A new attack on RSA with a composed decryption exponent

Abderrahmane Nitaj ${ }^{1}$ and Mohamed Ould Douh ${ }^{1,2}$
${ }^{1}$ Laboratoire de Mathématiques Nicolas Oresme Université de Caen, Basse Normandie, France
abderrahmane.nitaj@unicaen.fr
mohamed.douh@unicaen.fr
${ }^{2}$ Université des Sciences, de Technologie et de Médecine
Nouakchott - Mauritania
mdouh@univ-nkc.mr

Abstract

In this paper, we consider an RSA modulus $N=p q$, where the prime factors p, q are of the same size. We present an attack on RSA when the decryption exponent d is in the form $d=M d_{1}+d_{0}$ where M is a given positive integer and d_{1} and d_{0} are two suitably small unknown integers. In 1999, Boneh and Durfee 2 presented an attack on RSA when $d<N^{0.292}$. When $d=M d_{1}+d_{0}$, our attack enables one to overcome Boneh and Durfee's bound and to factor the RSA modulus.

Keywords: RSA, Cryptanalysis, Factorization, LLL algorithm, Coppersmith's method

1 Introduction

The RSA cryptosystem [11 was invented in 1978 by Rivest, Shamir and Adleman and is today one of the most popular cryptosystems. The main parameters in RSA are the modulus $N=p q$, which is the product of two large primes of the same bit-size, that is $q<p<2 q$, and a public exponent e such that $\operatorname{gcd}(e, \phi(N))=1$ where $\phi(N)$ is Euler's totient function. The public exponent e is related to the private exponent d by an equation of the form $e d-k \phi(N)=1$. For efficiency reasons, it might be tempting to select a small RSA private exponent d. In 1990, Wiener 12 showed that RSA is insecure if $d<\frac{1}{3} N^{0.25}$. His attack makes use of the continued fractions method and had an important impact on the design of RSA. Wiener's bound was later subsequently improved to $d<N^{0.292}$ by Boneh and Durfee 2. Their method is based on Coppersmith's technique 4 for finding small solutions of modular polynomial equations, which in turn is based on the LLL lattice reduction algorithm [8]. A related problem is to attack the RSA cryptosystem when an amount of bits of the private exponent d are known to the adversary. This problem was introduced by Boneh, Durfee and Frankel [3] in 1998. It is called the partial key exposure problem and is related to the study of side channel attacks such as fault attacks, timing attacks
and power analysis. In most cases, the partial key exposure attacks are based on the knowledge of the most significant bits or the least significant bits of the private exponent d. Boneh, Durfee and Frankel showed that for low public exponent e and full private exponent d, that is $d \approx N \approx 2^{n}$, if $d=M d_{1}+d_{0}$ where d_{0} and $M \geq 2^{\frac{n}{4}}$ are known, then all d can be computed in polynomial time. Their method makes use of Coppersmith's technique 4. More partial key exposure attacks are presented by Blömer and May in [1] and by Ernst, Jochemsz, May and de Weger in [5]. These attacks extend the size of the public exponent e up to N.

All partial key exposure results on RSA presented so far have in common that the private exponent d is of the shape $d=M d_{1}+d_{0}$ where $M \geq 2^{\frac{n}{4}}$ and d_{0} are known, or of the shape $d=d_{1}+d_{0}$ where d_{1} is known and d_{0} is small. In this paper, we consider the situation with $d=M d_{1}+d_{0}$ where M is known and d_{1} and d_{0} are unknown. We show that one can find the factorization of N if d_{1} and d_{0} are suitably small. Namely, suppose that

$$
e=N^{\alpha}, \quad M=N^{\beta}, \quad d_{1}<N^{\delta}, \quad d_{0}<N^{\gamma}
$$

We show that if

$$
\delta<\frac{1}{4}(5-4 \gamma-\sqrt{12 \alpha+12 \beta-12 \gamma+3})
$$

then there is a polynomial time algorithm to factor the modulus N, which breaks the RSA cryptosystem. The starting point of the attack is the key equation $e d-k \phi(N)=1$, which can be rewritten as

$$
e d_{0}-k N+k(p+q+1)-1 \equiv 0 \quad(\bmod M e)
$$

From the left side, we derive a polynomial $f(x, y, z)=e x-N y+y z-1$ and use Coppersmith's method to solve the modular equation $f(x, y, z) \equiv 0(\bmod M e)$. When we perform the LLL algorithm in Coppersmith's method, we find three polynomials $h_{i}(x, y, z)$ for $1 \leq i \leq 3$. Since $\left(d_{0}, k, p+q-1\right)$ is a small solution of the equation $f(x, y, z) \equiv 0(\bmod M e)$, then, using the resultant process or the Gröbner basis computation, we can find z_{0} such that $z_{0}=p+q-1$. Hence using $p+q-1=z_{0}$ and $p q=N$, one can find p and q. We note that Coppersmith's method applied with multivariate polynomials relies on the following heuristic assumption which is supposed to hold true for $n \geq 3$ variables.

Assumption 1. The resultant computations for the polynomials $h_{i}(x, y, z)$ for $1 \leq i \leq 3$ yield nonzero polynomials.

The rest of the paper is organized as follows. In Section 2, we give some basics on lattices, lattice reduction and Coppersmith's method. In Section 3, we present our attack on RSA when the private exponent d satisfies $d=M d_{1}+d_{0}$ with known M. We conclude in Section 4.

2 Preliminaries

In this section, we present a few basic facts about lattices, lattice basis reduction, Coppersmith's method for solving modular polynomial equations and HowgraveGraham's theorem.

Let $b_{1}, \cdots, b_{\omega} \in \mathbb{R}^{n}$ be ω linearly independent vectors where ω and n are two positive integers satisfying $\omega \leq n$. The lattice \mathcal{L} spanned by $\left\{b_{1}, \cdots, b_{\omega}\right\}$ is the set of linear combinations of the vectors $b_{1}, \cdots, b_{\omega} \in \mathbb{R}^{n}$ using integer coefficients, that is

$$
\mathcal{L}=\left\{\sum_{i=1}^{\omega} \lambda_{i} b_{i} \mid x_{i} \in \mathbb{Z}\right\}
$$

We say that the set $\left\{b_{1}, \cdots, b_{\omega}\right\}$ is a lattice basis for \mathcal{L}, and ω is its dimension. This is denoted as $\operatorname{dim}(\mathcal{L})=\omega$. The lattice is called full rank if $\omega=n$. When $\omega=n$, the determinant is equal to the absolute value of the determinant of the matrix whose rows are the basis vectors $b_{1}, \cdots, b_{\omega}$, that is

$$
\operatorname{det}(\mathcal{L})=\left|\operatorname{det}\left(b_{1}, \cdots, b_{\omega}\right)\right|
$$

If $b=\sum_{i=1}^{\omega} \lambda_{i} b_{i}$ is a vector of \mathcal{L}, the Euclidean norm of b is

$$
\|b\|=\left(\sum_{i=1}^{\omega} \lambda_{i}^{2}\right)^{\frac{1}{2}}
$$

A lattice has infinitely many bases with the same determinant and it is useful to find a basis of small vectors. However, finding the shortest nonzero vector in a lattice is very hard in general. In 1982, Lenstra, Lenstra and Lovász [8] invented the so-called LLL algorithm to reduce a basis and to approximate a shortest lattice vector in time polynomial in the bit-length of the entries of the basis matrix and in the dimension of the lattice. In the following theorem, we state a general result on the size of the individual reduced basis vectors. A proof can be found in 9].

Theorem 1 (LLL). Let \mathcal{L} be a lattice of dimension ω. In polynomial time, the LLL- algorithm outputs a reduced basis $\left\{v_{1}, \cdots, v_{\omega}\right\}$ that satisfy

$$
\left\|v_{1}\right\| \leq\left\|v_{2}\right\| \leq \cdots \leq\left\|v_{i}\right\| \leq 2^{\frac{\omega(\omega-1)}{4(\omega+1-i}} \operatorname{det}(\mathcal{L})^{\frac{1}{\omega+1-i}}
$$

for all $1 \leq i \leq \omega$.
In 1996, Coppersmith [4] proposed rigorous techniques to compute small roots of bivariate polynomials over the integers and univariate modular polynomials using the LLL algorithm. The methods extend heuristically to more variables. In 1997, Howgrave-Graham [6] reformulated Coppersmith's techniques and proposed the following result in terms of the Euclidean norm of the polynomial $f\left(x_{1}, \ldots, x_{n}\right)=\sum a_{i_{1}, \ldots, i_{n}} x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}$ which is defined by

$$
\left\|f\left(x_{1}, \ldots, x_{n}\right)\right\|=\sqrt{\sum a_{i_{1}, \ldots, i_{n}}^{2}}
$$

Theorem 2 (Howgrave-Graham). Let $f\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial which is a sum of at most ω monomials. Suppose that

$$
\begin{aligned}
& f\left(x_{1}^{(0)}, \ldots, x_{n}^{(0)}\right) \equiv 0 \quad\left(\bmod (M e)^{m}\right) \\
& \left|x_{1}^{(0)}\right|<X_{1}, \ldots,\left|x_{n}^{(0)}\right|<X_{n} \\
& \left\|f\left(x_{1} X_{1}, \ldots, x_{n} X_{n}\right)\right\|<\frac{(M e)^{m}}{\sqrt{\omega}} .
\end{aligned}
$$

Then $f\left(x_{1}^{(0)}, \ldots, x_{n}^{(0)}\right)=0$ holds over the integers.
Using Theorem 1, if

$$
2^{\frac{\omega(\omega-1)}{4(\omega+1-n)}} \operatorname{det}(\mathcal{L})^{\frac{1}{\omega+1-n}} \leq \frac{(M e)^{m}}{\sqrt{\omega}}
$$

then we can find n polynomials $v_{i}\left(x_{1}, \ldots, x_{n}\right), 1 \leq i \leq n$, that share the root $\left(x_{1}^{(0)}, \ldots, x_{n}^{(0)}\right)$ over the integers.

We terminate this section by two useful results (see. [10). Let $N=p q$ be an RSA modulus with $q<p<2 q$. Then the prime factors p and q satisfy the following properties

$$
\begin{align*}
& \frac{\sqrt{2} \sqrt{N}}{2}<q<\sqrt{N}<p<\sqrt{2} \sqrt{N} \tag{1}\\
& 2 \sqrt{N}<p+q<\frac{3 \sqrt{2} \sqrt{N}}{2} \tag{2}
\end{align*}
$$

3 The Attack

In this section, we present our new attack on RSA when the private exponent is in the form $d=M d_{1}+d_{0}$ with a known integer M and suitably small unknown integers d_{1} and d_{2}. A typical example is $M=2^{m}$ for some positive integer m.

Theorem 3. Let $N=p q$ be an RSA modulus with $q<p<2 q$. Let $M=N^{\beta}$ be a positive integer and $e=N^{\alpha}$ a public exponent satisfying ed $-k \phi(N)=1$ with $d=M d_{1}+d_{0}$. Suppose that $d_{1} \leq N^{\delta}$ and $d_{0}<N^{\gamma}$. Then one can factor N in polynomial time if

$$
\delta<\frac{1}{4}(5-4 \gamma-\sqrt{12 \alpha+12 \beta-12 \gamma+3}) .
$$

Proof. Let M be a known integer. Suppose that $d=M d_{1}+d_{0}$. The starting point is the RSA key equation $e d-k \phi(N)=1$ where $\phi(N)=N-p-q+1$. Hence $e\left(M d_{1}+d_{0}\right)-k(N-p-q+1)=1$ and $\operatorname{Med}_{1}+e d_{0}-k N+k(p+q+1)=1$. Taking this equation modulo $M e$, we get $e d_{0}-k N+k(p+q+1)-1 \equiv 0(\bmod M e)$. Consider the polynomial

$$
f(x, y, z)=e x-N y+y z-1
$$

Then $\left(x_{0}, y_{0}, z_{0}\right)=\left(d_{0}, k, p+q-1\right)$ is a root modulo $M e$. Define

$$
\begin{equation*}
e=N^{\alpha}, \quad M=N^{\beta}, \quad X=N^{\gamma}, \quad Y=2 N^{\alpha+\beta+\delta-1}, \quad Z=\frac{3 \sqrt{2}}{2} N^{\frac{1}{2}} \tag{3}
\end{equation*}
$$

Suppose that $d_{1}<N^{\delta}$ and $d_{0}<N^{\gamma}$ where $\gamma<\beta+\delta$. Then $d=M d_{1}+d_{0}<$ $2 N^{\beta+\delta}$. Hence, since $\phi(N) \approx N$, we get

$$
k=\frac{e d-1}{\phi(N)}<\frac{e d}{\phi(N)}<\frac{2 N^{\alpha+\beta+\delta}}{\phi(N)} \approx 2 N^{\alpha+\beta+\delta-1}=Y
$$

On the other hand, using 22, we get $p+q<\frac{3 \sqrt{2}}{2} N^{\frac{1}{2}}$. Summarizing, the root $\left(x_{0}, y_{0}, z_{0}\right)=\left(d_{0}, k, p+q-1\right)$ modulo $M e$ of the polynomial $f(x, y, z)$ satisfies

$$
x_{0}<X, \quad y_{0}<Y, \quad z_{0}<Z
$$

To apply Coppersmith's method [4] to find the small modular roots of the equation $f(x, y, z) \equiv 0(\bmod M e)$, we use the extended strategy of Jochemsz and May [7]. Define the set

$$
\begin{aligned}
M_{k}=\bigcup_{0 \leq j \leq t}\left\{x^{i_{1}} y^{i_{2}} z^{i_{3}+j} \mid\right. & x^{i_{1}} y^{i_{2}} z^{i_{3}} \text { monomial of } f^{m}(x, y, z) \\
& \text { and } \left.\frac{x^{i_{1}} y^{i_{2}} z^{i_{3}}}{(y z)^{k}} \text { monomial of } f^{m-k}\right\} .
\end{aligned}
$$

Observe that $f^{m}(x, y, z)$ is in the form

$$
f^{m}(x, y, z)=\sum_{i_{1}=0}^{m} \sum_{i_{2}=0}^{m-i_{1}} \sum_{i_{3}=0}^{i_{2}} a_{i_{1}, i_{2}, i_{3}} x^{i_{1}} y^{i_{2}} z^{i_{3}}
$$

where the coefficients $a_{i_{1}, i_{2}, i_{3}}$ do not depend on x, y nor z. This gives the following properties

$$
\begin{aligned}
x^{i_{1}} y^{i_{2}} z^{i_{3}} \in f^{m} & \text { if } i_{1}=0, \ldots, m, i_{2}=0, \ldots, m-i_{1}, i_{3}=0, \ldots, i_{2} \\
x^{i_{1}} y^{i_{2}} z^{i_{3}} \in f^{m-k} & \text { if } i_{1}=0, \ldots, m-k, i_{2}=0, \ldots, m-k-i_{1}, i_{3}=0, \ldots, i_{2} .
\end{aligned}
$$

Hence, if $x^{i_{1}} y^{i_{2}} z^{i_{3}}$ is a monomial of $f^{m}(x, y, z)$, then $\frac{x^{i_{1}} y^{i_{2}} z^{i_{3}}}{y^{k} z^{k}}$ is a monomial of $f^{m-k}(x, y, z)$ for

$$
i_{1}=0, \ldots, m-k, \quad i_{2}=k, \ldots, m-i_{1}, \quad i_{3}=k, \ldots, i_{2}
$$

For $0 \leq k \leq m$, we obtain
$x^{i_{1}} y^{i_{2}} z^{i_{3}} \in M_{k} \quad$ if $\quad i_{1}=0, \ldots, m-k, \quad i_{2}=k, \ldots, m-i_{1}, \quad i_{3}=k, \ldots, i_{2}+t$.
From this, we deduce
$x^{i_{1}} y^{i_{2}} z^{i_{3}} \in M_{k+1}$ if $i_{1}=0, \ldots, m-k-1, \quad i_{2}=k+1, \ldots, m-i_{1}, i_{3}=k+1, \ldots, i_{2}+t$.

For $0 \leq k \leq m$, define the polynomials

$$
g_{k, i_{1}, i_{2}, i_{3}}(x, y, z)=\frac{x^{i_{1}} y^{i_{2}} z^{i_{3}}}{y^{k} z^{k}} f(x, y, z)^{k}(M e)^{m-k} \quad \text { with } \quad x^{i_{1}} y^{i_{2}} z^{i_{3}} \in M_{k} \backslash M_{k+1} .
$$

These polynomials reduce to the following sets

$$
\left\{\begin{array} { l }
{ k = 0 , \ldots , m , } \tag{4}\\
{ i _ { 1 } = 0 , \ldots , m - k , } \\
{ i _ { 2 } = k , \ldots , m - i _ { 1 } , } \\
{ i _ { 3 } = k , }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
k=0, \ldots, m, \\
i_{1}=0, \ldots, m-k, \\
i_{2}=k, \\
i_{3}=k+1, \ldots, i_{2}+t
\end{array}\right.\right.
$$

Consequently, the polynomials $g_{k, i_{1}, i_{2}, i_{3}}(x, y, z)$ are in one of the following forms

$$
\begin{aligned}
& G_{k, i_{1}, i_{2}, i_{3}}(x, y, z)=x^{i_{1}} y^{i_{2}-k} f(x, y, z)^{k}(M e)^{m-k} \\
& \text { for } \quad k=0, \ldots m, \quad i_{1}=0, \ldots m-k, \quad i_{2}=k, \ldots, m-i_{1}, \quad i_{3}=k \\
& H_{k, i_{1}, i_{2}, i_{3}}(x, y, z)=x^{i_{1}} z^{i_{3}-k} f(x, y, z)^{k}(M e)^{m-k} \\
& \text { for } \quad k=0, \ldots m, \quad i_{1}=0, \ldots, m-k, \quad i_{2}=k, \quad i_{3}=k+1, \ldots, i_{2}+t
\end{aligned}
$$

Define the lattice \mathcal{L} spanned by the coefficients of the vectors $G_{k, i_{1}, i_{2}, i_{3}}(x, y, z)$ and $H_{k, i_{1}, i_{2}, i_{3}}(x, y, z)$. For $m=2$ and $t=1$, the matrix of \mathcal{L} is presented in Table 1 The non-zero elements are marked with an ' \circledast '.

	000000	000		$\bigcirc 00$	-	
$\begin{aligned} & N_{N}^{N} \\ & e_{\tilde{N}} \\ & \hline \end{aligned}$	0000000	000	-	$\bigcirc 00$	-	${ }_{*}$
$\left.\begin{aligned} & \infty \\ & x_{n} \\ & s \end{aligned} \right\rvert\,$	000000	000	-	000	疗	*
N_{A}^{N}	000000	000	-		\bigcirc *	*
\times	0000000	000	-		$\circledast{ }^{*}$	*
\sim	$\bigcirc 000000$	$\bigcirc 00$		$\begin{array}{lll} N \\ N & \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	* 0	*
$\begin{gathered} c_{12} \\ -8 \\ -\gg 0 \end{gathered}$	000000	000	$\begin{gathered} \mathrm{N}_{\mathrm{N}} \\ \mathrm{~N}_{1} \end{gathered}$	- 00	\bigcirc	*
$\overbrace{\substack{x}}^{\substack{x}}$	000000	$\left\|\right\|$	*	000	\bigcirc -	*
x	0000000	${ }^{N}$	*	000	\bigcirc	*
\%	000000	$\begin{array}{lll} N & \\ \vdots \\ \vdots \\ & 0 & 0 \\ \hline \end{array}$		$\bigcirc 00$	*	*
${ }_{*}$	$\begin{array}{\|llllll} \hline & & & & \begin{array}{c} N \\ \times \\ \hline \end{array} \\ \hline & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 \\ \hline \end{array}$	$\|\circ \circ \circledast\|$	*	$\bigcirc 00$	\bigcirc	-
?		- ® ®	*	000	-	-
$\%$	$0.00 \frac{\underset{y}{x}}{\substack{x \\ y}}$	$\circledast \bigcirc \circledast$	\circledast	$\bigcirc 00$	\bigcirc	-
Cl_{2}		- $\because 0$	*	$\bigcirc 00$	\bigcirc	-
2	$\left\lvert\, \begin{array}{lllll} \lambda \\ 0 & \hat{N} \\ \frac{E}{E} & 0 & 0 & 0 & 0 \end{array}\right.$	$\circledast \circledast \bigcirc$	*	$\bigcirc 00$	\bigcirc	\bigcirc
$-$	E	®00	*	-0 0	\bigcirc	\bigcirc
	$\|$0 0 0 0 0 0 0 - 1 0 z 0 0 0 0 - - 0 0 0 0 0 0 0 0 0 0 0 0 0		N	$\begin{array}{llll} \hline 0 & 7 & 7 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}$		N

Table 1. The coefficient matrix for the case $m=2, t=1$.

Notice that the matrix is triangular so that the values marked with the symbol \circledast do not contribute in the calculation of the determinant. Indeed, the determinant is in the form

$$
\begin{equation*}
\operatorname{det}(\mathcal{L})=(M e)^{n_{e}} X^{n_{X}} Y^{n_{Y}} Z^{n_{Z}} \tag{5}
\end{equation*}
$$

Using the bounds (4), we get

$$
\begin{aligned}
n_{e} & =\sum_{k=0}^{m} \sum_{i_{1}=0}^{m-k} \sum_{i_{2}=k}^{m-i_{1}} \sum_{i_{3}=k}^{k}(m-k)+\sum_{k=0}^{m} \sum_{i_{1}=0}^{m-k} \sum_{i_{2}=k}^{k} \sum_{i_{3}=k+1}^{i_{2}+t}(m-k) \\
& =\frac{1}{24} m(m+1)(m+2)(3 m+8 t+9)
\end{aligned}
$$

Similarly, we have

$$
\begin{aligned}
n_{X} & =\sum_{k=0}^{m} \sum_{i_{1}=0}^{i_{1}} \sum_{i_{2}=k}^{m-i_{1}} \sum_{i_{3}=k}^{k} i_{1}+\sum_{k=0}^{m} \sum_{i_{1}=0}^{m-k} \sum_{i_{2}=k}^{k} \sum_{i_{3}=k+1}^{i_{2}+t} i_{1} \\
& =\frac{1}{24} m(m+1)(m+2)(m+4 t+3)
\end{aligned}
$$

and

$$
\begin{aligned}
n_{Y} & =\sum_{k=0}^{m} \sum_{i_{1}=0}^{m-k} \sum_{i_{2}=k}^{m-i_{1}} \sum_{i_{3}=k}^{k} i_{2}+\sum_{k=0}^{m} \sum_{i_{1}=0}^{m-k} \sum_{i_{2}=k}^{k} \sum_{i_{3}=k+1}^{i_{2}+t} i_{2} \\
& =\frac{1}{12} m(m+1)(m+2)(m+2 t+3)
\end{aligned}
$$

and finally

$$
\begin{aligned}
n_{Z} & =\sum_{k=0}^{m} \sum_{i_{1}=0}^{m-k} \sum_{i_{2}=k}^{m-i_{1}} \sum_{i_{3}=k}^{k} i_{3}+\sum_{k=0}^{m} \sum_{i_{1}=0}^{m-k} \sum_{i_{2}=k}^{k} \sum_{i_{3}=k+1}^{i_{2}+t} i_{3} \\
& =\frac{1}{24}(m+1)(m+2)\left(m^{2}+3 m+4 t m+6 t^{2}+6 t\right)
\end{aligned}
$$

On the other hand, the dimension of \mathcal{L} is

$$
\begin{aligned}
\omega & =\sum_{k=0}^{m} \sum_{i_{1}=0}^{m-k} \sum_{i_{2}=k}^{m-i_{1}} \sum_{i_{3}=k}^{k} 1+\sum_{k=0}^{m} \sum_{i_{1}=0}^{m-k} \sum_{i_{2}=k}^{k} \sum_{i_{3}=k+1}^{i_{2}+t} 1 \\
& =\frac{1}{6}(m+1)(m+2)(m+3 t+3)
\end{aligned}
$$

In the following, we set $t=\tau m$. For sufficiently large m, the exponents n_{e}, n_{X}, n_{Y}, n_{Z} as well as the dimension ω reduce to

$$
\begin{align*}
& n_{e}=\frac{1}{24}(8 \tau+3) m^{4}+o\left(m^{4}\right) \\
& n_{X}=\frac{1}{24}(4 \tau+1) m^{4}+o\left(m^{4}\right) \\
& n_{Y}=\frac{1}{24}(4 \tau+2 \tau+1) m^{4}+o\left(m^{4}\right), \tag{6}\\
& n_{Z}=\frac{1}{24}\left(6 \tau^{2}+4 \tau+1\right) m^{4}+o\left(m^{4}\right), \\
& \omega=\frac{1}{24}(12 \tau+4) m^{3}+o\left(m^{3}\right)
\end{align*}
$$

Applying the LLL algorithm, we get a new basis $\left\{v_{1}, \ldots, v_{\omega}\right\}$. Using Theorem 1 , such a bais is LLL-reduced and satisfies

$$
\left\|v_{1}\right\| \leq\left\|v_{2}\right\| \leq\left\|v_{3}\right\| \leq 2^{\frac{\omega(\omega-1)}{4(\omega-2)}} \operatorname{det}(\mathcal{L})^{\frac{1}{\omega-2}} .
$$

According to Theorem 2, we need $\left\|v_{3}\right\| \leq \frac{(M e)^{m}}{\sqrt{\omega}}$. This is satisfied if

$$
2^{\frac{\omega(\omega-1)}{4(\omega-2)}} \operatorname{det}(\mathcal{L})^{\frac{1}{\omega-2}}<\frac{(M e)^{m}}{\sqrt{\omega}}
$$

From this, we deduce

$$
\operatorname{det}(\mathcal{L})<\frac{1}{\left(2^{\frac{\omega(\omega-1)}{4(\omega-2)}} \sqrt{\omega}\right)^{\omega-2}}(M e)^{m(\omega-2)}<(M e)^{m \omega}
$$

Using (5), we get the inequality

$$
(M e)^{n_{e}} X^{n_{X}} Y^{n_{Y}} Z^{n_{Z}}<(M e)^{m \omega}
$$

Using the values (6) as well as the values (3) and taking logarithms, neglecting low order terms and after simplifying by m^{4}, we get

$$
\begin{aligned}
& 2(\alpha+\beta)(3+8 \tau)+2 \gamma(1+4 \tau)+2(\alpha+\beta+\delta-1)(2+4 \tau)+1+4 \tau+6 \tau^{2} \\
& <2(4+12 \tau)(\alpha+\beta)
\end{aligned}
$$

Transforming this inequality, we get

$$
6 \tau^{2}+(8 \delta+8 \gamma-4) \tau+2 \alpha+2 \beta+4 \delta+2 \gamma-3<0
$$

The left hand side is minimized with the value $\tau_{0}=\frac{1}{3}(1-2 \delta-2 \gamma)$. Plugging τ_{0} in the former inequality, we get

$$
\delta<\frac{1}{4}(5-4 \gamma-\sqrt{12 \alpha+12 \beta-12 \gamma+3})
$$

From the three vectors $v_{1}(x X, y Y, z Z), v_{2}(x X, y Y, z Z)$, and $v_{3}(x X, y Y, z Z)$, we obtain three polynomials $h_{1}(x, y, z), h_{2}(x, y, z), h_{3}(x, y, z)$ with the common root
$\left(x_{0}, y_{0}, z_{0}\right)$. Next, we use Assumption 1. Let $g_{1}(y, z)$ be the resultant polynomial of $h_{1}(x, y, z)$ and $h_{2}(x, y, z)$ with respect of x. Similarly, let $g_{2}(y, z)$ be the resultant polynomial of $h_{1}(x, y, z)$ and $h_{3}(x, y, z)$ with respect of x. Then, computing the resultant of $g_{1}(y, z)$ and $g_{2}(y, z)$ with respect to y, we find a polynomial $g(z)$ with the root z_{0}. Using $z_{0}=p+q-1$ and $p q=N$, the factorization of N follows. This terminates the proof.

In Table 2 , we present some values of δ and $\delta+\beta$. Recall that $M=N^{\beta}, d_{1}<N^{\delta}$, $d_{0}<N^{\gamma}$ and $d=M d+d_{0}<2 N^{\delta+\beta}$. Notice that in all the presented cases, we have $\delta+\beta>0.292$. This shows that Wiener's attack [12 as well as Boneh and Durfee's method [2] will not give the factorization of the RSA modulus in these situations.

$\alpha=\log _{N}(e)$	$\beta=\log _{N}(M)$	$\gamma=\log _{N}\left(d_{0}\right)$	$\delta=\log _{N}\left(d_{1}\right)$	$\beta+\delta$
1	0.5	0.1	0.03	0.53
1	0.4	0.1	0.07	0.47
1	0.3	0.2	0.04	0.34
1	0.3	0.1	0.10	0.40
1	0.25	0.25	0.03	0.28
0.75	0.5	0.3	0.003	0.50
0.75	0.4	0.2	0.10	0.50
0.75	0.3	0.2	0.14	0.44
0.75	0.25	0.25	0.13	0.38

Table 2. Values of δ and $\beta+\delta$ in terms of α, β and γ.

To test the validity of Assumption 1, we performed several experiments with various parameters α, β and γ. We implemented the new attack on an Intel Core 2 Duo running Maple 17. All the experiments gave the factorization of the RSA modulus N.

4 Conclusion

In this paper, we consider an RSA instance $N=p q$ with a private exponent d of the form $d=M d_{1}+d_{0}$. Unlike the partial key exposure attacks where M and d_{0} are known, we suppose that M is the only known parameter. We show that when d_{1} and d_{0} are suitably small, then one can find the factorization of N. The method is based on transforming the key equation ed $-k \phi(N)=1$ into the modular equation $f(x, y, z)=e x-N y+y z-1 \equiv 0(\bmod M e)$ where $\left(x_{0}, y_{0}, z_{0}\right)=\left(d_{0}, k, p+q-1\right)$ is a small solution. Using Coppersmith's technique and the LLL algorithm, we can easily find $z_{0}=p+q-1$, which leads to the factorization of N.

References

1. Blömer, J., May, A.: New partial key exposure attacks on RSA, Proceedings of CRYPTO 2003, LNCS 2729 [2003], pp. 27-43. Springer Verlag (2003)
2. Boneh, D., Durfee, G.: Cryptanalysis of RSA with private key d less than $N^{0.292}$, Advances in Cryptology Eurocrypt'99, Lecture Notes in Computer Science Vol. 1592, Springer-Verlag, pp. 1-11 (1999)
3. Boneh, D., Durfee, G., Frankel, Y.: An attack on RSA given a small fraction of the private key bits. In: Ohta, K., Pei, D. (eds.) Advances in Cryptology Asiacrypt'98. Lecture Notes in Computer Science, vol. 1514, pp. 25-34. Springer-Verlag (1998)
4. Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA vulnerabilities. Journal of Cryptology, 10(4), pp. 233-260 (1997)
5. Ernst, M., Jochemsz, E., May, A., de Weger, B.: Partial key exposure attacks on RSA up to full size exponents. In: Cramer, R. (ed.) Advances in Cryptology Eurocrypt 2005. Lecture Notes in Computer Science, vol. 3494, pp. 371-386. SpringerVerlag (2005)
6. Howgrave-Graham, N.: Finding small roots of univariate modular equations revisited, In Cryptography and Coding, LNCS 1355, pp. 131-142, Springer-Verlag (1997)
7. Jochemsz, E. \& May, A. (2006). A strategy for finding roots of multivariate polynomials with new applications in attacking RSA variants, in: ASIACRYPT 2006, LNCS, vol. 4284, 2006, pp. 267-282, Springer-Verlag.
8. A.K. Lenstra, H.W. Lenstra and L. Lovász. Factoring polynomials with rational coefficients, Mathematische Annalen, Vol. 261, pp. 513-534, 1982.
9. A. May. New RSA Vulnerabilities Using Lattice Reduction Methods. PhD thesis, University of Paderborn (2003)
http://wwwcs.upb.de/cs/ag-bloemer/personen/alex/publikationen/
10. Nitaj, A.: Another generalization of Wieners attack on RSA, In: Vaudenay, S. (ed.) Africacrypt 2008. LNCS, vol. 5023, pp. 174190. Springer, Heidelberg (2008)
11. Rivest,R., Shamir, A., Adleman, L.: A Method for Obtaining digital signatures and public-key cryptosystems, Communications of the ACM, Vol. 21 (2), pp. 120-126 (1978)
12. Wiener, M.: Cryptanalysis of short RSA secret exponents, IEEE Transactions on Information Theory, Vol. 36, 553-558 (1990)
