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Abstract

We continue the line of work initiated by Katz (Eurocrypt 2007) on using tamper-proof
hardware tokens for universally composable secure computation. As our main result, we show
an oblivious-transfer (OT) protocol in which two parties each create and exchange a single,
stateless token and can then run an unbounded number of OTs. We also show a more efficient
protocol, based only on standard symmetric-key primitives (block ciphers and collision-resistant
hash functions), that can be used if a bounded number of OTs suffice.

Motivated by this result, we investigate the number of stateless tokens needed for universally
composable OT. We prove that our protocol is optimal in this regard for constructions making
black-box use of the tokens (in a sense we define). We also show that nonblack-box techniques
can be used to obtain a construction using only a single stateless token.
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1 Introduction

The universal composability (UC) framework [7] provides a way of analyzing protocols while en-
suring strong security guarantees. In particular, protocols proven secure in this framework remain
secure when run concurrently with arbitrary other protocols in a larger networked environment.
Unfortunately, most interesting cryptographic tasks are impossible to realize in the “plain” UC
framework when an honest majority cannot be assumed and, in particular, in the setting of two-
party computation [9, 10, 44]. This negative result has motivated researchers to explore various
extensions/variants of the plain UC framework in which secure computation can be achieved [8],
with notable examples being the assumption of a common reference string (CRS) [7, 9, 11] or a
public-key infrastructure [7, 4]. In the real world, implementing either of these approaches seems
to require the existence of some trusted entity that parties agree to use (though see [12] for some
ideas on using a naturally occurring high-entropy source in place of a CRS).

Katz [39] suggested using tamper-proof hardware tokens for UC computation. In this model,
it is assumed that parties can construct hardware tokens to compute functions of their choice; an
adversary given an honestly created token TF for a function F can do no more than observe the
input/output behavior of this token. The motivation for this model is that the existence of tamper-
proof hardware can be viewed, in principle, as a physical assumption rather than an assumption of
trust in some external entity. (In particular, parties can create the tamper-proof tokens themselves
rather than obtain them from a trusted provider as in [34], and there is no assumption regarding
what code a malicious party puts in a token it creates.) Secure hardware may also potentially
result in more efficient protocols; indeed, it has been suggested for improving efficiency in other
settings (e.g., [18, 14, 15, 6, 31, 38, 42, 23]). In addition to introducing the model, Katz showed
that tamper-proof hardware tokens can be used for universally composable computation of arbitrary
functions under additional cryptographic assumptions. His work motivated an extensive amount
of follow-up work [13, 47, 26, 16, 28, 29, 20] that we discuss in detail later.

We show here two efficient protocols based on tamper-proof hardware tokens, and secure against
a static, malicious adversary, for universally composable 1-out-of-2 string oblivious transfer (OT).
Our protocols achieve the following:

• Our protocols are based on stateless tokens, which seem easier/cheaper to create in practice
and are (inherently) resistant to resetting attacks. Security holds even if maliciously generated
tokens are stateful.

• Our protocols require the parties to exchange a single pair of tokens. This can be done in
advance, before the parties’ inputs are known. The number of tokens is optimal; see below.

• Our protocols are black-box and run in constant rounds.

• In our first protocol, the tokens can be used to implement an unbounded number of OTs, rather
than requiring the parties to exchange a fresh pair of tokens for every oblivious transfer they
wish to compute. Thus, by relying on known completeness results [41, 37], the parties can
use the same tokens to perform an unlimited number of secure computations (of possibly
different functions, and on different inputs).

• Our second protocol can be based on standard symmetric-key primitives (namely, block ci-
phers and collision-resistant hash functions) and does not use public-key techniques. However,

2



it requires the parties to fix some upper bound on the number of OTs to be realized from a
single pair of exchanged tokens.

Inspired by the above, we investigate the minimal number of stateless tokens needed for universally
composable OT/secure computation. We show that two tokens—one created by each party—are
needed even to obtain a single universally composable OT as long as only “black-box techniques”
are used. (We explain what we mean by “black-box techniques” in the relevant section of our
paper.) Our protocols are thus optimal in this regard. Note that a single stateful token suffices for
universally composable OT [20]; our result thus demonstrates a separation between stateful and
stateless tokens.

Since protocols based on nonblack-box techniques tend to be impractical, our work pins down
the minimal number of stateless tokens needed as far as practical protocols are concerned. From
a theoretical point of view, however, it is still interesting to completely resolve the question. In
this vein, we show a protocol for carrying out an unbounded number of secure computations (and
hence OTs) using only a single stateless token. Our construction uses a variant of the nonblack-box
simulation technique introduced by Barak [3].

1.1 Prior Work

Katz’s original protocol for secure computation using tamper-proof tokens [39] required stateful
tokens and relied on number-theoretic assumptions (specifically, the DDH assumption). Subsequent
work has mainly focused on improving one or both of these aspects of his work.

Several researchers have explored constructions using stateless tokens. Stateless tokens are pre-
sumably easier and/or cheaper to build, and are resistant to resetting attacks whereby an adversary
cuts off the power supply and thus effectively “rewinds” the token. Chandran et al. [13] were the
first to eliminate the requirement of stateful tokens. They construct UC commitments assuming
one-way functions, and oblivious transfer based on any enhanced trapdoor permutation (eTDP).
They also introduce a stronger security model in which an adversary need not know the code of the
tokens it produces, thus capturing scenarios where an adversary may pass along tokens whose code
it does not know, e.g., via token replication. (We do not consider this model here.) From a practical
perspective, however, their work has several drawbacks. Their OT protocol makes nonblack-box use
of the underlying primitives, runs in Θ(λ) rounds (where λ is the security parameter), and uses the
heavy machinery of concurrent non-malleable zero-knowledge proofs. Improving upon their work,
Goyal et al. [29] show a black-box construction of oblivious transfer based on stateless tokens.
However, their protocol requires the parties to exchange Θ(λ) tokens for every oblivious transfer
the parties wish to execute. Moreover, a flaw in their protocol has recently been identified [32].

A second direction has explored the possibility of eliminating computational assumptions al-
together. This line of work was initiated by Moran and Segev [47], who showed how to realize
statistically secure UC commitments using a single stateful token. (We remark that statistically
secure UC commitments do not imply UC oblivious transfer [45].) Their construction can be used
for any bounded number of commitments using only one token, and the authors note that they can
achieve an unbounded number of commitments (with computational security) based on one-way
functions. Goyal et al. [29] show an unconditional construction of oblivious transfer (and hence
general secure computation) using Θ(λ) stateful tokens. Döttling et al. [20] show how to construct
unconditionally secure OT using only a single stateful token. Goyal et al. [28] showed that uncon-
ditional security from stateless tokens is impossible unless the token model is extended to allow
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Here Here [13] [32]
Tokens: 2 2 2 Θ(λ)
Rounds: Θ(1) Θ(1) Θ(λ) Θ(1)
Assumption: CRHF, VRF CRHF eTDP OWF
Black box? Yes Yes No Yes
# OTs: unbounded bounded unbounded unbounded

Table 1: Universally composable OT based on stateless tamper-proof hardware tokens. The security
parameter is denoted by λ. Reference [32] is subsequent work.

tokens to encapsulate each other (something we do not consider here). In that case, they show how
to realize statistically secure OT in constant rounds using Θ(λ) stateless tokens.

Kolesnikov [42] showed an efficient construction of oblivious transfer from stateless tokens.
However, that work does not give universally composable OT, and achieves only covert security [2]
rather than security against malicious parties. Dubovitskaya et al. [22] constructed an OT protocol
from two stateful tokens. Each pair of tokens, however, can be used for only a single OT.

Our work in relation to prior work. We show two efficient protocols for universally composable
OT based on tamper-proof hardware tokens. Both our protocols use two stateless tokens (one gen-
erated by each party), and run in constant rounds. Our first protocol can be used for an unbounded
number of OTs based on a single pair of exchanged tokens; this protocol assumes collision-resistant
hash functions (CRHFs) and the existence of unique signatures [27] or, equivalently, verifiable ran-
dom functions (VRFs) [46]. Our second protocol requires a known upper bound on the number of
OTs to be carried out, but can be based on CRHFs alone. (OT extension [36] can be used to extend
these to an unbounded number of OTs, however this appears to require additional assumptions.)
A comparison of our protocols to other relevant work is given in Table 1.

In addition to the above, we show two other results: there is no “black-box” construction of
universally composable OT using fewer than two stateless tokens, but universally composable coin
tossing (and hence OT) can be based on a single stateless token using nonblack-box techniques.

Concurrent and subsequent work. Concurrently and independently, Döttling et al. [21] show
a different nonblack-box construction of UC coin-tossing from a single stateless token, and argue
(without proof) that nonblack-box techniques are needed. Here, we provide a rigorous version
of their argument. Our efficient, black-box OT protocols using two stateless tokens—which we
consider our primary contribution—have no counterpart in their work.

Subsequent to our work, Hazay et al. [32] show a constant-round protocol for UC computation of
any functionality using stateless tokens, assuming only one-way functions. However, their protocol
requires Θ(λ) tokens.

Open questions. The main open question left by our work is whether there is a black-box
construction of a constant-round protocol for an unbounded number of universally composable OTs
assuming symmetric-key primitives (e.g., one-way functions and CRHFs) only.

2 Background and Cryptographic Primitives

We let λ denote the security parameter, and let ppt stand for “probabilistic polynomial-time.”
We use standard notions of security [40] for pseudorandom functions (denoted by PRF), collision-
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resistant hash functions, canonical message authentication codes (denoted by Mac), and digital
signature schemes (denoted by (Gen, Sign,Vrfy)), though adapted for non-uniform polynomial-time
adversaries. A signature scheme is called unique if for every possible public key vk and every
message m, there is at most one signature σ such that Vrfyvk(m,σ) = 1. Various constructions of
such schemes based on number-theoretic assumptions are known [46, 19, 1, 35, 33].

Let Un denote the uniform distribution on n-bit strings. An efficiently computable function
Ext : {0, 1}n × {0, 1}d → {0, 1}ℓ is a strong (k, ϵ)-extractor if for every source X with min-entropy
at least k, the statistical distance between (Ud,Ext(X,Ud)) and (Ud, Uℓ) is at most ϵ.

A commitment scheme (Com,Open) is a two-phase protocol executed by a sender and a receiver.
In the commitment phase, which we assume is non-interactive, the sender holds an input z and
random coins r; it generates a commitment com. In the opening phase, the sender sends z and r to
the receiver, who verifies correctness by checking if Open(com, z, r) = 1. A scheme is statistically
binding if it is binding for an all-powerful sender and hiding for a computationally bounded receiver,
and statistically hiding if it is hiding for an all-powerful receiver and binding for a computationally
bounded sender; we refer to [24] for the standard definitions. Statistically binding commitments
can be constructed from any one-way function [48], while statistically hiding commitments can be
based on collision-resistant hash functions [30, 17]. (In both these cases, the commitment phase
requires two rounds; however, the first round can be done “once and for all” during pre-processing,
after which any number of subsequent commitments can be done non-interactively.)

2.1 Linear Algebra

We briefly review some linear-algebraic facts used in our analysis. Let F2 denote the finite field with
two elements. By default, all vectors are column vectors. If a ∈ Fλ

2 then aT denotes the transpose
of a, which is a row vector.

Let C ∈ Fn×m
2 be a matrix of rank r. Then ker(C) = {x | Cx = 0} has dimension m − r. For

any such C, there is a matrix G ∈ F(m−r)×m
2 such that Gx = 0 if and only if x ̸∈ ker(C). We call

any such matrix G a complementary matrix of C, and let Comp(C) denote some canonical way of
computing G from C. Let C ∈ Fn×m

2 have rank r = n and let G be a complementary matrix of C.
If v ∈ Fm

2 is uniform, then Cv ∈ Fn
2 and Gv ∈ Fm−n

2 are uniform and independent.

2.2 Ideal Functionalities

Token functionality. We model a tamper-proof hardware token as an ideal functionality in the
UC framework, following Katz [39]; see Figure 1. Our ideal functionality models stateful tokens;
although all our protocols use stateless tokens, an adversarially generated token may be stateful.

Oblivious-transfer functionalities. The OT functionality is standard, but we wish here to
model a multi-session variant where the sender and receiver repeatedly (in sequential sub-sessions)
execute any agreed-upon number m of parallel OTs (in a given sub-session). We refer to this
functionality as Funbounded-OT; see Figure 2. As highlighted in [29], the sender is notified when the
receiver obtains output.

We define the bounded OT functionality in Figure 3 similarly except that the sender and receiver
only execute a single session of m parallel OTs. Using OT pre-processing, this allows the sender
and receiver to execute m sequential OTs with adaptively chosen inputs.
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Functionality Fwrap

The functionality is parameterized by a polynomial p(·) and an implicit security parameter λ.

Create: Upon receiving an input (create, ⟨sid,C,U⟩,M) from a party C (i.e., the token creator),
where U is another party (i.e., the token user) and M is an interactive Turing machine, do:

If there is no tuple of the form ⟨C,U, ⋆, ⋆, ⋆⟩ stored, store ⟨C,U,M, 0, ∅⟩. Send
(create, ⟨sid,C,U⟩) to the adversary.

Deliver: Upon receiving (ready, ⟨sid,C,U⟩) from the adversary, send (ready, ⟨sid,C,U⟩) to U.

Execute: Upon receiving an input (run, ⟨sid,C,U⟩,msg) from U, find the unique stored tuple
⟨C,U,M, i, state⟩. If no such tuple exists, do nothing. Otherwise, do:

If M has never been used yet, i.e., i = 0, then choose uniform ω ∈ {0, 1}p(λ) and
set state := ω. Run (out, state′) :=M(msg; state) for at most p(λ) steps where out is
the response and state′ is the new state of M (set out :=⊥ and state′ := state if M
does not respond in the allotted time). Send (response, ⟨sid,C,U⟩, out) to U. Erase
⟨C,U,M, i, state⟩ and store ⟨C,U,M, i+ 1, state′⟩.

Figure 1: The ideal functionality Fwrap for stateful tokens.

Functionality Funbounded-OT

Funbounded-OT interacts with sender S, receiver R, and the adversary, and is parameterized by a
security parameter λ and integer m. It also maintains a variable curr-id initialized to ⊥.
Upon receiving (send, ⟨sid,S,R⟩, ssid, {(x0i , x1i )}mi=1) from S, with x0i , x

1
i ∈ {0, 1}λ, if curr-id ̸= ⊥

then ignore it. Otherwise, set curr-id := ssid, record ⟨ssid, {(x0i , x1i )}mi=1⟩, and send
(send, ⟨sid, S,R⟩, ssid) to the adversary.

Upon receiving (receive, ⟨sid, S,R⟩, ssid, {bi}mi=1) from R, with bi ∈ {0, 1}, if curr-id ̸= ⊥ then
ignore it. Otherwise, set curr-id := ssid, record ⟨ssid, {bi}mi=1⟩, and send (receive, ⟨sid, S,R⟩, ssid)
to the adversary.

Once ⟨ssid, {(x0i , x1i )}mi=1⟩ and ⟨ssid, {bi}mi=1⟩ are recorded for ssid = curr-id, send {xbii }mi=1 to R and
(received, ⟨sid, S,R⟩, ssid) to S, and set curr-id := ⊥.

Figure 2: The Funbounded-OT functionality.

3 Oblivious Transfer Using Two Stateless Tokens

We begin in Section 3.1 by describing the intuition behind our protocols. In Section 3.2 we describe
a protocol that allows the parties to execute an unbounded number of OTs based on the exchange of
a single pair of tokens. We prove security of this protocol in Section 3.3 based on the assumptions of
collision-resistant hash functions and unique signatures. In Section 3.4 we show how that protocol
can be modified so it can be based on collision-resistant hash functions alone, at the expense of
requiring the parties to fix a bound in advance on the number of OTs they can execute.
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Functionality Fbounded-OT

Fbounded-OT interacts with sender S, receiver R, and the adversary, and is parameterized by a
security parameter λ and integer m.

Upon receiving (send, ⟨sid,S,R⟩, {(x0i , x1i )}mi=1) from S with x0i , x
1
i ∈ {0, 1}λ, record {(x0i , x1i )}mi=1,

and send (send, ⟨sid, S,R⟩) to the adversary. Ignore further (send, ⟨sid, S,R⟩, . . .) messages.

Upon receiving (receive, ⟨sid, S,R⟩, {bi}mi=1), record {bi}mi=1 and send (receive, ⟨sid, S,R⟩) to the
adversary. Ignore further (receive, ⟨sid, S,R⟩, . . .) messages.

Once (send, . . .) and (receive, . . .) messages have been received, send {xbii }mi=1 to R and
(received, ⟨sid, S,R⟩) to S.

Figure 3: The Fbounded-OT functionality.

3.1 Intuition and Background

Our starting point is the unconditionally secure OT protocol from [20], which uses a single stateful
token. We sketch a simplified version of their protocol for the case of a single OT carried out between
the sender S with input (x0, x1) ∈ {0, 1}λ × {0, 1}λ and the receiver R with input b ∈ {0, 1}. We
canonically identify the vector space Fλ

2 with {0, 1}λ. The main steps of the protocol are as follows:

1. S chooses a uniform a ∈ F2λ
2 and B ∈ F2λ×2λ

2 . It then creates a token TS that, on input
z ∈ F2λ

2 , outputs azT +B and then refuses to answer any more queries. S sends TS to R.

2. R chooses a uniform full-rank matrix C ∈ Fλ×2λ
2 and sends it to S. In turn, S computes

ã := Ca and B̃ := CB, and sends ã, B̃ to R.

3. R chooses uniform z, h ∈ F2λ
2 such that zTh = b. It queries z to TS, which outputs V :=

azT +B. Then R checks that CV = ãzT + B̃, and aborts if not. Otherwise, R sends h to S.

4. S responds with x̃0 := x0 + GBh and x̃1 := x1 + GBh + Ga, where G = Comp(C). The
receiver then outputs xb := x̃b −GV h.

Correctness holds in an honest execution since CV = C · (azT +B) = CazT +CB = ãzT + B̃ and

x̃b −GV h =
(
xb +GBh+Gab

)
−G · (azT +B) · h

= xb +Gab−GazTh = xb,

where we view b ∈ {0, 1} as an element of F1×1
2 .

Security can be argued, informally, as follows. For an honest receiver, the values z, h serve as a
secret sharing of its input b, thus hiding b from S. To ensure correct behavior by S , including the
way the token is implemented, the receiver checks that CV = ãzT + B̃. Since the behavior of the
token cannot depend on the random matrix C, and the sender’s response in step 2 cannot depend
on z, incorrect behavior is detected with overwhelming probability.

As for an honest sender, note that B′
def
= GB and a′

def
= Ga are uniform conditioned on CB

and Ca. Set z1 = z, where z is the query made by R to the token, and extend this to an orthonormal
basis {z1, . . . , z2λ}. Write the first row of B′ as

∑
i b
′
iz

T
i with b′i ∈ F2. From its query to the token,

R can compute GV = B′ + a′zT1 and hence the projections b′2, . . . , b
′
2λ of the first row of B′ onto
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each of zT2 , . . . , z
T
2λ; however, it learns only b

′
1+a

′
1 (where a

′
1 denotes the first entry of a′). A similar

argument holds for the other rows of B′. Now, the sender’s inputs x0, x1 are “masked” by B′h and
B′h+ a′, respectively. If zT1 h = 0, then R can determine B′h (since the projections of the rows of
B′ onto zT1 are irrelevant), but B′h + a′ is uniform because a′ is. On the other hand, if zT1 h = 1
then R can deduce B′h+ a′ (since it knows B′z1 + a′), but B′h is uniform (since the projections of
the rows of B′ onto zT1 are uniform).

It is crucial that a malicious receiver can only query the token once. In the work of [20], this is
enforced by making the token stateful; the token “self destructs” after the first query.

Extension to stateless tokens. We combine the techniques of [20] with ideas from [29] to
design a protocol using two stateless tokens instead of one stateful token. We describe some of the
difficulties this entails, though caution that this is only intuition and does not fully capture all the
components of our protocol as specified in the following section:

Multiple queries. The main issue is preventing a malicious R from querying the token multiple
times per OT. Motivated by similar techniques in [29], we address this issue by modifying the
token so that it only replies to authenticated inputs. That is, rather than accepting an input
z as before, the token now only responds to queries of the form (comz, z, rz, σz), where comz

is a commitment to z using randomness rz, and σz is a signature on comz with respect to a
verification key vkS of the sender.

Extracting the sender’s input. With the above change in place, we are faced with a technical prob-
lem during simulation. Namely, even the simulator will now be unable to submit two (valid)
inputs to the token in order to extract the sender’s input values. To resolve this issue we
introduce a second, stateless token TR sent from the receiver to the sender that takes as input
a,B and returns ã = Ca and B̃ = CB. This allows the simulator to extract a and B and
thus to later extract the sender’s inputs. As above, to prevent the sender from querying
the token multiple times we modify the token so it only responds to inputs that have been
authenticated by the receiver.

We also modify both tokens so they output signatures serving as “proof” to the creator of
the token that the token was queried (on a legal input) before a certain point in the protocol.

Malicious tokens. A malicious token may try to leak information to the token creator about the
queries that were submitted to it. In particular, such leakage could potentially be embedded in
the signature output by a token. To protect against this, we require the underlying signature
scheme to be unique.

Using unique signatures ensures that the only information leakage that can occur is due to a
token abort. Note that such an abort might reveal information about all previous executions,
though it can occur at most once (since an abort is evidence of cheating). It turns out that
for TS, leakage due to an abort is already handled by the protocol of [20]. For TR, we rely
(intuitively) on the fact that an abort leaks only a limited amount of information.

Multiple executions. To achieve an unbounded number of OTs using a single pair of tokens we
replace all random values with values output by a pseudorandom function.
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On input (ssid, i, comz, z, rz, σz):
if
(
VrfyvkS

(ssid∥i∥0∥comz, σz) = 1

and Open(comz, z, rz) = 1
)

a := PRFka(ssid∥i)
B := PRFkB

(ssid∥i)
V := azT +B
σ := SignskS

(ssid∥i∥1)
output (V, σ)

else output ⊥

Figure 4: The Turing machine MS to be em-
bedded in the sender-created token TS.

On input (ssid, i, coma∥B , a, B, ra∥B, σa∥B):
if

(
VrfyvkR

(ssid∥i∥0∥coma∥B , σa∥B) = 1
and Open(coma∥B, a∥B, ra∥B) = 1

)
C := PRFkC

(ssid)
ã := Ca

B̃ := CB

σã∥B̃ := SignskR
(ssid∥i∥1∥ã∥B̃)

output (ã, B̃, σã∥B̃)

else output ⊥

Figure 5: The Turing machineMR to be em-
bedded in the receiver-created token TR.

3.2 The Protocol

Let (Gen, Sign,Vrfy) be a unique signature scheme, let PRF be a pseudorandom function, and let
(SCom,Open) be a non-interactive, statistically hiding commitment scheme. Our main protocol
π consists of a token-exchange phase after which the sender S and receiver R can carry out an
unlimited number of OTs. A formal description follows; see also Figure 6.

Token-exchange phase. Each party generates a single token and sends it to the other party. The
sender chooses uniform ka, kB ∈ {0, 1}λ and computes (skS, vkS)← Gen(1λ); it then creates a token
TS containing the code from Figure 4. The receiver chooses uniform kC ∈ {0, 1}λ and computes
(skR, vkR) ← Gen(1λ); it then creates a token TR containing the code from Figure 5. The parties
then exchange their tokens as well as their public keys vkS, vkR. (Each party also runs the first
round of a two-round, statistically hiding commitment scheme; we leave this implicit.)

Oblivious-transfer phase. Following the token-exchange phase, the parties can sequentially run
an unbounded number of sub-sessions, where in each sub-session they can carry out any desired
number m of OTs in parallel. (If a party ever aborts the protocol during some sub-session, however,
that party refuses to run any subsequent sub-sessions.) The protocol run during each sub-session,
where the sender S has input {(x0i , x1i )}mi=1 and the receiver R has input {bi}mi=1, proceeds as follows:

Step 1: For i ∈ [m], the sender computes ai := PRFka(ssid∥i) and Bi := PRFkB (ssid∥i), where
ai ∈ F4λ

2 and Bi ∈ F4λ×4λ
2 . The sender then commits to each (ai, Bi) using SCom, resulting

in commitment comai∥Bi
and decommitment rai∥Bi

. It sends {comai∥Bi
}mi=1 to R.

Step 2: For i ∈ [m] the receiver chooses uniform hi, zi ∈ F4λ
2 subject to bi = zTi hi. It commits to

each zi using SCom, resulting in commitment comzi and decommitment rzi . The receiver next
computes C := PRFkC (ssid), where C ∈ F2λ×4λ

2 , and σai∥Bi
:= SignskR(ssid∥i∥0∥comai∥Bi

) for
all i. It sends C, {comzi}mi=1, and {σai∥Bi

}mi=1 to S.

Step 3: S verifies the signatures just received, and aborts if any of them is invalid. Otherwise,
for all i the sender runs the token TR on input (ssid, i, comai∥Bi

, ai, Bi, rai∥Bi
, σai∥Bi

), and

obtains in return (ãi, B̃i, σãi∥B̃i
). It verifies that ãi = Cai and B̃i = CBi for all i, and that

the signatures output by TR are valid, and aborts if not. Otherwise, S computes σzi :=
SignskS(ssid∥i∥comzi) for all i, and sends {(ãi, B̃i, σãi∥B̃i

, σzi)}mi=1 to R.
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Step 4: The receiver verifies the signatures just received, and aborts if any of them is invalid.
Otherwise, for all i the receiver runs the token TS on input (ssid, i, comzi , zi, rzi , σzi) and
obtains in return (Vi, σi), where σi is a signature on sid, i. It verifies that CVi = ãiz

T
i + B̃i for

all i, and that the signatures output by TS are valid, and aborts if not. Otherwise, it sends
{(hi, σi)}mi=1 to S.

Step 5: The sender verifies the signatures just received, and aborts if any of them is invalid.
Otherwise, S computes G := Comp(C), and then for all i chooses uniform extractor keys
v0i , v

1
i and computes x̃0i := Ext(GBihi, v

0
i )⊕ x0i and x̃1i := Ext(GBihi +Gai, v

1
i )⊕ x1i . Finally,

it sends {(v0i , v1i , x̃0i , x̃1i )}mi=1 to the receiver.

Step 6 (output determination): The receiver computes G := Comp(C) and then, for i ∈ [m],
outputs xbii := x̃bii ⊕ Ext(GVihi, v

bi
i ).

We sketch the intuition for why the protocol is secure.

Corrupted sender. Consider what a malicious sender S∗ sees as part of an execution of the
oblivious-transfer phase during some sub-session. S∗ learns C and {hi}, which—as in the protocol
of [20]—do not leak information about the receiver’s input bits {bi}. The signatures {σai∥Bi

}
computed by the receiver are independent of the {bi}. The only other information S∗ learns are
the signatures {σi} computed by the (possible misbehaving) token TS∗ . Since a unique signature
scheme is used, however, these signatures are uniquely determined by values that are independent
of the {bi}, and so TS∗ cannot communicate information about the {bi} back to S∗.

The preceding statement is true except for one subtlety: TS∗ can potentially communicate infor-
mation to S∗ by aborting (i.e., refusing to output a valid signature) at some point in the protocol.
Note further that such an abort can, in general, depend on all previous oblivious-transfer phases
that have been executed. Nevertheless, because the token can only abort once (after which point
the receiver refuses to run any subsequent executions), and there are polynomially many executions
overall, this strategy can be used to leak only O(log λ) bits of information to S∗. Moreover, this
leakage cannot depend on the {hi}. (Here we rely on the fact that the {σzi} cannot convey addi-
tional information from S∗ to TS∗ , again because a unique signature scheme is used.) We show that
even with this leakage, S∗ gets only negligible information on the {bi} of any sub-session. Roughly
speaking, this is a consequence of the fact that bi = zTi hi is statistically close to uniform, even
conditioned on hi, as long as zi has sufficient min-entropy.

Looking ahead, as part of the proof of security we will need to show how a simulator can extract
the effective inputs of S∗. This will be done as follows. For each sub-session ssid and index i, the
malicious sender must query the token TR on some valid input or else the receiver will abort in
step 4; this follows from unforgeability of the signature scheme. Moreover, for any pair (ssid, i), the
malicious sender can only (usefully) query TR on inputs (ssid, i, comai∥Bi

, ai, Bi, rai∥Bi
, σai∥Bi

) for a
single pair ai, Bi; this follows from statistical binding of the commitment scheme and unforgeability
of the signature scheme. From this (unique) query, the simulator can determine ai, Bi and use those
to define the sender’s effective inputs.

Corrupted receiver. We show that a malicious receiver R∗ learns only one of the sender’s
inputs in each OT carried out in some sub-session. During an execution, R∗ learns {(ãi, B̃i)} and
{(v0i , v1i , x̃0i , x̃1i )}, which—as in the protocol of [20]—only enables R∗ to learn one of the sender’s
inputs per OT. (Here the sender’s inputs are masked by values extracted from GBihi and GBih1+
Gai, rather than being masked by the values themselves, but this is inconsequential.) R∗ also sees
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S R

Exchange tokens and public keys:
ka, kB ← {0, 1}λ; (skS, vkS)← Gen(1λ) kC ← {0, 1}λ; (skR, vkR)← Gen(1λ)
generate token TS as in Figure 4 generate token TR as in Figure 5

� TS, vkS; TR, vkR -

(ssid,m, {(x0
i , x

1
i )}mi=1) (ssid,m, {bi}mi=1)

For i ∈ [m] :
ai := PRFka (ssid∥i)
Bi := PRFkB

(ssid∥i)
comai∥Bi

← SCom(ai∥Bi; rai∥Bi
)

{comai∥Bi
}mi=1 -

C := PRFkC
(ssid)

For i ∈ [m] :
hi ← F4λ

2 \ {04λ}
zi ← {zi ∈ F4λ

2 | zTi hi = bi}
comzi ← SCom(zi; rzi )
σai∥Bi

:= SignskR
(ssid∥i∥0∥comai∥Bi

)

�
C, {(comzi , σai∥Bi

)}mi=1

For i ∈ [m] :
If VrfyvkR

(ssid∥i∥0∥comai∥Bi
, σai∥Bi

) ̸= 1

abort
Run TR

(
ssid, i, comai∥Bi

, ai, Bi, rai∥Bi
, σai∥Bi

)
to get (ãi, B̃i, σãi∥B̃i

)

If ãi ̸= Cai or B̃i ̸= CBi, abort

If VrfyvkR
(ssid∥i∥1∥ãi∥B̃i, σãi∥B̃i

) ̸= 1

abort
σzi := SignskS

(ssid∥i∥0∥comzi )

{(ãi, B̃i, σãi∥B̃i
, σzi )}mi=1-

For i ∈ [m] :
If one of the following fails, abort:

VrfyvkR
(ssid∥i∥1∥ãi∥B̃i, σãi∥B̃i

)

VrfyvkS
(ssid∥i∥0∥comzi , σzi )

Run TS(ssid, i, comzi , zi, rzi , σzi )
to get (Vi, σi)

If
(
VrfyvkS

(ssid∥i∥1, σi) ̸= 1

or CVi ̸= ãiz
T
i + B̃i

)
abort

� {(hi, σi)}mi=1

For i ∈ [m] :
If VrfyvkS

(ssid∥i∥1, σi) ̸= 1, then abort

G := Comp(C)
For i ∈ [m] :

choose keys v0i , v
1
i

x̃0
i := Ext(GBihi, v

0
i )⊕ x0

i
x̃1
i := Ext(GBihi +Gai, v

1
i )⊕ x1

i

{(v0i , v1i , x̃0
i , x̃

1
i )}mi=1-

G := Comp(C)
For i ∈ [m] :

output x̃
bi
i ⊕ Ext(GVihi, v

bi
i )

Figure 6: An OT protocol π from two stateless tokens. The token-exchange phase is run once; the
second phase can be run any number of times.
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commitments to the {ai, Bi}, as well as signatures {σzi} computed by the sender, but these do not
leak any additional information on the sender’s inputs. The only other values R∗ learns are the
signatures {σãi∥B̃i

}. However, the fact that a unique signature scheme is used means that these
signatures are uniquely determined by values that R∗ already knows, and so there is no way for the
(possibly misbehaving) token TR∗ to communicate information to R∗.

As in the case of a corrupted sender, the preceding statement is true except that TR∗ can leak
O(log λ) bits of information to R∗ by aborting at some point, possibly in a subsequent sub-session.
It is for this reason that we apply a strong extractor to GBihi and GBihi +Gai, rather than using
those values directly as masks for the sender’s inputs.

In the formal proof we will need to show how a simulator can extract the effective inputs of R∗.
This is done by again observing that for each sub-session ssid and index i, the malicious receiver
can (usefully) query the token TS on inputs (ssid, i, comzi , zi, rzi , σzi) for only a single zi. With zi
and hi known, the simulator can extract the malicious receiver’s effective input.

3.3 Proof of Security

Theorem 1 If PRF is a pseudorandom function, SCom is a statistically hiding commitment scheme,
(Gen, Sign,Vrfy) is a unique signature scheme, and Ext is a (1.5λ, negl(λ))-strong extractor, then
the protocol of Figure 6 securely realizes Funbounded-OT in the Fwrap-hybrid model.

To prove the theorem, we construct a straight-line simulator Sim such that no non-uniform, ppt
environment Z can distinguish between (1) an execution involving an honest party and a corrupted
party (that without loss of generality we may take as the dummy adversary who simply forwards
messages to/from Z) running protocol π in the Fwrap-hybrid world and (2) an execution involving
the same honest party, functionality Funbounded-OT and Sim in the ideal world. We consider the
cases of a corrupted sender and a corrupted receiver separately.

3.3.1 Corrupted Sender

We show a simulator Sim such that no non-uniform, ppt environment Z can distinguish (1) an
execution between an honest receiver running π and the dummy adversary A (who simply forwards
messages to/from Z) in the Fwrap-hybrid world and (2) an execution involving an honest receiver,
functionality Funbounded-OT, and Sim in the ideal world. The simulator Sim internally runs A, for-
warding messages to/from the environment Z. In addition, Sim simulates the following interactions
with A.

Tokens. Sim simulates A’s receipt of a token from the honest receiver (formally, via the Fwrap

functionality) by computing (skR, vkR) ← Gen(1λ) and giving (ready, ⟨sid,R, S⟩) and vkR to A.
It then waits to receive vkS as well as a message (create, ⟨sid, S,R⟩,MA) from A to the Fwrap

functionality, and records MA. For readability, we let FR
wrap (resp., FS

wrap = MA) denote the Fwrap

functionality corresponding to the receiver’s (resp., sender’s) token.
When A queries FR

wrap, the simulator answers the query as in Figure 5, except that a ran-
dom function is used in place of PRFkC (·). (I.e., Sim dynamically maintains a table, answering
new queries with random values but answering consistently if the same query is asked twice.) A
query (ssid, i, coma∥B, a, B, ra∥B, σa∥B) to FR

wrap is valid if VrfyvkR(ssid∥i∥0∥coma∥B, σa∥B) = 1 and

Open(coma∥B, a∥B, ra∥B) = 1. When a valid query is answered with (ã, B̃, σã∥B̃), the simulator

records (ssid, i, a, B). If, at any point A makes a valid query (ssid, i, coma∥B, a, B, ra∥B, σa∥B) to
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FR
wrap but σa∥B was not previously generated by the simulator as a signature on ssid∥i∥0∥coma∥B,

or A makes two valid queries (ssid, i, coma∥B, a, B, ra∥B, σa∥B) and (ssid, i, coma∥B, a
′, B′, r′a∥B, σa∥B)

with (a,B) ̸= (a′, B′), the simulator aborts.

Simulation of the execution for sub-session ssid. The simulator Sim proceeds as follows:

1. Receive commitments {comai∥Bi
} in step 1 of the protocol.

2. In step 2, a random function is used in place of PRFkC (·) (as discussed above). Sim also
chooses hi, zi subject to z

T
i hi = 0 for all i, and runs the rest of this step honestly using these

values. Let {σai∥Bi
} be the signatures sent to A.

3. In step 4, after receiving {(ãi, B̃i, σãi∥B̃i
, σzi)}mi=1 from A, the simulator runs the protocol

honestly (including interacting with FS
wrap), and aborts if dictated by the protocol. If it does

not abort then for each i it checks for a record of the form (ssid, i, ⋆, ⋆). (Recall the simulator
records (ssid, i, a, B) for every valid query to FR

wrap, and aborts if there are ever two valid
queries for the same ssid, i with different a,B.) If there is no such record, or if there is a
record (ssid, i, ai, Bi) but (ãi, B̃i) ̸= (Cai, CBi), then Sim aborts.

Assuming it did not abort, Sim sends the next message of the protocol exactly as the honest
receiver would.

4. Upon receiving {(v0i , v1i , x̃0i , x̃1i )}mi=1 from A, for each i the simulator finds the unique record
of the form (ssid, i, ai, Bi). It then computes x0i := x̃0i ⊕ Ext(GBihi, v

0
i ) and x1i := x̃1i ⊕

Ext(GBihi + Gai, v
1
i ) for all i. Finally, it sends (send, ⟨sid, S,R⟩, ssid, {(x0i , x1i )}mi=1) to func-

tionality Funbounded-OT.

Let Real denote the distribution (ensemble) of the view of Z in an execution of π between
an honest receiver and A in the Fwrap-hybrid world. (We stress that the view of Z includes the
view of A as well as the outputs of the honest receiver.) We show that this is computationally
indistinguishable from Ideal, the distribution (ensemble) of the view of Z in an execution between
an honest receiver, Funbounded-OT, and Sim in the ideal world. To prove this, we consider a sequence
of experiments as described next.

Experiment H1. In this experiment, we imagine an interaction between a simulator Sim′ (playing
the role of the sender), the honest receiver, and Funbounded-OT in the ideal world, but where Sim′ is
given the inputs {bi}mi=1 of the receiver at the outset of every sub-session. Sim′ internally runs A,
forwarding messages to/from the environment Z. It also simulates an execution of protocol π
with A, by playing the role of the receiver itself using the inputs {bi}mi=1. As part of this simulation,
Sim′ emulates FR

wrap and interacts with FS
wrap. A query to FR

wrap is defined to be valid as above, and
after each valid query (ssid, i, coma∥B, a, B, ra∥B, σa∥B), the simulator records (ssid, i, a, B).

When execution of a sub-session of π is complete then, if it was not aborted, Sim′ obtains

outputs {xbii }mi=1. It sets x
b̄i
i := 0λ for i ∈ [m] and sends (send, ⟨sid, S,R⟩, ssid, {(x0i , x1i )}mi=1) to the

functionality Funbounded-OT.
It is immediate that the view of Z in H1 is distributed identically to its view in Real.

Experiment H2. This experiment is the same as the previous one, except that here Sim′ uses a
random function in place of PRFkC (·). It is clear that if PRF is a pseudorandom function, then the
view of Z here is computationally indistinguishable from its view in H1.
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Experiment H3. This experiment is the same as the previous one except that if, at any point
during the experiment, A makes a valid query (ssid, i, coma∥B, a, B, ra∥B, σa∥B) to FR

wrap but σa∥B
was not previously generated by the simulator as a signature on ssid∥i∥0∥coma∥B, the simulator
aborts. It is easy to see that strong unforgeability of the signature scheme (which is implied by
unforgeability and uniqueness of the signature scheme) means that the view of Z in this experiment
is computationally indistinguishable from its view in H2.

Experiment H4. This experiment is the same as the previous one, except that if A ever makes
two valid queries (ssid, i, coma∥B, a, B, ra∥B, σa∥B) and (ssid, i, coma∥B, a

′, B′, r′a∥B, σa∥B) to FR
wrap

with (a,B) ̸= (a′, B′), the simulator aborts. It is easy to see that (computational) binding of the
commitment scheme implies that the view of Z here is indistinguishable from its view in H3.

Experiment H5. This is identical to the previous experiment, except that upon receiving a
message {(ãi, B̃i, σãi∥B̃i

, σzi)}mi=1 from A the simulator proceeds as follows: It first verifies the

signatures (as in the previous experiment), and aborts if they are invalid. Otherwise, for each i the
simulator checks for a record of the form (ssid, i, ⋆, ⋆). If there is no such record, or if there is a
record (ssid, i, ai, Bi) but (ãi, B̃i) ̸= (Cai, CBi), then Sim′ aborts. Since the output of FR

wrap on input
(sid, i, . . .) includes Cai, CBi, and a signature σãi∥B̃i

on those values, it is clear that unforgeability
of the signature scheme means that the view of Z here is indistinguishable from its view in H4.

Experiment H6. This is identical to H5, except that in step 4 the simulator proceeds as follows
(assuming it has not yet aborted): for each i, find the unique record of the form (ssid, i, ai, Bi). Then
it checks whether Vi = aiz

T
i + Bi, and aborts if not. Otherwise, it proceeds as before. We claim

that the view of Z in H5 is statistically close to its view in H6. To see this, recall that the simulator
aborts in H5 andH6 if ãi ̸= Cai or B̃i ̸= CBi (where ãi, B̃i are the values received from A in step 4);
in H5, the simulator aborts only if CVi ̸= ãiz

T
i + B̃i. Thus, the only difference between H5 and H6

occurs if there is ever a sub-session and an index i for which CVi = ãiz
T
i + B̃i = C ·

(
aiz

T
i +Bi

)
but Vi ̸= aiz

T
i + Bi. Intuitively, this occurs with negligible probability since FS

wrap does not have
any information about C. We now prove this formally.

We bound the probability of the event in question for some fixed ssid, i; a union bound then
implies the claimed result. So, let E be the event that (1) the simulation is not aborted before
step 6 in sub-session ssid, and (2) the ith invocation of FS

wrap in that sub-session outputs Vi with

Vi ̸= aiz
T
i + Bi but CVi = C ·

(
aiz

T
i +Bi

)
, where A sends (ãi, B̃i, σãi∥B̃i

, σzi) in step 4 of sub-

session ssid. Let δ(λ) denote the probability of event E.
Consider running the entire experiment up to the ith invocation of FS

wrap in sub-session ssid
and then rewinding and choosing a fresh, uniform value C ′ for that sub-session (keeping all other
random choices the same as in the first run of the experiment). Using Jensen’s inequality, we have
that with probability at least δ(λ)2 event E occurs in both executions. Let ai, Bi denote the values
recorded by the simulator in the first execution, and let a′i, B

′
i denote the values recorded by the

simulator in the second execution. Note that:

• The probability that (ai, Bi) ̸= (a′i, B
′
i) is negligible, by straightforward reduction to the bind-

ing of the commitment scheme. (Note that the sender commits to ai, Bi before learning C.)

• The probability that E occurs in both executions if (ai, Bi) = (a′i, B
′
i) is negligible. To see this,

note that Vi must be the same in both executions, since the input to FS
wrap is the same in both

executions. (Here we rely on uniqueness of the signature scheme.) So the probability that
E occurs in the second execution is at most the probability that the value C ′ in the second
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execution satisfies C ′ · (Vi − aizTi − Bi) = 0, where Vi − aizTi − Bi ̸= 0. Since C ′ ∈ F2λ×4λ
2 is

chosen uniformly and independently of everything else, this probability is at most 2−2λ.

We conclude that the probability that E occurs in both executions (i.e., δ(λ)2) is negligible; hence
δ(λ) is negligible as well.

Experiment H7. Now, in step 6, Sim′ finds the unique record of the form (ssid, i, ai, Bi) for each i.
The simulator then computes x0i := x̃0i ⊕ Ext(GBihi, v

0
i ) and x

1
i := x̃1i ⊕ Ext(Gai +GBihi, v

1
i ). The

rest of its execution is as before.
We claim that the views of Z in H6 and H7 are identical. The change in the computation of

xb̄ii does not affect the view of Z at all (since the honest party’s input is bi). We consider next the

change in the computation of xbii . In both H6 and H7, the simulator aborts unless Vi = aiz
T
i +Bi.

In step 6 of H6, the simulator computes xbii := x̃bii ⊕Ext(GVihi, v
bi
i ), where Vi is the value it received

from FS
wrap in step 4. But then in H7 we have

GVihi = G · (aizTi +Bi)hi = Gaibi +GBihi,

and so the result computed for xbii in H7 is the same.

Experiment H8. This is identical to the previous experiment, except that now Sim′ chooses
zi ← {z ∈ F4λ

2 | zThi = 0} for all i in every sub-session (rather than zi ← {z ∈ F4λ
2 | zThi = bi}).

We prove that the distributions on the view of Z in H7 and H8 are statistically close. Note that this
is not hard to prove if there is only a single execution of the protocol: in that case, the view of FS

wrap

is independent of the {hi}, and the view of A is independent of the {zi} except possibly for one bit of
information that FS

wrap can transmit by aborting. When we consider multiple sequential executions,
however, the situation becomes more complicated since subsequent executions can (potentially) be
used to transmit information about previous sub-sessions between A and FS

wrap.
To analyze this difference, we consider a sequence H0

7,H1
7, . . . of hybrid experiments between H7

and H8, where in going from one experiment to the next we change the distribution of a single zi
(i.e., for one index i in a single sub-session) while keeping the distributions of all the remaining
z-values the same. We then show that we can construct algorithms A and T that interact in
something we call the dot-product-with-equality-oracle game, such that the advantage of A in that
game is related to the difference between the probabilities with which Z outputs 1 in two consecutive
hybrid experiments. Finally, we show in Theorem 5 (see Appendix A) that the advantage of any
A in the dot-product-with-equality-oracle game is negligible.

The dot-product-with-equality-oracle game is defined as follows: First, a uniform bit b is chosen.
Values z, h ∈ F4λ

2 are then chosen uniformly subject to zTh = b; next, A is given h, and T is given z.
Parties A and T then interact with a third party for at most p(λ) rounds; in round j, they each send
arbitrary inputs aj and tj to this third party, who responds to both parties with a bit indicating
whether aj and tj are equal. If so, the parties continue to the next round; once aj ̸= tj the
protocol ends. (Otherwise, the protocol ends in round p(λ).) When the protocol ends, A outputs
a guess for b and succeeds if its guess is correct. The advantage of A is the absolute value of its
probability of success minus 1/2. We prove in Appendix A that for any (even all-powerful) A, T ,
and polynomial p, the advantage of A in this game is negligible.

We now show how to map the experiments in question to an execution of the above game. For
concreteness, consider the case where the distribution of zj in sub-session ℓ is changed. We define
(unbounded) algorithms A and T as follows. Algorithm A encapsulates the entire experiment—
including A, Sim′, the Funbounded-OT functionality, the honest receiver, and Z—except (partly) for
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FS
wrap, as explained below. A shares with T all randomness needed to execute Sim′ (namely, the

randomness needed to execute rounds 2 and 4 of the protocol in all sub-sessions), except for the
value of hj to use in sub-session ℓ, which A will set equal to its input (see below). Explicitly, then,
A runs the entire experiment internally. For sub-sessions 1 through ℓ − 1, it simulates the entire
interaction between A and Sim′ in the obvious way, including simulation of FS

wrap. In sub-session ℓ,
it simulates rounds 1–3 of the protocol, and then sends 1 to the (external) third party computing
equality; if that party returns 0 then A simulates Sim′ sending an abort for the fourth message of
the protocol, passes the view of A to Z, and outputs whatever Z outputs. Otherwise, A continues
to the fourth round of the protocol. A then uses values {hi} chosen in advance except that it sets
hj equal to its input h. Execution of the rest of sub-session ℓ continues in the natural way.

For sub-sessions ℓ + 1 and on, A simulates each sub-session in the natural way until after the
third message of the protocol. It then computes {ai, Bi}mi=1 as Sim

′ would, and sends {aizTi +Bi}mi=1

to the (external) third party computing equality. If that party returns 0 then A simulates Sim′

sending an abort for the fourth message of the protocol, passes the view of A to Z, and outputs
what Z outputs. Otherwise, A continues simulation of the experiment until Z generates output.

We now describe algorithm T . As noted above, A and T share randomness in advance, and this
allows T to simulate sub-sessions 1 through ℓ− 1 exactly as A does. In sub-session ℓ, it simulates
rounds 1–3 of the protocol, and then queries FS

wrap using {zi} chosen in advance except that zj is set
equal to its input z. (One subtlety is that A and T must agree on the commitment comzj used in
sub-session ℓ even though they don’t know zj in advance. But since the commitment is statistically
hiding and T is unbounded, T can decommit to zj = z except with negligible probability.) It
receives in return {(Vi, σi)}, and checks whether Vi = aiz

T
i + Bi for all i; if so, it sends 1 to the

(external) third party computing equality, and otherwise it sends 0.
For sub-sessions ℓ+1 and on, T continues to simulate each sub-session in the natural way until

after the third message of the protocol. It queries FS
wrap and receives in return {(Vi, σi)}mi=1. It then

sends {Vi}mi=1 to the (external) third party computing equality.
One can verify that the interaction between A and T in the dot-product-with-equality-oracle

game results in a perfect simulation of the entire experiment for Z. (We highlight the fact that the
experiment is independent of h and z until FS

wrap is queried after round 3 of sub-session ℓ. At that

point, the view of FS
wrap—and hence its decision whether to output correct values {Vi}—depends

on z only. It is only after the round-4 message of sub-session ℓ is sent that the view of A depends
on h. We also continue to rely on the fact that a unique signature scheme is used, and hence the
{σzi} are determined by the {comzi}.) Thus, any difference in the output of Z based on the value
of zTi hi would result in a difference in the output of A based on that information. Theorem 5 thus
implies that the experiments are indeed indistinguishable by Z.

Since H8 is identical to Ideal, this concludes the proof of Theorem 1 for a corrupted sender.

3.3.2 Corrupted Receiver

We show a simulator Sim such that no non-uniform, ppt environment Z can distinguish (1) an
execution between an honest sender running π and the dummy adversary A (who simply forwards
messages to/from Z) in the Fwrap-hybrid world and (2) an execution involving an honest sender,
functionality Funbounded-OT, and Sim in the ideal world. The simulator Sim internally runs A, for-
warding messages to/from the environment Z. In addition, Sim simulates the following interactions
with A.
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Tokens. Sim simulates A’s receipt of a token from the honest sender in the natural way, including
generation of keys (vkS, skS) for the signature scheme. It then waits to receive vkR as well as a
message (create, ⟨sid,R,S⟩,MA) from A to the Fwrap functionality, and recordsMA. For readabil-
ity, we let FS

wrap (resp., FR
wrap = MA) denote the Fwrap functionality corresponding to the sender’s

(resp., receiver’s) token.
When A queries FS

wrap, the simulator answers the query as in Figure 4, except that random

functions are used in place of PRFka(·) and PRFkB (·). A query (ssid, i, comz, z, rz, σz) to FS
wrap is

said to be valid if VrfyvkS(ssid∥i∥0∥comz, σz) = 1 and Open(comz, z, rz) = 1. When a valid query
(ssid, i, comz, z, rz, σz) is made, the simulator records (ssid, i, z). If, at any point during the experi-
ment, A makes a valid query (ssid, i, comz, z, rz, σz) to FS

wrap but σz was not previously generated
by the simulator during sub-session ssid as a signature on comz, the simulator outputs abort1 and
terminates. If A ever makes two valid queries (ssid, i, comz, z, rz, σz) and (ssid, i, comz, z

′, r′z, σz)
with z ̸= z′, Sim outputs abort2 and terminates.

Simulation of the execution for sub-session ssid. The simulator Sim proceeds as follows:

1. In step 1, random functions are used in place of PRFka(·) and PRFkB (·) to generate the {ai}
and {Bi}. Sim otherwise runs this step honestly.

2. After receiving C and {(comzi , σai∥Bi
)} from A, the simulator runs step 3 of the protocol

honestly (including interacting with FR
wrap), and aborts if dictated by the protocol.

3. After receiving {(hi, σi)} from A, the simulator verifies the signatures just received and aborts
if any of them is invalid. Otherwise, for each i it checks for a record of the form (ssid, i, zi);
note there can be at most one such record. If there is no such record, Sim aborts.

Assuming it did not abort, Sim next computes bi := zTi hi for all i and sends the message
(receive, ⟨sid, S,R⟩, ssid, {bi}mi=1) to functionality Funbounded-OT. After receiving {xi} in re-

turn, Sim does the following for all i: choose keys v0i , v
1
i , set x̃

bi
i := Ext(GBihi+Gaibi, v

bi
i )⊕xi,

choose x̃b̄ii uniformly, and send {(v0i , v1i , x̃0i , x̃1i )}.

Let Real denote the distribution (ensemble) of the view of Z in an execution of π between an honest
sender and A in the Fwrap-hybrid world. (We stress that the view of Z includes the view of A as
well as the outputs of the honest sender.) We show that this is computationally indistinguishable
from Ideal, the distribution (ensemble) of the view of Z in an execution between an honest sender,
functionality Funbounded-OT, and Sim in the ideal world. To prove this, we consider a sequence of
experiments as described next.

Experiment H1. In this experiment, we imagine an interaction between a simulator Sim′ (playing
the role of the receiver), the honest sender, and Funbounded-OT in the ideal world, but where Sim′ is
given the inputs {(x0i , x1i )} of the sender at the outset of every sub-session. Sim′ internally runs A,
forwarding messages to/from the environment Z, and running the protocol honestly with A using
the sender’s inputs. Valid queries are defined as above, and after a valid query (ssid, i, comz, z, rz, σz)
is made, Sim′ records (ssid, i, z). When execution of a sub-session π is complete then, if the sub-
session was not aborted, Sim′ sets bi := 0 for all i and sends (receive, ⟨sid,S,R⟩, ssid, {bi}mi=1)
to Funbounded-OT.

It is immediate that the view of Z in H1 is distributed identically to its view in Real.
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Experiment H2. This experiment is the same as the previous one, except that here Sim′ uses
random functions in place of PRFka(·) and PRFkB (·). It is clear that if PRF is a pseudorandom
function, then the view of Z here is computationally indistinguishable from its view in H1.

Experiment H3. This experiment is the same as the previous one except that if, at any point
during the experiment, A makes a valid query (ssid, i, comz, z, rz, σz) to FS

wrap but σz was not
previously generated by Sim′ as a signature on ssid∥i∥0∥comz, the simulator aborts. It is easy to
see that strong unforgeability of the signature scheme means that the view of Z in this experiment
is computationally indistinguishable from its view in H2.

Experiment H4. This experiment is the same as the previous one except that if A ever makes
two valid queries (ssid, i, comz, z, rz, σz) and (ssid, i, comz, z

′, r′z, σz) to FS
wrap with z ̸= z′ then the

simulator aborts. It is easy to see that (computational) binding of the commitment scheme implies
that the view of Z in this experiment is indistinguishable from its view in H3.

Experiment H5. This is identical to the previous experiment, except that upon receiving a
message {(hi, σi)} from A the simulator proceeds as follows: It first verifies the signatures (as in
the previous experiment), and aborts if they are invalid. Otherwise, for each i the simulator checks
for a (unique) record of the form (ssid, i, ⋆). If there is no such record, then Sim′ aborts. It is clear
that strong unforgeability of the signature scheme means that the view of Z in this experiment is
indistinguishable from its view in H4.

Experiment H6. This is just like the previous experiment, except that upon receiving a message
{(hi, σi)} from A the simulator proceeds as follows for each i (assuming it has not yet aborted):
find the unique record (ssid, i, zi) and compute bi := zTi hi. Then choose keys v0i , v

1
i , set x̃

bi
i :=

Ext(GBihi+Gaibi, v
bi
i )⊕x

bi
i , and choose x̃b̄ii uniformly. We claim that the views of Z in experiments

H5 and H6 are statistically close.
To see this, we consider a sequence of intermediate experiments in which the computation of

x̃0i , x̃
1
i is changed for only a single index i in a single sub-session ssid; a standard hybrid argument

then completes the proof. Consider the information that A has on the values ai, Bi used in the sub-
session in question. The statistically hiding commitment comai∥Bi

reveals nothing about ai, Bi.

From the protocol itself, A learns ãi = Cai, B̃i = CBi, and Vi = aiz
T
i + Bi. As discussed in

Section 3.1, the value Z
def
= GBihi+Gaib̄i (where bi = zTi hi) is a uniform 2λ-bit value conditioned on

this information, and hence X
def
= Ext(Z, vb̄ii ) is statistically close to uniform even if we additionally

condition on vb̄ii . But we still need to take into account information that FR
wrap might leak to A

about Z or X. We show next that FR
wrap can leak no information about X, and at most O(log λ)

bits of information about Z.
We first argue that the behavior of FR

wrap is independent of X (given Z). This follows because

all inputs provided to FR
wrap in all sub-sessions subsequent to ssid are independent of X given Z.

This, in turn, is a consequence of the fact that all the inputs to FR
wrap except the final signature

are chosen by the (honest) sender, but—because a unique signature scheme is used—that final
signature is uniquely determined by the other inputs.

The behavior of FR
wrap can depend on Z. However, because a unique signature scheme is used,

the only dependence (besides the values ãi, B̃i already taken into account above) is in terms of
if/when it ever aborts. Since at most polynomially many sub-sessions are run overall, we see that
FR
wrap can communicate only O(log λ) bits to A via such an abort.
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We thus see that with overwhelming probability, the min-entropy of Z is at least 1.5λ, and
hence the extracted value X is statistically close to uniform. This concludes the proof that the
views of Z in H6 and H5 are statistically close.

Since H6 is identical to Ideal, this completes the proof of Theorem 1.

3.4 Bounded Oblivious Transfer from Collision-Resistant Hash Functions

The requirement of unique signature schemes is a strong one, and in particular appears to require
the use of public-key techniques. In this section we construct a protocol π′ that can be based on
symmetric-key primitives (MACs and collision-resistant hash functions) alone. Here, however, we
are only able to realize the bounded OT functionality, in which an arbitrary number of OTs can be
carried out, but must be done in parallel.

The main intuition for this protocol is as before: we modify the protocol of [20] so that it can be
based on stateless tokens. The modifications are similar in spirit to those introduced in our prior
protocol: at a high level, we prevent an attacker from querying a token more times than allowed by
having tokens only respond to authenticated inputs. Here, however, we use message authentication
codes (MACs) rather than (unique) signatures to provide this authentication. This introduces a
potential covert channel between a malicious party and the token they create, since the other party
(who does not hold the MAC key) cannot verify whether the MAC tag sent by the other party
was honestly generated. We resolve this issue in part by having the parties commit to their MAC
key in advance and sending the decommitment later. This allows the honest party to check, after
the fact, whether the MAC tag was computed correctly. We also carefully order the steps of the
protocol, ensuring in particular that the sender transmits its MAC tag before receiving C so that it
cannot communicate information about C via an incorrectly computed tag. The necessity of doing
so, however, is why we cannot support any sub-sessions after the first has been completed.

We now describe the protocol; see also Figure 9. As before, PRF denotes a pseudorandom
function and (SCom,Open) is a non-interactive, statistically hiding commitment scheme. We also
let Mac denote a deterministic message authentication code, and let (Com,Open) denote a non-
interactive, statistically binding commitment scheme.

Token-exchange phase. Each party generates a single token and sends it to the other party. For
i = 1, . . . ,m (where m is the number of OTs to be supported), the sender chooses uniform ai ∈ F4λ

2 ,
Bi ∈ F4λ×4λ

2 , wi ∈ {0, 1}λ, rwi ∈ {0, 1}∗; it also chooses a uniform MAC key s′; it then creates
a token TS containing the code from Figure 7. The receiver chooses uniform C ∈ F2λ×4λ

2 and a
uniform MAC key s; it then creates a token TR containing the code from Figure 8. The parties
then exchange their tokens. (Each party also runs the initial rounds of the commitment schemes;
we leave this implicit.)

Oblivious-transfer phase. Following the token-exchange phase, the parties execute m parallel
OT instances. Let {(x0i , x1i )}mi=1 be the input of the sender S, and let {bi}mi=1 denote the input of
the receiver R. The protocol proceeds as follows:

Step 1: The sender commits to the {wi} using Com and randomness {rwi}, resulting in commit-
ments {comwi}. It sends {comwi}mi=1 to R.

Step 2: The receiver commits to s using Com, resulting in commitment coms and decommit-
ment rs. Then for i ∈ [m] the receiver chooses uniform hi, zi ∈ F4λ

2 subject to bi = zTi hi. It
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On input (i, comz, z, rz, τz):
if (Macs′(i∥comz) = τz

and Open(comz, z, rz) = 1)
V := aiz

T +Bi

output (V,wi, rwi)
else output ⊥

Figure 7: The Turing machine MS to be em-
bedded in the sender-created token TS.

On input (i, coma∥B, a, B, ra∥B, τa∥B):

if
(
Macs(i∥0∥coma∥B) = τa∥B
and Open(coma∥B, a∥B, ra∥B) = 1

)
ã := Ca

B̃ := CB

τã∥B̃ := Macs(i∥1∥ã∥B̃)

output (ã, B̃, τã∥B̃)

else output ⊥

Figure 8: The Turing machineMR to be em-
bedded in the receiver-created token TR.

commits to each zi using SCom, resulting in commitment comzi and decommitment rzi . It
sends coms and {comzi}mi=1 to S.

Step 3: S authenticates the {comzi} using its MAC key s′, yielding MAC tags {τzi} that it sends
to R. It also commits to the {ai, Bi} using SCom, resulting in commitments {comai∥Bi

} and
decommitments {rai∥Bi

}. It also sends {comai∥Bi
}mi=1 to R.

Step 4: R authenticates the {comai∥Bi
} using its MAC key s, yielding MAC tags {τai∥Bi

} that it
sends to S. It also sends C.

Step 5: For i ∈ [m], the sender runs the token TR on input (i, comai∥Bi
, ai, Bi, rai∥Bi

, τai∥Bi
), and

obtains in return (ãi, B̃i, τãi∥B̃i
). It verifies that ãi = Cai and B̃i = CBi for all i, and aborts

if not. Otherwise, it sends {(ãi, B̃i, τãi∥B̃i
)} to R.

Step 6: R verifies the MAC tags just received, and aborts if any of them is invalid. Next, for all i
it runs the token TS on input (i, comzi , zi, rzi , τzi), and obtains in return (Vi, w

′
i, r
′
wi
). For all i,

it then verifies that Open(comwi , w
′
i, r
′
wi
) = 1 and CVi = ãiz

T
i + B̃i, and aborts if not. If it

has not aborted, then it sends (s, rs) and {(hi, w′i)}mi=1 to S.

Step 7: S verifies that the {w′i} just received are equal to the {wi} and that Open(coms, s, rs) = 1,
and aborts if not. It then uses s to verify the MAC tags {τãi∥B̃i

}, and aborts if any is

found to be invalid. Assuming it has not aborted, it computes G := Comp(C) and then
for all i chooses uniform extractor keys v0i , v

1
i and computes x̃0i := Ext(GBihi, v

0
i ) ⊕ x0i and

x̃1i := Ext(GBihi +Gai, v
1
i )⊕ x1i . Finally, it sends {(v0i , v1i , x̃0i , x̃1i )} to R.

Step 8 (output determination): The receiver computes G := Comp(C) and then, for i ∈ [m],
outputs xbii := Ext(x̃bii , v

bi
i )−GVihi.

We sketch the intuition for why the protocol is secure, assuming the reader is already familiar
with the proof from the previous section.

Corrupt sender. During an execution of the protocol, a malicious sender S∗ learns C and hi
but we claim that it learns at most one bit of information about zi. Indeed, the only way it can
potentially learn information about zi is from the values {w′i} output by the (potentially malicious)
token TS∗ . But these values must be equal to the values to which S∗ commits in the first round of the
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S R

Exchange tokens and public keys:
For i ∈ [m] :

ai ← F4λ
2 ;Bi ← F4λ×4λ

2
wi ← {0, 1}λ; rwi ← {0, 1}∗

s′ ← {0, 1}λ C ← F2λ×4λ
2 ; s← {0, 1}λ

generate token TS as in Fig 7 generate token TR as in Fig 8

� TS; TR -

Oblivious transfer:
(m, {(x0

i , x
1
i )}mi=1) (m, {bi}mi=1)

For i ∈ [m] :
comwi ← Com(wi; rwi ) {comwi}mi=1 -

coms ← Com(s; rs)
For i ∈ [m] :

hi ← F4λ
2 \ {0}

zi ← {zi ∈ F4λ
2 | zTi hi = bi}

comzi ← SCom(zi; rzi )�coms, {comzi}mi=1

For i ∈ [m] :
τzi := Macs′ (i∥comzi )
comai∥Bi

← SCom(ai∥Bi; rai∥Bi
)

{(τzi , comai∥Bi
)}mi=1-

For i ∈ [m] :
τai∥Bi

:= Macs(i∥0∥comai∥Bi
)

�
C, {τai∥Bi

}mi=1

For i ∈ [m] :
Run TR(i, comai∥Bi

, ai, Bi, rai∥Bi
, τai∥Bi

)

to get (ãi, B̃i, τãi∥B̃i
)

If ãi ̸= Cai or B̃i ̸= CBi, abort

{(ãi, B̃i, τãi∥B̃i
)}mi=1-

For i ∈ [m] :

If Macs(i∥1∥ãi∥B̃i) ̸= τãi∥B̃i
,

abort
Run TS(i, comzi , zi, rzi , τzi )

to get (Vi, w
′
i, r

′
wi

)

If
(
Open(comwi , w

′
i, r

′
wi

) ̸= 1

or CVi ̸= ãiz
T
i + B̃i

)
abort�(s, rs), {(hi, w

′
i)}mi=1

If Open(coms, s, rs) ̸= 1, abort
For i ∈ [m] :

If
(
Macs(i∥1∥ãi∥B̃i) ̸= τãi∥B̃i

or w′
i ̸= wi

)
abort

G := Comp(C)
For i ∈ [m] :

choose keys v0i , v
1
i

x̃0
i := Ext(GBihi, v

0
i )⊕ x0

i
x̃1
i := Ext(GBihi +Gai, v

1
i )⊕ x1

i
{(v0i , v1i , x̃0

i , x̃
1
i )}mi=1- G := Comp(C)

For i ∈ [m] :

output x̃
bi
i ⊕ Ext(GVihi, v

bi
i )

Figure 9: A bounded OT protocol π′ from two stateless tokens.
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protocol, or else R aborts. Thus, TS∗ is limited to causing R to abort, which in turn communicates
just a single bit of information to S∗.

In the formal proof we also need to show how to extract the effective inputs of S∗ from an
execution. This is done as in the previous section, by exploiting the fact that S∗ must query TR on
a single valid input or else R will abort the protocol.

Corrupt receiver. Here, we need to bound the information that a malicious receiver R∗ learns
about ai, Bi (beyond ãi, B̃i). The only potential information R∗ can learn is from the output of the
(potentially malicious) token TR∗—and, indeed, the token could potentially embed ai, Bi themselves
into the MAC tag τãi∥B̃i

that it outputs. However, as long as the sender does not abort the protocol,

the MAC tag output by TR∗ is a deterministic function of the key s (to which R∗ committed in the
second round) and the commitment comãi∥B̃i

. We thus see that—if the protocol is not aborted—R∗

learns at most one bit of information about the {ai, Bi}. (And if the protocol is aborted, then R∗

learns nothing about the sender’s inputs.) Since we apply a strong extractor to the values GBihi
and GBihi +Gai, we conclude that R∗ learns no information about one of the sender’s inputs.

In the formal proof we also need to show how to extract the effective inputs of R∗. This is done
as in the previous section, by exploiting the fact that R∗ must query TS on a single valid input or
else S will abort the protocol. (We highlight here that the {wi} values play the role of “MAC tags,”
in the sense that they prove the token was queried on some valid inputs.)

3.5 Proof of Security for Bounded Oblivious Transfer Protocol

Theorem 2 If Com is statistically binding, SCom is statistically hiding, Mac is a secure message
authentication code, and Ext is a (1.5λ, negl(λ))-strong extractor, then the protocol of Figure 9
securely realizes Fbounded-OT in the Fwrap-hybrid model.

To prove the theorem, we construct a straight-line simulator Sim such that no non-uniform, ppt
environment Z can distinguish between (1) an execution involving an honest party and a corrupted
party (that without loss of generality we may take as the dummy adversary who simply forwards
messages to/from Z) running protocol π′ in the Fwrap-hybrid world and (2) an execution involving
the same honest party, functionality Fbounded-OT, and Sim in the ideal world. We consider the cases
of a corrupted sender and a corrupted receiver separately.

3.5.1 Corrupted Sender

We show a simulator Sim such that no non-uniform, ppt environment Z can distinguish (1) an
execution between an honest receiver running π′ and the dummy adversary A (who simply forwards
messages to/from Z) in the Fwrap-hybrid world and (2) an execution involving an honest receiver,
functionality Fbounded-OT, and Sim in the ideal world. The simulator Sim internally runs A, for-
warding messages to/from the environment Z. In addition, Sim simulates the following interactions
with A.
Tokens. Sim chooses uniform C and s, and then simulates A’s receipt of a token from the honest
receiver in the natural way. It then waits to receive a message (create, ⟨sid, S,R⟩,MA) from A to
the Fwrap functionality, and records MA. For readability, we let FR

wrap (resp., FS
wrap = MA) denote

the Fwrap functionality corresponding to the receiver’s (resp., sender’s) token.
Whenever A queries FR

wrap, the simulator Sim answers the query as in Figure 8. A query

(i, coma∥B, a, B, ra∥B, τa∥B) to FR
wrap is said to be valid if Macs(i∥0∥coma∥B) = τa∥B and furthermore
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Open(coma∥B, a∥B, ra∥B) = 1. When a valid query is answered with (ã, B̃, τã∥B̃), the simulator

records (i, a, B). If A ever makes a valid query (i, coma∥B, a, B, ra∥B, τa∥B) to FR
wrap but τa∥B was

not previously generated by the simulator as a MAC tag on coma∥B, or if A ever makes two
valid queries (i, coma∥B, a, B, ra∥B, τa∥B) and (i, coma∥B, a

′, B′, r′a∥B, τa∥B) with (a,B) ̸= (a′, B′),
the simulator aborts.

Simulation of the protocol. The simulator Sim runs the entire protocol exactly as an honest
receiver would using input bi = 0 for all i. Immediately before sending its message in step 6 of
the protocol (assuming it has not already aborted), Sim searches for a record of the form (i, ai, Bi)
for each i; if there is not a unique such record, or if there is such a record but Cai ̸= ãi or
CBi ̸= B̃i, then Sim aborts. Otherwise, it continues running the protocol to the end. It then
computes x0i := x̃0i ⊕ Ext(GBihi, v

0
i ) and x1i := x̃1i ⊕ Ext(GBihi + Gai, v

1
i ) for all i, and sends

(send, ⟨sid, S,R⟩, {(x0i , x1i )}mi=1) to functionality Fbounded-OT.
Let Real denote the distribution (ensemble) of the view of Z in an execution of π′ between

an honest receiver and A in the Fwrap-hybrid world. (We stress that the view of Z includes the
view of A as well as the outputs of the honest receiver.) We show that this is computationally
indistinguishable from Ideal, the distribution (ensemble) of the view of Z in an execution between
an honest receiver, Fbounded-OT, and Sim in the ideal world. To prove this, we consider a sequence
of experiments as described next.

Experiment H1. In this experiment, we imagine an interaction between a simulator Sim′ (playing
the role of the sender), the honest receiver and Fbounded-OT in the ideal world, but where Sim′

is given the inputs {bi}mi=1 of the receiver. Sim′ internally runs A, forwarding messages to/from
the environment Z. It also simulates an execution of protocol π′ with A, by playing the role
of the receiver itself using the inputs {bi}mi=1. As part of this simulation, Sim′ emulates FR

wrap

and interacts with FS
wrap. A query to FR

wrap is define to be valid as before. When a valid query
(i, coma∥B, a, B, ra∥B, τa∥B) is made, the simulator records (i, a, B).

When execution of π′ is complete then, if it was not aborted, Sim′ obtains outputs {xbii }mi=1. It

sets xb̄ii := 0λ for i ∈ [m] and sends (send, ⟨sid, S,R⟩, {(x0i , x1i )}mi=1) to functionality Fbounded-OT.
It is immediate that the view of Z in H1 is distributed identically to its view in Real.

Experiment H2. This experiment is as before except that now if A ever makes a valid query
(i, coma∥B, a, B, ra∥B, τa∥B) to FR

wrap but τa∥B was not previously generated by the simulator as a
MAC tag on coma∥B, or if the adversary A ever makes two valid queries (i, coma∥B, a, B, ra∥B, τa∥B)
and (i, coma∥B, a

′, B′, r′a∥B, τa∥B) with (a,B) ̸= (a′, B′), the simulator aborts. Security of the MAC
and binding of the commitment scheme imply that the view of Z here is indistinguishable from its
view in H1.

Experiment H3. This is identical to the previous experiment, except that immediately before
sending its message in step 6 of the protocol (assuming it has not already aborted), Sim′ searches
for a record of the form (i, ai, Bi) for each i; if there is not a unique such record, or if there is such
a record but Cai ̸= ãi or CBi ̸= B̃i, then Sim aborts. Security of the MAC means that the view of
Z here is indistinguishable from its view in H2.

Experiment H4. As in the previous experiment, in step 6, Sim′ finds the unique record of the
form (i, ai, Bi) for each i Now, however, Sim′ aborts if Vi ̸= aiz

T
i + Bi; otherwise, it proceeds as

before. We claim that the view of Z in H4 is statistically close to its view in H3. To see this, recall
that the simulator aborts in H3 and H4 if ãi ̸= Cai or B̃i ̸= CBi; in H3, the simulator aborts only if

23



CVi ̸= ãiz
T
i + B̃i. Thus, the only difference between H3 and H4 occurs if there is ever a sub-session

and an index i for which CVi = ãiz
T
i + B̃i = C ·

(
aiz

T
i +Bi

)
but Vi ̸= aiz

T
i +Bi. As in the analysis

of experiment H6 in Section 3.3.1, one can show that this occurs with negligible probability. (We
remark that rather than relying on uniqueness of the signature scheme, here we use the fact that
the τzi are sent by A before it learns C.)

Experiment H5. In this experiment, Sim′ uses the values ai, Bi that it derived1 in step 6 to
compute x0i := x̃0i ⊕ Ext(GBihi, v

0
i ) and x

1
i := x̃1i ⊕ Ext(Gai +GBihi, v

1
i ) in step 8. The rest of its

execution is as before.
We claim that the views of Z in H4 and H5 are identical. The change in the computation of

xb̄ii does not affect the view of Z at all (since the honest party’s input is bi). We consider next the

change in the computation of xbii . In both H4 and H5, the simulator aborts unless Vi = aiz
T
i +Bi.

In step 8 of H4, the simulator computes xbii := x̃bii ⊕ Ext(GVihi, v
bi
i ). But then in H5 we have

GVihi = G · (aizTi +Bi)hi = Gaibi +GBihi,

and so the result computed for xbii is the same.

Experiment H6. This is identical to the previous experiment, except that now Sim′ chooses
zi ← {z ∈ F4λ

2 | zThi = 0} for all i. We claim that the distributions on the view of Z in H5 and H6

are statistically close. The argument here is much simpler than in the previous section, since only
a single session is executed. It suffices to note that the view of FS

wrap is independent of the {hi},
and the view of A is independent of the {zi} except possibly for one bit of information that FS

wrap

can transmit by aborting. (Here we use the fact that A commits to the {wi} in advance.) Viewing
zTi hi as a strong extractor implies that bi remains statistically close to uniform.

Since H6 is identical to Ideal, this completes the proof of Theorem 2 for a corrupted sender.

3.5.2 Corrupted Receiver

We show a simulator Sim such that no non-uniform, ppt environment Z can distinguish (1) an
execution between an honest sender running π′ and the dummy adversary A (who simply forwards
messages to/from Z) in the Fwrap-hybrid world and (2) an execution involving an honest sender,
Fbounded-OT, and Sim in the ideal world. The simulator Sim internally runs A, forwarding messages
to/from the environment Z. In addition, Sim simulates the following interactions with A.

Tokens. Sim chooses {ai, Bi, wi, rwi} and s′ as an honest sender would, and then simulates A’s
receipt of the sender’s token in the natural way. It then waits to receive (create, ⟨sid,R,S⟩,MA)
fromA to the Fwrap functionality, and recordsMA. For readability, we let FS

wrap (resp., FR
wrap =MA)

denote the Fwrap functionality corresponding to the sender’s (resp., receiver’s) token.
WhenA queries FS

wrap, the simulator answers the query as in Figure 7. A query (i, comz, z, rz, τz)

to FS
wrap is said to be valid if Macs′(i∥comz) = τz and Open(comz, z, rz) = 1. When a valid query

(i, comz, z, rz, τz) is made, the simulator records (i, z). If, at any point during the experiment, A
makes a valid query (i, comz, z, rz, τz) to FS

wrap but τz was not previously generated by the simulator
as a MAC tag on comz, or if A ever makes two valid queries (i, comz, z, rz, τz) and (i, comz, z

′, r′z, τz)
with z ̸= z′, the simulator aborts.

1Note that by step 8, there may be multiple valid queries to FR
wrap using different values of comai∥Bi

. But in step 6,
before the MAC key s is sent to A, that cannot occur except with negligible probability.

24



Simulation of the protocol. The simulator runs the protocol as as honest sender would until
step 7. At that point (assuming it has not yet aborted), for each i it finds a record of the form
(i, zi); note there can be at most one such record. If there is no such record, Sim aborts. Otherwise,
it computes bi := zTi hi for all i and sends (receive, ⟨sid, S,R⟩, {bi}mi=1) to functionality Fbounded-OT.

After receiving {xi} in return, Sim does the following for all i: choose keys v0i , v
1
i , set x̃bii :=

Ext(GBihi +Gaibi, v
bi
i )⊕ xi, choose x̃

b̄i
i uniformly, and send {(v0i , v1i , x̃0i , x̃1i )}.

Let Real denote the distribution (ensemble) of the view of Z in an execution of π between an
honest sender and A in the Fwrap-hybrid world. (We stress that the view of Z includes the view of A
as well as the outputs of the honest sender.) We show that this is computationally indistinguishable
from Ideal, the distribution (ensemble) of the view of Z in an execution between an honest sender,
Fbounded-OT, and Sim in the ideal world. To prove this, we consider a sequence of experiments as
described next.

Experiment H1. In this experiment, we imagine an interaction between a simulator Sim′ (playing
the role of the receiver), the honest sender, and Fbounded-OT, in the ideal world, but where Sim′ is
given the inputs {(x0i , x1i )} of the sender. Sim′ internally runs A, forwarding messages to/from the
environment Z, and running the protocol honestly with A using the sender’s inputs. Valid queries
are defined as above, and after a valid query (i, comz, z, rz, τz) is made, Sim′ records (i, z). When
execution of the protocol is complete then, if it did not abort, Sim′ sets bi := 0 for all i and sends
(receive, ⟨sid, S,R⟩, {bi}mi=1) to Fbounded-OT.

It is immediate that the view of Z in H1 is distributed identically to its view in Real.

Experiment H2. This is identical to the previous experiment, except that if A ever makes a valid
query (i, comz, z, rz, τz) to FS

wrap but τz was not previously generated by the simulator as a MAC
tag on comz, or if A ever makes two valid queries (i, comz, z, rz, τz) and (i, comz, z

′, r′z, τz) with
z ̸= z′, the simulator aborts. It follows from security of the MAC and binding of the commitment
scheme that the view of Z in this experiment is indistinguishable from its view in H1.

Experiment H3. This is just like the previous experiment, except that in step 7, assuming it does
not abort, the simulator finds a record of the form (i, zi) for all i. If there is no such record for
some i, the simulator aborts. Computational hiding of the commitment scheme Com, along with
the fact that the {wi} are uniform λ-bit values, implies that the view of Z in experiment H3 is
indistinguishable from its view in H2.

Experiment H4. We modify the simulator as follows. For each i, after finding a record of
the form (i, zi) in step 7, Sim′ computes bi := zTi hi. Next, it chooses keys v0i , v

1
i , sets x̃bii :=

Ext(GBihi+Gaibi, v
bi
i )⊕x

bi
i , and chooses x̃b̄ii uniformly. We claim that the views of Z in experiments

H3 and H4 are statistically close.
To see this, consider the information that A has about ai, Bi for some particular index i. The

statistically hiding commitment comai∥Bi
reveals nothing about ai, Bi. From the protocol itself,

A learns ãi = Cai, B̃i = CBi, and Vi = aiz
T
i + Bi. As discussed in Section 3.1, the value

Z = GBihi + Gaib̄i (where bi = zTi hi) is a uniform 2λ-bit value conditioned on this information.
Moreover, FR

wrap can leak at most one bit of information—depending on whether or not S aborts—to

A about ai, Bi (beyond what is already implied by ãi, B̃i), and hence about Z. This is because if
S does not abort, then τãi∥B̃i

is a deterministic function of coms and ãi, B̃i. (If S aborts then FR
wrap

may have leaked information about ai, Bi to A, but in that case A learns nothing about x0i , x
1
i .)

We thus see that with overwhelming probability, the min-entropy of Z is at least 1.5λ, and hence
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the extracted value is statistically close to uniform. This concludes the proof that the views of Z
in H3 and H4 are statistically close.

Since H4 is identical to Ideal, this completes the proof of Theorem 2.

4 Black-Box Impossibility of OT Using One Stateless Token

In the previous section we showed that an unbounded number of universally composable OTs (and
hence universally composable secure computation) is possible by having the parties exchange two
stateless tokens. We show here that a construction of (even a single) OT using one stateless token
is impossible using black-box techniques alone. Here, by “black-box” we refer to the simulator’s
access to the codeM encapsulated in the token. Note that the token model as defined by Katz [39]
is inherently nonblack-box and, in particular, the simulator is given the codeM that the malicious
party submits to Fwrap. Nevertheless, an examination of the proofs of security for our protocols in
Section 3—as well as in most [47, 26, 16, 28, 29, 20] (though not all [13]) prior work—shows that
the simulator only uses this code in a black-box fashion, namely, by running the code to observe
its input/output behavior but without using the code itself. We formalize this in what follows.

Specifically, we consider simulators of the form Sim = (Simcode, Simbb), where Simcode gets the
codeM that the adversary submits to Fwrap, and then runs Simbb as a subroutine while giving it
oracle access to M. Inspired by the works of Canetti et al. [9, 10] we show that, restricting to
such simulators, constructions of OT from one stateless token are impossible. Intuitively, for any
such protocol proven secure using black-box techniques, Simbb must be able to extract the input of
a corrupted token-creating party after interacting withM in a black-box fashion. The real-world
adversary can then use Simbb to extract the input of the honest token-creating party by running
Simbb and answering its oracle queries by querying the token itself; for stateless tokens, querying
the token (in the real world) is equivalent to black-box access toM (in the ideal world).

Theorem 3 There is no protocol π that uses one stateless token to securely realize FOT in the
Fwrap-hybrid model whose security is proven using a black-box simulator as defined above.

Proof (Sketch) Let π be a protocol between a sender S and a receiver R, in which a single
token is sent from the sender to the receiver. (The other case is handled analogously.) Consider
the following environment Z ′ and dummy adversary A′ corrupting the sender: Z ′ chooses uniform
x0, x1, and b, and instructs the sender to run π honestly on input (x0, x1). The receiver is given
input b. Once the honest receiver outputs x, then Z ′ outputs 1 iff x = xb. Note that correctness
implies that Z ′ outputs 1 with overwhelming probability.

Suppose π securely realizes FOT, where security is proved via a black-box simulator Sim =
(Simcode, Simbb) as previously described. In the course of the proof, Simbb plays the role of a
receiver while interacting with A′, and Simcode provides Simbb with black-box access to the code A′
submits to Fwrap. At some point during its execution, Simbb must send some inputs (x̃0, x̃1) to the
ideal functionality FOT. It is not hard to see that we must have (x̃0, x̃1) = (x0, x1) with all but
negligible probability.

We now consider a different environment Z and an adversary A corrupting the receiver. Z
chooses uniform x0, x1, b and provides (x0, x1) as input to the honest sender. Adversary A works
as follows (note that A receives a token from the honest sender as specified by π):

Run Simbb, relaying messages from the honest sender to this internal copy of Simbb.
Whenever Simbb makes a query to Simcode to run M (the code created by the honest
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sender), A runs the token on the same query and gives the response to Simbb. At some
point, Simbb sends (x̃0, x̃1) to FOT, at which point A outputs (x̃0, x̃1) and halts.

Z outputs 1 iff A outputs (x0, x1).
The key point is that since the token is stateless, there is no difference between Simcode running

the code M, and A querying its token. Thus, A provides a perfect simulation for Simbb, and so
(x̃0, x̃1) = (x0, x1) with all but negligible probability in an execution of π in the Fwrap-hybrid world.
But this occurs with probability at most 1/2 in an ideal-world evaluation of FOT. Thus, Z can
distinguish between the real- and ideal-world executions, contradicting security of π.

5 Coin Tossing Using One Stateless Token

In the previous section we showed that universally composable OT cannot be realized from one
stateless token if only “black-box techniques” are used. We complement that result by showing that
UC secure computation from one stateless token is possible using nonblack-box techniques. Here,
we find it simpler to construct a protocol for universally composable coin tossing rather than OT.
(The coin-tossing functionality Fcoin is defined in the natural way; see Figure 10.) UC coin tossing
suffices for general UC computation under a variety of cryptographic assumptions [11, 43].

Functionality Fcoin

Fcoin interacts with two parties, A and B, and the adversary. The functionality is parameterized
by a security parameter λ. It also maintains variables (bA, bB, coins) initialized to (false, false,⊥).

Upon receiving (toss, ⟨sid,A,B⟩) from party P ∈ {A,B}, set bP := true,and send
(toss, ⟨sid,A,B⟩, P ) to the adversary. Ignore further (toss, ⟨sid,A,B⟩) inputs from P .

Upon receiving a message (go, ⟨sid,A,B⟩, P ) from the adversary for P ∈ {A,B}, ignore the message
if bA = false or bB = false. Otherwise, if coins = ⊥, choose uniform coins ∈ {0, 1}λ. Then return
(coin, ⟨sid,A,B⟩, coins) to party P . Ignore further (go, ⟨sid,A,B⟩, P ) messages for P .

Figure 10: The Fcoin functionality.

At a high level, our protocol follows the general structure of Blum’s coin-tossing protocol [5].
This protocol consists of three moves. In the first move (B1), A generates a commitment comx to
a uniform value x, and B replies with a uniform value y (B2). In the last move (B3), A sends the
decommitment to x and both parties output x⊕ y.

To obtain a UC coin-tossing protocol that follows this basic approach, we need to be able to
simulate each party. In particular, if A is malicious the simulator needs to extract the value x
contained in comx (extractability), whereas when B is corrupted the simulator needs to open the
commitment in an arbitrary way (equivocation). We achieve both goals by having B send a single
stateless token TB to A. This token behaves in two different ways, depending on its input. The first
task of the token is to generate a random value e upon seeing comx (we discuss the details later);
the second task is to generate a notification t for B that A knows the decommitment x. The value e
is used for equivocation, and the notification t gives the simulator the ability to extract x. We give
further details next. In the high-level description here, we assume the token is created honestly;
we deal with a potentially malicious token when we formally define the protocol, below.
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Achieving extractability. Similar to Section 3, the token only works on authenticated inputs.
That is, whenever A wants to query the token on some input, she needs to first ask B to compute
a MAC on that input. For extractability, we have A query the token on input (comx, x, rx, τx),
where rx is the decommitment for comx and τx is a MAC tag on comx. The output of the token
is a random value t that can be seen as a notification to B that A knows the decommitment. As
in the previous OT protocol, authentication of the inputs guarantees that A makes exactly one
valid query to the token. We can then easily construct a simulator that extracts the value x while
emulating Fwrap. Modifying Blum’s coin-tossing protocol, we have the following step:

(B1) A commits to x by executing comx ← SCom(x; rx). She sends the commitment comx to B,
who in turn computes a tag τx on comx and sends τx to A. Alice runs the token with
(comx, x, rx, τx) to obtain output t, and sends t to Bob. Bob checks if t is correct.

Achieving equivocation. To allow for equivocation, we further modify the protocol as follows. A
sends comx and a dummy commitment comM and gets a tag τx on comx∥comM from B. The token
is modified so it takes two types of inputs: on input (comx, comM , τx) it outputs a random value e,
and on input (comx, x, rx, comM , τx) it outputs a random value t. In step (B3), instead of sending
the decommitment, A now sends x together with a witness-indistinguishable (WI) proof that either
x is a valid decommitment of comx, or that comM contains code that outputs the actual output e
of the token TB. We use the nonblack-box techniques of Barak [3] to carry out this WI proof.

Due to the binding property of comM , and because e is unpredictable, a real-world A cannot
commit to code that outputs e. The simulator, however, can take advantage of the fact that it
obtains the code of the token generated by B. As in [3], the simulator’s ability to predict the output
of the token beforehand is used to achieve equivocation. We remark that in contrast to Barak’s
work, we do not need to use universal arguments; this is because Fwrap is parameterized with a
fixed polynomial bounding the running time of the token.

5.1 Formal Description of the Protocol

The protocol ψ between A and B consists of an initial token-exchange phase, followed by a coin-
tossing phase for generating a λ-bit string. We now describe ψ formally; see also Figure 11.

Token-exchange phase. B chooses uniform s, e, t, rt ∈ {0, 1}λ, generates a token TB encapsulating
the code described in Figure 12, and sends the token to A.

Coin-tossing phase. Let Com denote a statistically binding commitment scheme, SCom denote
a statistically hiding commitment scheme, and Mac denote a secure MAC. In this phase, Alice and
Bob proceed as follows.

Step 1: B chooses a collision-resistant hash function H ← H, and also commits to t using Com,
resulting in commitment comt and decommitment rt. It sends H, comt to A.

Step 2: A chooses uniform x ∈ {0, 1}2λ and commits to x by running comx := SCom(x; rx). It
commits to 0λ by running comM := Com(0λ; rM ), and sends comx and comM to B.

Step 3: B computes τx := Macs(comx∥comM ) and sends τx and e to A.

Step 4: A runs TB(comx, comM , τx) to obtain response e′. Next, it runs TB(comx, x, rx, comM , τx)
to obtain response (t′, r′t). A checks if e′ = e and Open(comt, t

′, r′t) = 1 and aborts if these do
not hold. Otherwise, it chooses a uniform extractor key v and sends (t′, v) to B.
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A B

Token exchange: s, t, rt, e← {0, 1}λ

� TB Construct TB as in Figure 12

Coin tossing: H ←H; comt := Com(t; rt)

x← {0, 1}2λ; comx := SCom(x; rx) � H, comt

comM := Com(0λ; rM )
comx, comM - τx := Macs(comx∥comM )

� e, τx

e′ := TB(comx, comM , τx)
(t′, r′t) := TB(comx, x, rx, comM , τx)
If e′ ̸= e or Open(comt, t′, r′t) ̸= 1, abort
choose key v
x̃ := Ext(x, v)

t′, v - If t ̸= t′, abort

� y
y ← {0, 1}λ

generate WI argument of knowledge Π that:
either ∃ x, rx s.t.
Open(comx, x, rx) = 1 ∧ x̃ = Ext(x, v)

or ∃M, rM s.t.
Open(comM , H(M), rM ) = 1
∧ e = M(comx, comM , τx)

output x̃⊕ y
x̃,Π - if Π verifies, output x̃⊕ y

Figure 11: A coin-tossing protocol ψ from a single stateless token.

Step 5: B checks that t = t′, and aborts if not. Otherwise it chooses uniform y ∈ {0, 1}λ and
sends y to A.

Step 6: A sends x̃ := Ext(x, v) and gives an interactive WI argument of knowledge that

• either there exist x, rx such that Open(comx, x, rx) = 1 and x̃ = Ext(α, v).

• or there exist M, rM such that Open(comM ,H(M), rM ) = 1 and, treating M as the
description of a Turing machine, M(comx, comM , τx) outputs e in time at most p(λ),
where p is the running time defined by Fwrap.

If the proof succeeds, both parties output x̃⊕ y.

On input (comx, comM , τx) do:
if Macs(comx∥comM ) = τx

output e
else output ⊥

On input (comx, x, rx, comM , τx) do:
if Macs(comx∥comM ) = τx

and Open(comx, x, rx) = 1
output (t, rt)

else output ⊥

Figure 12: The Turing machine M embedded in the sender-created token TB.
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We sketch the intuition for the proof of security.

Corrupted A. Since e is uniform, A cannot commit to M that outputs e (except with negligible
probability). Thus, We muse have x̃ = Ext(x, v). The simulator extracts x (and hence learns x̃)
by finding the unique valid query of the form (comx, x, rx, comM , τx) that A makes to TB. Having
done so, the simulator can then set y := x̃⊕ coins, where coins is the value it received from Fcoin.

Corrupted B. The simulator obtains the code encapsulated in TB, and commits to that code
in comM . This allows the simulator to equivocate x̃ to any desired value.

5.2 Proof of Security

Theorem 4 If Com is statistically binding, MAC is a secure message authentication code, H is
collision resistant, Ext is a (1.5λ, negl(λ))-strong extractor, and the proof system is a WI argument
of knowledge, then ψ securely realizes Fcoin in the Fwrap-hybrid model.

To prove the theorem, we construct a straight-line simulator Sim such that no non-uniform, ppt
environment Z can distinguish between (1) an execution involving an honest party and a corrupted
party (that without loss of generality we may take as the dummy adversary who simply forwards
messages to/from Z) running protocol ψ in the Fwrap-hybrid world and (2) an execution involving
the same honest party, functionality Fcoin, and Sim in the ideal world. We consider the cases of a
corrupted A and a corrupted B separately.

5.2.1 Corrupted A

We show a simulator Sim such that no non-uniform, ppt environment Z can distinguish (1) an exe-
cution between an honest B running ψ and the dummy adversary A (who simply forwards messages
to/from Z) in the Fwrap-hybrid world and (2) an execution involving an honest B, functionality
Fcoin, and Sim in the ideal world. The simulator Sim internally runs A, forwarding messages to/from
the environment Z. In addition, Sim simulates the following interactions with A.

Token. Sim chooses uniform s, e, t, rt and simulates A’s receipt of a token from the honest B in
the natural way. We let FB

wrap denote this token. Whenever A queries FB
wrap, the simulator Sim

answers the query as in Figure 12. A query (comx, x, rx, comM , τx) to FB
wrap is said to be valid if

Macs(comx∥comM ) = τx and Open(comx, x, rx) = 1. When A makes a valid query, Sim records x.
If A ever makes a valid query (comx, x, rx, comM , τx) to FB

wrap but τx was not previously gen-
erated by the simulator as a MAC tag on comx∥comM , or if A ever makes two valid queries
(comx, x, rx, comM , τx) and (comx, x

′, r′x, comM , τx) with x ̸= x′, the simulator aborts.

Simulation of the protocol. The simulator sends (toss, ⟨sid,A,B⟩) to functionality Fcoin and
runs the protocol as an honest B through step 4. Upon receiving the message (t′, v) (and assuming
it does not abort the protocol), the simulator checks if A has made a valid query and aborts if
not. Otherwise, it sends (go, ⟨sid,A,B⟩,A) to functionality Fcoin and obtains coins in return. It
then uses the value x it has recorded, computes y := coins ⊕ Ext(x, v), and sends y as step 5 of
the protocol. If A responds with x̃ = Ext(x, v) and a valid proof of knowledge then Sim sends
(go, ⟨sid,A,B⟩,B) to functionality Fcoin; in any other case it simply aborts.

Let Real be the distribution (ensemble) of the view of Z in an execution of ψ between an honest
B and A in the Fwrap-hybrid world. (We stress that the view of Z includes the view of A as well as
the output of the honest B.) We show that this is computationally indistinguishable from Ideal, the
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distribution (ensemble) of the view of Z in an execution between an honest B, functionality Fcoin,
and Sim in the ideal world. To prove this, we consider a sequence of experiments as described next.

Experiment H1. Here we imagine a real-world execution of the protocol between A (controlled
by Z) and an honest B, where at the end of the execution Z receives the output of B in ad-
dition to the final view of A. However, the execution is aborted if A ever makes a valid query
(comx, x, rx, comM , τx) to FB

wrap but τx was not previously generated by B as a MAC tag on
comx∥comM , or ifA ever makes two valid queries (comx, x, rx, comM , τx) and (comx, x

′, r′x, comM , τx)
with x ̸= x′. Security of the MAC and binding of the commitment scheme imply that the view
of Z here is indistinguishable from its view in Real.

Experiment H2. This experiment is identical to the previous one except that the experiment is
also aborted if, in step 4, A sends (t′, v) with t′ = t, but A never made a valid query to FB

wrap.
Hiding of the commitment scheme, along with the fact that t is a uniform λ-bit string, implies that
the view of Z here is indistinguishable from its view in experiment H1.

Experiment H3. Here, we modify the experiment to abort if the proof of knowledge succeeds in
the final step of the protocol, yet x̃ ̸= Ext(x, v) (where x is the value used in the unique valid query
made by A). We prove that this has only a negligible effect on the view of Z.

Let E be the above event, and let E′ be the event that E occurs and in addition extraction of
a witness from the argument of knowledge succeeds. The probabilities of E and E′ are negligibly
close. Let δ(λ) denote the probability of event E′. Imagine running the entire experiment twice
using the same randomness except for choosing two independent values e, e′. The probability that
E′ occurs both times is at least δ(λ)2. There are now two possibilities:

1. In at least one of these executions, the witness extracted consists of values x′, r′x such that
Open(comx, x

′, r′x) = 1 and x̃ = Ext(x′, v). In this case, x′ ̸= x and so this violates binding of
the commitment scheme. (Note that the valid input that A sent previously to FB

wrap gives an
opening to x.)

2. In the two executions, valuesM, rM andM ′, r′M are extracted with Open(comM ,H(M), rM ) =
1, Open(comM ,H(M ′), r′M ) = 1, M(comx, comM , τx) = e, and M ′(comx, comM , τx) = e′. So
M ̸= M ′, but statistical binding of the commitment scheme implies that H(M) = H(M ′),
contradicting collision resistance.

We conclude that δ2(λ), and hence δ(λ), must be negligible.

Experiment H4. This experiment is as before, except that instead of choosing uniform y the
simulator chooses uniform coins and sets y := coins ⊕ x (where x is the value used in the unique
valid query made by A). The view of Z is identical in experiments H4 and H3.

Since the view of Z in experiment H4 is the same as its view in Ideal, this completes the proof
of Theorem 4 for a malicious A.

5.2.2 Corrupted B

We show a simulator Sim such that no non-uniform, ppt environment Z can distinguish (1) an exe-
cution between an honest A running ψ and the dummy adversary B (who simply forwards messages
to/from Z) in the Fwrap-hybrid world and (2) an execution involving an honest A, functionality
Fcoin, and Sim in the ideal world. The simulator Sim internally runs B, forwarding messages to/from
the environment Z. In addition, Sim simulates the following interactions with B.
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Token. Sim waits to receive a message (create, ⟨sid,B,A⟩,MB) from B to the Fwrap functionality,
and records MB.

Simulation of the protocol. Sim sends (toss, ⟨sid,A,B⟩) to functionality Fcoin. In step 2 it
commits to MB, resulting in commitment comM and decommitment rM ; it runs steps 3–5 honestly.
Assuming it has not aborted the protocol, it sends (go, ⟨sid,A,B⟩,A) and (go, ⟨sid,A,B⟩,B) to
functionality Fcoin and obtains coins in return. Then, in step 6, it sets x̃ := y ⊕ coins and gives a
proof of knowledge using witness MB, rM .

Let Real be the distribution (ensemble) of the view of Z in an execution of ψ between an honest
A and B in the Fwrap-hybrid world. (We stress that the view of Z includes the view of A as well as
the output of the honest A.) We show that this is computationally indistinguishable from Ideal, the
distribution (ensemble) of the view of Z in an execution between an honest A, functionality Fcoin,
and Sim in the ideal world. To prove this, we consider a sequence of experiments as described next.

Experiment H1. This is similar to the real-world execution of the protocol, except that comM is
generated as a commitment to MB rather than a commitment to 0λ. Hiding of the commitment
scheme immediately implies that the view of Z in experiment H1 is indistinguishable from its view
in Real.

Experiment H2. This is identical to the previous experiment, except that now the proof of
knowledge is done using witness MB, rM instead of witness x, rx. Witness indistinguishability of
the proof system implies that the view of Z here is indistinguishable from its view in experimentH1.

Experiment H3. Here, x̃ is chosen uniformly rather than being computed as x̃ := Ext(x, v). We
claim that the view of Z in experiment H3 is statistically indistinguishable from its view in H2. To
see this, consider the information that B has about x. Since the commitment to x is statistically
hiding, it reveals no information about x. The only information that Fwrap can communicate to B
is a single bit based on whether or not it aborts. Thus, with all but negligible probability, the
min-entropy of x is at least 1.5λ, and so x̃ in H2 is statistically close to uniform.

Experiment H4. Now, instead of choosing x̃ uniformly, a uniform value coins ∈ {0, 1}λ is chosen
and the simulator sets x̃ := y ⊕ coins. It is clear that this does not change the view of Z.

Since the view of Z in experiment H4 is identical to its view in Ideal, this completes the proof
of Theorem 4.
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[20] N. Döttling, D. Kraschewski, and J. Müller-Quade. Unconditional and composable secu-
rity using a single stateful tamper-proof hardware token. In 8th Theory of Cryptography
Conference—TCC 2011, volume 6597 of LNCS, pages 164–181. Springer, 2011.
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A A Technical Lemma

We consider the following dot-product-with-equality-oracle game between two parties A and T .
First, a uniform bit b is chosen. Values z, h ∈ F4λ

2 are then chosen uniformly subject to zTh = b,
and A is given h and T is given z. Parties A and T then interact with a third party for at most
p(λ) rounds; in round j, they may send arbitrary inputs aj and tj to this third party, who responds
to both parties with a bit indicating whether aj and tj are equal. If so, the parties continue to the
next round, but once aj ̸= tj the protocol ends. (Otherwise, it ends in round p(λ).) When the
protocol ends, A outputs a guess for b and succeeds if its guess is correct. The advantage of A is
the absolute value of its probability of success minus 1/2. We claim the following:

Theorem 5 For any (even all-powerful) A and T and any polynomial p, the advantage of A in
the dot-product-with-equality-oracle game is negligible.

Proof Fix A, T , and p, and say A has advantage 1/q(λ) for some polynomial q. Without
loss of generality, assume that for infinitely many values of λ, the probability that A succeeds is
1/2 + 1/q(λ). In what follows we restrict our attention to such λ only. We also assume A and T
are deterministic without loss of generality.

We introduce a second, one-shot game that proceeds as follows. Parties A′ and T ′ are given h
and z, respectively, where h, z are generated as before, and then each party sends a single input
(a1, . . . , ap) and (b1, . . . , bp) to a third party. That third party computes f ′((a1, . . . , ap), (b1, . . . , bp)),
where f ′ returns the first index i where ai ̸= bi (which can be encoded as a string of length log p.)
Then A′ outputs a guess for b and succeeds if its guess is correct.

We claim that there exist A′ and T ′ such that A′ succeeds with probability 1/2+1/q(λ) in this
second game. T ′ is constructed by internally running T , simulating the behavior of the equality
check by simply returning 1 for all p rounds. Let b′ = (b1, . . . , bp), where bi is the input that T sends
to its (simulated) third party in round i. Then T ′ sends b′ to its third party. A′ is constructed
similarly, resulting in an input a′ = (a1, . . . , ap) that is sent to the third party. After learning
the index i from the third party, A′ again runs A, but this time simulating the third party by
returning 1 for the first i − 1 rounds and then returning 0 in round i and ending the protocol.
Finally, A′ outputs whatever A does. It is immediate that A′ succeeds exactly when A does.

We now consider a third game in which A′′ gets no input and T ′′ is given uniform input z.
Party A′′ may send a list of inputs (a′1, . . . , a

′
ℓ) to a third party, whereas T ′′ sends a single input b′.

The third party returns f ′(a′1, b
′), . . . , f ′(a′ℓ, b

′) to A′′, who then outputs a guess for z and succeeds
if this guess is correct.

By adapting the proof of the Goldreich-Levin theorem [25] in a straightforward manner (viewing
zTh as a “hard-core bit” guessed with probability noticeably better than 1/2 by A′′), we can
conclude that there exist A′′, T ′′, and polynomials ℓ, q′′ such that A′′ succeeds with probability at
least 1/q′′(λ) in this third game.

We next observe that the answer of the third party in the third game can be compressed.
Let a′i = (ai1, . . . , a

i
p) and b′ = (b1, . . . , bp). Then for each i, the third party can compute ti, the

smallest index for which aiti ̸= bi; it then returns (i∗, ti∗), where i
∗ maximizes ti∗ (with ties broken

arbitrarily). Given (i∗, ti∗) and all the {a′i}, it is possible to reconstruct f ′(a′1, b
′), . . . , f ′(a′ℓ, b

′).
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The answer in this modified game has length log ℓ + log p, where ℓ and p are polynomial, and
thus can be guessed with non-negligible probability. But this means that there is an algorithm
that can guess a uniform input z ∈ F4λ

2 with non-negligible probability, something that is clearly
impossible.
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