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Abstract. At EUROCRYPT 2012 Pandey and Rouselakis introduced the notion of property
preserving symmetric encryption. Such encryption schemes may be used for checking for a
property on plaintexts by running a public test on the corresponding ciphertexts. It is claimed
that they hold great promise in designing private algorithms for data classification. The main
contributions of their work, the authors say, are a thorough investigation of property preserving
symmetric encryption and consists of two main parts. On the definitional front the paper
formalizes several notions of security, establish a separation between the weaker find-then-
guess and the stronger left-or-right security notions and show that there exists a hierarchy
of find-then-guess notions which do not collapse. The other main contribution is a concrete
left-or-right secure construction for orthogonality testing.
In this work our primary focus is a critical analysis of property preserving symmetric encryp-
tion on both these fronts – security definition and provably secure construction. The separation
results of Pandey-Rouselakis are conditioned on the assumed existence of a find-then-guess
secure encryption of a quadratic residue based property. We observe that this property is
captured by testing equality of encryption of one-bit messages and suggest a very simple and
efficient scheme for testing equality. We show that the two security notions, find-then-guess
and left-or-right, effectively collapse for the equality property. On the other hand, the separa-
tion results easily generalize for the equality property. Based on these results we contextualize
the question of whether the separation is an artifact or indicate some real difference between
the notions of find-then-guess and left-or-right for property preserving encryption. Next we
cryptanalyze the scheme for testing orthogonality described in the Pandey and Rouselakis
work, which was claimed to be secure in the strongest left-or-right model. We demonstrate
a simple and elegant attack on the scheme which establishes that it is not even the weakest
selective find-then-guess secure.
Finally, we show that given a find-then-guess secure orthogonality-preserving encryption of
vectors of length 2n, there exists left-or-right secure orthogonality-preserving encryption of
vectors of length n. This result gives further credence to our already established evidence that
the find-then-guess is indeed a meaningful notion of security for property-preserving encryp-
tion.
Keywords: symmetric key, property preserving encryption, predicate private en-
cryption, bilinear pairings

1 Introduction

The question of constructing useful cryptographic schemes for securing data in the cloud
[21] has attracted a lot of research during the last decade. Notions like order preserving
encryption [8, 10, 9, 11], attribute-based encryption [27, 25, 22], functional encryption [17, 1,
16, 15, 6, 26] and format preserving encryption [7] are useful for this purpose. The notions
of IBE [13, 20, 12] and public key encryption with keyword search [18, 38, 14, 40] deal with
testing of equality. Homomorphic encryption too [23, 41, 24] plays an important role in cloud
security. These schemes aim to achieve data privacy, user privacy, secure computation on
encrypted data, etc., on the cloud.



At EUROCRYPT 2012 Pandey and Rouselakis [34] defined the notion of property pre-
serving symmetric encryption (PPEnc), which they claimed, can be used for data clustering
[28]. A PPEnc scheme is a collection of four algorithms, namely, Setup, Encrypt, Decrypt and
Test. The authors also considered a simpler notion called property preserving tag scheme
PPTag, where there is no decryption algorithm. According to [34], the notion of PPEnc is
most useful in the symmetric key setting. So the standard approach, according to [34], is to
use a semantic secure symmetric key encryption scheme to encrypt the “payload” message
while the encryption algorithm of PPTag is used to create a “tag” that is used as one of the
inputs to the Test to publicly check whether the message satisfies the property or not. In
fact a similar approach was taken in [30, 37]. Hence the question essentially boils down to
constructing a secure PPTag scheme. Motivated by Bellare et.al., [4, 5] Pandey-Rouselakis
define several security notions for property preserving encryption such as find-then-guess
(FtG) and the left-or-right (LoR) security. However, unlike Bellare et al. [4] who showed
FtG −→ LoR in the ordinary symmetric key setting, Pandey and Rouselakis claim that
there is a separation between FtG and LoR notions and an hierarchy among the FtG classes
that does not collapse. They use a property based on quadratic residues, called Pqr to estab-
lish the separation results. Finally the paper proposes a scheme for achieving orthogonality,
which is claimed to be LoR secure in the generic bilinear group model.

The notions of predicate encryption and inner product encryption in both public and se-
cret key setting [30, 39, 37, 32, 31, 33] are closely related to the notion of property preserving
encryption. While Okamoto and Takashima [32] give a public fully secure predicate encryp-
tion scheme, [31, 1] consider the notion of predicate privacy in public as well as private key
setting. In [16] the authors consider the subspace membership predicates and use this to
provide predicate privacy for orthogonality testing in the public key setting. In [34], the au-
thors also claim that property preserving encryption is a generalization of order preserving
encryption of Boldyreva et.al., [8, 10, 9, 11].

Property preserving encryption has a direct connection with predicate private encryp-
tion [37]. Unlike predicate private encryption, a PPTag scheme does not distinguish between
predicates and attributes. A PPTag scheme may be easily constructed from a predicate-only
scheme by concatenating the ciphertext and the token for a given message. If one starts
from a full secure predicate-only scheme, one obtains a LoR secure PPTag scheme [34, 1].

Property preserving symmetric encryption is an interesting new concept with potential
practical application for outsourcing computation and it is related to several other primitives
like order preserving encryption and predicate encryption. Hence it is imperative that this
notion should be critically examined from the definitional perspective. In particular, the
separation results of [34] are surprising given the equivalence of the two notions in the
symmetric key setting [4]. Furthermore, because of the separation, designers working on
the problem of constructing property preserving encryption for various properties should
now aim at the strongest LoR notion which may take considerably more resources than a
scheme that achieves FtG security. Similarly, it is equally important to cryptanalyze the
proposed provably secure construction in order to assess the concrete security guarantee
for a particular property of interest, such as orthogonality. This motivates us for a critical
evaluation of the Pandey-Rouselakis work.

Our Contributions. Pandey-Rouselakis formulated the notion of property preserving en-
cryption and its security notions in the abstract setting of a general k-ary property. Based
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on the assumed existence of a PPEnc for the binary property called quadratic residuosity,
they established their separation results. Finally, they proposed LoR secure construction for
the binary property of orthogonality.

In §3, we perform a systematic analysis of the Pandey-Rouselakis separation results. As
no concrete construction was suggested to validate the separation results, we first attempt
to build such a scheme. Here the first observation is that the quadratic residuosity property
used in the separation results of [34], is captured by a property-preserving test of equality.
Hence we focus on equality property and show that one-time pad is sufficient to achieve
FtG security for equality-preserving encryption of one-bit messages. Furthermore, the two
notions of FtG and LoR security in fact collapse in such a deterministic setting. This result
is then generalized for equality testing of n-bit messages where we show a pseudo-random
permutation is sufficient to achieve the strongest LoR security. So, on one hand we can easily
generalize the separation results of [34] for the equality property, on the other we show that
in concrete terms the two notions of FtG and LoR effectively collapse for the same property.
Thus contextualized, we note that the question of whether the separation results of [34]
actually indicate any real world difference between the two notions of FtG and LoR security
for property-preserving encryption still remains open.

In §4 we cryptanalyze the security of Pandey and Rouselakis scheme for testing or-
thogonality. We show that the PPEnc scheme given in [34, Sec. 5] for testing orthogonality
property is not even weakest selective find-then-guess secure. This falsifies the claim [34,
Theorem 5.1] that the proposed construction is strongest left-or-right secure in the generic
group model.

While the (crypt)analysis of the security notions and provably secure construction of
property-preserving encryption from [34] are the primary contribution of our work, as a
secondary contribution in §5, we look at the relation of FtG and LoR in the context of
orthogonality property. We show that given an FtG secure orthogonality-preserving encryp-
tion of vectors of length 2n, there exists LoR secure orthogonality-preserving encryption of
vectors of length n. This result gives further credence to our already established evidence
that the FtG notion is a meaningful notion of security for property-preserving encryption.

We draw our conclusion in §6. Some of the detailed proofs are provided in the Appendix.

2 Preliminaries and Notions

In this section, we recall the basic definition of property preserving encryption and notions
of its security from [34].

As in [34], we too model any k-ary property on M as a Boolean function on Mk.
One of the main properties considered is orthogonality, which depends on computing inner
products in finite dimensional vector spaces over finite fields. Let v = (v1, . . . , vn) and
w = (w1, . . . , wn) be vectors over a finite field Fq. The inner product between them is
defined as v · w = v1w1 + . . .+ vnwn (mod q). These vectors are orthogonal if v · w = 0.

Definition 1 A property preserving encryption scheme for the k-ary property P is a collec-
tion of four probabilistic polynomial time (PPT) algorithms, which are defined as follows:

1. Setup(λ): This takes as input the security parameter λ and outputs the message space
(M), public parameters (PP ) and the secret key (SK).
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2. Encrypt(PP, SK,m): This algorithm outputs the ciphertext CT corresponding to the
message m, using the secret key SK and public parameter PP .

3. Decrypt(PP, SK,CT ): This algorithm outputs the plaintext message m.
4. Test(CT1,. . . , CTk, PP ): This is a public algorithm that takes as inputs ciphertexts cor-

responding to messages m1, . . . ,mk and outputs a bit.

These set of four algorithms must satisfy the standard correctness requirement. In ad-
dition, if the Test algorithm outputs 1 then, except with negligible probability, one has
P (m1, . . . ,mk) = 1.

A related notion of PPTag scheme was also defined. Informally, such a scheme does not
have any decrypt module.

Definition 2 A property preserving tag scheme (PPTag) for the k-ary property P is a
collection of three probabilistic polynomial time (PPT) algorithms, which are defined as
follows:

1. Setup(λ): This takes as input the security parameter λ and outputs the message space
(M), public parameters (PP ) and the secret key (SK).

2. Encrypt(PP, SK,m): This algorithm outputs the ciphertext CT corresponding to the
message m, using the secret key SK and public parameter PP .

3. Test(CT1,. . . , CTk, PP ): This is a public algorithm that takes as inputs ciphertexts cor-
responding to messages m1, . . . ,mk and outputs a bit.

This set of algorithms must satisfy the standard correctness requirement. If the Test algo-
rithm outputs 1 then, except with negligible probability, one has P (m1, . . . ,mk) = 1.

Remark 1 In [34], the authors suggest the following strategy while designing a secure
property preserving encryption scheme. The actual “payload” message is encrypted using
an IND-CPA secure symmetric encryption scheme. For testing the property, a tag is con-
structed for each message using a PPTag scheme. This idea is similar to the predicate-only
encryption schemes [30, 37].

2.1 Security Notions

Inspired by the study of security notions of symmetric key encryption by Bellare et al.
[4], Pandey and Rouselakis [34] propose several notions of security for property-preserving
symmetric encryption. These notions are defined by taking into account the specific nature
of PPEnc. Here we informally describe the two notions of security for such schemes which
are most relevant to our work. For more details refer to [34].

Definition 3 For a k-ary property P , any two sequences X = (x1, . . . , xn) and Y =
(y1, . . . , yn) of inputs are said to have the same equality pattern if

P (xi1 , . . . , xik) = P (yi1 , . . . , yik), ∀ (i1, . . . , ik) ∈ [n]k.

Find-then-Guess Security (FtG). In this game the adversary A = (A1,A2), plays the
following game GameFtGΠ,A,λ. After the Setup phase, in A1, the adversary first adaptively
queries the encryption oracle for messages (m1, . . . ,mt). Then the adversary outputs the
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challenge messages (m∗0,m
∗
1). In A2, after the challenger returns the ciphertext c∗b where

b ∈R {0, 1}, the adversary again adaptively queries (mt+1, . . . ,mq). The adversary wins the
game if s/he can correctly predict the bit b. In order to ensure that the adversary cannot
trivially win the game, the adversarial queries must satisfy the extra condition that the
equality patterns of (m1, . . . ,mt,m

∗
0,mt+1, . . . ,mq) and (m1, . . . ,mt,m

∗
1,mt+1, . . . ,mq) are

the same. The game is formally defined in [34, Sec. 3]. The advantage of the adversary is
formally defined as follows.

Definition 4 Let Π = Setup,Encrypt,Decrypt,Test be a symmetric key property preserving
encryption scheme (Defn. 1). Then Π is said to be FtG secure if there exists a negligible
function n(·) such that for all PPT FtG adversaries A as above and for all λ ∈ N sufficiently
large, the advantage of A in the GameFtGΠ,A,λ is negligible:

AdvFtGΠ,A,λ =
∣∣∣P [GameFtGΠ,A,λ(1) = 1

]
− P

[
GameFtGΠ,A,λ(0) = 1

]∣∣∣ ≤ n(λ).

The authors further introduce a hierarchy in the FtG notion depending on the number of
challenge queries. In particular, any adversary playing the FtGη game, for η ∈ N, is allowed
to make η many challenge queries interleaved between encryption oracle queries. A selective
FtG notion may be defined in the usual way, following [12], where the adversary outputs
the challenge messages even before receiving the public parameters.
Left-or-Right Security (LoR). In this game the adversary A plays the following game
GameLoRΠ,A,λ. After setup, the adversary A makes q encryption queries, where each query is of

the form (m
(i)
0 ,m

(i)
1 ). The queries are such that (m

(1)
0 , . . . ,m

(q)
0 ) and (m

(1)
1 , . . . ,m

(q)
1 ) have

the same equality pattern. The challenger returns the encryption of m
(i)
b for each i where

b ∈R {0, 1} is chosen at the beginning of the game. At the end, the adversary has to output
a guess b′ of b and wins if b′ = b. The game is formally defined in [34, Sec. 3]. The definition
of adversarial advantage is as follows.

Definition 5 Let Π = Setup,Encrypt,Decrypt,Test be a symmetric key property preserving
encryption scheme (Defn. 1). Then Π is said to be LoR secure if there exists a negligible
function n(·) such that for all PPT LoR adversaries A as above and for all λ ∈ N sufficiently
large, the advantage of A in the GameLoRΠ,A,λ is negligible:

AdvLoRΠ,A,λ =
∣∣∣P [GameLoRΠ,A,λ(1) = 1

]
− P

[
GameLoRΠ,A,λ(0) = 1

]∣∣∣ ≤ n(λ).

3 Security Notions: A Closer Look

We recall the separation results obtained by Pandey-Rouselakis [34] regarding the above
security notions. In [34, Theorem 4.1], they state that FtG 9 LoR. Further in [34, Theorem
4.4], they claim that FtGη 9 FtGη+1.

Let QRp (resp. QNRp) be the set of quadratic residues (res. quadratic non-residues) in
Z∗p for some prime p. Both the separation results in [34] are established through a PPEnc
scheme for the quadratic residuosity property Pqr defined as follows:

Pqr(m1,m2) =

{
1 if m1 ·m2 ∈ QRp
0 if m1 ·m2 ∈ QNRp

(1)
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Assuming that there exists an FtG secure PPEnc scheme Π for Pqr; Pandey-Rouselakis
constructs another scheme Π ′ which they show is FtG but not LoR secure. Naturally the sep-
aration is conditioned on the fact that there exists such an FtG secure scheme Π. However,
no such construction was known or suggested in [34].

3.1 Property Preserving Encryption for Equality

As already observed, in the symmetric key setting the actual payload message can be ef-
ficiently encrypted using a secure symmetric key encryption scheme. So the problem of
constructing a PPEnc for Pqr is reduced to the problem of constructing a PPTag scheme for
the same property.

Claim 1 To construct a PPTag scheme for the property Pqr; it suffices to construct a PPTag
scheme for equality where the message space is M = {0, 1}.

Proof. The argument is quite straightforward. A “sign” function S was used by [34] to
define Pqr where S(m) = 0 if m ∈ QRp; else S(m) = 1. In other words, Pqr divides
the message space M = Z∗p into 2 equivalence classes. Given any message in Z∗p one can
efficiently determine S(m) and then use the PPTag scheme for equality over the message
space {0, 1} to encrypt S(m). Testing whether the product of two messages x and y is a
quadratic residue or not is now reduced to the task of testing whether S(x) and S(y) are
equal or not.

Remark 2 The property Pqr used in [34] is a particular instance of a larger class of property
P. In particular, the property P induces an equivalence relation on a set M such that there
exists an efficient algorithm to determine the class in which a given element lies. Another
example of such property is to test, given two integers m and n, whether their difference is
divisible by a fixed prime p. It is easy to see that a PPTag scheme for such a property P can
be realized by any PPTag scheme for equality. Note, however, that there do exist equivalence
relations for which the question of membership testing is not known to be easy.

Given the above result we henceforth focus on the question of constructing an FtG secure
PPTag or, more generally, a PPEnc scheme for equality. Interestingly, the one-time pad turns
out to be sufficient to realize such a construction.

PPEnc for equality over {0, 1}. We describe a PPEnc scheme for testing equality over
message space {0, 1}.

1. Setup(1λ): Set SK = t, where t ∈R {0, 1}.
2. Encrypt(SK,m): CT (m) = t⊕m.
3. Decrypt(SK,C): m′ = C ⊕ t.
4. Test(CT1, CT2): Return 1 if and only if CT1 = CT2.

It is well-known that as a symmetric key encryption scheme the above construction (or
any deterministic encryption scheme) is not FtG secure in the sense of [4] but it is as a
PPEnc as the following claim shows.

Claim 2 The above construction is an FtG secure PPEnc for one-bit messages.
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Proof. The key idea is that an FtG adversary A is restricted by the equality pattern. If A
makes the challenge query as (0, 1) then s/he cannot make any encryption oracle query.
Hence, the one-time pad ensures the challenge bit is information theoretically hidden from
A. On the other hand, if the challenge query is of the form (0, 0) or (1, 1) then there is
no non-trivial information for A to learn either from the encryption queries or from the
challenge. ut

Deterministic PPEnc for equality over {0, 1}. The above result further leads us to
the following interesting consequence. Let E : K × {0, 1} −→ {C0, C1} be a deterministic
encryption scheme.

Claim 3 If E is FtG secure PPEnc scheme for equality then it is LoR secure.

Proof. Let A be a valid LoR adversary for E. We will construct a valid FtG adversary B for
E, which is playing the FtG game with its own challenger C by internally running A.

Observe that A has to respect the equality pattern and hence can only make queries
from the following disjoint sets: S1 = {(0, 0), (1, 1)} and S2 = {(0, 1), (1, 0)}. If A makes
queries from the set S1, then FtG −→ LoR holds trivially.

Now let us analyze the case when A makes queries from S2 = {(0, 1), (1, 0)}. Let’s,
without loss of generality, assume that A’s first query is (0, 1). B sets the same message
(0, 1) as its own FtG challenge query, forwards it to C. In response C provides a challenge
ciphertext Cb to B, b ∈ {0, 1} by encrypting β ∈R {0, 1} using the encryption function E as
per the rule of the FtG game. B forwards the same Cb to A. Note that by the definition of
FtG security, B cannot make any other query to C. However, if A repeats the same query
(0, 1), then B simply forwards the same ciphertext Cb. If A queries the other valid message
pair (1, 0), then B returns ciphertext C1−b. When A outputs a bit as its guess and halts,
then B outputs the same bit to C and halts.

The simulation of A’s environment by B is perfect. In fact, after the first query, A can on
its own generate the response for all other queries it is going to make. Now the FtG security
of E ensures that the encryption of 1 is indistinguishable from the encryption of 0. Hence,
the advantage of B is the same as that of A and the two notions actually collapse. ut

As a consequence we note that the one-time pad construction of PPEnc achieves LoR
security. However, it’s well-known that the same is not even FtG secure as standard symmet-
ric key encryption scheme. Thus there exists binary property preserving encryption scheme
secure in the strong LoR sense of property preserving encryption but does not even achieve
FtG security as a standard symmetric key encryption scheme.

Based on our previous observations we suggest the following direct construction of LoR
secure PPEnc for equality testing on M = {0, 1}n. A PPTag can be obtained by dropping
the Decrypt algorithm from the description.3

3 Similar construction for testing equality in the context of authenticated encryption and searchable en-
cryption schemes was suggested earlier by Rogaway-Shrimpton [36] and Amanatidis et al. [2]. Their
constructions used deterministic MAC which is modeled as a PRF.
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PPEnc for Equality Using a PRP. We describe a scheme Π to test for equality of strings
of length n.4 Let {F}n be a pseudo-random permutation (PRP) family and an element
F ∈ {F}n is defined as F : {0, 1}n × {0, 1}n −→ {0, 1}n.

1. Setup(1λ): Set a random n-bit binary string K as the secret key SK.

2. Encrypt(SK,m): CTm = FK(m).

3. Decrypt(SK,CT ): Return F−1K (CT ).

4. Test(CT1, CT2): Return 1 if and only if CT1 = CT2.

Claim 4 If the underlying PRP family is secure, then Π is LoR secure.

Proof. (Sketch) The claim is established through a simple hybrid argument. Let the adver-
sary for the LoR game A set (m∗0,1,m

∗
1,1), . . . , (m

∗
0,t,m

∗
1,t) as challenges. We claim that the

games Game0 : m∗0,1, . . . ,m
∗
0,t and Game1 : m∗1,1, . . . ,m

∗
1,t are indistinguishable. We note

that, by the security of the PRP, the Game0 is indistinguishable from a game where the
challenger computes the response from a random permutation. Similarly, challenges output
in Game1 will be indistinguishable from the output of a random permutation. ut

3.2 Separation Between FtG and LoR Notions for Equality

After establishing the existence of natural PPEnc/PPTag scheme for equality testing satis-
fying LoR security (and, hence, FtG security), we now generalize the result of [34] (Theo-
rem 4.1) to show that the separation holds for the equality property and need not necessarily
be restricted to small number of equivalence classes. Let M be the message space. Sup-
pose z = dlog2 |M|e so that every element m ∈ M can be represented by a bit string
of length z. Note that z (and not M) is a polynomial in the security parameter. Let
Π = (Setup,Enc,Test) be any FtG secure PPTag scheme for equality. From this scheme
we construct another scheme Π ′ = (Setup′,Enc′,Test′) for realizing the same property. The
construction uses a PRF family F : {0, 1}κ × {0, 1}z −→ {0, 1}z.5

1. Setup′(λ): Calls Setup of Π to obtain (PP, SK) and chooses k ∈R {0, 1}κ (as the key
for the PRF). The algorithm outputs PP as the public parameters for Π ′ and sets the
secret key as SK ′ = (SK, k).

2. Enc′(PP, SK ′,m): While encrypting m ∈ M, the encryption algorithm of Π is used to
obtain ct = Enc(PP, SK,m). Then choose a bit b ∈R {0, 1}. The ciphertext of Π ′ is
computed as

CT =

{
(ct, b, Fk(m)), if b = 0,

(ct, b, Fk(m)⊕m), otherwise.

3. Test′(CT1, CT2, PP ): Given CT1 = (ct1, b1, t1) and CT2 = (ct2, b2, t2), the algorithm
outputs Test(PP, ct1, ct2).

4 For the case of PPTag there is no need to decrypt and hence the construction can be extended to arbitrary
length messages by the use of a CRHF H with n-bit digests.

5 The PRF can be replaced by a set of |M| random bit strings when |M| is small (i.e., polynomial in the
security parameter). On the other hand, for arbitrary length messages one can use a collision resistant
hash function (CRHF) H to first map the message to a digest of z-bit and then apply the PRF on the
digest.
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The following two lemma generalizes the result of [34] (we provide the detailed proofs in
the Appendix A) and together establish that the separation result for FtG and LoR holds
for the equality property.

Lemma 5 If the scheme Π is FtG secure and F is a secure PRF then Π ′ constructed as
above is also FtG secure. In particular, εΠ′ ≤ εΠ + 2εF where εX denotes the advantage in
the corresponding security game for the primitive X ∈ {Π,F}.

Lemma 6 There is a LoR adversary for the scheme Π ′ with non-negligible advantage.

Remark 3 We point out an interesting consequence of the above separation result. Shen-
Shi-Waters [37] proposed two security notions, the single challenge and full challenge secu-
rity for predicate private encryption (see [37] for the definitions of security). The strategy
outlined in Lemma 5 and Lemma 6 in the context of PPTag can be adapted to establish a
similar separation between single challenge and full challenge security of predicate encryp-
tion. Suppose we are given a single challenge secure predicate private scheme for equality,
called Ψ . From that we construct another scheme Ψ ′ where the only changes are in the Setup
and Encrypt as described in the context of Π ′ above. In particular, the encryption algorithm
of Ψ ′ outputs a ciphertext of Ψ together with either (b, Fk(m)) or (b, Fk(m)⊕m) depending
upon whether b = 0 or b = 1. A similar argument as in the case of PPTag above shows that
Ψ ′ is single challenge secure but not full secure.

Hierarchy Among FtG Classes: We briefly comment on the separation result for the
hierarchy among FtG classes given in [34]. The equality property is used to establish this
result. We start with a scheme Π which is FtGη secure. Then we derive a scheme Π ′ which is
not FtGη+1 secure. We follow the same notations used while proving the previous separation
result. Encryption algorithm6 of Π ′ chooses b ∈R {1, . . . , η} and returns

Π ′.CT (m) =

{
(Π.CT (m), b, Fk(m, b)), if 1 ≤ b ≤ η
(Π.CT (m), b, Fk(m, 1)⊕ . . .⊕ Fk(m, η)⊕m), if b = η + 1.

The derived scheme Π ′ is not FtGη+1 secure, but FtGη secure. The proof of FtGη security is
similar to the previous separation result, argued using a sequence of hybrids. For complete-
ness, in Appendix B we provide the argument for the case where there are polynomial (in
security parameter) many messages. Note that [34] does not provide an explicit proof for
their hierarchy result for the property Pqr in the paper.

3.3 Contextualizing the Separation

Based on our above observations we argue that the Pandey-Rouselakis separation results
of [34, Theorem 4.1,Theorem 4.4] give only a partial answer to the question of the relation
between FtG and LoR in the context of property-preserving encryption.

To better understand the real world difference between FtG and LoR for PPEnc it is
worth studying them in the context of concrete natural properties. First, look at the unary

6 For simplicity we assume that the length of m and b together is z-bit. If necessary one can use a CRHF
to achieve this.
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properties. It is suggested [34] that for any unary property P , one can trivially obtain
a PPTag by providing P (m) in the clear as part of the ciphertext. (It is assumed that
the actual message will be encrypted by a semantically secure symmetric key encryption
scheme.) We note that in such a scenario, the two notions FtG and LoR actually collapse.
In fact, there is no non-trivial information to be gained by the adversary by participating
in the FtG or LoR security game.

Next, look at the binary property of equality. We showed that equality captures the
quadratic residuosity property Pqr used in [34] and that any deterministic one-bit encryption
scheme that is FtG-secure is sufficient to construct LoR secure PPTag for Pqr. In general
a PRP is sufficient to construct an LoR secure PPEnc for equality. Our results seem to
indicate that when it comes to the question of constructing a practical scheme for Pqr (or
equality property, in general), then effectively there is no real difference between FtG and
LoR notions of security. In Section 5 we will see that for the orthogonality property any FtG
secure PPEnc for vectors of length 2n gives a LoR secure PPEnc for length n which provides
further evidence that FtG is a meaningful notion of security for PPEnc.

We end this section with the following open question: is there a “natural” construction
of a scheme for testing equality or, for that matter, any other natural property, which is FtG
secure but not LoR secure. Resolving this question will shed further light into the usefulness
of the hierarchy of the security notions introduced in [34].

4 Attack on Pandey and Rouselakis Scheme for Orthogonality

In [34], a PPTag scheme for testing the orthogonality property of two vectors is proposed.
The construction is in the composite order bilinear group setting and claimed to achieve LoR
security in the generic group model. The security claim is established in [34, Theorem 5.1]
with a precise bound on the adversarial advantage. Here, we first reproduce the PPTag
scheme described in [34] and then discuss its insecurity. We show that this scheme is not
even selective FtG secure.

– Setup(λ, n). Pick two different primes p and q uniformly in the range (2λ−1, 2λ) where
λ is the security parameter. Let G and GT be two groups of order N = pq such that
there is an efficiently computable bilinear map e : G × G −→ GT . Select a vector
(γ1, . . . , γn) ∈ Zq such that

∑n
i=1 γ

2
i = δ2 (mod q). Let g0 (resp. g1) be a generator of a

subgroup of order p (resp. q) of G. Set the message space as M = (Z∗N
⋃
{0})n. Set

PP = 〈n,N,G,GT , e〉, SK = 〈g0, g1, {γi}, δ〉,

– Encrypt(PP, SK,M). On input a message M = (m1, . . . ,mn), select two random ele-
ments φ and ψ from ZN . The ciphertext is computed as

CT = (ct0, {cti}ni=1) =
(
gψδ1 , {gφmi

0 · gψγi1 }
n
i=1

)
.

– Test(PP,CT (1), CT (2)). When two ciphertexts CT (1) = (ct
(1)
0 , {ct(1)i }ni=1) and CT (2) =

(ct
(2)
0 , {ct(2)i }ni=1) are input, the algorithm outputs 1 if and only if:

n∏
i=1

e(ct
(1)
i , ct

(2)
i ) = e(ct

(1)
0 , ct

(2)
0 ).
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We show that the construction of [34, Section 5] is not even FtG secure, and hence, by
implication, cannot be LoR secure. This contradicts the claim of [34, Theorem 5.1]. In fact,
the PPTag scheme of [34] does not even satisfy the weaker selective notion of FtG security.

Intuition: Recall that in Setup, the user chooses secret key components γ1, . . . , γn, δ ∈ Zq
such that δ2 = γ21 + . . .+ γ2n mod q. Now observe that for such values, we have

δ2 = γ1(γ1 + γ2) + γ2(γ2 − γ1) + γ23 + . . .+ γ2n mod q. (2)

4.1 Attack for n = 2 case

The above intuition (Eqn. 2) immediately gives an attack on the PPTag scheme of [34]
for testing orthogonality. We first describe the attack for the case n = 2 with concrete
challenges and queries.

(i) A outputs the challenge vectors w∗0 = (0, 1) and w∗1 = (1, 0).
(ii) In the FtG game A receives the public parameter PP from its challenger S.

(iii) A asks for encryption of v1 = (1, 1) and obtains (C0, C1, C2) = (gψδ1 , gφ0 g
ψγ1
1 , gφ0 g

ψγ2
1 ),

where φ, ψ ∈R ZN are chosen by the challenger (unknown to A). From the obtained
ciphertext (C0, C1, C2), A computes the following:

ξ = (ξ0, ξ1, ξ2) = (C0, C1 · C2, C2/C1) = (gψδ1 , g2φ0 g
ψ(γ1+γ2)
1 , g

ψ(γ2−γ1)
1 ). (3)

(iv) The challenger returns the encryption Cw∗b
, for a bit b ∈R {0, 1}. We shall denote the

ciphertext of w∗b = (m1,m2) by Cw∗b
where

Cw∗b
= (ζ0, ζ1, ζ2) = (gψ1δ

1 , gφ1m1
0 gψ1γ1

1 , gφ1m2
0 gψ1γ2

1 ). (4)

(v) A runs the Test algorithm with inputs (ξ, Cw∗b
) and returns b′ = 0 if Test(ξ, Cwb

) returns
1. Otherwise A returns b′ = 1.

Analysis. It is easy to verify that e(ζ0, ξ0) = e(g1, g1)
ψ1ψδ2 . Similarly we verify that

e(ζ1, ξ1) · e(ζ2, ξ2) = e(g0, g0)
2m1φ1φ · e(g1, g1)ψ1ψδ2 . Hence, Test outputs 1 with high proba-

bility only when m1 = 0, i.e., when w∗0 was encrypted by the challenger.

4.2 Attack for General n

Here, we discuss the attack on [34] scheme for orthogonality testing when the vectors are
of any length. The same intuition (Eqn. 2) works here too.

Proposition 7 The PPTag scheme proposed in [34] for testing orthogonality is not even
selective FtG secure.

Proof. We establish the claim in terms of the following attack game between the adversary
and the challenger.

(i) A outputs two n-dimensional vectors −→m∗0,
−→m∗1 as the challenge messages where n� N .

The challenges are of the form −→m∗0 = (m1,m0, 1, . . . , 1) and −→m∗1 = (m1,m1, 1, . . . , 1),
where m1 6= m0 are from Z∗N .
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(ii) A receives the public parameter PP from challenger.
(iii) A queries Q = ((m1 + m0)/2, (m0 −m1)/2, 1, . . . , 1,−(n − 3)). Observe that Q is not

orthogonal to either of the challenge messages (−→m∗0,
−→m∗1) and hence, is a valid query. S

responds with

CTQ =
(
gψδ1 , g

φ(m1+m0)/2
0 gψγ11 , g

φ(m0−m1)/2
0 gψγ21 , gφ0 g

ψγ3
1 , . . . , gφ0 g

ψγn−1

1 , g
−(n−3)φ
0 gψγn1

)
for some ψ, φ ∈R ZN . Given CTQ, A takes the product and ratio of the second and third

components of the ciphertext to obtain gm0φ
0 g

ψ(γ1+γ2)
1 and g−m1φ

0 g
ψ(γ2−γ1)
1 , respectively.

A now computes the pseudo-ciphertext for −→m′ = (m0,−m1, 1, . . . , 1,−(n− 3)) as

CT ′Q = (gψδ1 , gm0φ
0 g

ψ(γ1+γ2)
1 , g−m1φ

0 g
ψ(γ2−γ1)
1 , gφ0 g

ψγ3
1 , . . . , gφ0 g

ψγn−1

1 , g
−(n−3)φ
0 gψγn1 ).

Note that the message vector −→m′ is orthogonal to −→m∗0 but not to −→m∗1. As in our previous
attack for length 2 vectors, the pseudo-ciphertext for −→m′ can be used to distinguish the
challenge messages.

(iv) A now asks for the challenge ciphertext. Suppose that the challenger responds with

CTb =
(
gψ̃δ1 , gm1φ̃

0 gγ1ψ̃1 , gmbφ̃
0 gγ2ψ̃1 , gφ̃0 g

γ3ψ̃
1 , · · · , gφ̃0 g

γnψ̃
1

)
,

where b ∈R {0, 1} is chosen by S and φ̃, ψ̃ ∈R ZN .
(v) A runs the Test algorithm on CT ′Q and CTb. This amounts to computing:

A = e(gψδ1 , gψ̃δ1 ) and

B = e(gm0φ
0 g

ψ(γ1+γ2)
1 , gm1φ̃

0 gγ1ψ̃1 ) · e(g−m1φ
0 g

ψ(γ2−γ1)
1 , gmbφ̃

0 gγ2ψ̃1 )

n−1∏
i=3

e(gφ0 g
ψγi
1 , gφ̃0 g

γiψ̃
1 ) · e(g−(n−3)φ0 gψγn1 , gφ̃0 g

γnψ̃
1 ).

If A = B then A outputs b′ = 0, otherwise A outputs b′ = 1.

Analysis. We see that A = B implies mb = m0, except with negligible probability. Hence,
the adversary wins the selective FtG game with overwhelming probability of success. ut

Remark 4 It would have been illustrating to see where exactly the proof of Theorem 5.1 in
[34] fails. Unfortunately no such proof is provided by the authors of [34].

5 Orthogonality: Relation Between FtG and LoR and with Equality

We show that it is possible to construct a LoR secure scheme from a FtG secure scheme for
orthogonality. This result provides evidence that FtG is a meaningful notion for property
preserving encryption. In particular, we show that LoR security for a scheme for testing
orthogonality of n length vectors is implied by FtG security of the scheme for testing or-
thogonality of 2n length vectors. Next, we show that in the property preserving scenario,
orthogonality implies equality.

12



5.1 FtG2n implies LoRn

Motivated by the relationship between the single challenge and full security in the predicate
private case for orthogonality, we examine the relationship between FtG and LoR security
for that property. It has been shown by Shen, Shi and Waters [37, Theorem 2.8] that a single
challenge secure predicate-only private scheme Π2n for testing orthogonality of vectors of
length 2n may be used to construct one achieving full security for n length vectors Πn.
Inspired by their technique we derive a similar result for property preserving orthogonality
testing.

Let Θ2n be a FtG secure PPTag encryption scheme for testing orthogonality of vectors of
length 2n. We construct a PPTag scheme Θn for testing orthogonality of vectors of length
n as follows. In the following we assume that the underlying field on which the vectors are
defined does not have characteristic 2 (this is required in the security argument).

1. Θn·Setup(λ): The public parameters and the secret key are the same as the corresponding
ones of Θ2n.

2. Θn · Encrypt(PP, SK, x): Encn(x) = Enc2n(x||x).
3. Θn · Test(CT1, CT2, PP ): The test is carried out using that of the Θ2n scheme as

Testn(CT1, CT2) = 1 if and only if Test2n(CT1, CT2) = 1.

Next, we show that Θn is LoR secure. The proof proceeds via a sequence of hybrids. Any
adversary who can distinguish two adjacent games can break the FtG security of Θ2n.

Theorem 8 The scheme Θ2n is FtG secure implies the derived scheme Θn is LoR secure.

Proof. Recall that we assumed the underlying field on which the vectors are defined does
not have characteristic 2. For x = (x1, . . . , xn) and y = (y1, . . . , yn), the quantity x||y :=
(x1, . . . , xn, y1, . . . , yn). We observe that x · y = 0 if and only if (x||x) · (y||y) = 0. The
encoding which maps x to x||x is used for proving LoR security via a hybrid argument.

Let A be a valid LoR adversary for Θn. The adversary A sets (x
(1)
0 , x

(1)
1 ), . . . , (x

(q)
0 , x

(q)
1 )

as challenges to the challenger C. The challenger fixes a random bit b and returns encryption

of x
(i)
b , 1 ≤ i ≤ q. The adversary outputs a bit b′ at the end of the game and wins if b = b′.
We prove that the distributions of the ciphertexts of the left and right side messages

are indistinguishable. That is, the adversary A can not distinguish Game0 and Game1 of
Table 1. The proof proceeds via a sequence of hybrid games. We tabulate the sequence of
hybrids in Table 1. In GameC , the value α is chosen at random from the underlying field. We
mention that a sequence of intermediate games is defined between two consecutive games
for proving indistinguishability, where only one ciphertext is changed. One such sequence
between GameA and GameB is given in Table 1.

We first argue that Game0 and GameA are indistinguishable. Consider an intermediate
game, called Game0,1, defined as

x
(1)
0 ||0, x

(2)
0 ||x

(2)
0 . . . , x

(s)
0 ||x

(q)
0 .

Notice that this game differs from Game0 only in the first component. We claim that
Game0 and Game0,1 are indistinguishable. For, suppose A can distinguish them. Setting

(x
(1)
0 ||x

(1)
0 , x

(1)
0 ||0) as challenge messages and querying the rest of the elements, adversary
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Table 1. Sequence of Hybrids (Left) and Intermediate Games between GameA and GameB (Right)

Game0 : x
(1)
0 ||x(1)0 , . . . , x

(q)
0 ||x(q)0

GameA : x
(1)
0 ||0, . . . , x(q)0 ||0

GameB : x
(1)
0 ||αx(1)1 , . . . , x

(q)
0 ||αx(q)1

GameC : 0||αx(1)1 , . . . , 0||αx(q)1

GameD : x
(1)
1 ||αx(1)1 , . . . , x

(q)
1 ||αx(q)1

Game1 : x
(1)
1 ||x(1)1 , . . . , x

(q)
1 ||x(q)1

GameA : x
(1)
0 ||0, x(2)0 ||0, . . . , x(q)0 ||0

GameA,1 : x
(1)
0 ||αx(1)1 , x

(2)
0 ||0, . . . , x(q)0 ||0

GameA,2 : x
(1)
0 ||αx(1)1 , x

(2)
0 ||αx(2)1 , x

(3)
0 ||0, . . . , x(q)0 ||0

...

GameB : x
(1)
0 ||αx(1)1 , . . . , x

(q)
0 ||αx(q)1

A becomes a valid FtG adversary for Θ2n. We proceed by defining a sequence of games
where any two consecutive games vary exactly at one component. Similar argument would
show that GameB and GameC are indistinguishable. GameC and GameD too may similarly
be shown to be indistinguishable.

Recall that GameB was defined using a random parameter α. Even though, say for

example (x
(1)
0 ||0) · (x(2)0 ||0) 6= 0 holds, it may so happen that (x

(1)
0 ||x

(1)
1 ) · (x(2)0 ||x

(2)
1 ) = 0.

Thus, a random choice of α ensures that setting (x
(1)
0 ||0, x

(1)
0 ||αx

(1)
1 ) as the challenge and

the rest of the elements as queries one gets a valid FtG adversary for Θ2n. This argument
shows that GameA and GameB are indistinguishable. Similar argument shows that GameD
and Game1 are indistinguishable. ut

5.2 A Direct Test for Equality from Orthogonality

Katz et al. [30] suggested a simple encoding to test for equality using inner product: create

a ciphertext for
−→
I = (1, I) and a token for

−→
J = (−J, 1). Now the inner product of

−→
I and

−→
J is 0 if and only if I = J . This encoding does not directly work in the PPEnc setting
as there is no separate token and the Test is performed only the ciphertext. Nevertheless,
we show that one can construct a scheme for testing equality property, given a scheme for
testing orthogonality of vectors. The new scheme inherits the same security as that of the
underlying orthogonality testing scheme. Note that this result is of theoretical interest, but
of little practical value as we already have much more efficient scheme for testing equality.
The result formally establishes a connection between orthogonality and equality for property
preserving encryption.

The setting is as follows. Let the message space be Fq, where the finite field is assumed
to contain i =

√
−1. Examples of fields which contain i are F2n ; Fp, where p ≡ 1 (mod 4);

or extensions of the form Fq which contain i. The square root of −1 may be given explicitly
or may be computed using Tonelli-Shanks algorithm [3, Chapter 7].

We encode any x ∈ Fq as a vector in F5
q given by x 7→ vx = (x2 + 1, ix2, ix, ix, i) (in

characteristic 2 fields m 7→ vm = (m + 1,m, 1)). The mapping m 7→ vm is one-to-one.
Observe that, elements x and y are equal if and only if vx · vy = 0. We now describe a
scheme Π ′ for testing for equality, given a scheme Π for testing for orthogonality of vectors
of length 5 over Fq.

1. Setup(λ): The public parameters and secret key for Π ′ are those of Π.
2. Encrypt(PP, SK,m): While encrypting m ∈ Fq, the encryption algorithm first com-

putes the encoding vm corresponding to m. Then the ciphertext corresponding to m is
CT (m) = Π.ct(vm).

14



3. Test(CT1, CT2, PP ): Same as that of Π.

Lemma 9 If Π is FtG (respectively LoR) secure then so is Π ′, correspondingly.

Proof. We describe the FtG case as the LoR case may be similarly handled. Suppose Π ′ is
not FtG secure, with AΠ′ a valid adversary. We construct AΠ , a FtG adversary for scheme Π,
which internally runs AΠ′ . Whenever AΠ′ makes an encryption query m, the adversary AΠ
forwards vm to the challenger BΠ . On receiving the ciphertext, it forwards it to AΠ′ . When
AΠ′ sets (m∗0,m

∗
1) as challenge, the adversary AΠ forwards (vm∗0 , vm∗1) to the challenger. On

receiving the encryption of one of the two vectors AΠ forwards it to AΠ′ . The other queries
made by AΠ′ may be handled similarly. When AΠ′ outputs a bit b′ and halts, so does AΠ .
This is a perfect simulation and AΠ wins with the same advantage as that of AΠ′ . ut

6 Concluding Remarks

In the preface of their highly acclaimed book, Katz and Lindell [29] spell out three principles
of modern cryptography: the central role of definitions, importance of formal and precise
assumptions and the possibility of rigorous proofs of security. Our work of revisiting the
Pandey and Rouselakis [34] can be regarded as an exploration of the first and the third
principles mentioned above.

On the definitional front, we revisit the FtG vs. LoR and the FtG hierarchy separation
results in [34]. To do that we show that equality property captures the property Pqr used
in the separation results and provide a simple construction for the equality property to
demonstrate that the separation results are non-vacuous. Based on the security attributes
of our construction and its generalization we raised the pertinent question of whether the
separation results actually indicate any real world difference between the two notions of
security. Continuing further our exploration of the relation between FtG and LoR notions,
we see that a LoR-secure scheme may be constructed from a so-called weaker FtG-secure
one for orthogonality. We demonstrate a simple attack on the PPTag scheme for testing
orthogonality from [34] refuting the claim that the scheme is provably secure.

Our study indicates that a more detailed analysis is required regarding proper notion of
security for property preserving symmetric encryption and also underlines the importance
of cryptanalysis in provable security.
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Appendix A

We give the proof of Lemma 5 and 6 in this Appendix. We first argue the separation result
for polynomial size message space case and use it to prove the general case.

A.1 Separation Result for Polynomial Size Message Space

LetM = {1, . . . , l} be the message space. We give an argument for the separation result FtG
9LoR for the equality property in the case where l is polynomial in the security parameter.
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Set z = dlog2 le. We assume that l is polynomial in the security parameter. Let Π be a
FtG secure PPTag scheme for equality. From this scheme we construct another scheme Π ′

for realizing the same property as follows. Let the set of l binary strings of length z, denoted
by {αi | 1 ≤ i ≤ l}, which represent the integers 1 through l.

1. Setup(λ): The public parameters for Π ′ include those of Π. The secret key of Π ′ com-
prises of those of Π and a set of randomly chosen binary strings {ti | 1 ≤ i ≤ l}, where
each ti is of length z.

2. Encrypt(PP, SK,m): While encrypting m ∈ M, the encryption oracle of Π is used to
obtain ct. Then the algorithm chooses a random bit b. The ciphertext now comprises of

CT =

{
(ct, b, tl), if b = 0,

(ct, b, tl ⊕ αs), otherwise.

3. Test(CT1, CT2, PP ): Same as that of Π, where only the relevant parts of the ciphertexts
are used.

We first prove that Π ′ is not LoR secure. The same proof holds also for Lemma 6.

Lemma 10 There is a LoR adversary for the scheme Π ′ with non-negligible advantage.

Proof. A valid LoR adversary sets as u challenges the same pair of the form (m0,m1), with
m0 6= m1. Equality pattern is clearly preserved between the left and right sequences. If the
challenger outputs two ciphertexts for which the b-values are distinct, the adversary can
win with advantage 1− 2−u+1. ut

We now prove that Π ′ is FtG secure.

Theorem 11 The scheme Π ′ is not FtG secure implies Π is not FtG secure.

Proof. Consider a valid FtG adversary for Π ′, denoted by A. Two cases arise with respect
to the challenges, which we describe below.

Case 1 : The challenge messages m∗0 and m∗1 are equal al.

Case 2 : The challenge messages m∗0 and m∗1 are different. In this case, the adversary can
not make an encryption query for these two messages.

We describe how a FtG adversary B for Π, with same advantage as that of A and which
internally uses A, can be constructed.

1. The algorithm B receives the public parameters from Π. It also initializes an empty
table T . Apart from these, note that the α1, . . . , αl values are known to A.

2. Whenever A makes an encryption query i, the algorithm B receives and forwards it to
the simulator of Π. On receiving ct, the algorithm B whether the same query was made
earlier or not.

(a) If the query is made for the first time, then it chooses t ∈ {0, 1}z. It also sets ti = t
and updates the table T with {(i, ti)}.

(b) Else, it reuses ti.
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Thus, the ti value is determined by B. It then chooses a random bit b and forwards

CT =

{
(ct, b, ti), if b = 0,

(ct, b, ti ⊕ αi), if b = 1.

respectively, to A.
3. After a certain number of queries A outputs the challenge (m∗0,m

∗
1, state). The algorithm

B forwards the challenge to the simulator of Π and gets ct∗. If the challenge messages
are equal (Case 1), then (ct∗, b, val) may be computed by B in the two sub cases where
the t-value is known or unknown. If the challenge messages are different (Case 2), then
both these have not been queried previously. The valid Π∗ ciphertext may be computed
by B in the obvious way.

4. All the subsequent queries which A makes can be handled similarly by B. When A
outputs a bit b′ and halts, so does B.

Notice that the ciphertexts which B computes for forwarding to A are properly distributed.
In other words, the algorithm B is a perfect simulation. Clearly, the algorithm B is PPT.

Algorithm B outputs whatever is given to it by A. Hence, advantage of B is equal to
that of A. ut

A.2 Proof of Lemma 5

Recall that in the FtG game A makes a polynomial number of encryption oracle query mi,
1 ≤ i ≤ q, and a single challenge query (m∗0,m

∗
1) maintaining the equality pattern. Two

cases arise depending upon whether the challenge messages m∗0 and m∗1 are equal or not. If
m∗0 = m∗1 then it is easy to see that any advantage of A against Π ′ translates into the same
advantage against Π. Hence, we consider the case when m∗0 6= m∗1. Note that in this case
none of the queries to the encryption oracle mi is equal to m∗b , for b ∈ {0, 1}. Otherwise, the
equality pattern of the two sequences will be different allowing A to trivially distinguish.

Let Game0 correspond to the adversarial queries (m1, . . . ,mi,m
∗
0,mi+1, . . . ,mq) while

Game1 correspond to the adversarial queries (m1, . . . ,mi,m
∗
1,mi+1, . . . ,mq). Suppose A

can distinguish whether it is playing Game0 or Game1 with a non-negligible advantage εΠ′ .
The proof will proceed through a hybrid argument. Given an adversary A against Π ′ we
construct a series of four games and then show that if A can distinguish between any two
consecutive games then we can construct either a PRF adversary against F or an FtG
adversary against Π.

Game0 The challenger runs the Setup algorithm of Π ′ and gives the PP to A and keeps the
secret key SK ′ = (SK, k) to itself. The challenger computes the ciphertext corresponding
to (m1, . . . ,mi,m

∗
0,mi+1, . . . ,mq) using SK ′ as per the encryption algorithm of Π ′ and give

them to A.

GameA The challenger runs the Setup algorithm of Π and gives the PP to A and keeps the
secret key SK of Π to itself. Note that the challenger does not generate the PRF key k;
instead it will maintain a table T = 〈xi, yi〉 where xi and yi are two z-bit strings. The first
entry in each row of T corresponds to the messages queried by A while the second entry is a
random bit-string. The table is initially empty. Whenever A makes an encryption query for
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a message x, the challenger first checks whether there is a corresponding entry in T. If not,
it chooses a random z-bit string y and enters (x, y) in the table T sorted according to the
first entry. A makes encryption queries for (m1, . . . ,mi,m

∗
0,mi+1, . . . ,mq). To answer the

query of A for a message, say x, the challenger computes the ciphertext of Π on x and then
uses the corresponding random string y from the entry (x, y) in T to create a ciphertext of
Π ′. Note that A makes at most q encryption oracle queries and a single challenge query. So
the size of T is O(q) and hence the challenger can consistently respond to all the queries of
A.

Claim 12 If A can decide with a non-negligible advantage whether it is playing Game0 or
GameA then we can construct a PRF distinguisher with the same advantage.

Recall that in the PRF security game we are provided with an oracle which is either a
function from the PRF family or a random function. In the former case the challenger will
be playing Game0 while in the latter case it’ll be playing GameA. Hence, any advantage of A
in distinguishing between the two games translate into the same advantage of the challenger
in breaking the PRF security.

Game1 (resp. GameB) will be identical to Game0 (resp. GameA) except the fact that
A now queries with (m1, . . . ,mi,m

∗
1,mi+1, . . . ,mq). An identical argument as in the claim

above establishes that any advantage of A in deciding whether it is playing Game1 or GameB
translates into the same PRF advantage for the challenger.

Note that the only difference in GameA and GameB is in the challenge ciphertext (cor-
responding to m∗0 and m∗1). The challenge is computed by calling the encryption algorithm
of Π and appending either a random bit string or a one-time encryption of m∗b (using that
random string). Hence, an adversary distinguishing between GameA and GameB can be
converted into an adversary breaking the FtG security of Π. As there are only polynomial
many queries, this case is the same as the one where there are only small (polynomial in
λ) number of messages. This case can be easily handled by using random strings. We have
already given the analysis in the previous subsection.

Appendix B

Here, we examine the hierarchy among FtG classes for equality property. In particular, for
this property we show that FtGη 9 FtGη+1. As before, we start with any PPTag scheme
Π which is FtGη secure and derive another PPTag scheme Π ′ which is FtGη secure but not
FtGη+1 secure. The case of polynomial many equivalence classes is dealt with using random
strings here. We begin by describing Π ′. Let M = {1, . . . , l}, be the messages. The values
{α1, . . . , αl} are publicly computable bit representations of the messages.

1. Setup(λ): The public parameters for Π ′ are precisely those of Π. The secret key of Π ′

comprises of those of Π and a set of l×η randomly chosen z-bit integers represented as a
matrix ((ti,j)), where 1 ≤ i ≤ l and 1 ≤ j ≤ η. For 1 ≤ k ≤ l, set Tk = tk,1⊕. . .⊕tk,η⊕αk.

2. Encrypt(PP, SK,m): While encrypting m ∈ M, the encryption oracle of Π is used to
obtain ct. Then the algorithm chooses a random integer b ∈ [1, η + 1]. The ciphertext
now comprises of CT = (ct, b, val), where

val =

{
tm,b, if 1 ≤ b ≤ η,
Tm, o.w.
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3. Test(CT1, CT2, PP ): Same as that of Π, where only the relevant parts of the ciphertexts
are used.

We next prove that Π ′ is FtGη secure, but not FtGη+1 secure, thus proving hierarchy
among FtG classes for the equivalence relation P .

Theorem 13 The scheme Π ′ is not FtGη+1 secure but is FtGη secure.

Proof. We first show that if the scheme Π ′ is not FtGη secure then Π is not FtGη secure.
Let AΠ be a FtGη adversary which internally runs AΠ′ , a FtGη adversary for Π ′, while
interacting with the challenger BΠ . Let {(m∗0,i,m∗1,i) | m∗0,i ∈ Cxi , m∗1,i ∈ Cyi , 1 ≤ i ≤ η}
be all the challenge pairs set (adaptively) by AΠ′ .

The adversary AΠ initializes an empty array L for storing pairs of integers between 1
and l. It also initializes T = ((ti,j)), a l× (η+ 1) empty matrix for storing z-bit strings. We
describe how AΠ interacts with BΠ while internally running AΠ′ .

A. When AΠ′ makes an encryption query, say m, the adversary AΠ forwards it to BΠ
and obtains the ciphertext ct. If the m-th row in T is empty, it fills values tm,i for
1 ≤ i ≤ η with random z-bit strings and sets tm,η+1 = tm,1 ⊕ . . . tm,η + αm. It then
chooses b ∈ [1, η + 1] at random and returns (ct, b, tm,b) to AΠ′ .

B. When AΠ′ makes the i-th challenge query (m∗0,i,m
∗
1,i), the adversary AΠ forwards it

to BΠ and obtains the ciphertext ct of the left or the right message. Then AΠ sets
xi = m∗0,i and yi = m∗1,i. It then determines if (xi, yi) is present in the list L. Two cases
arise.
Case 1. Suppose xi = yi. This case may be handled by AΠ in a fashion similar to

handling encryption queries. The A� chooses b ∈ [0, η + 1] at random and sets
val = txi,b.

Case 2. Suppose xi 6= yi. Then AΠ scans the list L and sees if either (xi, yi) or (yi, xi)
is an entry. If neither is, then AΠ chooses a bit β and b ∈ [0, η + 1] at random. If
β = 0 it updates txi,b with a random z-bit string and if β = 1 it updates tyi,b with a
random z-bit string val, else sets val = txi,b. If (xi, yi) is already an entry in L, but
(yi, xi) is not, it checks which of the two rows in T is non-empty, with out loss of
generality say xi. It chooses a b ∈ [0, η+1] at random. If txi,b is not already updated,
it sets this entry to a random z-bit string val, else sets val = txi,b. We next consider
the case where (yi, xi) is an entry in L, but (xi, yi) is not. It checks which of the two
rows in T is non-empty, with out loss of generality say xi. It chooses a b ∈ [0, η + 1]
at random. If tyi,b is not already updated, it sets this entry to a random z-bit string
val, else sets val = txi,b. If both these pairs already occur in the list L, the adversary
AΠ , it chooses a bit β at random. If β = 0, it processes the row xi in T in the usual
fashion, else it processes row yi.

Then AΠ returns (ct, b, val) to AΠ′ .
C. When AΠ′ outputs a bit b′ and halts, so does AΠ .

This is a perfect simulation.
Next, we describe a strategy for FtGη+1 adversary. The adversary sets all left challenge

messages to be the same fixed value and all the right ones another, such that they are
unequal. Observe that he can not query the encryption oracle on these two messages. If all
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the η + 1 values occur in the b component of the responses of the challenger, the adversary
can set η+ 1 relations among the η+ 1 unknowns, including the α value of the challenger’s
choices. From this system, the class chosen by the challenger may be determined by the
adversary. The event that all the values of b occur in challenger’s responses happens with
probability η!/

(
(η + 1)(η+1)

)
. ut
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