m← Dec(dk, t, c): the (deterministic) decryption algorithm decrypts the ciphertext cwith tag t to get back the plaintext
or a rejection symbol.

TBE is perfectly correct if for any n ∈ N, all (ek, dk)←$ KG(1n), all tags t and messagesm ∈Mwe have Pr[Dec(dk, t,Enc(ek, t,m)) =
m] = 1.

Definition A.2 (Security of Tag-based Encryption) Tag-based encryption scheme TBE is (τ, ε,Q)-selective-tag weak se-
curity against chosen ciphertext attacks (tbe-stag-cca) if and only if

|Pr[Exptbe-stag-cca
TBE,A,Q (n) = 1]− 1

2
| ≤ ε

holds for any PPT adversary A with running time τ , where Exptbe-stag-cca
TBE,A,Q (n) is defined in Table 2. ODec(t, c) is an oracle

returns m ← Dec(dk, t, c) with restriction that A is not allowed to query with target tag t∗. A can only query ODec(·, ·) at
most Q = poly(n) times.
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Experiment Exptbe-stag-cca
TBE,A,Q (n)

t∗ ←$ A(1n);
(ek, dk)←$ KG(1n);
(m0,m1, St)←$ AODec(·,·)(ek);
b←$ {0, 1}; c∗ ←$ Enc(ek, t∗,mb)
b′ ←$ AODec(·,·)(c∗, St);
If b′ = b then return 1 else return 0.

Table 2: Security Experiment for Tag-based Encryption

As shown in [38, 17], tbe-stag-cca encryption scheme can be transferred into a CCA-2 public key encryption by using a
Strong One-time Signature.

Trapdoor Commitment. A commitment is defined as COM = (CKG,Commit,Open):

• (ck, td)←$ CKG(1n): the randomized key generation algorithm outputs the commitment key ck and the trapdoor td;

• (c, r) ←$ Commit(ck,m): the randomized commitment algorithm inputs the commitment key ck and the message m
and then it outputs the commitment value c and the opening information w;

• 1/0 ← Open(ck,m, c, r): the deterministic opening algorithm decommits the commitment value c with the opening
information r. If c is indeed the commitment of m then it outputs 1; otherwise, it outputs 0.

Definition A.3 (Trapdoor Commitment) A commitment scheme COM with message spaceM is called trapdoor commit-
ment if it satisfies the followings:

• Perfect hiding. This property states the following two distributions are identical:

{c0 : (ck, td)←$ CKG(1n), (c0, r0)←$ Commit(ck,m0)}

{c1 : (ck, td)←$ CKG(1n), (c1, r1)←$ Commit(ck,m1)}

where m0 6= m1.

• Computational binding. COM is (τ, ε)-binding if the following holds for any PPT adversary A with running time τ :

Pr

[
(ck, td)←$ CKG(1n); ((m0, c, r0), (m1, c, r1))←$ A(ck) :

Open(ck,m0, c, r0) = Open(ck,m1, c, r1) = 1 ∧ (m0, r0) 6= (m1, r1)

]
≤ ε.

• Perfect trapdoor opening. There exist an efficient algorithm Topen given the trapdoor td can open the commitment
to any message. Formally, the following holds:

Pr

[
(ck, td)←$ CKG(1n);m0,m1 ←$ M; (c0, r0)←$ Commit(ck,m0);
r1 ←$ Topen(td, (m0, r0),m1) : Open(ck,m1, c0, r1) = 1 ∧m0 6= m1

]
= 1.

One time Signature A signature scheme SIG with message spaceM is defined as a triple of probabilistic polynomial time
(PPT) algorithms SIG = (Gen,Sign,Verify):

• (vk, sk) ←$ Gen(1n): the randomized key generation algorithm takes as an input the unary representation of the
security parameter 1n and outputs a verification key vk and signing key sk.

• s ←$ Sign(sk,m): the randomized signing algorithm takes as input a signing key sk and message m and outputs a
signature s.

• 0/1 ← Verify(vk,m, s): the deterministic verification algorithm takes as input a verification key vk and a message-
signature pair (m, s) outputs 1 (accept) or 0 (reject).

SIG is perfectly correct if for any n ∈ N, all (vk, sk)←$ Gen(1n), allm ∈M, and all s←$ Sign(sk,m) that Verify(vk,m, s) =
1.

Definition A.4 (Strong one-time signatures) Signature scheme SIG is (τ, ε)-strong existential unforgeable under one-time
chosen-message attacks (S-OTS) iff

Pr[Exp S-OTS
SIG,F (n) = 1] ≤ ε

holds for any PPT adversary F with running time τ , where Exp S-OTS
SIG,F,q(n) is defined in Table 3.

17



Experiment Exp S-OTS
SIG,F (n)

(vk, sk)←$ Gen(1n);
(m∗, s∗)←$ FOSign(·)(vk), where the oracle
OSign(·) := Sign(sk, ·) can be asked at most once
If Verify(vk,m∗, s∗) = 1 and (m∗, s∗) 6= (m1, s1)
then return 1, else return 0.

Table 3: Security experiment for strong one-time signature.

UC framework We focus in this paper on protocols whose security is proven in the universal composability framework,
more precisely on password-authenticated key-exchange (PAKE) and commitments. In a nutshell, this framework allows
the protocols to remain secure when composed in an arbitrary environment, which reveals particularly useful in the case of
password-based protocols. This simulation-based notion of security relies on the use of ideal functionalities, which capture
all the necessary properties of the protocols and the means of an adversary. For clarity, we defer in Appendix C the ideal
functionalities of PAKE and commitments. The interested reader is referred to [15, 18, 39] for details.

Smooth Projective Hash Functions Smooth projective hash functions (SPHF) were introduced by Cramer and Shoup [21]
for constructing encryption schemes. A projective hashing family is a family of hash functions that can be evaluated in two
ways: using the (secret) hashing key, one can compute the function on every point in its domain, whereas using the (public)
projected key one can only compute the function on a special subset of its domain. Such a family is deemed smooth if the
value of the hash function on any point outside the special subset is independent of the projected key. The notion of SPHF has
found applications in various contexts in cryptography (e.g. [28, 34, 2]), and we will rely on it, for most of our constructions.

Definition A.5 (Smooth Projective Hashing System) A Smooth Projective Hash Function over a language L ⊂ X onto a
setH, is defined by five algorithms (Setup,HashKG,ProjKG,Hash,ProjHash):

• Setup(1n) where 1n is the security parameter, generates the global parameters params of the scheme, and the descrip-
tion of an NP language L;

• HashKG(L, params), outputs a hashing key hk for the language L;

• ProjKG(hk, (L, params),W ), derives the projection key hp, possibly depending on the word W [28, 2] thanks to the
hashing key hk.

• Hash(hk, (L, params),W ), outputs a hash value H ∈ H, thanks to the hashing key hk, and W

• ProjHash(hp, (L, params),W,w), outputs the hash value H ′ ∈ H, thanks to the projection key hp and the witness w
that W ∈ L.

In the following, we consider L as a hard-partitioned subset of X , i.e. it is computationally hard to distinguish a random
element in L from a random element in X \ L.

A Smooth Projective Hash Function should satisfy the following properties:

• Correctness: Let W ∈ L and w a witness of this membership. Then, for all hashing keys hk and associated projection
keys hp we have Hash(hk, (L, params),W ) = ProjHash(hp, (L, params),W,w).

• Smoothness: For all W ∈ X \ L the following distributions are statistically indistinguishable:

∆0 =

{
(L, params,W,hp, H)

params = Setup(1n),hk = HashKG(L, params),
hp = ProjKG(hk, (L, params),W ), H = Hash(hk, (L, params),W )

}
∆1 =

{
(L, params,W,hp, H)

params = Setup(1n),hk = HashKG(L, params),

hp = ProjKG(hk, (L, params),W ), H
$← H

}
.

• Pseudo-Randomness: If W ∈ L, then without a witness of membership the two previous distributions should remain
computationally indistinguishable: for any adversary A within reasonable time

Advpr
SPHF,A(n) = Pr

∆1

[A(L, params,W,hp, H) = 1]− Pr
∆0

[A(L, params,W,hp, H) = 1] is negligible.

In the special case of Lattices, Katz and Vaikuntanathan have proposed a relaxed definition of Smooth Projective Hash
Functions with only an approximated Correctness. This notion echoes to the approximate decryption on ciphertext, where in
some cases because of the noise, a decryption on the message might not lead to the initial ciphertext, and so here, in some
negligible occasions, an honestly computed projective hash for a word in the language may not be equal to the corresponding
hash.
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A.2 Useful Tools
A.2.1 Trapdoor Commitment

We construct a trapdoor commitment from SIS assumption, following the chameleon hash from [20] but with the Micciancio-
Peikert trapdoor generation [41] (see Lemma A.14 for more details). A chameleon hash is equivalent to the trapdoor com-
mitment, if one view the perfect uniformity of the chameleon hash as the perfect hiding of the commitment, the collision-
resistance as the computational binding, and the chameleon property as the perfect trapdoor opening.

For simplicity, we only present the scheme and the security proof is straightforward following the proof of Lemma 4.1
in [20]:

Let k = dlog qe = O(log n) and m = O(nk). Let D = DZm̄×nk,ω(
√

logn) be the Gaussian distribution over Zm̄×nk with
parameter ω(

√
log n) and let s = O(

√
nk) be a Gaussian parameter. Define the randomness space R := DZm,s·ω(

√
logn).

Then the commitment scheme COMSIS = (CKG,Commit,Open) with message space {0, 1}` is defined as follows:

• CKG(1n): choose a random matrix A0 ←$ Zn×`q . Sample (A1,R1)←$ GenTrapD(1n, 1m, q). Define ck := (A0,A1)
and td := R1.

• Commit(ck,m): choose a vector r from the Gaussian distribution DZm,s·ω(
√

logn), r← DZm,s·ω(
√

logn). Compute the
commitment value c = A0m + A1r. Return the commitment c and the opening information r.

• Open(ck,m, c, r): accept if ‖r‖ ≤ s · ω(
√

log n) ·
√
m and c = A0m + A1r; otherwise, reject.

As a trapdoor commitment, there exist an efficient trapdoor opening algorithm for COMSIS:

• Topen(td, (m0, r0),m1): compute u = (A0m0+A1r0)−A0m1 and sample r1 ∈ Zm according toDΛ⊥u (A1),s·ω(
√

logn),
r1 ←$ SampleD(R1,A1,u, s).

Note that the trapdoor opening Topen works in a stronger sense, where Topen inputs the commitment value c0 instead of
(m0, r0), since in the construction A0m0 + A1r0 = c0.

A.2.2 Strong One-Time Signature

The simplest way to obtain the strong one-time signature from lattices is to implement Lamport’s construction with the
following SIS function fA : x ∈ {0, 1}m 7→ Ax mod q for appropriate parameter choices of n, q,m ≥ n log q and a random
matrix A ∈ Zn×mq . It is easy to see this Lamport construction is a strong one-time signature, since fA is not only one-way
but also collision resistant.

An alternative efficient construction was proposed by Lyubashevsky and Micciancio [40], which shows that a ring-variant
of SIS leads to a strong one-time signature scheme with quasi-linear efficiency.

To be consistent with the tag-based encryption from Sect. 3.2.1, we use the following strong one-time signature from our
trapdoor commitment. We firstly present the generic construction from trapdoor commitments and its security proof and then
implement it by using the scheme from Sect. A.2.1.

GENERIC SCHEME. Let COM = (CKG,Commit,Open,Topen) be a trapdoor commitment. Then our strong one-time
signature SIGTrap = (Gen,Sign,Verify) is defined as follows. Without loss of generality, we assume the message space is the
same as the commitment space; otherwise, one can use a collision-resistant hash function to make them consistent.

• Gen(1n): sample (ck1, td1) ←$ CKG(1n) and (ck2, td2) ←$ CKG(1n). Compute (ĉ, r̂) ←$ Commit(ck1, 0) where 0
can be any dummy message. Define vk := (ck1, ck2, ĉ) and sk := (td1, r̂).

• Sign(sk,m): compute (c2, r2) ←$ Commit(ck2,m) and trapdoor open r1 ←$ Topen(td1, (0, r̂), c2). Define the
signature as s := (r1, c2, r2).

• Verify(vk,m, s = (r1, c2, r2)): check if Open(ck2,m, c2, r2) = 1 and Open(ck1, c2, ĉ, r1) = 1.

Correctness is easy to verify by the perfect trapdoor opening of COM.

Theorem A.6 (Security of SIGTrap) If COM is a trapdoor commitment with (τ, ε)-binding, then SIGTrap is a (τ ′, ε′)-secure
strong one-time signature with ε′ ≤ 2ε and τ ′ = O(τ).

We postpone the proof of this theorem in the Appendix D.

IMPLEMENTATION FROM SIS. We fix the parameter n, p, k,m and also the Gaussian parameter s and Gaussian distributionD
in the same way as Sect. A.2.1. Let HK : Znq 7→ {0, 1}` be a collision-resistant hash function, which is easy to construction.
A naive way to implement HK is to view the element x ∈ Znq as a `-bit string for an appropriate `. Then the strong one-time
signature SIGSIS from SIS is defined as follows:
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• Gen(1n): pick a random matrix A0 ←$ Zn×`q and sample (A1,R1) ←$ GenTrapD(1n, 1m, q) and (A2,R2) ←$

GenTrapD(1n, 1m, q). Choose a uniformly random vector u←$ Znq . Define the verification key vk := (A0,A1,A2,u,HK)
and the signing key sk := R1.

• Sign(sk,m): sample r2 ← DZm,s·ω(
√

logn). Compute c2 = A0m + A2r2 and y = u − A0 · HK(c2). Sample
r1 ← SampleD(R1,A1,y, s). Define the signature s := (r1, c2, r2).

• Verify(vk, (m, s)): phase s as s = (r1, c2, r2). Check if ‖r1‖ ≤ s · ω(
√

log n) ·
√
m and ‖r2‖ ≤ s · ω(

√
log n) ·

√
m.

If both hold, then continue to check if c2 = A0m + A2r2 and u = A0 · HK(c2) + A1r1.

A.3 Facts about Lattices
For integers n,m and for a prime q, let A ∈ Zn×mq . The m-dimensional integer lattice Λ⊥(A) is defined as

Λ⊥(A) := {z ∈ Zm : Az = 0 mod q}.

For any u ∈ Znq , define the coset
Λ⊥u (A) := {z ∈ Zm : Az = u mod q}.

Leftover Hash Lemma A distribution D is said to be ε-uniform if its statistical distance from the uniform distribution is at
most ε. Let X and Y be finite sets. A family H of hash functions from X to Y is said to be pairwise-independent if for all
distinct x, x′ ∈ X , Prh←H [h(x) = h(x′)] = 1/|Y |.

Lemma A.7 (Leftover Hash Lemma [33]) LetH be a family of pairwise-independent hash functions fromX to Y . Suppose
that h← H and x← X are chosen uniformly and independently. Then, (h, h(x)) is 1

2

√
|Y |/|X|-uniform overH× Y .

For our applications, note that if A ∈ Zm×n is chosen uniformly at random, and if m ≥ Θ(n log q) then the functions
fA : x ∈ {0, 1}m 7→ A · x ∈ Zn form a pairwise-independent family, in particular for x ← U({0, 1}), Ax is negligibly
close to the uniform distribution U(Znq ).

A.3.1 Discrete Gaussian Distributions

Definition A.8 The (unnormalized) weight of Gaussian distribution of parameter s ∈ R and center c ∈ R at x ∈ R is
defined by ρs,c(x) = exp

(
− π (x−c)2

s2

)
, and more generally, the spherical Gaussian distribution of parameter s > 0 and

center c ∈ Rn is defined over Rn as

ρs,c(x) = e−π
(x−c)2

s2 .

The discrete Gaussian distribution over Z is defined by the probabilities DZ,s,c(x) = ρs,c(x)/ρs,c(Z) for any x ∈ Z, and
more generally, over a lattice L by

DL,s,c(x) = ρs,c(x)/ρs,c(L) for any x ∈ L.

The following lemmas are useful for this paper:

Definition A.9 [Smoothing Parameter [42]] For any n-dimensional lattice L and any real ε > 0, the smoothing parameter
ηε(L) (see [42]) is the smallest real s > 0 such that ρ1/s(L̂ \ {0}) ≤ ε.

Lemma A.10 (Implicit in [42, Lemma 4.4]) For any integer full rank matrix B ∈ Zn×m and ε ∈ (0, 1), if σ ≥ ηε(Λ⊥(B))
we have that the distribution of w = B · v mod q for v← DZm,s is at distance O(ε) from uniform over Znq .

Lemma A.11 (Lemma 3.3 of [42]) For any lattice L ⊂ Rm of dimension n and any ε ∈ (0, 1],

ηε(L) ≤
√

ln(2n(1 + 1/ε))/π · λn(L)

where λn(L) denotes the largest minima of L. In particular, if B is a basis of L, for any super-logarithmic function
ω(log n) there exists a negligible function ε(n) such that ηε(L) ≤ ‖B‖

√
ω(log n) .

Corollary A.12 (Smoothing Lemma over Z) The statistical distance between DZ,d·ω(
√

log λ) mod d the discrete Gaussian
taken modulo d ∈ Z, and U(Zd) the uniform distribution over Zd, is negligible in λ.

Lemma A.13 (Smoothing Lemma for randome lattice, Corollary 5.4 of [30]) Let n be a positive integer and q be a prime,
and let integer m ≥ 2n log q. Then for all but a 2q−n fraction of all A ∈ Zn×mq and for any s ≥ ω(

√
logm), the distribution

of the syndrome y = Ax mod q is statically close to uniform over Znq , where x is from DZm,s.

20



Lemma A.14 (Theorem 5.1 of [41]) There is an efficient randomized algorithm GenTrapD(1n, 1m, q) that, given any inte-
gers n ≥ 1, q ≥ 2, and sufficiently large m = O(n log q), outputs a parity-check matrix A ∈ Zn×mq and a trapdoor R such
that the distribution of A is negl(n)-far from uniform and R is sampled from the Gaussian D. Moreover, there are efficient
algorithms Invert and SampleD that with overwhelming probability over all random choices, do the followings:

• For bt = stA+ et is arbitrary and either ‖e‖ < q/O(
√
n log q) or e← DZm,αq for 1/α ≥

√
n log q ·ω(

√
log q), the

deterministic algorithm Invert(R,A,b) outputs s and e;

• For any u ∈ Znq and large enough s = O(
√
n log q), there is an efficient randomized algorithm SampleD(R,A,u, s)

that samples from a distribution with negl(n) statistical distance of DΛ⊥u (A),s·ω(
√

logn).

B The Double Micciancio Peikert Encryption
Recently, Lindell [39] proposed a highly efficient UC commitment, we are going to use an adaptation that does not need
to be UC secure. We will then show that the decommitment check can be done in an implicit way with an appropriate
smooth projective hash function. Basically, the technique consists in encrypting b in C = MP(L, b; r, vk), also getting
T = HK(L, vk), and then encrypting 0 in C′ = MP∗(L, 0,T; s), with the same T. For a given challenge ζ, we can see that
∀i, C + ζiC′i = MP∗(L, b,T; r+ ζisi), this linear redundancy of control is here to exponentially reduce the adversary chance
of passing an invalid ciphertext.

This section may be seen as redundant with the presentation in Section 5, it is just here to clarify some techniques, and
underlines the fact that we do not need this commitment to be UC, to use it in our UC PAKE, only a sketch of the proof is
given as it is more meticulously handled in the UC part in section D.4.

It makes use of an equivocable Trapdoor commitment as described in Section A.2.1.
To achieve the CCA-2 security each MP ciphertext is sent with a Strong-OTS, which is verified immediately by the

verifier, for clarity they are omitted in the scheme below, but we insist that the verification key of the signature is included in
the computation of the tag (even if we omit it from now on for simplicity).

We define n = O(n).

B.1 Description.

Our n-bits vector commitment, which includes labels, is depicted on Figure 8. We assume we commit vectors of bits, we will
note M = ECC(b) for sake of simplicity.

Note that for this commitment scheme, we use one vector ζ shared for all bits, for the version with SPHF implicit
verification, if we study languages more complex that equality, one can have to use independent components, for sake of
simplicity we note C′ the set of nC′i and consider operation on it as if it was only one ciphertext.

• Setup: Generates the Micciancio Peikert encryption key ek, a collision-resistant hash function HK mapping
to the tagspace, and the key for a trapdoor commitment ck;

• Commit(L,M; r, si, er, esi , t):
(C, C′)← n− DMP(L, ek,b,0; r, s,T = HK(L), er, es)
χ = HK(b, C′)
C′′ = Trap.Commit(χ; t)

C, C′′−−−−−−−−−−−−−−−→
ζ←−−−−−−−−−−−−−−− ζ ← Dn

Z,ω(
√

log λ)ζ
?

6= 0
z = (r + ζ · s), ez = (er + ζ · es)
Erase (r, s, er, es)

• Decommit(L, C, C′, ζ): C′,T,M, z, ez−−−−−−−−−−−−−−−→ compute T from L, vk
χ = HK(M, C′),
Trap.Open(ck, C′′,HK(C′), t)?

C + ζC′ = n−MP∗(L,M,T; z, ez)

Figure 8: n− DMP Commitment Scheme

B.2 Analysis.

Let us briefly show the properties of this commitment:
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• Hiding property: M is committed in the Trapdoor commitment C′′, that does not leak any information, and in the
n − MP encryption C, that is indistinguishable, even with access to the decryption oracle (extractability). This also
implies non-malleability when we add the Strong One-Time Signature.

• Binding property: M, after having been hashed, is committed in the Trapdoor commitment C′′, that is computationally
binding.

• Extractability: using the decryption key of the MP encryption scheme, one can extract b from C. Later, one has to open
the ciphertext C + ζC′ with b′. If C′ was generated honestly this value is equal to b with overwhelming probability.

If all the ciphertext in C′ are not an honestly generated encryption of 0, then the value b′ could not be predicted by
the adversary at the beginning of the protocol. As this value is in {0, 1}, we have a good prognostic for a value with
probability 0.5, as we have several n = O(n) challenges ζi, so that probability that all of them match to the same value,
and that this value was predicted falls in O(2−n).

• Equivocability: if one wants to open with M′, one can compute N = (M′ − M)/ζ, encrypt N in C′ = n −
MP∗(L,N,T; s), and update χ and t, using the trapdoor for equivocability.

To allow an implicit verification with SPHF, one omits to send M and z, ez , but make an implicit proof of their existence.
Therefore, M cannot be committed/verified in C′′, which has an impact on the binding property: C and C′′ are not bound to a
specific M, even in a computational way. However, as said above, if C′′ contains a ciphertext C′ non honestly generated on
0, the actual committed value will depend on ζ: has its i-component, where Ni, uniformly distributed, when ζ is uniformly
distributed in {0, 1}, the probability that given a dishonest C′i, and n challenges all the C′′i decommits to the same b̄ is close to
O(2−n), hence negligible.

B.3 Security of the Encryption Scheme
We are going to sketch the security of the DMP encryption. This is mostly a transposition of the Double Cramer Shoup
from [8], no particularity arises during the proof. (As we need to add a Strong-OTS to the Micciancio Peikert like encryption,
the security of this signature will also appear).

We described everything for the 1 bit scheme.

B.3.1 Security model.

This scheme is indistinguishable against partial-decryption chosen-ciphertext attacks, where a partial-decryption oracle only
is available, but even when we allow the adversary to choose M and N in two different steps (see the security game below),
under the LWE assumption and if one uses a collision-resistant hash function HK and a Strong-OTS.

Indistinguishability against partial-decryption chosen-ciphertext attacks, in two steps: this security notion can be formal-
ized by the following security game, where the adversary A keeps some internal state between the various calls FINDM ,
FINDN and GUESS. In the first stage FINDM , it receives the encryption key ek; in the second stage FINDN , it re-
ceives the encryption of Mb: C∗ = Encrypt(L, ek,Mb); in the last stage GUESS it receives the encryption of Nb: C′∗ =
Encrypt′(L, ek,T∗, Nb), where T∗ is the value involved in C. During all these stages, it can make use of the oracle
ODecrypt(L, C), that outputs the decryption of C under the label L and the challenge decryption key dk, using PDecrypt(L, dk, C).
The input queries (L, C) are added to the list CT .

Expind-pd-cca−b
E,A (n)

1.params← Setup(1n); (ek, dk)← Gen(params)
2.(L∗,M0,M1)← A(FINDM : ek,ODecrypt(·, ·))
3.C∗ ← Encrypt(L∗, ek,Mb)
4.(N0, N1)← A(FINDN : C∗,ODecrypt(·, ·))
5.C′∗ ← Encrypt′(L∗, ek,T∗, Nb)
6.b′ ← A(GUESS : C′∗,ODecrypt(·, ·))
7.IF (L∗, C∗) ∈ CT RETURN 0
8.ELSE RETURN b′

The advantages are, where qd is the number of decryption queries:

Advind-pd-cca
E (A) = Pr[Expind-pd-cca−1

E,A (n) = 1]− Pr[Expind-pd-cca−0
E,A (n) = 1]

Advind-pd-cca
E (qd, t) = max

A≤t
Advind-pd-cca

E (A).

Theorem B.1 The DMP encryption scheme is IND-PD-CCA if HK is a collision-resistant hash function family, under the
LWE and SIS assumption.
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Corollary B.2 The Multiple n − MP encryption scheme is IND-CCA if HK is a collision-resistant hash function family,
under the LWE and SIS assumption.

B.3.2 Security proof. (sketch)

In this section, we only give a high level idea of what happens in the ind-pd-cca security proof, for that we show how to use
A to answer to a CCA-2 challenger.

• In the initial game G0,

– A’s decryption queries are answered by B, simply using the normal decryption.

– When A submits the first challenge M0,M1, with a label L∗, B chooses a random bit b $← {0, 1} and encrypts
Mb:

– When A submits the second challenge N0, N1, and do a MP∗ encryption of Nb (i.e. without the Strong-OTS).

– When A returns b′, B outputs b′ ?= b.

• In game G1, we handle cases where M0 6= M1, we simply rely on the simulator of the CCA-2 security of the MP
encryption (with the Strong-OTS):

– Decryption queries are answered by the simulator of the CCA-2.

– When A submits the first challenge M0,M1, with a label L∗, the simulator from CCA-2 gives us a challenge Cb
– When A submits the second challenge N0, N1:

∗ If N0 = N1, B proceeds honestly
∗ If M0 = N0, and so M1 = N1, one simple randomizes Cb (without the signature it is easy), to generate C ′b
∗ Else this means Nb = Mb + 1 mod 2, hence we randomize into C ′b by starting from Cb − (0|ECC(1)).

– When A returns b′, B forwards b′ to the CCA-2 challenger.

• In game G2, we handle M0 = M1, we will once again use a CCA-2 challenger, but with N0, N1,L
∗, as we can do the

first encryption honestly.

As A answers the correct bit b′ with non-negligible probability and our simulation is perfect, we manage to break the
CCA-2 security of the revisited Micciancio Peikert Scheme, hence either the LWE and SIS assumptions, or the collision
resistance of the Hash Function.

C UC Framework and Ideal Functionalities

C.1 Quick Presentation of the UC Framework
Throughout this paper we assume basic familiarity with the universal composability framework. Here we provide a brief
overview of the framework. The interested reader is referred to [15] for complete details. In a nutshell, security in the UC
framework is defined in terms of an ideal functionality F , which is basically a trusted party that interacts with a set of players
to compute some given function f . In particular, the players hand their input to F which computes f on the received inputs
and gives back to each player the appropriate output. Thus, in this idealized setting, security is inherently guaranteed, as
any adversary, controlling some of the parties, can only learn (and possibly modify) the data of corrupted players. In order
to prove that a candidate protocol π realizes the ideal functionality, one considers an environment Z , which is allowed to
provide inputs to all the participants and that aims to distinguish the case where it receives the outputs produced from a real
execution of the protocol (involving all the parties and an adversaryA, controlling some of the parties and the communication
among them), from the case where it receives outputs obtained from an ideal execution of the protocol (involving only dummy
parties interacting with F and an ideal adversary S also interacting with F). Then we say that π realizes the functionality
F if for every (polynomially bounded) A, there exists a (polynomially bounded) S such that no (polynomially bounded) Z
can distinguish a real execution of the protocol from an ideal one with a significant advantage. In particular, the universal
composability theorem assures us that π continues to behave like the ideal functionality even if it is executed in an arbitrary
network environment.

As a consequence, the formal security proof is performed by showing that for any external entity, that gives inputs to
the honest players and gets the outputs but that also controls the adversary, the executions in the two above worlds are
indistinguishable. More concretely, in order to prove that a protocol P realizes an ideal functionality F , we consider an
environment Z which can choose inputs given to all the honest players and receives back the outputs they get, but which
also controls an adversary A. Its goal is to distinguish in which case it is: either the real world with concrete interactions
between the players and the adversary, or the ideal world in which players simply forward everything to and from the ideal
functionality and the adversary interacts with a simulator S to attack the ideal functionality. We have to build a simulator
S that makes the two views indistinguishable to the environment: since the combination of the adversary and the simulator
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cannot cause any damage against the ideal functionality, this shows that the adversary cannot cause any damage either against
the real protocol.

The main constraint is that the simulator cannot rewind the execution as often done in classical proofs, since it interacts
with an adversary under the control of the environment: there is no possible rewind in the real word, it is thus impossible too
in the ideal world.

The adversary A has access to the communication but nothing else, and namely not to the inputs/ouputs for the honest
players. In case of corruption, it gets complete access to inputs and the internal memory of the honest player, and then gets
control of it.

C.2 The Ideal Functionality of Password-Based Authenticated Key-Exchange

The functionality FpwKE is parameterized by a security parameter k. It interacts with an adversary S and a set of parties
P1,. . . ,Pn via the following queries:
• Upon receiving a query (NewSession, sid, ssid, Pi, Pj, pw) from party Pi:

Send (NewSession, sid, ssid, Pi, Pj) to S. If this is the first NewSession query, or if this is the second NewSession
query and there is a record (sid, ssid, Pj , Pi,pw′), then record (sid, ssid, Pi, Pj ,pw) and mark this record fresh.

• Upon receiving a query (TestPwd, sid, ssid, Pi, pw′) from the adversary S:
If there is a record of the form (Pi, Pj ,pw) which is fresh, then do: If pw = pw′, mark the record compromised
and reply to S with “correct guess”. If pw 6= pw′, mark the record interrupted and reply with “wrong guess”.

• Upon receiving a query (NewKey, sid, ssid, Pi, sk) from the adversary S:
If there is a record of the form (sid, ssid, Pi, Pj ,pw), and this is the first NewKey query for Pi, then:

– If this record is compromised, or either Pi or Pj is corrupted, then output (sid, ssid, sk) to player Pi.

– If this record is fresh, and there is a record (Pj , Pi,pw′) with pw′ = pw, and a key sk′ was sent to Pj , and
(Pj , Pi,pw) was fresh at the time, then output (sid, ssid, sk′) to Pi.

– In any other case, pick a new random key sk′ of length n and send (sid, ssid, sk′) to Pi.

Either way, mark the record (sid, ssid, Pi, Pj ,pw) as completed.

Figure 9: Ideal Functionality for PAKE FpwKE

We present the PAKE ideal functionality FpwKE on Figure 9). It was described in [18]. The main idea behind this
functionality is as follows: If neither party is corrupted, then they both end up with the same uniformly-distributed session
key, and the adversary learns nothing about it (except that it was indeed generated). However, if one party is corrupted, or
if the adversary successfully guessed the player’s password (the session is then marked as compromised), then it is granted
the right to fully determine its session key. Note that as soon as a party is corrupted, the adversary learns its key: There
is in fact nothing lost by allowing it to determine the key. In addition, the players become aware of a failed attempt of the
adversary at guessing a password. This is modeled by marking the session as interrupted. In this case, the two players are
given independently-chosen random keys. A session that is nor compromised nor interrupted is called fresh. In such a
case, the two parties receive the same, uniformly distributed session key. Finally notice that the functionality is not in charge
of providing the password(s) to the participants. The passwords are chosen by the environment which then hands them to
the parties as inputs. This guarantees security even in the case where two honest players execute the protocol with two
different passwords: This models, for instance, the case where a user mistypes its password. It also implies that the security
is preserved for all password distributions (not necessarily the uniform one) and in all situations where the password is used
in different protocols. Also note that allowing the environment to choose the passwords guarantees forward secrecy.

In case of corruption, the adversary learns the password of the corrupted player, after the NewKey-query, it additionally
learns the session key.

C.3 The Ideal Functionality of Commitment

A UC-secure commitment scheme provides all the properties previously given: it should be hiding and binding, but also
extractable and equivocable, and even non-malleable.

The ideal functionality is presented on Figure 10. It is borrowed from [15, 39], where a delayed output is an output first
sent to the adversary S that eventually decides if and when the message is actually delivered to the recipient. This models
denial of services from the adversary.
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Fmcom with session identifier sid proceeds as follows, running with parties P1, . . . , Pn, a parameter 11n

, and an adversary S:

• Commit phase: Upon receiving a message (Commit, sid, ssid, Pi, Pj , x) from Pi where x ∈ {0, 1}polylogk, record
the tuple (ssid, Pi, Pj , x) and generate a delayed output (receipt, sid, ssid, Pi, Pj) to Pj . Ignore further Commit-
message with the same (sid, ssid).

• Reveal phase: Upon receiving a message of the form (reveal, sid, ssid) from party Pi, if a tuple (ssid, Pi, Pj , x)
was previously recorded, then generate a delayed output (reveal, sid, ssid, Pi, Pj , x) to Pj . Ignore further reveal-
message with the same (sid, ssid) from Pi.

Figure 10: Ideal Functionality Fmcom for Commitment

D Omitted Proofs

D.1 Proof of Theorem 3.2, CCA-1 Security of MP∗

Proof: We prove Theorem 3.2 by defining the following games. LetM be an adversary against the tbe-stag-cca security (as
defined in Def. A.2) of MP∗. Define Si be the event that Exptbe-stag-cca

MP∗,M,Q (n) outputs 1 in game Gi:

Game G0 : This is the original attack game for the tbe-stag-cca security. It is trivial that

Pr[S0] = Pr[Exptbe-stag-cca
MP∗,M,Q (n) = 1].

Game G1 : In this game, we change the key generation and the way to answer challenge ciphertext. Note that, in the
definition of tbe-stag-cca security, we choose a uniform tag T∗ ← U(T ) related to the challenge ciphertext before the key
generation. We change the simulation as follows:

• Key generation: choose Ā and R as in the definition. Then define the encryption key to be ek′ := A′ = [Ā| −T∗G−
ĀR] and the decryption key dk = (R,A′). Note that [Ā|− ĀR] is statistically closed to the uniform distribution over
Zn×mq , by the Leftover-Hash Lemma A.7. That implies [Ā| −T∗G − ĀR] is also statistically closed to the uniform
distribution and independent to T∗.

• Answering decryption queries: on input (T, c), check if T ∈ T . Note that T∗ is still uniform in T from the adversary
point of view, therefore, unless with negligible probability T = T∗, since T is exponentially large. Call (s0, e0) =
Invert(R, [Ā|−ĀR],T−T∗, c) and (s1, e1) = Invert(R, [Ā|−ĀR],T−T∗, c−(0,ECC(1))). And we apply Step
2 to 4 as in the original scheme. Since T−T∗ is invertible, by the correctness of Invert, we can decrypt the ciphertext
correctly.

• Computing challenge ciphertext: choose s∗ ← U(Znq ), ē∗ ← Dm̄
Z,s and ê∗ ← Dnk

Z,s and e∗ = (ē∗, ê∗). Compute
c∗0 = Ā> · s + ē> ∈ Zm̄q and c∗1 = −c∗0R + ê> + (0nk−1,ECC(M))> ∈ Znkq . Define c∗ := (c∗0, c

∗
1). Note that, by

the definition of the simulated encryption key ek′, A + [0|T∗G] = [Ā| − ĀR].

We show that the distribution of the challenge ciphertext is negl(n)-far from the one of G0. It is clear that c∗0 is
distributed identically as in G0. By substitution, we have the following:

c∗1 = −c∗0R + ê> + (0nk−1,ECC(M))>

= (−ĀR)>s + (ē>R + ê>) + (0nk−1,ECC(M))>

By the similar argument as in game H1 of Theorem 6.3, we have 〈ē, ri〉+ êi is negl(n)-far from DZ,s, where ri is the
i-th column of R and êi is the i-th component of ê. That implies ē>R + ê> is negl(n)-far from Dnk

Z,s.

As shown in above, G1 and G0 are statistically closed:

|Pr[S1]− Pr[S0]| ≤ negl(n).

Game G2 : We only change c∗0 to be uniformly random in Zm̄q . We construct the following reduction to show that the
difference between G2 and G1 is bounded by the decisional LWE assumption dLWE: let (Ā,b) ∈ Zn×m̄q ×Zm̄q be the dLWE
challenge. We simply simulate the key generation and the decryption oracle as in G1 except that we set c∗0 = b and compute
c∗1 as in G1. Then if b follows the LWE distribution, then the challenge ciphertext is identical to that in G1; otherwise, it is
identical to G2. Thus, we have

|Pr[S2]− Pr[S1]| ≤ AdvdLWE,

where AdvdLWE is the advantage of solving dLWE problem.
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Again by the Leftover-Hash Lemma, in this game (c∗0, c
∗
0R) is negl(n)-far from the uniform distribution over Zm̄q × Znkq .

Thus, the challenge ciphertext c∗ = (c∗0, c
∗
1) is independent from the encrypted message in a statistically sense. Thus,

Pr[S2] = 1
2 + negl(n), and we have Theorem 3.2.

D.2 Proof of Theorem A.6
We prove Theorem A.6 by defining the following games. LetF be the forger for SIGTrap and Si be the event that Exp S-OTS

SIG,F (n)
outputs 1 in game Gi:
Game G0 : This is the original attack game for the strong one-time signature. It is trivial that Pr[S0] = Pr[Exp S-OTS

SIG,F (n) =
1].
Game G1 : When the adversary F outputs the forgery (m∗, s∗ = (r∗1 , c

∗
2, r
∗
2)), we abort if (m∗, r∗2) 6= (m, r2) but c∗2 = c2,

where m is F’s one-time signing query and s = (r1, c2, r2) is the respond. It is clear to see the difference between G1 and
G0 is bounded by the computational binding of the commitment scheme.

|Pr[S1]− Pr[S0]| ≤ ε.

Game G2 : We simulate the signing query by using the trapdoor opening Topen(td2, (·, ·), ·) on the second commitment
and also change the key generation as follows:

• In the key generation, we compute (vk, sk) as in the real scheme. Additionally, we pick a random message m′ ←$ M
and compute (c2, r

′
2)←$ Commit(ck2,m

′). Keep (m′, c2, r
′
2) as secret and define sk′ := (sk, (m′, c2, r

′
2)).

• In the signing, upon receiving m, generate r2 ←$ Topen(td2, (m
′, r′2),m) and compute r1 as in the real scheme,

r1 ←$ Topen(td1, (0, r̂), c2). Define the signature of m as s := (r1, c2, r2).

By the perfectly trapdoor opening, c2 is the correct commitment of m, and formally Open(ck2,m, c2, r2) = 1. Then G2

and G1 are identical.
Pr[S2] = Pr[S1]

Game G3 : We continue to modify the key generation and signing query as follows:

• In the key generation, we compute ĉ as (ĉ, r̂) ←$ Commit(ck1, c2), instead of using the dummy message 0. And the
rest are the same as in G2.

• In the signing, we generate r2 as in G2 and define r1 := r̂.

The differences between G3 and G2 are: in G3 ĉ is the commitment of c2, while in G2 ĉ is the commitment of 0. By the
perfectly hiding, those are identical.

Pr[S3] = Pr[S2].

Moreover, G3 can be generated without using td2. Assume ck2 is given by the computational binding challenge. If the
adversary F break the strong one-time signature, then we can break the computational binding of the commitment in the
following way: once F outputs a forgery (m∗, s∗ = (r∗1 , c

∗
2, r
∗
2)) 6= (m, s = (r1, c2, r2)), if (m∗, s∗ = (r∗1 , c

∗
2, r
∗
2)) is a

valid forgery, then ((c∗2, ĉ, r
∗
1), (c2, ĉ, r1)) is the correct answer for the computational binding challenge. The reasons are as

follows:

• If (m∗, r∗2) 6= (m, r2) then c∗2 6= c2 from G1. As a valid forgery, Open(ck1, c
∗
2, ĉ, r

∗
1) = Open(ck1, c2, ĉ, r1) = 1

holds. Then ((c∗2, ĉ, r
∗
1), (c2, ĉ, r1)) is indeed the correct answer.

• If (m∗, r∗2) = (m, r2) then (c∗2, r
∗
1) 6= (c2, r1). It easy to see ((c∗2, ĉ, r

∗
1), (c2, ĉ, r1)) is the correct answer.

Thus, we have Pr[S3] = ε.
Combining all the above games, we have ε′ ≤ 2ε.

D.3 Security Proof of the UC PAKE (Theorem 4.1)
For the sake of simplicity, we give in Figure 11 an explicit version of the protocol described in Figure 5. We omit the
additional verification that all the committed values are in the correct subsets, since in the proof below we will always easily
guarantee this membership. As explained in Section 4, for the sake of simplicity, we denote by a unique ζ, and a unique zi,
the list of all the necessary challenges ζ, and their answers, for the bits of the password, in order to ensure that the probability
that an adversary can gain something by cheating in C′i is negligible (see details in the proof). Similarly, we mention a unique
SPHF, omitting the details of its construction as a conjunction of SPHF.

The proof heavily relies on the properties of the commitments and smooth projective hash functions given in Section 4, 3
and Appendix B.
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Initiator Pi Receiver Pj

(I1) (VKi,SKi)← KeyGen()
(Ci, C′i) = k-DMPCom′(Li, ek,Wi, 0; ri, r

′
i)

χ = HK
′(C′i)

C′′i = Trap.Commit(χ; t)

flow−one

(VKi, Ci, C′′i )
−−−−−−−−−−−−−−−→

(R2) Comj = Cj = k-MP(Lj , ek,Wj ; rj)

ζ
$←, hki

$← HashKG(L′i)
hpi = ProjKG(hki, L′i,Comi)

flow−two

(Cj , ζ, hpi)←−−−−−−−−−−−−−−−
(I3) zi = ri + ζr′i, Comi = Ci + ζC′i
hkj

$← HashKG(L′j), hpj = ProjKG(hkj , L′j ,Comj)
σi = Sign(SKi, (Li, Ci, C′i, Cj , ζ, hpi,hpj))
Hi = Hash(hkj , L′j ,Lj ,Comj)
H ′j = ProjHash(hpi, Li,Li,Comi; z)

ski = Hi⊕H ′j
Sets the session as accepted

and uses ski as a shared key

flow−three

(C′i, t, hpj , σi)−−−−−−−−−−−−−−−→
(R4) Abort if

not Verify(VKi, (Li, Ci, C′i, Cj , ζ, hpi,hpj), σi)
or not correct opening t for C′i in C′′i

Comi = Ci · C′ζi
Hj = Hash(hki, L′i,Li,Comi)
H ′i = ProjHash(hpj , Lj ,Lj ,Comj ; rj)
skj = H ′i⊕Hj

Sets the session as accepted
and uses skj as a shared key

Figure 11: Description of the password-authenticated key-exchange protocol for players (Pi, ssid), with index i, pass-
word Wi, random tape ωi, label Li = (L,VKi), languages Li = L′j = {Wi} and (Pj , ssid), with index j, password Wj ,
random tape ωj , label Lj = L, languages Lj = L′i = {Wj}. The label is L = (sid, ssid, Pi, Pj). The random values used in
the commitments (witnesses) are all included in (ri, r

′
i) and rj .

D.3.1 Sketch of Proof

The proof follows that of similar protocols [18, 2, 8]. In order to prove Theorem 4.1, we need to construct, for any real-world
adversary A (controlling some dishonest parties), an ideal-world adversary S (interacting with dummy parties and the split
functionality sFLAKE) such that no environment Z can distinguish between an execution withA in the real world and S in the
ideal world with non-negligible probability.

When initialized with security parameter k, the simulator first generates the CRS for the commitment (public parameters
but also extraction and equivocation trapdoors). It then initializes the real-world adversary A, giving it these values. The
simulator then starts its interaction with the environment Z , the functionality FpwKE and its subroutine A.

Since we are in the static-corruption model, the adversary can only corrupt players before the execution of the protocol.
We assume players to be honest or not at the beginning, and they cannot be corrupted afterwards. However, this does not
prevent the adversary from modifying flows coming from the players. Indeed, since we are in a weak authenticated setting,
when a player acts dishonestly (even without being aware of it), it is either corrupted, hence the adversary knows its private
values and acts on its behalf; or the adversary tries to impersonate it with chosen/guessed inputs. In both cases, we say the
player is A-controlled. Following [18], we say that a flow is oracle-generated if it was sent by an honest player and arrives
without any alteration to the player it was meant to. We say it is non-oracle-generated otherwise, that is if it was sent by aA-
controlled player (which means corrupted, or which flows have been modified by the adversary). The one-time signatures are
aimed at avoiding changes of players during a session: if flow − one is oracle-generated for Pi, then flow − three cannot be
non-oracle-generated without causing the protocol to fail because of the signature, for which the adversary does not know the
signing key. On the other hand, if flow − one is non-oracle-generated for Pi, then flow − three cannot be oracle-generated
without causing the protocol to fail, since the honest player would sign wrong flows (the flows the player sent before the
adversary alters them). In both cases, the verifications of the signatures will fail at Steps (R4) and Pj will abort. One can
note that since there is one flow only in the protocol for Pj , its signature is not required.
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D.3.2 Description of the Simulator

For the most part, the simulator simulates the protocol by executing it honestly on behalf of the honest parties, but using
random dummy witnesses as inputs since the secret inputs (given to them by the environment) are unknown to the simulator.
Furthemore, the commitment sent by Pi is equivocable, enabling the simulator to change its mind later on. And both com-
mitments are extractable, enabling the simulator to recover the password used by the adversary. In the whole proof, in case
the extraction fails, the simulator acts as if the simulation should fail. Indeed, the language of the smooth projective hash
function not only verifies the equations, but also that the ciphertext is valid, and this verification will fail. More details follow.

We come back again to the case of our equivocable commitment with SPHF that is not a really extractable/binding
commitment since the player can open it in a different way one would extract it, in case the second ciphertext does not
encrypt to 0 values: if extraction leads to an inconsistent tuple, there is little chance that with the random ζ it becomes
consistent; if extraction leads to a consistent tuple, there is little chance that with the random ζ it remains consistent, and then
the real-life protocol will fail, whereas the ideal-one was successful at the TestPwd-time. But then, because of the positive
TestPwd-answer, the NewKey-query takes the key-input into consideration, that is random on the initiator side because of
the SPHF on an invalid word, and thus indistinguishable from the environment point of view from a failed session: this is a
denial of service, the adversary should already be aware of.

We now describe the simulator in the three possible cases. During all these simulations, S knows the equivocability
trapdoor of the trapdoor commitment and the decryption keys of the two encryption schemes.

Case 1: Pi isA-controlled and Pj is honest. In this case, S has to simulate the concrete messages in the real-life from the
honest player Pj .

STEP (I1). This step is taken care of by the adversary, who sends its flow − one, from which S extracts Wi.

STEP (R2). The simulator asks a TestPwd query to the functionality to check whether Pj should have the password Wi

(which means the protocol should succeed). In case of a success, S generates honestly the flow on behalf of Pj , in particular
an encryption Cj on Wj = Wi. Otherwise, S produces a encryption Cj on a dummy Wj . It then generates a challenge value ζ
and the hashing keys (hki, hpi) on Ci. It sends the flow-two message (Cj , ζ, hpi) to A on behalf of Pj .

STEP (I3). This step is taken care of by the adversary, who sends its flow − three.

STEP (R4). Upon receiving m = (flow − three, C′i, t, hpj , σi), S makes the verification checks, and possibly aborts. In
case of correct checks, S already knows whether the protocol should succeed, thanks to the TestPwd query. If the protocol is
a success, then S computes receiver session key honestly, and makes a NewKey to Pj . Otherwise, S makes a NewKey to Pj
with a random key that will anyway not be used.

Case 2: Pi is honest and Pj isA-controlled. In this case, S has to simulate the concrete messages in the real-life from the
honest player Pi.

STEP (I1). S generates a flow-one message by committing to a dummy passwordWi and chooses a key pair (SKi,VKi)
for a one-time signature scheme. It gives this message (VKi, Ci, C′′i ) to A on behalf of (Pi, ssid).

STEP (R2). This step is taken care of by the adversary, who sends its flow − two = (Cj , ζ, hpi), from which S extracts
the committed password Wj .

STEP (I3). S makes a TestPwd query to the functionality to know whether the password of Pi is indeed Wj (i.e. whether
the protocol should succeed). In case of a success, S uses the equivocability trapdoor for each ζ to update the corresponding
C′i and t in order to contain the new consistent Wi = Wj with respect to the challenge ζ. If the protocol should be a success,
then S computes Pi’s session key honestly, and makes a NewKey to Pi. Otherwise, S makes a NewKey to Pi with a random
key that will anyway not be used. S sends the flow-three message (C′i, t, hpj , σi) to A on behalf of Pi, where σi is the
signature on all the previous information.

STEP (R4). This step is taken care of by the adversary.

Case 3: Pi and Pj are honest. In this case, S has to simulate the concrete messages in the real-life from the two honest
players Pi and Pj . Since no player is controlled by A, the TestPwd query will not provide any answer to the simulator. But
thanks to the semantic security of the commitments, dummy values can be committed, no external adversary will make any
difference.

STEP (I1). S generates a flow-one message by committing to a dummy passwordWi and chooses a key pair (SKi,VKi)
for a one-time signature scheme. It gives this message (VKi, Ci, C′′i ) to A on behalf of (Pi, ssid).

STEP (R2). S generates an encryption Cj on a dummy password Wj . It then generates a challenge value ζ and the
hashing keys (hki, hpi) on Ci. It sends the flow-two message (Cj , ζ, hpi) to A on behalf of Pj .

STEP (I3). S makes a NewKey to Pi with a random key that will anyway not be used, since no player is corrupted. S
sends the flow-three message (C′i, t, hpj , σi) to A on behalf of Pi, where σi is the signature on all the previous information.
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STEP (R4). Upon receivingm = (flow − three, C′i, t, hpj , σi) from its peer session (Pi; ssid), the signature is necessarily
correct. S makes a NewKey to Pj with a random key that will anyway not be used, since no player is corrupted.

D.3.3 Description of the Games

Game G0: This is the real game, where every flow from honest players are generated correctly by the simulator which
knows the inputs sent by the environment to the players. There is no use of the ideal functionality for the moment.

Game G1: In this game, the simulator knows the decryption key for Ci when generating the CRS. But this game is almost
the same as the previous one except the way skj is generated when Pi is corrupted and Pj honest. In all the other cases, the
simulator does as in G0 by playing honestly (still knowing its private values). When Pi is corrupted and Pj honest, S does as
before until (R4), but then, it extracts the values committed to by the adversary in Comi (using the decryption key for Ci) and
checks whether the password is consistent with the value sent to Pj by the environment. If the passwords are not consistent
(or decryption rejects), Pj is given a random session key skj . This game is statistically indistinguishable from the former one
thanks to the smoothness of the SPHF on Comi.

Game G2: In this game, the simulator still knows the decryption key for Ci when generating the CRS. This game is almost
the same as the previous one except that S extracts the values committed to by the adversary in Ci to check consistency of the
passwords, and does not wait until Comi. If the passwords are not consistent (or decryption rejects), Pj is given a random
session key skj .

The game is indistinguishable from the previous one except if Comi contains consistent values whereas Ci does not, but
because of the unpredictability of the n challenges ζ, and the trapdoor commitment that is computationally binding under the
SIS problem, the probability is bounded by 1/2n.

The distance between the two games is thus bounded by the probability to break the binding property of the trapdoor
commitment.

Game G3: In this game, the simulator still knows the decryption key for Ci when generating the CRS, as in G2. Actually,
in the above game, when Pi is corrupted and Pj honest, if the extracted password from Ci is not consistent, Pj does not have
to compute hash values. The random coins are not needed anymore. In this game, in this particular case, S generates Cj with
a dummy password W̃j .

This game is computationally indistinguishable from the former one thanks to the IND-CPA property of the encryption
scheme involved in Cj . To prove this indistinguishability, one makes q hybrid games, where q is the number of such sessions
where Pi is corrupted and Pj is honest but extracted languages from Ci are not consistent with inputs to Pj . More precisely,
in the k-th hybrid game Gk (for 1 ≤ k ≤ q), in all such sessions before the k-th one, Cj is generated by encrypting W̃j ,
in all sessions after the k-th one, Cj is generated by encrypting Wj , and in the k-th session, Cj is generated by calling the
left-or-right encryption oracle on (Wj , W̃j). It is clear that the game G2 correponds to G1 with the “left” oracle, and the
game G3 corresponds to Gq with the “right” oracle. And each time, Gk with the right oracle is identical to Gk+1 with the
“left” oracle, while every game Gk is an IND-CPA game. It is possible to use the encryption oracle because the random coins
are not needed in these sessions.

Game G4: In this game, the simulator still knows the decryption key for Ci when generating the CRS, as in G2. Now,
when Pi is corrupted and Pj honest, if the extracted password from Ci is consistent, S knows Wj (the same as the value Wi

sent by the environment). It uses it to generate the ciphertext Cj . S can compute the correct value skj from the random coins,
and gives it to Pj .

This game is perfectly indistinguishable from the former one.
Note that the value skj computed by S can be computed by the adversary if the latter indeed sent a valid password Wi

in Ci (that is not explicitly checked in this game). Otherwise, skj looks random from the smoothness of the SPHF. As a
consequence, in this game, sessions where Pi is corrupted and Pj is honest look ideal, while one does not need anymore the
inputs from the environment sent to Pj to simulate honest players.

Game G5: We now consider the case where Pi is honest. The simulator has to simulate Pi behavior. To do so, it will know
the equivocability trapdoor for the trapdoor commitment. But for other cases, the simulator still knows the decryption key
for Ci when generating the CRS. In (I1), the simulator still encrypts Wi from the environment to produce Ci. It chooses at
random a dummy value C′i and computes honestly the equivocable commitment C′′i , knowing the random value ti. In (I3),
after receiving ζ from Pj , it chooses random coins zi and computes Comi as the encryption of Wi with the random coins zi.
(Since this is a double encryption scheme, it uses the redundancy from Ci: namely for k-DMPCom, it uses T from Ci).
Thanks to the homomorphic property, it can compute C′i as (Comi−Ci)/ζ, and equivocate C”i. C′i should be an encryption of
0 under the random coins r′i that are implicitly defined, but unknown. Thanks to the properties of the different commitments
recalled in Appendix B, and the perfect-hiding property of the trapdoor commitment, this is a perfect simulation. It then
computes the hash values honestly, using zi.

Game G6: In this game, the simulator still knows the decryption key for Ci and the equivocability trapdoor for the
trapdoor commitment when generating the CRS. When Pi is honest, S generates the commitment Ci by choosing a dummy
password W̃i instead of Wi. Everything else is unchanged from G5.
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This game is thus indistinguishable from the former one thanks to the IND-CCA property of the encryption scheme
involved in Ci. As for the proof of indistinguishability of Game G3, we do a sequence of hybrid games, where Ci is generated
be either encrypting Wi or W̃i, or asking the left-or-right oracle on (Wi, W̃i). We replace the decryption key for Ci by access
to the decryption oracle on Ci. Then, one has to take care that no decryption query is asked on one of the challenge ciphertexts
involved in the sequence of games. This would mean that the adversary would replay in another session a ciphertext oracle-
generated in another session. Because of the label which contains the verification key oracle-generated, one can safely reject
the ciphertext.

Game G7: In this game, the simulator still knows the decryption key for Ci and the equivocability trapdoor for the
trapdoor commitment when generating the CRS. When Pi is honest, S generates the commitment Ci by choosing a dummy
password W̃i. It then computes C′i by encrypting the value (Wi − W̃i)/ζ with randomness zi − ri/ζ. This leads to the same
computations of Ci and C′i as in the former game. The rest is done as above.

This game is perfectly indistinguishable from the former one.

Game G8: In this game, the simulator still knows the decryption key for Ci and the equivocability trapdoor for the trapdoor
commitment when generating the CRS. When Pi and Pj are both honest, if the words and languages are correct, players are
both given the same random session key ski = skj . If the passwords are not compatible, random independent session keys
are given.

Since the initiation flow I1 contained an oracle-generated verification key, unless the adversary managed to forge sig-
natures, all the flows are oracle-generated. First, because of the pseudo-randomness of the SPHF, Hi is unpredictable, and
independent ofH ′j , hence ski looks random. Then, if the passwords are compatible, we already have skj = ski in the previous
game. However, if they are not compatible, either H ′i is independent of Hi, or H ′j is independent of Hj , and in any case, skj
where already independent of ski in the previous game. This game is thus computationally indistinguishable from the former
one, under the pseudo-randomness of the two SPHF.

Game G9: In this above game, the hash values do not have to be computed anymore when Pi and Pj are both honest. The
random coins are not needed anymore.

In this game, the simulator still knows the decryption key for Ci and the equivocability trapdoor for the trapdoor commit-
ment when generating the CRS. When Pi and Pj are both honest, S generates C′i and Cj with dummy values W̃i and W̃j .
In this game, sessions where Pi and Pj are both honest look ideal, while one does not need anymore the inputs from the
environment sent to Pi and Pj to simulate honest players.

This game is computationally indistinguishable from the former one thanks to the IND-PD-CCA and IND-CPA properties
of the encryption schemes involved in C′i and Cj . For the proof on indistinguishability between the two games, we make two
successive sequences of hybrid games, as for the proof of indistinguishability of Game G3. One with the IND-PD-CCA
game: a sequence of hybrid games, where Ci is generated by encrypting W̃i, and C′i by encrypting either Wi or W̃i, but
in the critical session, one asks for the left-or-right oracle Encrypt on (W̃i, W̃i), and the left-or-right oracle Encrypt′ on
(W̃i, W̃i). The decryption key for Ci is replaced by an access to the decryption oracle on Ci. As above, one has to take care
that no decryption query is asked on a challenge ciphertext C′i, but the latter cannot be valid since it is computed from Ci
values not controlled by the adversary. The second hybrid sequence uses IND-CPA games on Cj exactly as in the proof of
indistinguishability of Game G3.

Game G10: In this game, the simulator still knows the decryption key for Ci and the equivocability trapdoor for the trapdoor
commitment when generating the CRS, but also the decryption key for Cj . When Pi is honest and Pj corrupted, S extracts
the password committed to by the adversary in Cj . It checks whether it is consistent with the password sent to Pi by the
environment. If the passwords are not consistent (or decryption rejects), Pi is given a random session key ski.

This game is statistically indistinguishable from the former one thanks to the smoothness of the SPHF.

Game G11: In this game, the simulator still knows the decryption keys for Ci and Cj and the equivocability trapdoor for
the trapdoor commitment when generating the CRS.

In the above game, when Pi is honest and Pj corrupted, if the extracted password from Cj is not consistent, Pi does not
have to compute hash values. The random coins are not needed anymore. In this game, in this particular case, S generates C′i
with a dummy random W̃i.

This game is computationally indistinguishable from the former one thanks to the IND-PD-CCA property of the encryp-
tion scheme involved in C′i. The proof uses the same sequence of hybrid games with the IND-PD-CCA game on (Ci, C′i) as
in the proof of indistinguishability of Game G9.

Game G12: In this game, the simulator still knows the decryption keys for Ci and Cj and the equivocability trapdoor for the
trapdoor commitment when generating the CRS. Now, when Pi is honest and Pj corrupted, if the extracted password from Cj
is consistent, S knows Wi (the same as the value Wj sent by the environment). It uses it to generate the ciphertext C′i. S can
compute the correct value ski from the random coins, and gives it to Pi. In this game, sessions where Pi is honest and Pj is
corrupted look ideal, while one does not need anymore the inputs from the environment sent to Pi to simulate honest players.

This game is perfectly indistinguishable from the former one.

Game G13: In this game, S now uses the ideal functionality: NewSession-queries for honest players are automatically
forwarded to the ideal functionality, for corrupted players, they are done by S using the values extracted from Ci or Cj . In
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order to check consistency of the passwords, S asks for a TestPwd. When one player is corrupted, it learns the outcome:
success or failure. It can continue the simulation in an appropriate way.

D.4 Security Proof of the UC Commitment (Theorem 5.1)

We now provide a full proof, with a sequence of games, that the protocol presented on Figure 7 emulates the ideal functionality
Fmcom against adaptive corruptions with erasures. This sequence starts from the real game, where the adversary interacts
with real players, and ends with the ideal game, where we have built a simulator that makes the interface between the ideal
functionality and the adversary.

We denote byC3 = C1+ζC2, the tuple involved in the last check. It should be a partial encryption of x under randomness
z = r + ζs and noise ez = er + ζes : C3 = MP∗(x;T, z, ez).

Game G0 : This is the real game, in which every flow from the honest players is generated correctly by the simulator
which knows the input x sent by the environment to the sender. There is no use of the ideal functionality for the moment.

GameG1 : In this game, we focus on the simulation of an honest receiver interacting with a corrupted sender. Executions
with an honest sender are still simulated as before, using the input x. The simulator will generate the CRS in such a way it
knows the Micciancio Peikert decryption key, but not the trapdoor for the commitment.

Upon receiving the values (c1t , c
2
t ) from the adversary, the simulator simply chooses a challenge ζ at random and sends

it to the adversary, as Pj would do with Pi. After receiving the values (C1, t1), the simulator checks the consistency of
the Trapdoor commitment c1t and aborts in case of failure. It then uses the decryption key to recover the value x′ sent by
the adversary. In case of invalid ciphertext, one sets x′ = ⊥. It stores (sid, ssid, Pi, Pj , C1, ζ, c

2
t ) and (x′, sid, Pi, Pj)

(this will correspond later to the Commit query to the ideal functionality, in the ideal game). Upon receiving the values
(x,C2, t2, z, ez), the simulator does as Pj would do in checking the commitment c2t and that C3 = MP∗(x;T, z, ez), but
accepts x′ as the opening for the commitment.

The only difference with the previous game is that Pi will accept x′, as decrypted from C1 = MP(x′;T, r), for the
decommitment instead of the value x output at the decommitment time, which matches with C3 = MP∗(m;T, z, ez), but
that is also contained in c2t together with C2. We will show that under the binding property of the Trapdoor commitment, one
has x′ = x with overwhelming probability, and thus there is no real difference.

Let us assume that x′ 6= x in at least one of such executions: for the first one, we rewind the adversary to the step 4., and
send a new challenge ζ2. Then the adversary should send the same C1, otherwise one directly breaks the binding property of
the Trapdoor commitment or finds a collision for HK , and the same pair (x,C2) in the decommit phase for the same reason,
but possibly different z2.

If ζC2 decrypts to 0: Writing C ′3 = z>(A+ (0|TG)) + xq/2 + er + (α+ ζβ) + ζes, for α, β such that |ζβ| < q/4 and
|α| < q/4 we have |α+ ζβ| > q/4, this means that with ζ2 = −ζ the new C ′3 decrypts to x so x = x′ as |α+ ζ2β| < q/4.

The same study can be done if ζC2 decrypts to 1.
We stress that the rewind here is just for the proof of indistinguishability of the two games, but not in the simulation.
In case of corruption of the receiver, one can note that he has no secret.
GameG2 : In this game, we start modifying the simulation of an honest sender, still knowing his input x. For the honest

verifier against a corrupted sender, we still have to know the Micciancio Peikert decryption key to run the same simulation as
in the previous game. But we now need to know the ℵ trapdoor used for equivocating the trapdoor commitment.

This game is almost the same as the previous one excepted the way the double ciphertext is generated: (C1, C2) =
DMP(x, y; r, s), for a random y instead of 0. The rest of the commit phase is unchanged.

At the decommit phase, S chooses random coins z, ez and computes C3 = MP∗(x;T, z, ez), and then “repairs” C2 =
(C3 − C1)/ζ, and t2 for being able to open c2t to this new value.

Thanks to the homomorphic property, the repaired C2 is similar to a correct ciphertext of 0, and the equivocation of the
Trapdoor commitment guarantees a correct opening. This game is thus perfectly indistinguishable from the previous one.

In case a corruption of Pi occurs before the decommit phase, the simulator anticipates the equivocation of c2t .
Game G3 : One can note that in the previous game, r, er is not used anymore to compute z, ez . One could thus

ignore it, unless Pi gets corrupted before ζ has been sent, since we should be able to give it. But in such a case, one
can compute again C1 knowing r, er and equivocate c1t . We then alter again the way the double ciphertext is generated:
(C1, C2) = DMP(x′, y; r, s), for random x′ and y. Everything remains unchanged.

The unique change is thus the ciphertext C1 that encrypts a random x′ instead of x. One can run the IND-CCA security
game, in an hybrid way, to show this game is indistinguishable from the previous one. To this aim, one has to show that
the random coins r are not needed to be known, and that the challenge ciphertexts are never asked for decryption (where the
decryption key here is replaced by an access to the decryption oracle, hence the IND-CCA security game). The former point
has been discussed above. For the latter, we have shown that the value actually encrypted in C1 by the corrupted sender is
the value sent at the decommit phase, which would even break the one-wayness of the encryption. Hence, if such a replay
happens, one knows that the decommit phase will fail.

In case of corruption of Pi before receiving ζ, Trapdoor commitments only have been sent, and they can thus be equiv-
ocated with correct values (given by either the ideal functionality or the adversary). In case of corruption of Pi after having
received ζ, one does has before, anticipating the equivocation of c2t .
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Game G4 : This is the ideal game, in which the simulator works as described below: when Pi is corrupted, one uses
the decryption of C1 to send the Commit query to the ideal functionality, when Pi is honest one can wait for the receipt and
reveal confirmations from the adversary to conclude the simulation of the real flows.

D.4.1 Description of the Simulator

Setup. The simulator generates the parameters, knowing the Micciancio Peikert decryption key and the equivocation trap-
door.

When Pi is honest.

COMMIT STAGE: Upon receiving the information that a commitment has been performed, with (receipt, sid, ssid, Pi, Pj)
from Fmcom, S computes (C1, C2) = DMP(x′, y; r, s), for random x′ and y but then follows as Pi would do. If Pj is
honest too, one just has to send a random ζ.

In case of corruption of Pi before receiving ζ, one can equivocate c1t , otherwise one equivocates c2t , as explained above,
in both cases using the value given either by the ideal functionality or the adversary, according to the time of the
corruption.

DECOMMIT STAGE: Upon receiving the information that the decommitment has been performed on x, with (reveal, sid, ssid, Pi, Pj , x)
from Fmcom, S exploits the equivocability of the Trapdoor commitment: it first chooses a random z, ez and computes
the ciphertext C3 = MP∗(x;T, z, ez). It then adapts C2 = (C3 − C1)/ζ and uses the trapdoor for the commitment to
produce a new value t2 corresponding to the new value C2. It then simulates the decommit phase to Pj .

When Pi is corrupted and Pj is honest.

COMMIT STAGE: Upon receiving (C1, t1) from the adversary, S decrypts the ciphertext C1 and extracts x. If the decryption
is invalid, S sends (Commit, sid, ssid, Pi, Pj ,⊥) to Fmcom. Otherwise, S sends (Commit, sid, ssid, Pi, Pj , x).

DECOMMIT STAGE: S acts as a regular honest user Pj from the incoming message ofA on behalf of Pi. In case of validity,
it sends the query (reveal, sid, ssid).
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E Cheat Sheet, Pairing-based and Lattice-Based Cryptography
In Figure 12, we compare pairing-based encryptions, and their equivalent over Lattices. We recall the parameters for each of
those construction

• Dual Regev SPHF parameters (section 3.1): n = poly(λ), q = 2Θ(n), m ≥ Θ(nk), and s = q/f(n) where f is
superpolynomial but subexponential, in particular s = q · negl(n).

• Micciancio Peikert SPHF parameters (section 3.2): n = poly(λ) and it is a power of 2, q = 2Θ(n), k = dlog qe =
O(log n), m̄ = Θ(nk), m = m̄ + nk and finally s = q/f(n) where f is superpolynomial but subexponential, in
particular s = q · negl(n).

ElGamal [24] Dual Regev [30]

Setup (p,G, g) (n,m, q, s, Ā← U(Zn×mq ))

KG(1n) dk = (t← U(Zp)| − 1)> dk = (t← U({0, 1}m)| − 1);

ek = A = (g|gt) ek = A = [ Ā|(Ā·t) ] ∈ Zn×m+1
q

Encrypt(ek,M ; s) M ∈ G, s← U(Zp) M ∈ {0, 1}, s← U(Znq ), e← Dm+1
Z,s

c = (A>)s + (0|M)> c = A> · s + e + (0|ECC(M))> ∈ Zm+1
q

Decrypt(dk, c) M ′ = cdk M ′ = ECC−1(〈dk, c〉) ∈ {0, 1}
CPA-Security Under DDH Under LWE

SPHF:

HashKG hk← U(Z2
p) hk← Dm+1

Z,ω(
√

log λ)

ProjKG(ek,hk) hp = Ahk hp = A · hk

ProjHash(hp, s) H ′ = hps H ′ = ECC−1(〈hp, s〉)
Hash(c,M ′,hk) H = (c− (0|M)>)hk H = ECC−1 (〈hk, c− (0|ECC(M ′)>

〉)
Cramer Shoup[21] Micciancio Peikert

Setup (p,G, Ā = (g1, g2),H) (n,m, q, s, Ā)

KG(1n) dk1 = (1,−z $← Zp, 0, 0)>

dk2 = R1,R2 = (x1, x2)>, (y1, y2)> ← Z2
p dk = (R|1);

ek = A,G = (gt1|Ā|ĀR1), ĀR2 ek = (A =
[
Ā| −RĀ

]
),G)

Encrypt(ek,M ; s) M ∈ G, s ∈
R
Zp M ∈ {0, 1}, s← U(Znq ), e← Dm

Z,s,T← T
c = (()A+ (0|Gξ))>)s + (M |0)> c = (A + (0|TG))>s + e + (0|ECC(M))>

Decrypt(dk, c) C(0|dk2,1|ξdk2,2|−1) ?= 1G Verify(OTS)

M ′ = cdk1 M ′ = ECC−1(〈dkT , c〉)
CCA-Security Under DDH Under LWE

SPHF:

HashKG hk = u,v← Zp × Z3
p hk = v← Dm

Z,ω(
√

log λ)

ProjKG(ek,hk) hp = (Av,(A1|0|G)(u|0|v4)) hp = (A · v, (0̄|G) · (0|v∗))
ProjHash(hp, s) H ′ = hps1.hpξs2 H ′ = ECC−1(〈hp1, s〉+

〈
hp2,T

>s
〉
)

Hash(c,M ′,hk) C = c− (M ′|0)> C = c− (0|ECC(M ′))>

H = Cv+ξ(u|0) H = ECC−1 (〈hk, C〉)

Figure 12: Parallel comparison between classical encryptions on pairing and lattices, and the associated SPHF
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