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Abstract. We consider the binary-LWE problem, which is the learn-
ing with errors problem when the entries of the secret vector are chosen
from {0, 1} or {−1, 0, 1} (and the error vector is sampled from a discrete
Gaussian distribution). Our main result is an improved lattice decod-
ing algorithm for binary-LWE which first translates the problem to the
inhomogeneous short integer solution (ISIS) problem, and then solves
the closest vector problem using a re-scaling of the lattice. We also dis-
cuss modulus switching as an approach to the problem. Our conclusion
is that binary-LWE is easier than general LWE. We give experimental
results and theoretical estimates that can be used to choose parameters
for binary-LWE to achieve certain security levels.
Keywords: lattice decoding attacks, learning with errors, closest vector
problem.

1 Introduction

The learning with errors problem is: Given an m × n matrix A and a vector
b ≡ As+e (mod q), where e ∈ Z

m
q is a “short” error vector, to compute s ∈ Z

n
q .

This is a computational problem of major current importance in cryptography.
Recently, Brakerski, Langlois, Peikert, Regev and Stehlé [8] and Micciancio and
Peikert [21] have considered variants of this problem where the secret vectors
are chosen uniformly from the set {0, 1}n (or {−1, 0, 1}n), rather than from Z

n
q .

These variants of the problem are called binary-LWE.
It is natural to expect that the binary-LWE problem is easier than the stan-

dard LWE problem, but it is an open question to determine how much easier.
Both papers [8, 21] give reductions that imply that binary-LWE is hard, but
those results require increasing the parameter n to approximately n log2(q)) =
O(n log2(n)) (it is usually the case that q is a low-degree polynomial in n). An
interesting problem is to determine whether these results are optimal. As an ex-
ample, taking n = 256 for standard LWE would lead to a parameter of at least
n log2(n) = 2048 for binary LWE, which seems excessive.

Our goal is to develop and analyse improved algorithms for the binary-LWE
problem. We first translate the problem to a related problem called the inhomo-
geneous short integer solution problem (ISIS). Our main tool is to rescale the



lattice so that the standard lattice methods to solve the closest vector problem
are more effective. We also consider other approaches to the problem, such as
modulus switching. We show that modulus switching is not a helpful tool in this
setting, which may be counter-intuitive. We also give theoretical and experimen-
tal analysis of the algorithm.

Experimental results with the new algorithm do confirm that the parameter
n needs to be increased when using binary-LWE. Returning to the example of
n = 256, our results suggest that a parameter around 440 may be sufficient to
achieve the same security level as standard LWE with parameter 256. This is
much smaller and therefore more practical than using parameter 2048.

Our approaches are all based on lattice decoding attacks. There is another
class of algorithms for LWE that are more combinatorial, originating with Blum,
Kalai and Wasserman [6, 1]. However, these algorithms require an extremely
large number of samples from the LWE distribution, which may not be realistic
in certain applications.

The paper is organised as follows. Sections 2 and 3 give precise definitions
for the LWE and binary-LWE problems. Section 4 recalls the current state-of-
the-art for lattice attacks on LWE. Section 5 describes modulus switching and
evaluates its performance. Section 6 contains our algorithm and its analysis,
specifically the description of the rescaling in Section 6.1 and the discussion of
why modulus switching is unhelpful in Section 6.3. Some experimental results,
that confirm our improvement over previous methods, are given in Section 7.

2 LWE

Let σ ∈ R>0. Define ρσ(x) = exp(−x2/(2σ2)) and ρσ(Z) = 1 + 2
∑∞

x=1 ρσ(x).
The discrete Gaussian distribution Dσ on Z with standard deviation σ is the
distribution that associates to x ∈ Z the probability ρσ(x)/ρσ(Z).

Fix parameters (n,m, q, σ). Typical choices of parameters are (n,m, q, σ) =
(256, 640, 4093, 32). Let A be a uniformly chosen m × n matrix with entries
in Zq. Let s and e be integer vectors of lengths n and m respectively whose
entries are sampled independently from the Gaussian distribution on Z with
standard deviation σ (this is the case of LWE with secrets chosen from the error
distribution, which is no loss of generality [3]). We call s the “secret vector” and
e the “error vector”. The LWE distribution is the distribution on (Zm×n

q ,Zm
q )

induced by pairs (A,b ≡ As+ e (mod q)) sampled as above. The search-LWE
problem is: Given (A,b) chosen from the LWE distribution, to compute the
pair (s, e). The search-LWE problem is well-defined if there is one pair (s, e)
satisfying b ≡ As+ e (mod q) that is significantly more likely (with respect to
the distributions on (s, e)) to have be chosen than any other solution.

The (m,n, q,B)-SIS problem is: Given an n × m integer matrix A′ (where
typically m is much bigger than n) and an integer q to find a vector y ∈ Z

m,
if it exists, such that A′y ≡ 0 (mod q) and y ∈ B. Here B is a set of vectors
that are “short” in some sense (e.g., B = {y ∈ Z

m : ‖y‖ ≤ B} for some bound
B, or B = {−1, 0, 1}m). One can also define an inhomogeneous version of the
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SIS problem (ISIS): Given A′ and v find y ∈ B, if it exists, such that A′y ≡ v

(mod q).
The LWE problem can be rephrased as inhomogenous-SIS: Given (A,b ≡

As+ e (mod q)) one can form the ISIS instance

(A|Im)

(

s

e

)

≡ b (mod q)

where Im is the m×m identity matrix. An alternative transformation of LWE to
ISIS is mentioned in Remark 1 of Section 4.3. Conversely, ISIS can be translated
to LWE, for details see Lemmas 9 and 10 of Micciancio and Mol [20]. However, it
is notable that the (I)SIS problem has often been considered in the case when the
solution vector y might lie in {0, 1}m or {−1, 0, 1}m and might not be uniquely
determined, whereas for LWE the focus has always been on vectors sampled
from discrete Gaussians and there being a unique most likely solution.

2.1 Size of the error vector

Let Dσ be the discrete Gaussian distribution on Z with standard deviation σ.
Let e be sampled from Dm

σ , which means that e = (e1, . . . , em) is formed by
taking m independent samples from Dσ. We need to know the distribution of
‖e‖. If the entries ei were chosen from a true Gaussian with standard deviation
σ then ‖e‖2 comes from the chi-squared distribution, and so has mean mσ2.
Since our case is rather close, we assume that ‖e‖2 is also close to a chi-squared
distribution, and we further assume that the expected value of ‖e‖ is close to√
mσ. Lyubashevsky (Lemma 4.4(3) of the full version of [18]) shows that

Pr
(

‖e‖ ≤ kσ
√
m
)

≥ 1−
(

ke
1−k

2

2

)m

for k > 0. This supports our assumption that ‖e‖ ≈ √
mσ. To achieve over-

whelming probability, we may use k ≈ 2. In practice, this bound is quite useful
for k ' 1. In practice, we can easily estimate the expected value of ‖e‖ for any
fixed parameters by sampling.

3 Binary LWE and related work

We now restrict the LWE problem so that the secret vector s is chosen to lie in
a much smaller set. Fix (n,m, q, σ). To be compatible with Regev’s results (e.g.,
see Theorem 1.1 of [24]), we usually take σ ≈ 2

√
n. Let A be a uniformly chosen

m× n matrix with entries in Zq. Let s ∈ Z
n have entries chosen independently

and uniformly from {0, 1}. Let e ∈ Z
m have entries sampled independently

from the discrete Gaussian distribution on Z with standard deviation σ. The
binary-LWE distribution is the distribution on (Zm×n

q ,Zm
q ) induced by pairs

(A,b = As + e (mod q)) sampled as above. The search-binary-LWE problem
is: Given (A,b) chosen from the binary-LWE distribution, to compute the pair
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(s, e). One can also consider a decisional problem, but in this paper we focus on
the search problem.

The binary-LWE problem (where secret vectors s are from {0, 1}n) has been
considered in work by Brakerski, Langlois, Peikert, Regev and Stehlé [8]. The
main focus of their paper is to prove hardness results for LWE in the classical
setting (i.e., without using quantum algorithms as in Regev’s original result).
They use modulus switching, which is a tool to transform an LWE instance
modulo q to an LWE instance modulo a different prime q′. Micciancio and Peik-
ert [21] have considered the binary-LWE problem where s ∈ {−1, 0, 1}n. Their
main result is a hardness result for the case where not only the secrets are small
but even the errors are small. Of course, due to the Arora-Ge attack [4] this is
only possible if one makes the (realistic) assumption that one has access to a
very restricted number of samples from the LWE distribution. This problem is
closely relevant to the ISIS problem, since the ISIS problem is always stated in
terms of a fixed number of samples.

It is worth noting that there is a standard reduction [3] from LWE to the
case of LWE where the secret is chosen from the error distribution. But there
is not a general reduction from LWE instances to ones whose error is chosen
from the secret’s distribution (apart from the naive case of n×n LWE instances
(A,b ≡ As + e (mod q)) giving (A′ ≡ A−1 (mod q),b′ ≡ A−1b ≡ A′e + s

(mod q)) ).
Both papers [8, 21] give reductions that imply that binary-LWE is hard, as-

suming certain other lattice problems are hard. Essentially, the papers relate
(n, q)-binary-LWE to (n/t, q)-LWE (where t = O(log(n)) = O(log(q))). In other
words, we can be confident that binary-LWE is hard as long as we increase the
parameter n by a factor of log(n). For example, taking n = 256 as a reasonably
hard case for standard LWE, we can be confident that binary-LWE is hard for
n = 256 log2(256) = 2048. Our feeling is that these reductions are too conserva-
tive, and that binary-LWE is harder than these results would suggest.

The main goal of our paper is to study the LWE problem where the secret
vector is binary, but the errors are still discrete Gaussians. We focus on the
case s ∈ {−1, 0, 1}n, but our methods are immediately applicable to the case
s ∈ {−B, . . . ,−1, 0, 1, . . . , B} for any B < σ.

It is clear that one can solve the binary-LWE problem in O(3n) operations (or
O(2n) when entries are in {0, 1}), by trying all choices for s and testing whether
b−As (mod q) is a short vector. There is also a meet-in-the-middle attack that
requires Õ(3n/2) (respectively, Õ(2n/2)) space and time. One can also convert to
ISIS and apply algorithms due to Howgrave-Graham and Joux [13] and Becker,
Coron and Joux [5]. All such attacks can be defeated by taking n ≥ 200 (the
storage requirement is a serious constraint).

4 Standard lattice attack on LWE

We recall the standard lattice decoding attack on LWE, and its analysis. Let
L = Λq(A

T ) = {v ∈ Z
m : v ≡ As (mod q), s ∈ Z

n}. This is a lattice of rank m.
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Typically the rank of A will be n, and so L has volume qm−n. Suppose one can
solve the closest vector problem (CVP) instance (L,b). Then one finds a vector
v ∈ L such that ‖b − v‖ is small. Writing e = b − v and v ≡ As (mod q) for
some s ∈ Z

n (it is easy to solve for s using linear algebra when m ≥ n), then

b ≡ As+ e (mod q).

Hence, if we can solve CVP then we have a chance to solve LWE.
The CVP instance can be solved using the embedding technique [14] (reduc-

ing CVP to SVP in a lattice of dimension one larger) or an enumeration algo-
rithm (there are several such algorithms, but Liu and Nguyen [16] argue that all
variants can be considered as cases of pruned enumeration algorithms). For the
complexity analysis here we use the embedding technique, so we recall this now.
Some discussions of enumeration algorithms will be given in Section 7.3.

Let L ⊆ Z
m be a lattice of rank m with (column) basis matrix B, and

suppose b ∈ Z
m is a target vector. We wish to find v = Bu ∈ L such that

e = v− b = Bu− b is a short vector. The idea is to consider the basis matrix,
where M ∈ N is chosen appropriately (e.g., M ≈ √

mσ),

B′ =

(

B b

0 M

)

. (1)

This is the basis for a lattice L′ of rank d = m+ 1 and volume M · vol(L). Note
that

B′
(

u

−1

)

=

(

Bu− b

−M

)

=

(

e

−M

)

.

Hence, the (column) lattice generated by B′ contains a short vector giving a
potential solution to our problem. One therefore applies an SVP algorithm (e.g.,
LLL or BKZ lattice basis reduction).

Lyubashevsky and Micciancio (Theorem 1 of [17]) argue that the best choice
for M above is ‖e‖, which is approximately

√
mσ in our case. However, in our

experiments M = 1 worked fine (and leads to a more powerful attack [2] in
practice).

4.1 Unique-SVP

Gama and Nguyen [11] have given a heuristic approach to estimate the capability
of lattice basis reduction algorithms. Consider a lattice basis reduction algorithm
that takes as input a basis for a lattice L of dimension d, and outputs a list of
vectors b1, . . . ,bd. Gama and Nguyen define the root Hermite factor of such an
algorithm to be δ ∈ R such that

‖b1‖ ≤ δdvol(L)1/d

for all d and almost all lattices L.
The standard LLL algorithm corresponds to δ = 1.021. The paper [11] argues

that δ = 1.01 is about the limit of practical algorithms (i.e., variants of BKZ
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using extreme pruning and large block size). Chen and Nguyen [10] extended
this analysis to algorithms with greater running time. Their heuristic argument
is that a Hermite factor corresponding to δ = 1.006 might be reachable with an
algorithm performing around 2110 operations.

In Section 3.3 of [11], Gama and Nguyen turn their attention to the unique-
SVP problem. One seeks a short vector in a lattice L when one knows that
there is a large gap γ = λ2(L)/λ1(L), where λi(L) denotes the i-th successive
minima of the lattice. The unique-SVP problem arises when solving CVP using
the embedding technique. The standard theoretical result is that if one is using
a lattice reduction algorithm with Hermite factor δ, then the algorithm outputs
the shortest vector if the lattice gap satisfies γ > δ2m. However, Gama and
Nguyen observe that practical algorithms will succeed as long as γ > cδm for
some small constant c (their paper gives c = 0.26 and c = 0.45 for different
families of lattices). Moreover, Luzzi, Stehlé and Ling [19] gave some theoretical
justification that the unique-SVP problem is easier to solve when the gap is
large.

4.2 Application to LWE

Consider running the embedding technique on an LWE instance, using the lattice
L′ given by the matrix B′ from equation (1). We have a good chance of getting
the right answer if the error vector e is very short compared with the second
shortest vector in the lattice L′, which we assume to be the shortest vector in
the original lattice L.

The Gaussian heuristic suggests that the shortest vector in a lattice L of rank
d has Euclidean norm about 1√

π
Γ (1 + d

2 )
1/dvol(L)1/d which is approximately

√

d
2πevol(L)

1/d. In lattice L (of rank m), this is
√

m
2πeq

(m−n)/m. Note also that

our lattices contain known vectors of Euclidean length equal to q. Hence, our
estimate of the Euclidean length of known short vectors is

λ2(L
′) ≈ λ1(L) ≈ min

{

q,

√

m

2πe
q

m−n

m

}

.

In contrast, the vector e has Euclidean length around
√
mσ on average (see

Section 2.1), and so the vector ( e

M ) has length approximately
√
2mσ when M =√

mσ. In our experiments we take M = 1 and so assume that λ1(L
′) ≈ √

mσ.
Hence the gap is

γ(m) =
λ2(L

′)

λ1(L′)
≈

min{q, 1√
π
Γ (1 + m

2 )
1/mq

m−n

m }
√
mσ

≈
min{q,

√

m
2πeq

m−n

m }√
mσ

. (2)

For a successful attack we want this gap to be large, so we will need

σ ≪ q
m−n

m <
q√
m
.
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To determine whether an LWE instance can be solved using the embedding
technique and a lattice reduction algorithm with a given (root) Hermite factor
δ, one can choose a suitable subdimension m and verify that the corresponding
gap satisfies the condition γ = γ(m) > cδm for a suitable value c. Since the
constant c is unknown, we can maximize min{q, q(m−n)/m}/δm for fixed n, q, δ
to get the “optimal” sub-dimension (which maximizes the success probability of
the algorithm) to be

m =

√

n log(q)

log(δ)
, (3)

where δ is the Hermite factor of the lattice basis reduction algorithm used.

Furthermore, we may assume c is upper bounded by 1 due to Gama and
Nguyen [11]. Hence, for fixed n, q, σ = 2

√
n, we can easily compute values (m, δ)

satisfying the constraint γ1/m ≥ δ and such that δ is maximal. These values
have lattice dimension m as in equation (3). By doing this we obtained Table 1
(for n ≥ 160 the length of the second shortest vector is taken to be q and this
leads to very large dimensions; enlarging q to around 13000 in the case n = 300
leads to m = 1258 and δ ≈ 1.002). The last row consists of the estimated time

log(TBKZ) =
1.8

log2(δ)
− 110 (4)

for running the BKZ lattice basis reduction algorithm, based on Lindner and
Peikert’s work [15]. Note that we do not know the value of the constant c for
our lattices, only the experimental results by Gama and Nguyen [11]. There is
no known sharp theoretical bound for it. Hence the running time in Table 1 may
not be the optimal embedding attack for the LWE problem with parameter n.

Table 1: Theoretical prediction of (optimal) root Hermite factor δ and running time
T of the standard embedding technique algorithm using BKZ for LWE instances with
q = 4093, σ = 2

√
n for the given values for n. The lattice dimension d = m + 1 is

calculated using equation (3) and the running time T is estimated using equation (4).

n 30 40 50 60 70 100 150 200 250 300

d 110 151 194 239 284 425 673 1144 1919 3962
δ ≈ 1.0208 1.0147 1.0111 1.0088 1.0072 1.0046 1.0028 1.0013 1.0006 1.0002

log(T ) ≈ 0 0 3 33 63 161 343 872 2100 7739

The running times and values for δ in Table 1 are worse than those reported
in some other papers on LWE. This is because we consider rather large values
σ = 2

√
n for the error distribution, instead of very small values like σ = 3. Since

LWE can always be reduced to the case where the secrets are chosen from the
error distribution, the question of the hardness of binary-LWE is most interesting
when the error distribution itself is not very small.
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4.3 How to solve ISIS

Recall the inhomogeneous-SIS (ISIS) problem: Given (A′,v) to find a short
vector y ∈ Z

m such that v ≡ A′y (mod q). It is standard that ISIS is also
attacked by reducing to CVP: One considers the lattice L′ = Λ⊥

q (A
′) = {y ∈

Z
m : A′y ≡ 0 (mod q)}, finds any vector (not necessarily short) w ∈ Z

m such
that A′w ≡ v (mod q), then solves CVP for (L′,w) to find some y close to w

and so returns w− y as the ISIS solution.
We sketch the details of solving LWE (in the case of short secrets) by reducing

to ISIS and then solving by CVP (more details are given in Section 6). Given
(A,b) we define A′ = (A|Im) to get an ISIS instance (A′,b). Choose any vector
w ∈ Z

n+m such that A′w ≡ b (mod q). Then the lattice L′ = Λ⊥
q (A

′) = {y ∈
Z
n+m : A′y ≡ 0 (mod q)} is seen to have rank m′ = n +m and (assuming the

rank of A′ is n) determinant qm = qm
′−n (the determinant condition can be

seen by considering the index of the subgroup qZn+m in the additive group L′).
The condition for success in the algorithm is σ ≪ qm/(n+m). Writing m′ = n+m
this is q(m

′−n)/m′

, which is the same as the LWE condition above.

Remark 1. We can also reduce LWE to ISIS using the approach of Micciancio

and Mol [20]. In particular, one can construct a matrix A⊥ ∈ Z
(m−n)×m
q such

that A⊥A ≡ 0 (mod q). The LWE problem (A,b) is therefore transformed into
the ISIS instance (A⊥,A⊥b ≡ A⊥e (mod q)). It follows that a solution to the
ISIS problem gives a value for e and hence solves the LWE problem. It is easy
to see that this approach is equivalent to the previous one in the case where
the secret vector s is chosen from the error distribution. However, since this
reduction eliminates the vector s, we are no longer able to take advantage of the
“smallness” of s compared with e, as we will do in the following sections. So we
do not consider this approach further.

4.4 Distinguishing attack

One can also study the decisional variant of the LWE problem: Given a pair
(A,b) to decide if it has been sampled uniformly at random from Z

m×n
q × Z

m
q ,

or from the LWE distribution. There is a standard distinguishing algorithm based
on finding short vectors in the lattice {v ∈ Z

m : vA ≡ 0 (mod q)}. The idea is
that if v is such a lattice point and if b ≡ As+e (mod q) then vb ≡ ve (mod q)
may be a small integer. Linder and Peikert [15] have argued that this approach is
generally less effective than the decoding attack on the computational variant of
LWE. We remark that one can define a decisional variant of binary-LWE (where
the LWE distribution is defined by choosing both s and e to be small), but the
above distinguishing attack no longer solves this problem as it only tests that e
is small. Hence, we do not consider the distinguishing attack in this paper.

5 Modulus switching

Modulus switching was first proposed by Brakerski and Vaikuntanathan [7], in
the context of homomorphic encryption. Write the LWE instance (A,b ≡ As+e
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(mod q)) as

b = As+ e+ qu

for some u ∈ Z
m. Now suppose q′ is another integer and define A′ = [ q

′

q A] and

b′ = [ q
′

q b], where the operation [ ] applied to a vector or matrix means rounding

each entry to the nearest integer. Write A′ = q′

q A+W and b′ = q′

q b+w where

W is an m × n matrix with entries in [−1/2, 1/2] and w is a length m vector
with entries in [−1/2, 1/2]. One can now verify that

b′ −A′s = q′

q b+w− ( q
′

q A+W)s

= q′

q (As+ e+ qu−As) +w−Ws

= q′

q e+w−Ws+ q′u.

One sees that (A′,b′) is an LWE instance modulo q′, with the same secret vector,
and that the “error vector” has length

‖ q′

q e+w−Ws‖ ≤ q′

q ‖e‖+ ‖w‖+ ‖Ws‖.

Note that the final term ‖Ws‖ has the potential to be small only when s has
small entries, as is the case for binary LWE. The term ‖w‖ is bounded by 1

2

√
m.

The term ‖Ws‖ is easily bounded, but it is more useful to determine its expected
value. Each entry of the vectorWs is a sum of n (or around n/2 in the case where
s ∈ {0, 1}n) rational numbers in the interval [−1/2, 1/2]. Assuming the entries of
W are uniformly distributed then the central limit theorem suggests that each
entry of Ws has absolute value roughly 1

4

√

n/2. Hence, it seems plausible to
think that ‖Ws‖ can be as small as 1

4

√
nm.

Modulus switching was originally proposed to control the growth of the noise
under homomorphic operations. The standard scenario is that if ‖e‖ becomes
too large then, by taking q′ much smaller than q, one can reduce the noise by

the factor q′

q while only adding a relatively small additional noise. However, the
idea is also interesting for cryptanalysis: One can perform a modulus switching
to make the error terms smaller and hence the scheme more easily attacked. We
will consider such an attack in the case of binary LWE in the next section.

We now give a back-of-the-envelope calculation that shows modulus switch-
ing can be a useful way to improve lattice attacks on LWE. Note that modulus

switching reduces the error vector by a factor of q′

q , as long as the other terms

(dominated by 1
4

√
nm) introduced into the noise are smaller than q′

q σ
√
m. How-

ever, note that the volume of the lattice is also reduced, since it goes from

q(m−n)/m to q′(m−n)/m. Let us write ǫ for the reduction factor q′

q . All other pa-

rameters remaining the same, the lattice gap γ = λ2/λ1 ≈ q(m−n)/m/(σ
√
2πe)

changes to

γ′ ≈ (ǫq)(m−n)/m/(ǫσ
√
2πe) = (ǫ1−n/m/ǫ)γ = ǫ−n/mγ. (5)
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Now, 0 < ǫ < 1 and so this is a positive improvement to the lattice gap (and
hence the Hermite factor).

For LWE we usually have errors chosen from a discrete Gaussian with stan-
dard deviation at most 2

√
n, and so ‖e‖ is typically O(

√
mn). As discussed

above, the additional noise introduced by performing modulus reduction (from
the Ws term) will typically be around 1

4

√
nm. Hence, it seems the best we can

hope for is q′/q ≈ 1
8 giving an error vector of norm reduced by a factor of ap-

proximately 1
4 (from 2

√
mn to

√
mn/2). This does give a modest improvement

to the performance of lattice decoding algorithms for LWE.

6 New attacks on binary-LWE

We now present our original work. We want to exploit the fact that s is small. The
standard lattice attack on LWE (reducing to CVP) cannot use this information.
However, going via ISIS seems more appropriate.

6.1 Reducing binary-LWE to ISIS and then rescaling

Let (A,b) be the (n,m, q, σ)-LWE instance. We may discard rows to reduce the
value for m. We write m′ = n+m. Write A′ = (A|Im), being an m×m′ matrix,
and consider the ISIS instance

b ≡ A′( s
e
) (mod q)

where the target short vector is ( s
e
).

The next step is to reduce this ISIS instance to CVP in a lattice. So define
the vector w = (0,bT )T . Clearly A′w ≡ b (mod q). We now construct a basis
matrix B for the lattice L′ = {v ∈ Z

m′

: A′v ≡ 0 (mod q)}. This can be done
as follows: The columns of the (n+m)× (m+ 2n) matrix

M =





In
qIn+m

−A





span the space of all vectors v such that A′v ≡ 0 (mod q). Computing the
column Hermite normal form of M gives an m′ ×m′ matrix B whose columns
generate the lattice L′.

One can confirm that det(B) = qm = qm
′−n. As before, we seek a vector

v ∈ Z
m′

such that Bv ≡ 0 (mod q) and v ≈ w. We hope that w− v = ( s
e
) and

so v = ( s∗ ), where ∗ is actually going to be b− e. Our main observation is that
‖s‖ ≪ ‖e‖ and so the CVP algorithm is trying to find an unbalanced solution.
It makes sense to try to rebalance things.

Our proposal is to multiply the first n rows ofB by σ (or some other appropri-
ate scaling factor). This increases the volume of the lattice, without significantly
increasing the norm of the error vector in the CVP instance. As a result, the
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Hermite factor of the problem is increased and hence the range of the lattice
attack for a given security level is increased.

A further trick, when s ∈ {0, 1}n, is to rebalance s so that it is symmetric
around zero. In this case we rescale by multiplying the first n rows of B by 2σ
and then subtract (σ, . . . , σ, 0, . . . , 0)T from w. Now the difference w − v is of
the form

(±σ, . . . ,±σ, e1, . . . , em)T

which is more balanced.

6.2 Gap in the Unique-SVP

The determinant has been increased by a factor of σn (or (2σ)n in the {0, 1}
case). So the gap in the re-scaled lattice is expected to be larger compared
to the original lattice. In the embedded lattice formed by the standard attack,
λ1(L

′) ≈ √
m·σ and λ2(L

′) ≈ q(m−n)/m
√

m
2πe wherem is the subdimension being

used. In the embedded lattice formed by the new attack, λ1(L
′) ≈

√
m+ n · σ

and λ2(L
′) ≈ (qmσn)1/(m+n)

√

m+n
2πe where m is the number of LWE samples

being used. Hence the new lattice gap is γ = λ2(L
′)/λ1(L

′) and so we will need
to use lattice reduction algorithms with Hermite factor δ ≤ γ1/(m+n).

Lemma 1. Let q, n, σ and δ be fixed. Let m′ ≈ m + n be the dimension of the

embedded lattice in the new attack. For a given Hermite factor δ, the optimal

value for m′ is approximately
√

n(log q − log σ)

log δ
. (6)

Proof. The goal is to choose m′ (and hence m) to minimize the function f(m′) =
q(m

′−n)/m′

σn/m′

δ−m′

. It suffices to find a minimum for the function F (x) =
log(f(x)) = ((x − n)/x) log(q) + (n/x) log(σ) − x log(δ). Differentiating gives
n(log(q)− log(σ)) = x2 log(δ) and the result follows.

Table 2: Theoretical prediction of (optimal) root Hermite factor δ and running time T of
embedding technique for rescaled binary-LWE instances s ∈ {−1, 0, 1}n with q = 4093,
σ = 2

√
n for the given values for n. The lattice dimension d′ (≈ m′) is calculated using

equation (6) and the running time T is estimated using equation (4).

n 30 40 50 60 70 100 150 200 250 300

d′ 78 105 132 160 187 271 414 558 799 1144
δ 1.0296 1.0212 1.0164 1.0132 1.0111 1.0073 1.0045 1.0032 1.0019 1.0011

log(T ) 0 0 0 0 3 63 169 280 545 1031

Given n, q and σ, we use Lemma 1 to obtain Table 2 of optimal subdimensions
m′ and values for δ. Comparing this table with Table 1 one sees that the lattice
dimensions m′ and the Hermite factors δ are all much improved.

11
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Fig. 1: Theoretical prediction of the largest binary-LWE parameter n that can be solved
using an algorithm with the given root Hermite factor.

By fixing a lattice reduction algorithm that has the ability to produce some
fixed Hermite factor δ, we can compare the maximum n that this algorithm can
attack, based on the standard attack or our new attack. Figure 1 indicates that,
for instance, the binary LWE with secret in {−1, 0, 1} and n ≈ 100 provides
approximately the same security as the regular LWE with n ≈ 70.

6.3 Using modulus switching

It is natural to consider applying modulus switching before performing the im-
proved lattice attack. We now explain that this is not a good idea in general.

As discussed in Section 5, the best we can try to do is to have q′/q ≈ 1/8
and the error vector is reduced in size from elements of standard deviation σ to
elements of standard deviation approximately σ/4.

Consider the desired Hermite factor δ = γ1/m′

to attack a lattice with gap

γ = (σn/m′

q(m
′−n)/m′

/(σ
√
2πe))1/m

′

as in our improved lattice attack using rescaling. Applying this attack to the
lattice after modulus switching gives Hermite factor

(

( 14σ)
n/m′

( 18q)
(m′−n)/m′

/( 14σ
√
2πe)

)1/m′

= δ

(

1

2(m′−n)/m′

)1/m′

(7)

which is strictly smaller than δ. Hence, the instance after modulus switching
is harder than the instance before modulus switching. Intuitively, the problem
is this: Modulus switching reduces the size of q and also the size of the error.
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But it reduces q by a larger factor than it reduces the size of the error (due to
the additional error arising from the modulus switching process). When we do
the rescaling, we are also rescaling by a smaller factor relative to q. Hence, the
crucial lattice gap property is weakened by modulus switching.

6.4 Combining the lattice attack with exhaustive search

A natural extension is to first guess k bits of the secret s and then apply the
lattice attack to the remaining problem. Since this reduces n it also reduces the
optimal choice for m, leading to a simpler problem.

For example, attacking an instance with n = 100 one could repeat the attack
225 times, trying all possibilities for the first 25 entries of s, where the lattice
attack is now applied to binary-LWE instances having n = 75, which seems quite
practical compared with the 264 time for n = 100 predicted in Table 2. We do
not consider this further in the paper.

7 Experiments

Our theoretical analysis (Figure 1) indicates that our new algorithm is superior
to previous methods when solving CVP using the embedding technique. In this
section we give experimental evidence that confirms these theoretical predictions.
However, the state-of-the-art for solving CVP is not to use the embedding tech-
nique, but to use enumeration methods with suitable pruning strategies. Hence,
in this section we also report some predictions based on experiments of using
enumeration algorithms to solve binary-LWE using the standard method and our
new method. For full details on enumeration algorithms in lattices see [10–12].

The binary LWE problem considered in this section has secret vectors s ∈
{−1, 0, 1}n (i.e., it follows Micciancio and Peikert’s definition [21]). Thus our
results are more conservative compared to the case where s ∈ {0, 1}n. In the
experiments, we fix parameters q = 4093 and vary n ∈ [30, 80]. We use σ = 2

√
n.

7.1 Embedding

We first consider the embedding technique with M = 1 to solve the CVP prob-
lems (we used fplll [9] on a 2.4G desktop). In Tables 1 and 2, we have deter-
mined the optimal (root) Hermite factor and subdimension that maximize the
success probability using the embedding technique. However, when (the Her-
mite factor of) a lattice reduction algorithm is fixed (call it δ), the optimal
subdimension m is the one that minimizes the running time while satisfying the
lattice gap argument: γ(m) > cδm for some constant c (where γ(m) is defined
in equation (2)).

For a successful attack we want the lattice gap γ(m) to be larger than δm

which is to assume c is upper bounded by 1. As long as this condition is satisfied,
we can reduce m in order to minimize the running time.
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In the meantime, we want to maintain a certain success probability. In the
LWE problem, the norm of the error vector is unknown to the attacker, so we
guess that its value is equal to the average norm of 104 randomly sampled vectors
from the error distribution. We choose a bound for the norm of the error vector
so that the expected success probability is ≥ 1/2. In this way, we can decide an
optimal m. Also in our experiments, we restrict to m ≥ n. On the other hand,
if γ(m) < δm for all m, we set m ≈

√

n log q/ log δ which maximizes γ(m)/δm

for given δ. Of course, the reduction algorithm is likely to fail in such cases.

Table 3: Results of the embedding technique using BKZ for binary-LWE using the
standard approach and the new lattice rescaling (with and without modulus switching).
The columns mi are the number of LWE samples used for the experiments (the value
in parenthesis is the theoretical value for mi from equation (3) or equation (6) as
appropriate). The lattice dimensions are d1 = m1 + 1, d2 = m2 + n + 1 and d3 =
m3 + n + 1. The lattice gap γi is estimated as in equation (2) and the corresponding

Hermite factor is δi = γ
1/di
i . Column Succ is the success probability observed from 10

trials (where − denotes no success at all).

Standard embedding attack New attack
New attack with modulus
switching

n m1 γ
1/d1
1

Succ Time m2 γ
1/d2
2

Succ Time m3 γ
1/d3
3

Succ Time

30 68 (151) 1.013 1.0 0.83s 30 (97) 1.027 1.0 0.32s 53(90) 1.023 1.0 3.76s

40 105 (174) 1.012 1.0 6.70s 40 (105) 1.019 1.0 1.30s 67(96) 1.018 1.0 6.29s

50 195 (195) 1.011 0.5 61.71s 50 (111) 1.015 1.0 3.61s 84(101) 1.014 1.0 10.58s

60 214 (214) 1.009 − 90.20s 115 (115) 1.013 1.0 27.83s 104(104) 1.011 0.4 17.17s

70 231 (231) 1.007 − 127.82s 117 (117) 1.011 0.5 42.41s 105(105) 1.010 − 29.11s

80 247 (247) 1.005 − 189.25s 119 (119) 1.009 − 56.54s 106(106) 1.009 − 43.88s

In Table 3, we use BKZ-60 with pruned enumeration [11]. To decide the
optimal subdimension as described above, we assume the Hermite factor δ '
1.011. This is verified experimentally in Table 3 and in [11]. Note that using a
smaller dimension than the “optimum” may be slightly faster. In the standard
attack, the optimal subdimension is m1 and the lattice dimension is d1 = m1+1.
In the new attack, the re-scaled lattice has dimension d2 = m2 + n + 1. We
record the average running time for ten instances. The values for γi = λ2/λ1 are
computed by assuming λ1 is the length of the error vector and that λ2 is given
by the Gaussian heuristic. The success probability reflects the fact that we are
using BKZ for the embedding technique, and so for larger n the shortest vector
in the reduced basis is not the desired target vector. To get a higher success
probability one uses enumeration, as discussed in Section 7.3.

7.2 Modulus switching

We also experimented with modulus switching for the new algorithm. We confirm
our theoretical analysis that the performance is worse. As mentioned in Section 5,
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the best choice for modulus switching is to use q′ such that q′/q ≈ 1/8. The
third block in Table 3 records the running time and success probability of the
new attack based on modulus switching. Note that we use q′ = 512. The table
shows that the success probability is worse than the new attack without modulus
switching.

7.3 Enumeration

When solving CVP for practical parameters the state of the art method [15, 16]
is to use BKZ pre-processing of the lattice basis followed by pruned enumeration.
This is organised so that the time spent on pre-processing and enumeration is
roughly equal. We consider these algorithms here. Note that one can expect a
similar speedup from our lattice rescaling for the binary-LWE problem, since the
volume of the lattice is increased, which creates an easier CVP instance.

We give predictions of the running time for larger parameters using Chen,
Liu and Nguyen’s methods [10, 16]: we first preprocess the CVP basis by BKZ-β
for some large β and then enumerate on the reduced basis.

Write δ(β) for the Hermite factor achieved by BKZ with blocks of size β.
Given a target δ(β) and dimension m, Chen and Nguyen [10] described an algo-
rithm to estimate the BKZ time. It is observed that a small number of calls to the
enumeration routine (for each block reduction in the BKZ-β) is often sufficient to
achieve the targeted δ. It boils down to estimating the enumeration time (either
for the local basis within BKZ or the full enumeration later), which depends on
the number of nodes visited in the enumeration. We use the approach of [10, 16]
to estimate the enumeration time, which assumes the Gaussian heuristic and the
Geometric Series Assumption (GSA) [25]. Following this approach, and under
those assumptions, we estimate the running time for solving binary-LWE with
n = 128, q = 4093 in Table 4.

Table 4: Predictions of the running time for solving binary-LWE with (n, q, σ) =
(128, 4093, 22.6) using BKZ lattice reduction followed by pruned enumeration. Columns
di are the lattice dimensions. The BKZ reduction (preprocessing) achieves the targeted
Hermite factor δi. Column TRed is an estimate of the BKZ reduction time (in seconds).
Column #E denotes the estimated number of nodes in the enumeration. Column T

denotes the estimated total running-time in seconds.

Standard attack New attack

δ1 d1 log(TRed) log(#E) log(T ) δ2 d2 log(TRed) log(#E) log(T )

1.008 366 42.94 197.96 175 1.009 273 29.35 57.22 34
1.007 391 59.13 152.99 130 1.0085 280 34.27 48.07 35
1.0065 405 76.82 129.54 107 1.008 289 42.61 39.19 43
1.006 422 93.04 105.71 94 1.007 309 58.74 23.09 59
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8 Conclusion

We have described a lattice rescaling approach to the binary-LWE problem, and
we have given theoretical and experimental results that confirm its superiority
to the standard approach. These results are most interesting when the standard
deviation of the error distribution is large.

Figure 2 plots (the comparison of) the running time of our attack (using the
embedding technique) for binary LWE and standard LWE. This graph should
only be interpreted as a very rough approximation to the truth, but it allows us
to compare the relative security. The papers [8, 21] have shown that to match the
hardness of standard LWE for parameter n one can use binary-LWE with param-
eter n log(n). Figure 2 suggests that this is overkill and that even n log(log(n))
may be more than sufficient. However, it seems to be not sufficient to take pa-
rameter cn where c is a constant.
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0 1000 2000 3000 4000 5000
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log
2
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Fig. 2: Plot of predicted running time with respect to LWE parameter n for embedding
attack on standard LWE and binary LWE.
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