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Abstract 

RFID (Radio Frequency Identification) is one of the most growing technologies among the pervasive systems. 
Non line of sight capability makes RFID systems much faster than its other contending systems such as barcodes 
and magnetic taps etc. But there are some allied security apprehensions with RFID systems. RFID security has 
been acquired a lot of attention in last few years as evinced by the large number of publications (over 2000).  

In this paper, a brief survey of eminent ultralightweight authentication protocols has been presented & then a four-
layer security model, which comprises of various passive and active attacks, has been proposed. Cryptanalysis of 
these protocols has also been performed under the implications of the proposed security model.  

Introduction: 

Radio Frequency Identification (RFID) is broad concept of closed loop wireless networking between Main node 
(Reader) and small nodes (Tags) providing automatic identification of nodes present in the vicinity of main node. 
In RFID systems, there are mainly three characters: Reader, Tag and database server. Tags are sort of 
transponders, which contain a small amount of memory (for identity of the attached object and other relevant 
function) and on board circuitry including transceiver, the readers are just like scanners, which read the contents 
of the tags and then match these contents with entries at the database for identification. We normally assume the 
link between reader and back end database is secure as there is no power computation issue, so we can incorporate 
various security relevant solutions. Link between tag and reader needs more attention as this is wireless link and 
adversaries can have easy access to this link. As, we also have very limited resources at the tag end, so to make 
RFID system practically feasible we have to reduce the cost of the tag and then within these limited resources we 
also have to address these security issues. By keeping in view of all these limitations, a new field of cryptography 
known as ultralightweight cryptography had been introduced back in 2006. This field specifically had been 
introduced for low cost RFID tags to make them applicable and comparable with its contending systems. For low 
cost passive RFID tags, we can use only 5-10 K gates and among which 250-3000 gates are devoted for security 
(Cryptography)[1].  

The main objective of this sort of cryptography is to provide the secure mutual authentication between reader and 
tag in a cost effective way. Because of this cost effectiveness this type of cryptography is known as 
ultralightweight cryptography and associated protocols are known as ultralightweight mutual authentication 
protocols (UMAP).  These protocols consist of simple bit wise operations like XOR, OR, AND etc, as other 
cryptographic functions like one-way hash functions MD5 and SHA-256, respectively require 8K and 11 K logical 
gates, which makes them practically unfeasible. In this paper, we will first discuss the major protocols from 
UMAP family, and then run these protocols through four-layer security model. This security model will assess the 
authenticity of the protocols; by applying various cryptanalysis tests/ attacks. The paper is organized as follows: In 
section I, we introduce the UMAP protocols, and then in section II attributes of the proposed security model have 
been discussed. In section III, cryptanalysis on the basis of security model has been presented. Finally, 
performance analysis of discussed protocols has been presented to evaluate the protocols. 

Section I 

 Ultralightweight mutual authentication Protocols: 

Mutual authentication protocols provide corroboration to both tag and reader that they are communicating with 
valid reader/tag. 



Chein [3] presented classifications of authentication protocols based on cryptographic functions that can be used 
at Tag’s end. 

Full-fledged: This is the most powerful class of mutual authentication in which we can incorporate traditional 
cryptographical solutions such as symmetric encryption, one-way Hash functions and even public key 
cryptography.  

Simple: This class is weaker as compared to full-fledged class because we can only use pseudorandom number 
generator and one-way hash functions. 

Lightweight: This class is even weaker than simple authentication protocols; in this class we can use lightweight 
pseudorandom number generators and some simple functions such as Cyclic Redundancy Check (CRC) but no 
hash functions at tag side. 

Ultralightweight: This is the weakest class; we cannot incorporate even pseudorandom number generators at tag 
end. We can only use simple bitwise XOR, OR, AND etc. logical functions. So, randomness can only be 
generated from readers. Rest of the research paper will be focused on the applications and working of this 
category. 

Recently, there has been proposed several ultralightweight RFID authentication protocols. The basic operation of 
the protocols involves exchange of pseudonyms such as IDS (Identity pseudonym) and keys between reader and 
tags. The original identity conceals within the message comprises of logical operations between pseudonyms and 
original values. Normally, a random number is transmitted by reader towards tag because of power computation 
issues at tag’s end. This random number provides or we may say enhances the diffusion property of the protocol. 
Then after each successful authentication session both reader and tag update their pseudonyms using comparable 
equations at both ends. To avoid the Desynchronization attacks some protocols provide the room for storage of old 
pseudonyms. Protocols using this approach are: LMAP [1] (2006), EMAP,[2] (2006), SASI [3] (2007), 
GOSSAMER [5] (2009), David-Prasad [8] (2009) and RAPP [7] (2012). They all are relatively new and designed 
empirically, and most of them are wrecked, as we will discuss in later section. Some assumptions have been made 
for our research, which will be applicable for all protocols to be discussed; firstly the length of the all keys, 
Pseudonyms and other identifiers is 96 bits as per EPC global standard [17]. Secondly, we will consider the 
channel between reader and backend database a secure one and our research will be focused to make the channel 
between reader and tag as secure as possible. 

LMAP:   

Lightweight Mutual Authentication protocol (LMAP) [1] was the first proposal in the UMAP family presented in 
2006. The protocol is divided into four main stages: Tag identification, Mutual authentication, index-pseudonym 
updating and key updating. Tag stores one constant and five variable values each of 96 bits, in which ID will 
remain constant while IDS and four other keys K1, K2, K3, K4 are variables that will be updated in a well 
synchronized manner after each successful authentication protocol run. 

   Reader           Hello             Tag 

 
Identify Tag, and generate n1 and n2                                      IDS      
Generate A, B and C     
 
	   	   	   	   	   	         

       A||B||C             
      

     
                          
Authenticate Tag               D 
Update IDS & Keys   
  

	  Retrieve n1 and n2 
Authenticate Reader 
Compute D,  
Update IDS & Keys 
 



[Pseudonym Updating both Tag and Reader]  
𝐼𝐷𝑆!!! = (𝐼𝐷𝑆! + 𝑛!! + 𝐾!! )⨁𝐼𝐷         𝐴 = 𝐼𝐷𝑆⨁𝐾!⨁𝑛! 
𝐾!!!! = 𝐾!!⨁𝑛!!⨁(𝐾!! + 𝐼𝐷)                                    𝐵 = (𝐼𝐷𝑆   𝐾!) + 𝑛! 
𝐾!!!! = 𝐾!!⨁𝑛!!⨁(𝐾!! + 𝐼𝐷)                                                                                                  𝐶 = 𝐼𝐷𝑆 + 𝐾! + 𝑛! 
𝐾!!!! = 𝐾!!⨁𝑛!!⨁ 𝐾!!⨁𝐼𝐷 ,   𝐾!!!! = 𝐾!!⨁𝑛!! + 𝐾!!⨁𝐼𝐷                 D = 𝐼𝐷𝑆 + 𝐼𝐷 ⨁𝑛!⨁𝑛! 

          Fig.1    LMAP Protocol 

In LMAP reader initiates the protocol by transmitting the Hello message towards tag, and tag will then reply with 
its IDS. Reader compares the received IDS with its database and if it matches with its entry then reader will 
generate two random number n1 and n2 and conceals these numbers within the messages A, B and C which have 
already been shown in the above table. Reader concatenates and transmits these combinational messages towards 
tag. The tag will then retrieve the random numbers n1and n2 from the messages and calculates B using the same 
synchronized equation, compares this B with received B if a match occurs it means tag is communicating with a 
valid reader and then tag will update its pseudonyms (IDS, K1, K2, K3, K4). Now, tag transmits D message towards 
reader from which reader authenticates tag and then after successful tag authentication reader will also update its 
Pseudonyms (IDS, K1, K2, K3, K4). The authors estimated that for implementation of protocol requires only 1000 
logic gates, which fulfils the requirements for a protocol to be considered as ultralightweight. But protocol doesn't 
prosper in averting even basic traceability and information leakage attacks. 

EMAP: 

 Efficient mutual authentication protocol (EMAP)[2] was another protocol from UMAP family. Here a new Parity 
function Fp was introduced, which is introduced, as vector built from the parity bits and the rest was quite similar 
to LMAP. Reader initiates the protocol by transmitting a ‘Hello’ message towards tag and tag responds with its 
current IDS. Reader matches the received IDS with its database if a match occurs then reader will generate two 
random numbers n1 & n2 and conceals these random numbers within messages A, B and C.  Reader transmits 
these messages towards tag then tag retrieves these random numbers from A and C. Tag will calculate local value 
of B and compares it with received B, if successful match occurs tag will first update its pseudonyms and then tag 
generates D and E. After receiving D and E reader will also calculate local values of D and E and compares them 
with received ones, if a match occurs reader will update its Pseudonyms in the same fashion as tag which have 
been described as follows: 

   

   Reader           Hello             Tag 

 
Identify Tag, and generate n1 and n2                                      IDS      
Generate A, B and C     
 
	   	   	   	   	   	         

       A||B||C             
      

     
                          
Authenticate Tag               D||E 
Update IDS & Keys   
  
[Pseudonym Updating both Tag and Reader]  
𝐼𝐷𝑆!!! = (𝐼𝐷𝑆!⨁𝑛!!⨁𝐾!!         𝐴 = 𝐼𝐷𝑆⨁𝐾!⨁𝑛! 
𝐾!!!! = 𝐾!!⨁𝑛!!⨁([𝐼𝐷]!:!" 𝐹! 𝐾!! 𝐹! 𝐾!! )                                    𝐵 = (𝐼𝐷𝑆   𝐾!)⨁ 𝑛! 
𝐾!!!! = 𝐾!!⨁𝑛!!⨁(𝐹!(𝐾!!)| 𝐹! 𝐾!! |[𝐼𝐷]!":!")                                              
                                                                                                                                                                                                                                                                                        𝐶 = 𝐼𝐷𝑆⨁𝐾!⨁𝑛! 
𝐾!!!! = 𝐾!!⨁𝑛!!⨁ 𝐾!!⨁𝐼𝐷 ,                                                                                                                                                                D = 𝐼𝐷𝑆 ∧ 𝐾! ⨁𝑛! 

	  Retrieve n1 and n2 
Authenticate Reader 
Compute D,E  
Update IDS & Keys 
 



  𝐾!!!! = 𝐾!!⨁𝑛!!⨁(𝐹! 𝐾!! 𝐹! 𝐾!! 𝐼𝐷 !":!")                 
 𝐸 = ((𝐼𝐷𝑆 ∧ 𝑛!) ∨ 𝑛!)⨁ID⨁𝐾1⨁𝐾2⨁𝐾3⨁𝐾4 

     Fig.2  EMAP Protocol 

EMAP requires 500 logic gates for implementation, which is much lighter than any other mutual authentication 
protocol. But again recent cryptanalysis on EMAP has found a lot of security threats and vulnerabilities in the 
protocol, which made it highly unsuitable for practical systems. These attacks and threats will be discussed in the 
next section.  

SASI: 

Chein presented a new ultralightweight mutual authentication protocol SASI [3] (Strong authentication and 
integrity) in 2007. This protocol has similar operational structure as proposed in LMAP and EMAP, but here a 
new function Rot (Left cyclic Rotation) has been introduced in SASI, which was quite different from Triangular 
functions (XOR, OR etc.) extensively used in previous protocols, as these triangular functions have congenital 
poor diffusion properties. The use of non-triangular function makes this protocol a unique one as compared to its 
contending protocols. The basic working of SASI protocol is as follows: 

     Reader                                        Hello             Tag 

 
Identify Tag, and generate n1 and n2                                      IDS      
Generate A, B and C     
 
	   	   	   	   	   	         

       A||B||C             
      

     
                          
Authenticate Tag               D 

   Update IDS & Keys  
 
Pseudonym updating and key updating: 
 𝐼𝐷𝑆 = 𝐼𝐷𝑆 + 𝐼𝐷 ⨁ 𝑛!⨁𝐾!∗ ;   𝐾! = 𝐾!∗;𝐾! = 𝐾!∗   

𝐴 = 𝐼𝐷𝑆⨁𝐾!⨁𝑛! 
𝐵 = 𝐼𝐷𝑆⋁𝐾! ⨁𝑛! 
𝐾!∗ = 𝑅𝑜𝑡 𝐾!⨁𝑛!,𝐾!  

 
𝐾!∗ = 𝑅𝑜𝑡 𝐾!⨁𝑛!,𝐾!  

𝐶 = 𝐾!⨁𝐾!∗ + 𝐾!∗⨁𝐾!  

𝐷 = (𝐾!∗ + 𝐼𝐷)⨁((𝐾!⨁𝐾!)⋁𝐾!∗) 

                                                                         Fig.3  SASI Protocol 

In SASI reader initiates the protocol by sending a ‘Hello’ message towards tag. Tag then responds with 
its current IDS. Reader matches IDS with its database if received IDS is different then reader matches 
this with old IDS (To avoid Desynchronization attack); on a successful match reader generates and 
transmits A, B & C towards tag. To enhance diffusion properties of the communication, reader 
generates pseudo random numbers and conceals them with messages (A, B &C), which are as follows: 

 𝐴 = 𝐼𝐷𝑆⨁𝐾!⨁𝑛! 
𝐵 = 𝐼𝐷𝑆⋁𝐾! ⨁𝑛! 
𝐶 = 𝐾!⨁𝐾!∗ + 𝐾!∗⨁𝐾!  

	  Retrieve n1 and n2 
Authenticate Reader 
Compute D 
Update IDS & Keys 
 



On receiving of A||B||C, tag extracts n1 from A and n2 from B. Then by using these new random 
numbers tag generates 𝐾!∗&  𝐾!∗ using above mentioned equations. Tag calculates the local value of C 
and compares it with received C, if a match occurs then it means tag is communicating with genuine 
reader. Tag then updates its pseudonyms and generates D, so reader can also authenticate tag. After 
receiving D reader will verify the received D and updates its pseudonyms. Again here update process is 
similar except back ups of pseudonyms to prevent against Desynchronization attacks, but still 
Desynchronization is possible with repeatedly interrupting the message D. This will be discussed in 
detail in next section. 

The Gossamer Protocol: 

In 2009, Peris-Lopez et.al proposed a new ultralightweight mutual authentication protocol: 
GOSSAMER [5] . The basic working of the protocol was again similar to other previously proposed 
protocols but in Gossamer, they incorporated two new functions  double Rotation and MixBits. The 
internal structure of these functions consists of same traditional triangular functions (Shifting 
&Addition) but have more robust diffusion properties as compare to uncluttered triangular function. 
MixBits is a function based on genetic programming and extremely lightweight in nature, as there are 
only bitwise right shifts (>>) and additions are employed. To calculate, 𝑍 = 𝑀𝑖𝑥𝐵𝑖𝑡𝑠 𝑋,𝑌  pseudo 
code is as follows: 

𝑍 = 𝑋; 

𝑓𝑜𝑟 𝑖 = 0; 𝑖 < 32; 𝑖 + +  

{𝑍 = 𝑍 ≫ 1 + 𝑍 + 𝑍 + 𝑌  ;   } 

From above, working of the algorithm can be seen as initially equate Z as per the value of the X, then 
give one right cyclic bitwise shift in Z (string). Add Z with the shifted version of Z, and then add this 
with Z+Y. This will give us the MixBits composite string. The Gossamer protocol is as follows: 

Reader                                                 Hello             Tag 

 
Identify Tag, and pick n1 and n2                                  IDS      
Generate A, B and C     
 
	   	   	   	   	   	         

   A||B||C             
     

    

  
                          
Authenticate Tag               D 

   Update IDS & Keys  
 
Pseudonym updating and key updating: 
 𝐼𝐷𝑆 = 𝐼𝐷𝑆 + 𝐼𝐷 ⨁ 𝑛!⨁𝐾!∗ ;   𝐾! = 𝐾!∗;𝐾! = 𝐾!∗   
 
                                                                                                      𝐴 = 𝑅𝑜𝑡(𝑅𝑜𝑡 𝐼𝐷𝑆 + 𝐾! + 𝜋 + 𝑛!,𝐾! + 𝐾!,𝐾!) 
                                                                                                                                                                                                                                        𝐵 = 𝑅𝑜𝑡(𝑅𝑜𝑡 𝐼𝐷𝑆 + 𝐾! + 𝜋 + 𝑛!,𝐾! + 𝐾!,𝐾!) 
        𝐶 = 𝑅𝑜𝑡(𝑅𝑜𝑡 𝑛! + 𝐾!∗ + 𝜋 + 𝑛!! , 𝑛! + 𝐾!∗⨁𝑛!! , 𝑛!)⨁𝑛!!  

𝑛! = 𝑀𝑖𝑥𝐵𝑖𝑡𝑠(𝑛!, 𝑛!) 

𝐾!∗ = 𝑅𝑜𝑡 𝑅𝑜𝑡 𝑛! + 𝐾! + 𝜋 + 𝑛!, 𝑛! + 𝐾!⨁𝑛!, 𝑛! ⨁𝑛! 

	  Retrieve n1 and n2 
Authenticate Reader 
Compute D 
Update IDS & Keys 
 



𝐾!∗ = 𝑅𝑜𝑡 𝑅𝑜𝑡 𝑛! + 𝐾! + 𝜋 + 𝑛!, 𝑛! + 𝐾! + 𝑛!, 𝑛! + 𝑛! 

𝑛!! = 𝑀𝑖𝑥𝐵𝑖𝑡𝑠 𝑛!, 𝑛!  

𝐷 = 𝑅𝑜𝑡 𝑅𝑜𝑡 𝑛! + 𝐾!∗ + 𝐼𝐷 + 𝑛!! , 𝑛! + 𝐾!∗ + 𝑛!! , 𝑛! + 𝑛!!  

𝑛!! = 𝑀𝑖𝑥𝐵𝑖𝑡𝑠 𝑛!! , 𝑛!  

𝐼𝐷𝑆!"#$ = 𝑅𝑜𝑡(𝑅𝑜𝑡 𝑛!! + 𝐾!! + 𝐼𝐷𝑆 + 𝑛!! , 𝑛!! + 𝐾!∗⨁𝑛!! , 𝑛!)⨁𝑛!!  

                                                       Fig.4 GOASSMER Protocol 

The protocol works in the same fashion as we have already discussed in the other protocols. Reader 
initiates the protocol by transmitting a message signal “Hello”, tag responds with its current updated 
IDS. On receiving this IDS, reader compares this with its database; if a match occurs then it further 
sends the concatenated message A||B||C, which are defined as: 

  𝐴 = 𝑅𝑜𝑡 𝑅𝑜𝑡 𝐼𝐷𝑆 + 𝐾! + 𝜋 + 𝑛!,𝐾! + 𝐾!,𝐾!  

  𝐵 = 𝑅𝑜𝑡(𝑅𝑜𝑡 𝐼𝐷𝑆 + 𝐾! + 𝜋 + 𝑛!,𝐾! + 𝐾!,𝐾!) 

𝐶 = 𝑅𝑜𝑡(𝑅𝑜𝑡 𝑛! + 𝐾!∗ + 𝜋 + 𝑛!! , 𝑛! + 𝐾!∗⨁𝑛!! , 𝑛!)⨁𝑛!!  
 
Here 𝜋 is the 96-bit constant value, and 𝐾!∗  and 𝐾!∗ are as follows: 
 
𝐾!∗ = 𝑅𝑜𝑡 𝑅𝑜𝑡 𝑛! + 𝐾! + 𝜋 + 𝑛!, 𝑛! + 𝐾!⨁𝑛!, 𝑛! ⨁𝑛! 

𝐾!∗ = 𝑅𝑜𝑡 𝑅𝑜𝑡 𝑛! + 𝐾! + 𝜋 + 𝑛!, 𝑛! + 𝐾! + 𝑛!, 𝑛! + 𝑛! 

If IDS doesn't match with the entries of database, then reader will send hello message again towards tag 
to resend its old IDS. After successful matching and receiving of concatenated messages, tag computes 
n1

’, n3 & K1
’ for calculation of C. It then compares the calculated C with received C; if a match occurs 

then tag will perform three tasks. Firstly, it computes D message, and then transmit the message 
towards reader. Thirdly it also updates its Pseudonyms as reader has been successfully authenticated in 
the previous step.  

 𝐷 = 𝑅𝑜𝑡 𝑅𝑜𝑡 𝑛! + 𝐾!∗ + 𝐼𝐷 + 𝑛!! , 𝑛! + 𝐾!∗ + 𝑛!! , 𝑛! + 𝑛!!  

Reader will also calculate the local version of D &compare it with received D; on successful matching 
reader will also update its Pseudonyms for future correspondence. 

This protocol is more sophisticated then other protocols of UMAP family, as there is no full disclosure 
attack available, which can break Gossamer.  

David-Prasad Protocol: 

In September 2009, David and Prasad [8] proposed a new ultralightweight mutual authentication 
protocol for passive low cost RFID tags. The basic working principle of the protocol is similar to other 
contending protocols of UMAP family, SASI and Gossamer. The main aim of the protocol was to 
provide the security within limited resources (Hardware and power computation). It also includes the 
storage of previous value of IDS to counter measure against Desynchronization attacks. In David-
Prasad protocol, before inquiring tags; reader have to get a one-day certificate from CA (Certificate 
authority) after authenticating himself. Reader initiates the protocol by transmitting the message 



“Hello” towards tag. Tag then responds with its current updated IDS, reader matches this IDS with its 
database; if a match occurs it produces two nonces (n1, n2), computes and then transmits messages A, B 
and D, which are as follows: 

𝐴 = 𝐼𝐷𝑆⋀𝐾!⋀𝐾! ⨁𝑛! 

𝐵 = 𝐼𝐷𝑆!⋀𝐾!⋀𝐾! ⨁𝑛! 

𝐷 = 𝐾!⋀𝑛! ⨁ 𝐾!⋀𝑛!  

Tag then extracts nonces (n1, n2) and computes a local value of D. It then compares locally generated D 
with received one, on successful matching tag updates it pseudonyms, computes and transmits E and F 
towards reader. 

𝐸 = 𝐾!⨁𝑛!⨁𝐼𝐷⨁ 𝐾!⋀𝑛!  

𝐹 = 𝐾!⋀𝑛! ⨁ 𝐾!⋀𝑛!  

Reader also generates the local values of E and F, compares these values with received ones, after 
successful matching it will update its pseudonyms and terminate the protocol. 

       

       Reader                                             Hello             Tag 

 
Identify Tag, and calculate n1 and n2                           IDS      
Generate A, B and D 
 
	   	   	   	   	   	         

       A||B||D             
      

     
                          
Authenticate Tag               E||F 

  Update IDS    
 
Pseudonym updating and key updating: 
 𝐼𝐷𝑆!"#$ = 𝐼𝐷𝑆!⨁𝑛!!⨁𝑛!! 
           𝐴 = 𝐼𝐷𝑆⋀𝐾!⋀𝐾! ⨁𝑛!   
                                                                                                                                                                                                                                              𝐵 = 𝐼𝐷𝑆!⋀𝐾!⋀𝐾! ⨁𝑛! 

    𝐷 = 𝐾!⋀𝑛! ⨁ 𝐾!⋀𝑛!  
𝐸 = 𝐾!⨁𝑛!⨁𝐼𝐷⨁ 𝐾!⋀𝑛!  

𝐹 = 𝐾!⋀𝑛! ⨁ 𝐾!⋀𝑛!  

     Fig.5 David-Prasad Protocol 

RAPP Protocol: 

Yun Tian, Gongliang et.al proposed a new ultralightweight RFID mutual authentication protocol with 
permutation (RAPP) [7] in 2012. RAPP introduces a new function permutation; which have been 
incorporated with XOR operation in all equations. The usage of permutation in RAPP avoids the usage 
of unbalanced AND & OR operations. RAPP uses only three operations; Bitwise XOR, left rotation, 
and permutation. Permutation operation is ultralightweight in nature as it involves only bitwise shifting 

	  Retrieve n1 and n2 
Authenticate Reader 
Compute E and F 
Update IDS & Keys 
 



of bit. The rudimentary working of permutation involves the generation of new string based on shifting 
the bits position of second string with respect to the entry at first string. It means if first entry in first 
string is 0 then first bit of second string will be shifted to the last position in third string or vice versa. 
Let say, A=1011101 & B=0111010 then Per (A, B)=0110011. 

In RAPP protocol, tag stores four values (Strings) IDS, K1, K2, & K3 (each is of 96-bit long). Reader 
also stores the same variables, but to avoid Desynchronization attacks in addition to current 
pseudonyms it also stores the old values of these pseudonyms. Reader initiates the protocol while 
sending a Hello message towards tag. Upon receiving the reader’s probe, tag transmits its current IDS to 
the reader. After receiving IDS, reader uses it as an index to search a corresponding record in the 
database. If IDS is old one then reader uses Old values of pseudonyms to calculate A and B message 
integrated with 96-bit random number n1, otherwise vice versa. After calculating A and B, reader then 
transmits these messages toward tag. Where A and B are as follows: 

𝐴 = 𝑃𝑒𝑟 𝐾!,𝐾! ⨁𝑛! 

𝐵 = 𝑃𝑒𝑟(𝐾!⨁𝐾!,𝑅𝑜𝑡 𝑛!, 𝑛! )⨁𝑃𝑒𝑟(𝑛!,𝐾!) 

 Tag extracts n1 message from A and calculate the local version of B. If local value of B and received B 
are same then tag transmits C message towards reader.  

𝐶 = 𝑃𝑒𝑟(𝑛!⨁𝐾!, 𝑛!⨁𝐾!)⨁𝐼𝐷 

When reader receive C message, it will compare it with local C, again if a match occurs then it will 
generate another L-bit pseudonym n2. Both n1 and n2 will be used for key update. The reader calculates 
D and E messages and transmits them towards tag. Then reader also updates its pseudonyms for future 
correspondence with the particular tag.  

𝐷 = 𝑃𝑒𝑟 𝐾!,𝐾! ⨁𝑛! 

𝐸 = 𝑃𝑒𝑟(𝐾!,𝑅𝑜𝑡 𝑛!, 𝑛! )⨁𝑃𝑒𝑟(𝑛!,𝐾!⨁𝐾!) 

Tag extracts n2 from D and computes local value of E. If locally calculated value of E is same as 
received one then tag also updates its pseudonyms and terminate the link. The protocol is as follows: 
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IDSold,	  IDSnew,	  K1old,	  
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Section II 

Security Model for cryptanalysis of the UMAP Protocols: 

The security of the protocol can be analyzed in two major aspects: the functionality of the protocols and 
confrontation against attacks. The functionality of the protocols comprises of mutual authentication, 
data confidentiality, data integration, tag anonymity and untraceibility. While Desynchronization, tango 
and replay fall in the attack category. 

Mutual Authentication: Mutual authentication is basic and essential operation of the protocol, in which 
the tag authenticate the reader and reader authenticates tag. This bidirectional operation validates that 
either reader or tag are communicating with a genuine one or not.  

Data confidentiality:  Data confidentiality is another integral parameter; which depicts the 
confidentiality of the transmitted data between tag and reader.  

Data Integrity: In data integrity, if an adversary alters the information; which was transmitted between 
tag and reader, then to maintain data integrity the protocol should detect the error. 

Tag anonymity & Untraceibility: This is also very important parameter, as if an adversary successfully 
identifies a particular tag; then the particular tag can be traced out easily. It means its mobility can be 
under observation; which is prevalent security menace. 

On the basis of some renowned attacks [4],[6],[8],[9],[11],[12],[13], [14],[15], [16] we have proposed a 
security model; a protocol can be considered a reliable one if it satisfies all the layers of the model. 
Security model is as follows: 

Serial no. Security Analysis/Attacks Adversaries capabilities 
1 Desynchronization attacks i) Man in middle 

ii) Communication 
blocking 

2 Traceability attacks i) Man in middle 
ii) Communication 

blocking 
          

3 Full Disclosure attacks i)        Eavesdropping  
4 General Adhoc attacks i) Eavesdropping  

ii) Man in middle 
iii) Denial of service 

 

Proposed security model contains four-layers, each layer analyze the security vulnerabilities in the 
protocols by applying the defined mathematical and logical operations. 

1. Desynchronization: In this layer, the cryptanalyzers try to break synchronization between the 
reader and tag. This can be achieved by if an adversary successfully able to tune the genuine 
reader and tag on different pseudonyms values. We will discuss some practical 
Desynchronization attacks on the various UMAP protocols in next section. 



2. Traceability attacks: In this layer attackers try to identify the particular tag, so its movement 
can be recorded. This will be only possible if attacker successfully able to block the pseudonym 
updating step; so, tag will unable to randomize its IDS. 

3. Full Disclosure attacks: This is the most powerful attack among others as by applying this 
category, we can disclose all the secrets bearing a protocol. Tango attack is most prominent 
attack from this category; which needs only a few eavesdrop session to execute its results. 
Other frame works in full disclosure category are Recursive Linear Cryptanalysis, Differential 
linear cryptanalysis and Norwegian attacks. 

4. General adhoc attacks: This category basically finds weaknesses in mathematical equations of 
the protocols to disclose the secrets. We will discuss some probabilistic models to find the 
secrets of the protocols in next section. 

Section III 

Security analysis of the protocols: 

In this section we will perform security analysis of the various protocols based on proposed security 
model to validate their practical suitability. As, to make the thing clear in concise manner, we will 
discuss Desynchronization for all protocols but full disclosure attack and general adhoc attacks only for 
David-Prasad and SASI Protocols. Because if the protocol fails to satisfy any one of the layers then it 
will lose it’s candidacy for being a Standard UMAP protocol. 

a) Security analysis of LMAP & EMAP: 

1. Desynchronization attack on LMAP& EMAP: 

Desynchronization attack is easily applicable in LMAP, as it doesn’t provide the option in the reader for 
storage of previous IDS value. So, as in LMAP reader initiates the protocol by transmitting a Hello 
message towards Tag. Tag responds with its Current IDS, on receiving of IDS reader calculates A, B 
and C and transmits towards Tag.  

𝐴 = 𝐼𝐷𝑆⨁𝐾!⨁𝑛! 

𝐵 = (𝐼𝐷𝑆  ⋁𝐾!) + 𝑛! 

𝐶 = 𝐼𝐷𝑆 + 𝐾! + 𝑛! 

As these messages are from a valid reader, so tag generates a message D using n1 and n2. But now 
attacker interrupts the link and block D. 

D = 𝐼𝐷𝑆 + 𝐼𝐷 ⨁𝑛!⨁𝑛! 

As a result, tag will update its Pseudonyms but reader will not and it will remain tune up with its 
previous pseudonyms. Next time when reader transmits Hello message towards this particular tag, then 
it will respond with such IDS which is quite different from its database. Hence a genuine reader will not 
communicate with its own tag. 

Other security analysis tests of the model can also be applied to protocol; but as it is even unable to 
resist against a weaker Desynchronization attack, so it cannot be considered as authenticated candidate 
for practical usage. Same Desynchronization attack is applicable to EMAP as well; In EMAP if we 
block D and E messages then reader will not able to update its pseudonyms but tag will do. So, this 
attack in the same manner is applicable to both protocols. 



 b) Security analysis of SASI protocol: 

1. Desynchronization attack [12]: 

Lets assume, Reader initiates the protocol and tag responds with IDS. On receiving of IDS from valid 
tag; reader calculates and transmits A, B and C. Attacker also sniffs these messages and IDS; attacker 
now perform two operations, make a alias of these messages and block D message. Now as reader didn't 
receive D message so, it will not able to update its pseudonyms but tag will do. So, tag is tuned on new 
pseudonyms IDS2, K11, K22.  

Next, we allow reader and tag to run the protocol without intervening them. After successful completion 
of the protocol both database and tag are tuned up on identical values of pseudonyms (IDS3, K13, K23).  

Finally, attacker initiates the protocol while pretending itself a valid reader. On receiving of IDS3, 
attacker sends an error signal towards tag and asks for IDS1. Tag immediately responds with IDS1 and 
attacker transmits tag pre-captured messages A, B and C (Recorded in previous step). Obviously tag 
assumes (attacker) a valid reader (as these messages are captured from valid reader’s conversation) and 
transmits D message towards attacker. Now, tag’s new pseudonyms are IDS2, K12, K22 ;which are 
entirely different from the values stored in database (Which are IDS3, K13, K23). 

2. Adhoc/ Probabilistic Attacks[12]: 

Let say, reader and tag have completed a successful protocol run but attacker eavesdrops the messages 
A, B and C during communication. Now, tag and reader’s new pseudonyms are IDS2, K12 and K22. 

After this attacker initiates protocol with valid tag, by claiming himself a valid reader. On receiving of 
IDS2 from tag, attacker asks for IDS1 (old values) for correspondence. Now, attacker flips the LSB (kth 
bit) in A, due to which kth value in C message automatically got flipped. On receiving of these altered 
messages (but in a significant and justified way) tag assumes attacker a valid one, as tag has calculated 
C from already altered n1. So, it will transmit D message towards attacker and updates its Pseudonyms 
(IDS3,K13K23). Now, next time if a genuine reader wants to communicate with this meticulous tag; it 
will not find its entry in the database. 

c) Security Analysis of David-Prasad Protocol: 

Desynchronization attack [8] is again possible on David-Prasad in the same manner, as here you need to 
block the messages E and F in first run. As a result, reader will not update its pseudonyms in database 
but tag will do. Attacker sniffs all the important messages (IDS, A, B and D) transmitted during 
communication.  

Next time, attacker allows reader and tag to run the protocol on successful completion of the protocol; 
both reader and tag updates their pseudonyms accordingly. After this attacker pretends to be genuine 
reader and initiates the protocol with pre-captured messages. Now, again we will encounter with 
Desynchronization state. This shows that David-Prasad also doesn't satisfy even the first layer of the 
model; but to understand full disclosure attack and traceability attack, lets have a look these 
cryptanalysis for David-Prasad. 

1) Adhoc/Probabilistic attacks[8]: 
As, we know that XOR & AND operations give unalike results with 75% probability ratio. We 
can see this thing from the following truth table: 
 



 
 

a b 𝑎⨁𝑏 𝑎⋀𝑏 
1 1 0 1 
1 0 1 0 
0 1 1 0 
0 0 0 0 

 

Now, by considering the above-mentioned veracity if we perform internal XOR operation of different 
proposed equations of the security protocols; we can extract some concealed information with certain 
probability. So, by keeping in view this concept if we take XOR between E and F (David-Prasad 
messages from Tag) we can find the ID (Secret) of tag with 75% probability of correctness. The 
operation is as follows: 

𝐸⨁𝐹 = 𝐾!⨁𝑛!⨁𝐼𝐷 ⨁ 𝐾!⋀𝑛! ⨁ 𝐾!⋀𝑛! ⨁ 𝐾!⋀𝑛!  

                      = 𝐾!⨁𝑛! ⨁𝐼𝐷⨁ 𝐾!⋀𝑛!  

As, 𝐾!⨁𝑛! ⨁ 𝐾!⋀𝑛!  always give 1 with 75% probability (because of identical results). So, by using 
this fact we can easily extract ID of the concerned Tag. 

2) Passive Tango Cryptanalysis [8]:  

Tango attack is among one of the most powerful cryptanalysis, which can recover the secret keys and 
even ID of the tag. The attack has been divided into two main phases; Selection of Good 
Approximations & Combination of good approximations. 

a) Selection of Good Approximations: 
Triangular operations are well known to have very deprived diffusion properties; but in UMAP 
protocols these operations have been widely used. Now, firstly attacker will have to identify 
some good approximations (GA) using multiple simple combinations of the exchanged 
messages (A, B, D, E &F). The GA is based on the closer hamming distance between target and 
approximations, and compare the number of one’s for two consecutive sessions with a threshold 
value. Here we have mentioned some GA for each of the three secret values on the basis of 
hamming distances (10000 tests). 
Target Good Approximations (GA) Hamming distance 
𝐾! GA-K1= D, F, (A⨁D), 

𝐴⨁𝐹 , 𝐵⨁𝐷 , 𝐵⨁𝐹 , 𝐴⨁𝐵⨁𝐷 , (𝐴⨁𝐵⨁𝐹) 
 

34 ± 1.9, 36.1±3.3, 37.2±3.4, 
61.3±3.7, 61.8±4.3, 37.7±2.6, 
37.6±5.8, 35.5±3.2 

𝐾! GA-K2= D, F, 𝐴⨁𝐷 ,  (A⨁F), (B⨁D), (𝐵⨁𝐹) , 
𝐴⨁𝐵⨁𝐷 , (𝐴⨁𝐵⨁𝐹) 

35.1±3.8, 35.6±3.1, 
61.6±2.2, 37.7±4.6, 
36.9±4.2, 60.8±4.5, 
36.8±2.4, 36.3±3.03 

𝐼𝐷 GA-ID= (𝐸⨁𝐹) , ( 𝐴⨁𝐵⨁𝐸) , (𝐴⨁𝐷⨁𝐸) , 
(𝐴⨁𝐸⨁𝐹),(𝐵⨁𝐷⨁𝐸), (𝐷⨁𝐸⨁𝐹), (𝐴⨁𝐵⨁𝐷⨁𝐸), 
(𝐴⨁𝐷⨁𝐸⨁𝐹), (𝐵⨁𝐷⨁𝐸⨁𝐹) 

67.7±5.4, 24.5±3.6, 
35.8±4.9, 22.2±1.7, 34±3.7, 
31.1±3.5, 
61.1±4.3,  35.8±6.14, 
62.4±2.7 



 
                                            Fig.7 Good Approximations (Tango attack) 

b) Combinations of good approximations: 
To understand the combination of GA concept lets have an example for 8 bits (just to 
understand concept as in practical n=96bits). Suppose the following variables: 
 
ID= [0,0,0,0,0,0,1,1] 
 
 
Session i GA (Good Approximations) Results 
A=[1,0,0,1,0,1,0,1] (𝐸⨁𝐹) 0,1,0,0,0,1,1,1 
B=[1,1,0,1,0,1,1,1] 𝐴⨁𝐵⨁𝐸 0,0,1,1,1,1,1,1 
D=[1,0,1,0,1,0,1,1] 𝐴⨁𝐷⨁𝐸 0,1,0,0,1,0,1,1 
E=[0,1,1,1,0,1,0,1] 𝐴⨁𝐸⨁𝐹 0,0,1,0,1,1,0,1 
F=[1,1,0,0,1,1,0,1] 𝐵⨁𝐷⨁𝐸 0,0,0,0,0,0,0,1 
 𝐷⨁𝐸⨁𝐹 0,0,0,1,0,0,1,1 
 𝐴⨁𝐵⨁𝐷⨁𝐸 0,1,1,0,1,0,1,1 
 𝐴⨁𝐷⨁𝐸⨁𝐹 1,0,0,0,0,1,1,0 
 𝐵⨁𝐷⨁𝐸⨁𝐹 1,1,0,0,1,1,0,0 
Session i+1   
A=[1,1,1,0,1,1,0,0] (𝐸⨁𝐹) 1,0,0,1,0,0,1,0 
B=[0,0,1,1,1,1,0,1] 𝐴⨁𝐵⨁𝐸 0,0,1,0,0,1,1,0 
D=[1,0,0,0,1,0,0,1] 𝐴⨁𝐷⨁𝐸 1,0,0,1,0,0,1,0 
E=[1,1,1,1,0,1,1,1] 𝐴⨁𝐸⨁𝐹 1,0,0,0,0,0,0,1 
F=[1,0,0,1,1,0,1,0] 𝐵⨁𝐷⨁𝐸 0,1,0,0,0,0,1,1 
 𝐷⨁𝐸⨁𝐹 1,1,1,0,0,1,0,0 
 𝐴⨁𝐵⨁𝐷⨁𝐸 0,1,0,1,0,0,0,0 
 𝐴⨁𝐷⨁𝐸⨁𝐹 0,0,0,0,1,0,0,0 
 𝐵⨁𝐷⨁𝐸⨁𝐹 1,1,0,1,1,0,0,1 
                                                         No of one’s in both sessions  [7,8,5,5,7,7,10,10] 
 Fig.8 Tango attack 

Threshold value,  𝛾 = !
!
∗ 𝑁! ∗ 𝑁! 

Where, NA=Number of approximations & NS=Number of sessions 
Here in our example; NA=9 & NS=2  
Now, if we compare the resultant number of no’s with threshold,  𝛾 we can calculate the actual 
ID=[0,0,0,0,0,0,1,1] 
So, Passive tango attack requires only a few sessions to calculate the secret ID and also it can 
be applied to calculate secret Keys or other important concealed values. 
Same attacks are also possible for RAPP and GOASSMER, but to make this paper concise we 
have tested four UMAP protocols against Security model. 
 
 
Performance Analysis of UMAP Protocols: 
As stated above, all protocols of UMAP family have been the intention of numerous attacks. 
And a simple passive attack can retrieve the concealed variables (ID, Keys and random 
numbers) in a few eavesdropped sessions. Desynchronization attacks have some variations 



according to protocols but these are applicable to almost all protocols. Finally, we have shown a 
table, which summarize all the discussed protocols requirements (Memory requirements etc.) 
and security model satisfaction.   
  
Protocol Memory size 

on Tag 
Total Messages 
for Mutual 
authentications 

Operations Security model 
satisfaction (Layer wise) 

LMAP 6L* 4L XOR, AND, 
OR, modulo-2 
addition 

1 2 3 4 
Fail Fail Fail Fail 

 
 

EMAP 6L 5L XOR, AND, 
OR 
 

1 2 3 4 
Fail Fail Fail Fail 

 

SASI 7L 4L XOR, AND, 
OR, modulo-2 
addition, Rot 

1 2 3 4 
Fail Fail Fail Fail 

 

GOASSMER 7L 4L XOR, 
modulo-2 
addition, Rot, 
MixBits 

1 2 3 4 
Fail Pass Fail Pass 

 

David-Prasad 6L 6L XOR, AND, 
modulo-2 
addition 

1 2 3 4 
Fail Fail Fail Fail 

 

RAPP 5L 6L XOR, Per, 
Rot 

1 2 3 4 
Fail Fail Fail Pass 

 

  

                                            Table.1 Performance Analysis of UMAP protocols 

As we can see from above table that, none of the protocols satisfy all layers of proposed security model. 
But if we opt any protocol which doesn't successfully pass all security layers then our RFID system’s 
communication will be on risk. 

Conclusion: 

In this paper, we presented the state of the art in the field of ultralightweight mutual authentication 
protocols for passive RFID tags. This paper first describes the need for ultralightweight cryptography 
for ubiquitous systems, and then presents some notorious ultralightweight mutual authentication 
protocols in sequential fashion. A security model has also been proposed to perform cryptanalysis on 
discussed protocols to endorse their practical feasibility. To the best of our knowledge, none of the 
protocols completely satisfy all four layers of proposed security model, because of inherited weak 
diffusion properties of T functions. These T functions have been extensively used in all UMAP 
protocols because of cost constraint.  So, it may be quite treacherous using only simple bitwise 
operations to attain RFID authentication under influential adversarial model. The security of such 
protocols must be proved with care of cryptanalysis. Designing of a secure ultralightweight protocol 
without strong cryptographic algorithms is still an open problem.  
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