
Identity-Based Key-Encapsulation Mechanism from
Multilinear Maps

Hao Wang1,2,3?, Lei Wu1,2, and Zhihua Zheng1,2

1 School of Information Science and Engineering, Shandong Normal University
2 Shandong Provincial Key Laboratory for Novel Distributed Computer

3 Shandong Provincial Key Laboratory of Software Engineering

Abstract. We construct an Identity-Based Key Encapsulation Mechanism (IB-
KEM) system in a generic “leveled” multilinear map setting and prove its se-
curity in the selective-ID model. Then, we make our IB-KEM translated to the
GGH framework, which defined an “approximate” version of a multilinear group
family from ideal lattices.

1 Introduction

An Identity Based Encryption (IBE) system [1] is a public key system where the public
key can be an arbitrary string such as an email address. A central authority, called a
Private Key Generator (PKG), uses a master key to issue private keys to identities that
request them. Instead of providing the full functionality of an IBE scheme, in many
applications it is sufficient to let sender and receiver agree on a common random session
key. This can be accomplished with an Identity Based Key Encapsulation Mechanism
(IB-KEM) as formalized in [2]. Any IB-KEM can be updated to a full IBE scheme by
adding a symmetric encryption scheme with appropriate security properties.

There are currently three classes of IBE (IB-KEM) systems: (1) based on groups
with a bilinear map [3–7] (to name a few), (2) based on quadratic residuosity modulo a
composite [8–10], and (3) based on hard problems on lattices [11, 12].

In this paper we present an IB-KEM construction based on groups with a multilin-
ear map [13]. We present our IB-KEM in a generic “leveled” multilinear map setting
and prove its security in the selective-ID model. Then, we make our IB-KEM translated
to the GGH framework [14], which defined an “approximate” version of a multilinear
group family from ideal lattices.

Organization We give some necessary background in Section 2, and review the back-
ground on GGH framework in Section 3. In Section 4, We present our IB-KEM and
prove its security. Then, We make our IB-KEM translated to the GGH framework in
Section 5.

? Corresponding author. Email address: whatsdnu@gmail.com

2 H. Wang et al.

2 Preliminaries

2.1 Identity-Based Key Encapsulation Mechanism

An IB-KEM consists of four PPT algorithms as follows:

– Setup(1λ): take as input a security parameter λ, output the public parameters PP
and the master secret key MSK. PP may be used as an implicit input for algorithms
KeyGen, Encap, Decap. Let I be the identity space, C be the ciphertext space, and
K be the DEM key space.

– KeyGen(MSK, ID): take as input PP, MSK and an identity ID ∈ I, output a private
key SKID of ID.

– Encap(PP, ID): take as input PP and an identity ID ∈ I, output a ciphertext C
and a DEM key K ∈ K.

– Decap(SKID, C): take as input a private key SKID for identity ID and a cipher-
text C ∈ C, output a DEM key K ∈ K or a special reject symbol ⊥ (which is not
in K) indicating that C is not consistent under ID.

Correctness For correctness, we require that for any identities ID ∈ I, and any
(C,K)←Encap(PP, ID), Decap(KeyGen(MSK, ID), C) = K holds overwhelming-
ly, where the probability is taken over the choice of (PP, MSK)←Setup(1λ), and the
random coins of all the algorithms in the expression above.

2.2 Security Game

We define IB-KEM security under a selective-identity attack using the following game
between a challenger and an adversary A:

– Init: The adversary outputs an identity ID∗ where it wishes to be challenged.
– Setup: The challenger runs the Setup algorithm giving it the security parameter as

input. It gives A the resulting public parameters PP.
– Phase 1: In this phase the adversary A can adaptively ask for secret keys for any

identities except ID∗. For each queried identity ID, the challenger calls Key-
Gen(MSK, ID) →SKID and sends SKID to the adversary. (The restriction that
has to be satisfied for each query is that none of the queried identity is identical to
ID∗.)

– Challenge: The challenger samplesK∗0←K, and computes (C∗,K∗1)←Encap(PP,
ID∗)). Then, it flips a random coin b ∈ {0, 1} and sends (C∗, K∗b) to A.

– Phase 2: This the same as query phase 1.
– Guess: The adversary outputs his guess b′ ∈ {0, 1} for b.

Definition 1. A IB-KEM scheme is selectively secure under chosen plaintext attack
(IND-sID-CPA) if all PPT adversaries have at most a negligible advantage in λ in
the above security game, where the advantage of an adversary is defined as Adv =
Pr[b′ = b]− 1/2.

Identity-Based Key-Encapsulation Mechanism from Multilinear Maps 3

2.3 Leveled Multilinear Maps

We give a description of generic, leveled multilinear maps. More details of the GGH
graded algebras analogue of mulitlinear maps are included in Section 3, and for further
details, please refer to [14].

For generic, leveled multilinear maps. We assume the existence of a group generator
G, which takes as input a security parameter 1λ and a positive integer k to indicate the
number of allowed pairing operations. G(1λ, k) outputs a sequence of groups G =
(G1, ...,Gk) each of large prime order p > 2λ. In addition, we let gi be a canonical
generator of Gi (and is known from the group’s description). We let g = g1.

We assume the existence of a set of bilinear maps {ei,j : Gi × Gj → Gi+j |i, j ≥
1; i+ j ≤ k}. The map ei,j satisfies the following relation:

ei,j(g
a
i , g

b
j) = gabi+j : ∀a, b ∈ Zp

We observe that one consequence of this is that ei,j(gi, gj) = gi+j for each valid
i, j.

When the context is obvious, we will sometimes abuse notation and drop the sub-
scripts i, j, For example, we may simply write e(gai , g

b
j) = gabi+j .

2.4 Complexity Assumption

Assumption 1. (Multilinear Decisional Diffie-Hellman: k-MDDH) The k-Multilinear
Decisional Diffie-Hellman (k-MDDH) problem states the following: A challenger runs
G(1λ, k) to generate groups and generators of order p. Then it picks random c1, ..., ck+1 ∈
Zp. The assumption then states that given g = g1, g

c1 , ..., gck+1 it is hard for any poly-

time algorithm to distinguish g
∏
j∈[1,k+1] cj

k from a uniform Gk-element with better than
negligible advantage (in security parameter λ).

3 Background on GGH Framework

In this section, we provide some background on the GGH framework. We use the G-
GH framework in a manner very similar to the way it was used in the recent work of
Garg, Gentry, Halevi, Sahai, and Waters on constructing Attribute-Based Encryption
for Circuits [15]. For consistency, the following text is taken verbatim from [15]:

3.1 Graded Encoding Systems: Definition

Garg, Gentry and Halevi (GGH) [14] defined an “approximate” version of a multilinear
group family, which they call a graded encoding system. As a starting point, they view
gαi in a multilinear group family as simply an encoding of α at “level-i”. This encod-
ing permits basic functionalities, such as equality testing (it is easy to check that two
level-i encodings encode the same exponent), additive homomorphism (via the group
operation in Gi), and bounded multiplicative homomorphism (via the multilinear map
e). They retain the notion of a somewhat homomorphic encoding with equality testing,

4 H. Wang et al.

but they use probabilistic encodings, and replace the multilinear group family with “less
structured” sets of encodings related to lattices.

Abstractly, their n-graded encoding system for a ring R includes a system of sets
S = {S(α)

i ⊂ {0, 1}∗ : i ∈ [0, n], α ∈ R} such that, for every fixed i ∈ [0, n], the sets
{S(α)

i : α ∈ R} are disjoint (and thus form a partition of Si =
⋃
αS

(α)
i). The set S(α)

i

consists of the “level-i encodings of α”. Moreover, the system comes equipped with
efficient procedures, as follows:

Instance Generation. The randomized InstGen(1λ, 1n) takes as input the security pa-
rameter λ and integer n. The procedure outputs (params, pzt), where params is a de-
scription of an n-graded encoding system as above, and pzt is a level-n “zero-test pa-
rameter”.

Ring Sampler. The randomized samp(params) outputs a “level-zero encoding” a ∈
S0, such that the induced distribution on α such that a ∈ S(α)

0 is statistically uniform.

Encoding. The (possibly randomized) enc(params, i, a) takes i ∈ [n] and a level-zero
encoding a ∈ S(α)

0 for some α ∈ R, and outputs a level-i encoding u ∈ S(α)
i for the

same α.

Re-Randomization. The randomized reRand(params, i, u) re-randomizes encodings
to the same level, as long as the initial encoding is under a given noise bound. Specifi-
cally, for a level i ∈ [n] and encoding u ∈ S(α)

i , it outputs another encoding u′ ∈ S(α)
i .

Moreover for any two encodings u1, u2 ∈ S(α)
i whose noise bound is at most some b,

the output distributions of reRand(params, i, u1) and reRand(params, i, u2) are statis-
tically the same.

Addition and negation. Given params and two encodings at the same level, u1 ∈ S(α1)
i

and u2 ∈ S
(α2)
i , we have add(params, u1, u2) ∈ S

(α1+α2)
i , and neg(params, u1) ∈

S
(−α1)
i , subject to bounds on the noise.

Multiplication. For u1 ∈ S(α1)
i1

, u2 ∈ S(α2)
i2

, we have mult(params, u1, u2) ∈ S(α1·α2)
i1+i2

.

Zero-test. The procedure isZero(params, pzt, u) outputs 1 if u ∈ S(0)
n and 0 otherwise.

Note that in conjunction with the procedure for subtracting encodings, this gives us an
equality test.

Extraction. This procedure extracts a “canonical” and “random” representation of ring
elements from their level-n encoding. Namely ext(params, pzt, u) outputs (say) K ∈
{0, 1}λ, such that:

– (a) With overwhelming probability over the choice of α ∈ R, for any two u1, u2 ∈
S
(α)
n , ext(params, pzt, u1) = ext(params, pzt, u2),

– (b) The distribution {ext(params, pzt, u): α ∈ R, u ∈ S(α)
n } is statistically uniform

over {0, 1}λ.

Identity-Based Key-Encapsulation Mechanism from Multilinear Maps 5

3.2 Graded Encoding Systems: Realization

Concretely, GGH’s n-graded encoding system works as follows. (This is a whirlwind
overview; see [14] for details.) The system uses three rings. First, it uses the ring of
integers O of the m-th cyclotomic field. This ring is typically represented as the ring
of polynomials O = Z[x]/(Φm(x)), where Φm(x) is m-th cyclotomic polynomial,
which has degree N = φ(m). Second, for some suitable integer modulus q, it uses the
quotient ring O/(q) = Zq[x]/(Φm(x)). similar to the NTRU encryption scheme [27].
The encodings live inO/(q). Finally, it uses the quotient ringR = O/I, where I = 〈g〉
is a principal ideal of O that is generated by g and where |O/I| is a large prime. This
is the ring “R” referred to above; elements of R are what is encoded.

What does a GGH encoding look like? For a fixed random z ∈ O/(q), an element
of S(α)

i - that is, a level-i encoding of α ∈ R - has the form e/zi ∈ O/(q), where e ∈ O
is a “small” representative of the coset α + I (it has coefficients that are very small
compared to q). To add encodings e1/zi ∈ S

(α1)
i and e2/zi ∈ S

(α2)
i , just add them

in O/(q) to obtain (e1 + e2)/z
i, which is in S(α1+α2)

i if e1 + e2 is “small”. To mult

encodings e1/zi1 ∈ S(α1)
i1

and e2/zi2 ∈ S(α2)
i2

, just multiply them in O/(q) to obtain

(e1 ·e2)/zi1+i2 , which is in S(α1·α2)
i1+i2

if e1 ·e2 is ”small”. This smallness condition limits
the GGH encoding system to degree polynomial in the security parameter. Intuitively,
dividing encodings does not “work”, since the resulting denominator has a nontrivial
term that is not z.

The GGH params allow everyone to generate encodings of random (known) values.
The params include a level-1 encoding of 1 (from which one can generate encodings
of 1 at other levels), and (for each i ∈ [n]) a sufficient number of level-i encodings of
0 to enable re-randomization. To encode (say at level-1), run samp(params) to sample
a small element a from O, e.g. according to a discrete Gaussian distribution. For a
Gaussian with appropriate deviation, this will induce a statistically uniform distribution
over the cosets of I. Then, multiply a with the level-1 encoding of 1 to get a level-
1 encoding u of a ∈ R. Finally, run reRand(params, 1, u), which involves adding a
random Gaussian linear combination of the level-1 encodings of 0, whose noisiness
(i.e., numerator size) “drowns out” the initial encoding. The parameters for the GGH
scheme can be instantiated such that the re-randomization procedure can be used for
any pre-specified polynomial number of times.

To permit testing of whether a level-n encoding u = e/zn ∈ Sn encodes 0, GGH
publishes a level-n zero-test parameter pzt = hzn/g, where h is “somewhat small” and g
is the generator of I. The procedure isZero(params, pzt, u) simply computes pzt·u and
tests whether its coefficients are small modulo q. If u encodes 0, then e ∈ I and equals
g · c for some (small) c, and thus pzt·u = h · c has no denominator and is small modulo
q. If u encodes something nonzero, pzt·u has g in the denominator and is not small
modulo q. The ext(params, pzt, u) procedure works by applying a strong extractor to
the most significant bits of pzt·u. For any two u1, u2 ∈ S(α)

n , we have (subject to noise
issues) u1 − u2 ∈ S

(0)
n , which implies pzt(u1 − u2) is small, and hence pzt·u1 and

pzt·u2 have the same most significant bits (for an overwhelming fraction of α’s).
Garg et al. provide an extensive cryptanalysis of the encoding system, which we will

not review here. We remark that the underlying assumptions are stronger, but related to,

6 H. Wang et al.

the hardness assumption underlying the NTRU encryption scheme: that it is hard to
distinguish a uniformly random element from O/(q) from a ratio of “small” elements
i.e., an element u/v ∈ O/(q) where u, v ∈ O/(q) both have coefficients that are on the
order of (say) qε for small constant ε.

4 Our Identity-Based Key Encapsulation Mechanism

4.1 Generic Multlinear Construction

Setup(1λ, n): The trusted setup algorithm is run by PKG, the master authority of the
ID-based system. It takes as input the security parameter as well the bit-length n of
identities. It first runs G(1λ, n) and outputs a sequence of groups

−→
G = (G1, ..., Gn) of

prime order p, with canonical generators g1, ..., gn, where we let g = g1.
Next, it chooses random exponents (b1,0, b1,1), ..., (bn,0, bn,1) ∈ Z2

p and sets Bi,β =
gbi,β for i ∈ [1, n] and β ∈ {0, 1}.

These will be used to define the function H(ID) : {0, 1}n → Gn. Let id1, ..., idn
as the bits of ID. It is computed iteratively as

H1(ID) = B1,id1 , Hi(ID) = e(Hi−1(ID), Bi,idi) for i ∈ [2, n]

It defines H(ID) = Hn(ID), and sets a randomness extractor, s← ext(S), where
s ∈ {0, 1}λ, S ∈ Gn.

The public parameters, PP, consist of the group sequence description plus:

(B1,0, B1,1), ..., (Bn,0, Bn,1), ext

The master secret key MSK includes PP together with the values (b1,0, b1,1), ...,
(bn,0, bn,1).

KeyGen(MSK, ID ∈ {0, 1}n) : The private key for identity ID = (id1, ..., idn) is

SKID = g
∏
i∈[1,n]bi,idi

n−1 ∈ Gn−1.

Encap(PP, ID = (id1, ..., idn)) : The encapsulation algorithm chooses t ∈ Zp ran-
domly and outputs

C = gt, K = ext(H(ID)t).

Decap(SKID, C): The decapsulation algorithm computes that

K = ext(e(SKID, C)).

Identity-Based Key-Encapsulation Mechanism from Multilinear Maps 7

4.2 Correctness

H(ID) = Hn(ID)

= e(Hn−1(ID), Bn,idn)

= e(e(Hn−2(ID), Bn−1,idn−1
), Bn,idn)

......

= e(B1,id1 , ..., Bn,idn)

= e(g
b1,id1
1 , ..., g

bn,idn
1)

= g
∏
i∈[1,n]bi,idi

n

(1)

e(SKID, C) = e(g
∏
i∈[1,n]bi,idi

n−1 , gt)

= g
∏
i∈[1,n]bi,idi ·t

n

(2)

Therefore, K = ext(e(SKID, C)) = ext(H(ID)t).

4.3 Security

We will prove the following theorem regarding the selective security of our IB-KEM:

Theorem 1. If the n-MDDH assumption holds then our scheme is selectively secure
under chosen plaintext attack (IND-sID-CPA).

Proof. Suppose A has a non negligible advantage in attacking the IB-KEM. We build
an algorithm B that solves the n-MDDH problem. Algorithm B is given as input a
random n+3-tuple (g = g1, g

c1 , ..., gcn+1 , T) that is either sampled fromPBDH (where

T = g
∏
j∈[1,n+1] cj

n) or from RBDH (where T is uniform and independent in Gn).

Algorithm B’s goal is to output 1 if T = g
∏
j∈[1,n+1] cj

n and 0 otherwise.

– Init: A outputs an identity ID∗ = (id∗1, ..., id
∗
n), where it wishes to be challenged,

the id∗i is the i-th bit of ID∗.
– Setup: B first runs G(1λ, n) and outputs a sequence of groups

−→
G = (G1, ..., Gn)

of prime order p, with canonical generators g1, ..., gn, and lets g = g1. Then, it
chooses random exponents b1,..., bn∈ Zp and sets (Bi,id∗i = gci , Bi,(1−id∗i) = gbi)
for i ∈ [1, n]. Furthermore, it sets a randomness extractor ext : Gn → {0, 1}l, and
sends (B1,0, B1,1), ..., (Bn,0, Bn,1), ext as well as the group sequence description
to A.

– Phase 1 & 2: B has to produce secret keys for any identities IDi 6= ID∗ requested
by A. In both phases the treatment is the same. We describe here the way B works
in order to create a key for IDi = (idi,1, ..., idi,n). Science IDi 6= ID∗, there
exists at least one bit idi,j 6= id∗j , where j ∈ [1, n]. B can calculate the secret key:

SKIDi = e(B1,idi , B2,idi , ..., Bj−1,idi , Bj+1,idi , ..., Bn,idi)
bj

8 H. Wang et al.

– Challenge: B constructs C∗ = gcn+1 , K∗0←{0, 1}λ, K∗1 = ext(T), and flips a
random coin b ∈ {0, 1}. Then, B sends (C∗,K∗b) to A.

– Guess: A outputs his guess b′ ∈ {0, 1} for b.

If b = 1 then A played the proper security game. On the other hand, if b = 0, all
information about the message K∗b is lost. Therefore the advantage of A is exactly 0.
As a result if A breaks the proper security game with a non negligible advantage, then
B has a non negligible advantage in breaking the n-MDDH assumption.

5 Construction in the GGH Framework

We show how to modify our IB-KEM construction to use the GGH [14] graded alge-
bras analogue of multilinear maps. Please note that we use the same notation developed
in [14]. For further details on the GGH framework, please refer to [14]. See also the
summary of [15] as included in Section 3.

Setup(1λ, n): The trusted setup algorithm is run by PKG, the master authority of the
ID-based system. It takes as input the security parameter as well the bit-length n of iden-
tities. It then runs (params, pzt)←InstGen(1λ, 1n). Recall that params will be implicitly
given as input to all GGH-related algorithms below.

Next, it chooses random encodings bi,β = samp() for i ∈ [1, n] and β ∈ {0, 1}.
Then it assigns Bi,β = enc(1, bi,β) for i ∈ [1, n] and β ∈ {0, 1}.

These will be used to compute a function H mapping n bit strings to level n encod-
ings. Let id1, ..., idn as the bits of ID. It is computed iteratively as

H1(ID) = B1,id1 , Hi(ID) = mult(Hi−1(ID), Bi,idi) for i ∈ [2, n]

It defines H(ID) = reRand(n,Hn(ID)).
The public parameters, PP, consist of the params, (B1,0,B1,1), ..., (Bn,0,Bn,1) and

extractor ext.
Note that params includes a level 1 encoding of 1, which we denote as g.
The master secret key MSK includes PP together with the values (b1,0, b1,1), ...,

(bn,0, bn,1).

KeyGen(MSK, ID ∈ {0, 1}n) : The private key for identity ID = (id1, ..., idn) is
SKID = enc(n− 1,

∏
i∈[1,n]bi,idi).

Encap(PP, ID = (id1, ..., idn)) : The encapsulation algorithm chooses random encod-
ings t = samp() and outputs

C = enc(1, t), K = ext(pzt,mult(H(ID), t)).

Decap(SKID, C) : The decapsulation algorithm computes that

K = ext(pzt,mult(SKID, C))

Correctness. Correctness follows from the same argument as for the IB-KEM in the
generic multilinear setting.

Identity-Based Key-Encapsulation Mechanism from Multilinear Maps 9

References

1. Adi Shamir: Identity-Based Cryptosystems and Signature Schemes. CRYPTO 1984: 47-53
2. Kamel Bentahar, Pooya Farshim, John Malone-Lee, Nigel P. Smart: Generic Constructions of

Identity-Based and Certificateless KEMs. J. Cryptology 21(2): 178-199 (2008)
3. Dan Boneh, Matthew K. Franklin: Identity-Based Encryption from the Weil Pairing. CRYPTO

2001: 213-229
4. Dan Boneh, Xavier Boyen: Efficient Selective-ID Secure Identity-Based Encryption Without

Random Oracles. EUROCRYPT 2004: 223-238
5. Dan Boneh, Xavier Boyen: Secure Identity Based Encryption Without Random Oracles.

CRYPTO 2004: 443-459
6. Brent Waters: Efficient Identity-Based Encryption Without Random Oracles. EUROCRYPT

2005: 114-127
7. Craig Gentry: Practical Identity-Based Encryption Without Random Oracles. EUROCRYPT

2006: 445-464
8. Clifford Cocks: An Identity Based Encryption Scheme Based on Quadratic Residues. IMA

Int. Conf. 2001: 360-363
9. Dan Boneh, Craig Gentry, Michael Hamburg: Space-Efficient Identity Based Encryption

Without Pairings. FOCS 2007: 647-657
10. Giovanni Di Crescenzo, Vishal Saraswat: Public Key Encryption with Searchable Keywords

Based on Jacobi Symbols. INDOCRYPT 2007: 282-296
11. Craig Gentry, Chris Peikert, Vinod Vaikuntanathan: Trapdoors for hard lattices and new cryp-

tographic constructions. STOC 2008: 197-206
12. Shweta Agrawal, Dan Boneh, Xavier Boyen: Efficient Lattice (H)IBE in the Standard Model.

EUROCRYPT 2010: 553-572
13. Dan Boneh, Alice Silverberg: Applications of Multilinear Forms to Cryptography. IACR

Cryptology ePrint Archive 2002: 80 (2002)
14. Sanjam Garg, Craig Gentry, Shai Halevi: Candidate Multilinear Maps from Ideal Lattices.

EUROCRYPT 2013: 1-17
15. Sanjam Garg, Craig Gentry, Shai Halevi, Amit Sahai, Brent Waters: Attribute-Based Encryp-

tion for Circuits from Multilinear Maps. CRYPTO (2) 2013: 479-499

