
1

Power and Timing Side Channels for PUFs and
their Efficient Exploitation

Ulrich Rührmair, Xiaolin Xu, Jan Sölter, Ahmed Mahmoud, Farinaz Koushanfar, Wayne Burleson

Abstract—This paper discusses combined modeling and side
channel attacks on Strong Physical Unclonable Functions (Strong
PUFs). We illustrate our method by the example of the two
currently most secure (CCS 2010, IEEE T-IFS 2013) electrical
Strong PUFs, so-called XOR Arbiter PUFs and Lightweight
PUFs, and successfully attack them at sizes and complexities
far beyond the reach of pure modeling techniques (CCS 2010,
IEEE T-IFS 2013).

Our approach makes use of the first power and timing
side channels on PUFs reported in the literature. Both provide
information on the single outputs of the many parallel Arbiter
PUFs inside an XOR Arbiter PUF or Lightweight PUF, and
indicate how many of these single outputs (in sum) were equal
to one (and how many were equal to zero) before they entered
the final XOR gate. Taken for itself, this side channel information
is of little value. But if combined with suitably adapted machine
learning techniques, it substantially changes attack performance:
It reduces the empirically estimated complexities for modeling the
above two PUFs from exponential (CCS 2010, IEEE T-IFS) to
low degree polynomial.

The practical viability of our attacks is firstly demonstrated
by SPICE simulations, and by subsequent ML experiments on
numerically simulated CRPs. We thereby confirm attacks on the
two above PUFs for up to 16 XORs and challenge bitlengths
of up to 512. Secondly, we execute a full experimental proof-of-
concept for our timing side channel, successfully attacking FPGA-
implementations of the two above PUF types for 8, 12, and 16
XORs, and bitlengths 64, 128, 256 and 512. We implement these
sizes for the first time in the literature in silicon, and subsequently
attack them successfully by our new methods. We remark that in
recent works (CCS 2010, IEEE T-IFS 2013), 8 XOR architectures
with bitlength 512 had been explicitly suggested as secure and
beyond the reach of current attacks.

Finally, we discuss efficient countermeasures against our power
and timing side channels. They could and should be used to secure
future Arbiter PUF generations against the latter.

Keywords-Physical unclonable functions (PUFs), side channel
attacks, power side channel, timing side channel, modeling
attacks, machine learning, hardware security

I. INTRODUCTION

Most modern cryptographic and security schemes are built
on the concept of a secret key. This forces current hardware
to contain a piece of digital information that is, and remains,
unknown to the adversary. This requirement can be difficult
to uphold in practice: Physical attacks like invasive, semi-
invasive or side-channel attacks, as well as software attacks
like malware, can lead to key exposure and full security breaks.

Ulrich Rührmair, ruehrmair@ilo.de
Xiaolin Xu and Wayne Burleson are with the University of Massachusetts

Amherst, Amherst, MA 01003, USA.
Jan Sölter is with the Freie Universität Berlin, 14195 Berlin, Germany.
Ahmed Mahmoud is with the Technische Universität München, 80333

München, Germany.
Farinaz Koushanfar is with Rice University, Houston, TX 77005, USA.

Indeed, one of the main motivations in the development
of Physical Unclonable Functions (PUFs) was their promise
to better protect secret digital keys in vulnerable hardware
systems. A PUF is an (at least partly) disordered physical
system P that can be excited with external stimuli or so-
called challenges Ci. It reacts with corresponding responses
Ri, which depend on the challenge and on the micro- or
nanoscale structural disorder that is present in the PUF. It is
assumed that this disorder cannot be cloned or reproduced
exactly, not even by the PUF’s original manufacturer, and that
it is unique to each PUF. Assuming efficient error correction
on the noisy PUF responses, each PUF P thus implements
a unique and individual function fP that maps challenges Ci

from an admissible challenge set to responses Ri = fP (Ci).
The tuples (Ci, Ri) are thereby usually called the challenge-
response pairs (CRPs) of the PUF.

Due to their complex internal structure, PUFs promise to
avoid some of the shortcomings of classical digital keys. It is
usually harder to read out, predict, or derive PUF-responses
than to obtain digital keys that are stored in non-volatile
memory. The PUF-responses are only generated when needed,
which means that no secret keys are present permanently in
an easily accessible digital form. Furthermore, certain types of
PUFs promise some natural tamper sensitivity, as their exact
behavior depends on minuscule manufacturing irregularities in
different layers of the IC. Removing or penetrating these layers
is often assumed to automatically change the PUF’s read-out
values.

These observations have been exploited in the past for
various PUF-based security protocols. Prominent examples
include schemes for identification [24], [6] or different forms
of (tamper sensitive) key storage and applications thereof, such
as intellectual property protection or read-proof memory [8],
[14], [36]. Simultaneously, the use of PUFs in advanced cryp-
tographic protocols has been investigated. Several protocols
were suggested, including schemes for identification [24], key
exchange [24], [5], [2], oblivious transfer [26], [2], or bit
commitment [23], [2]. Using Strong PUFs in these protocols
has the advantage that no permanently stored digital secret
keys and standard computational assumptions (such as the
hardness of factoring) are involved. Overall, the assumed secu-
rity advantages of PUFs have attracted considerable attention
within the security community over the last decade.

a) Recent Attacks on PUFs and Related Work: In the
last years, an increasing number of attacks on PUFs have been
published. Some of them were specifically developed for this
new primitive, while others are an adaption of known strategies
to the PUF case. Not all attacks apply to every PUF design

2

in the same manner. In order to categorize existing work, it
makes sense to distinguish between the two major PUF types
of “Weak PUFs” and “Strong PUFs” 1 .

Let us start with Strong PUFs. The currently most relevant
attack form on this PUF type are machine-learning (ML) based
modeling attacks, which have been pursued by a large number
of authors [13], [22], [17], [16], [10], [3], [32], [34]. They are
particularly well applicable to Strong PUFs, since this PUF
type has a publicly accessible CRP interface, which allows
the collection of the large numbers of CRPs that are required
in these attacks. Two recent works from CCS 2010 and IEEE
T-IFS 2013 [32], [34], which represent the current state of the
art, have indeed succesfully tackled a considerable number of
Strong PUF designs, including standard Arbiter PUFs, XOR
Arbiter PUFs, Feed-Forward Arbiter PUFs, Lightweight PUFs,
and certain forms of Ring Oscillator PUFs [35], [32], [16].
The architectures with the highest ML-resilience were found
to be XOR Arbiter PUFs [35], [32] and Lightweight PUFs
[16]. They could only be be attacked efficiently if they are
composed of at most five or six single parallel Arbiter PUFs
with bitlength 64 or 128 each [32], [34]. To give a full
picture to the readers, some concrete results of [32], [34] are
summarized in Table I. They show that the CRP consumption
and training times grow substantially for larger number of
XORs k and bitlengths n. The authors of [32] estimate that
the growth is exponential in the number of XORs k, and
polynomial to the degree k in the bitlength n. Furthermore,
from all PUFs examined in [32], [34], the XOR Arbiter PUF
and the Lightweight PUF possess the highest ML resilience,
with the latter yet being somewhat harder to break.

To summarize, no efficient attacks on Lightweight PUFs
and XOR Arbiter PUFs with bitlengths of 256 or more and
with 6 XORs or more were possible prior to this work,
and also no polynomial time ML algorithms for attacking
these structures were known. Note here that the instability
of XOR Arbiter PUFs and Lightweight PUFs with k XORs
grows exponentially in k. This puts a natural limit on the
number of XORs that can be used. The authors of [32], [34]
hence explicitly suggested the use of XOR Arbiter PUFs and
Lightweight PUFs with eight parallel Arbiter PUFs (with “8
XORs”) and bitlengths 512 as both stable and secure against
existing modeling attacks.

Another attack on Strong PUFs that is relevant in our con-
text has been presented recently by Delvaux and Verbauwhede
[3]. They combine a noise-based side channel with analyti-
cal modeling techniques in order to attack standard Arbiter
PUFs (i.e., without any XORs). Interestingly, their modeling
approach does not employ any machine learning algorithms.
Their method is very attractive, but in its current form achieves
slightly worse accuracy than ML-based modeling without side
channels (97% in [3] vs. 99% in [34]). It also has a higher
CRP-consumption than pure ML-based modeling without side
channels. This is in opposition to the attacks presented in this
paper, actually drastically increase the performance of pure
ML-based Strong PUF attacks.

1For an explanation of Weak and Strong PUFs and other PUF types, we
refer the reader to Rührmair et al. [32], [34], [30].

Other recent attacks have mostly focused on so-called Weak
PUFs. Merli et al. attack the error-correcting module of Weak
PUFs at TRUST 2011 [19], and EM analyses on ring oscillator
PUFs (RO PUFs) have been carried out by the same group
at WESS 2011 [20]. Nedospasov et al. describe successful
invasive methods on SRAM PUFs at FDTC 2013 [21]. Finally,
Helfmeier et al. report cloning attacks on SRAM PUFs at
HOST 2013 [9].

Comparable cloning or invasive attacks on Strong PUFs
have not been reported to this date. There is a reason for this:
Typical Strong PUFs possess very many possible challenges
and a complex response generation process, in which a large
number of components interact to produce one single response.
Successful physical cloning would require the accurate dupli-
cation of all of these components in order to get all CRPs right.
In the case of an Arbiter PUF, for example, it would involve
successful tuning of all delay values in the subcomponents;
or in the case of optical PUFs, it would require precise
positioning of all the scattering centers in the PUF. This seems
significantly harder than tuning the single output of typical
Weak PUFs, for example tuning the start-up value of a single
SRAM cell. Furthermore, an invasive read-out of the single
response of a Weak PUF is obviously simpler than reading
out the exponentially many CRPs of typical Strong PUFs.

Finally, a number of protocol attacks on advanced Strong
PUF schemes such as key exchange or oblivious transfer have
been presented recently at CHES 2012, IEEE S&P 2013, and
other venues [31], [27], [28], [29]. They describe relevant
methods, but lie beyond the topic of this paper, which focuses
on hardware attacks.

b) Our Contributions: This work combines for the first
time machine learning based modeling with side channel
information to reach new performance levels in Strong PUF
attacks. We illustrate our methods by the example of XOR
Arbiter PUFs and Lightweight PUFs, which are the two most
secure and practical electrical Strong PUFs according to the
current state of the art [32], [34]. We show that our new
approach allows the first successfully attacks on these two
designs for up to 16 internal, parallel single Arbiter PUFs
(i.e., for “16 XORs”), and for bitlengths of up to 512. It also
reduces, for the very first time, the CRP consumption of the
attacks to linear, and the corresponding ML training times to
low degree polyonmial.

One part of our attacks is executed on simulated CRPs,
which were generated by an additive linear delay model, and
under the assumption of a noise-free side channel information.
Both assumptions do not strongly diminish the relevance of
our results, however: Rührmair et al. [32], [34] showed that for
any Arbiter PUF variants, results on simulated CRPs generated
by the linear additive delay model carry over with very little
performance loss to silicon CRPs. Furthermore, the same
works [32], [34] showed that the ML method employed in
this paper (i.e., logistic regression) possess substantial error
tolerance. Reasonable noise levels in the side channel will not
alter its performance significantly.

In addition, we carry out a full proof of concept on FPGA
implementations of XOR Arbiter PUFs and Lightweight PUFs.
In this process, we utilize an efficient, yet simple error

3

PUF-Type No. of Bit Source of CRPs Prediction Training
XORs Length CRPs (×103) Rate Time

Arbiter PUF — 64 Simulation 2.5 99% 0.13 sec
128 5.5 0.51 sec

XOR Arb PUF

4 64 Simulation 12 99% 3:42 min
128 24 2:52 hrs

5 64 Simulation 80 99% 2:08 hrs
128 500 16:36 hrs

6 64 Simulation 200 99% 31:01 hrs
128 — —

Lightweight PUF

4 64 Simulation 12 99% 1:28 hrs
128 500 59:42 min

5 64 Simulation 300 99% 13:06 hrs
128 1000 267 days

6 64 Simulation — 99% —
128 — —

TABLE I
STATE OF THE ART OF MODELING ATTACKS ON ARBITER PUFS, XOR ARBITER PUFS, AND LIGHTWEIGHT PUFS, TAKEN FROM [32], [34]. ALL SHOWN

RESULTS WERE OBTAINED ON SIMULATED CRPS GENERATED BY THE ADDITIVE LINEAR DELAY MODEL [13], [32], [34]. THE TRAINING TIMES ARE
CALCULATED AS IF THE ML EXPERIMENT WAS RUN ON ONLY one single CORE OF one single PROCESSOR. USE OF k CORES WILL APPROXIMATELY

REDUCE THEM BY 1/k.

correction method for our side channel that keeps noise levels
particularly low. Our approach allows us to attack the two
above PUFs for eight single parallel Arbiter PUFs (i.e., for “8
XORs”), and for bitlengths 128, 256 and 512. These sizes had
been explicitly suggested as secure in earlier works without
implementing them [32], [34]. To our knowledge, our FPGA-
implementations of XOR Arbiter PUFs and Lightweight PUFs
with 8 XORs and up to 512 bits are the first with comparably
large sizes and complexities. We implement these regimes for
the first time, and subsequently attack them successfully by
our new methods.

Our attacks in practice require physical access to the PUF,
which is part of the established Strong PUF attack model [32],
[34]. Compared to earlier work [32], [34], they involve the
collection of a relatively mild amount of CRPs, and lead to
very short computation times. In fact, we empirically estimate
the required CRPs to be linear in the size of the PUF (i.e., in
the number of XORs and the bitlength), and the computation
times to be low degree polynomial. This is in stark contrast to
the estimated exponential CRP requirements and computation
times of earlier methods on the two above PUF types [32],
[34].

Our two side channels are the first power and timing side
channel on PUFs discussed in the literature. They are also the
first general side channels on Strong PUFs that can increase
attack performance (compare above). Both tell an attacker
the cumulative number of zeros and the cumulative number
of ones in the internal outputs of all the single, parallel
Arbiter PUFs within an XOR Arbiter PUF or Lightweight
PUF structure. Our power side channel draws its information
from closely monitoring the power consumption of the PUF,
and from tracing the loads that arise when the final latches
that act as “arbiters” in Arbiter PUF implementations switch
to one or remain zero. Our timing side channel is based
on marking different response patterns with corresponding
timing signatures. With the extracted timing signature, we
can reversely conclude the composition of multiple individual
responses (before the XOR function), deriving the cumulative

number of zeros and the cumulative number of ones.

Besides the above new side channels and the first silicon
implementation of Arbiter PUF variants with 8 XORs and
bitlength up to 512, a fourth central contribution of this paper
is the development of a novel, tailormade non-linear regression
algorithm. Our algorithm can efficiently exploit the above side
channel information on the cumulative number of zeros and
ones. To this end, a differentiable model of the side channel in-
formation was developed. This new algorithm strongly reduces
the complexity of the ML problem associated to XOR Arbiter
PUFs and Lightweight PUFs: From the exponential complexity
of earlier algorithms without side channel information [32],
[34] to a linear CRP consumption and low-degree polynomial
runtimes in this paper.

At the end of this work, we discuss countermeasures against
our side channel attacks, which could and should be put
in place in future Arbiter PUF generations. The differential
output architecture that we suggest for thwarting power side
channels even appears to have applications elsewhere, for
example in detecting or correcting output errors in Arbiter
PUFs. We also discuss several possibilities to encounter timing
side channels, most importantly a method for the construction
of an isochronous hardware.

c) Organization of this Paper: Section II provides some
background and methology. Sections III and IV illustrate the
principles of our power and timing side channels, respectively.
Section V shows how existing machine learning methods can
be adapted to digest side channel information. Section VI
gives the results of applying the adapted methods to simulated
CRPs and side channel info. Section VII leads a full proof
of concept for combined modeling and timing side channel
attacks on FPGA implementations of XOR Arbiter PUFs and
Lightweight PUFs. Section VIII describes countermeasures
against our side channels. Section IX concludes the paper.

4

XOR

b
1

b
2 b

3 b
n-1

b
n

Fig. 1. An XOR Arbiter PUF composed of two single, parallel Arbiter PUFs,
also referred to as “2-XOR Arbiter PUF” or “Arbiter PUF with two XORs”.
The 1-bit outputs of the two single arbiters (red triangles) enter a final XOR
gate to produce a 1-bit overall output. The shown structure has bitlength n.

II. BACKGROUND AND SOME ML METHODOLOGY

A. Arbiter PUF Variants

Arbiter PUFs and variants thereof were among the first
electrical PUFs [6], [7], [12], [35], and are currently among
the most widespread and best investigated PUF designs. The
three variants relevant for this work are described below.

d) Arbiter PUFs: The basic, standard Arbiter PUF has
been introduced and discussed in [7], [12], [35]. It consists
of a sequence of n stages, for example multiplexers. Two
electrical signals race simultaneously and in parallel through
these stages. Their exact paths are determined by a sequence
of n external bits b1 · · · bn applied to the stages, whereby the
i-th bit is applied at the i-th stage. If bi = 0, then the paths
run “in parallel” through the multiplexers, and if bi = 1, they
cross each other and change position. After the last stage, an
“arbiter element” consisting of a latch determines whether the
upper or lower signal arrived first and correspondingly outputs
a zero or a one. The external bits are usually regarded as the
challenge C of this PUF, i.e., C = b1 · · · bn, and the output of
the arbiter element is interpreted as their response R. See [7],
[12], [35] for further details. The parameter n is often referred
to as the bitlength of the Arbiter PUF.

e) XOR Arbiter PUFs: One possibility to strengthen the
resilience of arbiter architectures against machine learning
attacks, which has been suggested in [13], [35], is to employ
k individual Arbiter PUFs in parallel, each with n stages (i.e.,
each with bitlength n). The same challenge C is applied to
all of them, and their individual outputs ri are XORed in
order to produce a global response oXOR. We denote such
an architecture as “k-XOR Arbiter PUF” or as “XOR Arbiter
PUF with k XORs”. The case of a 2-XOR Arbiter PUF is
illustrated in Figure 1.

f) Lightweight PUFs: Another type of delay-based PUF,
which is often termed Lightweight Secure PUF or Lightweight
PUF for short, has been introduced in [16]. It is similar to
the XOR Arb-PUF of the last paragraph. At its heart are k
individual standard Arb-PUFs arranged in parallel, each with
n stages (i.e., with bitlength n), which produce k individual
outputs r1, . . . , rk. These individual outputs are XORed to
produce a multi-bit response o1, ..., om of the Lightweight

PUF, according to the formula

oj =
⊕

i=1,...,x

r(j+s+i) mod k for j = 1, . . . ,m. (1)

Thereby the values for m (the number of output bits of the
Lightweight PUF), x (the number of values rj that influence
each single output bit) and s (the circular shift in choosing the
x values rj) are variable design parameters.

Another difference to the XOR Arbiter PUFs lies in the k
inputs C1 = b11 · · · b1n, C2 = b21 · · · b2n, . . . , Cl = bl1 · · · bln
which are applied to the k individual Arbiter PUFs. Contrary
to XOR Arbiter PUFs, it does not hold that C1 = C2 = . . . =
Ck = C, but a more complicated input mapping that derives
the individual inputs Ci from the global input C is applied.
This input mapping constitutes the most significant difference
between the Lightweight PUF and the XOR Arbiter PUF. We
refer the reader to [16] for further details.

From the many possible variants of Lightweight PUFs
that are enabled by the above parameters m, x and s, we
concentrate on the following version in this paper: We consider
Lightweight PUFs composed of k parallel standard Arbiter
PUFs, and apply the standard input mapping described in [16].
For the output, we take the XOR of all responses of the k
parallel Arbiter PUFs. In terms of the bitwise security of the
output, this is the most secure variant of the Lightweight PUF:
XORing less than k single responses for one response leads
to a worsened bit security of the output. For these reasons,
exactly the same variant of the Lightweight PUF has been
considered in earlier works on the topic [32], [34]. Sticking
with this variant furthermore ensures comparability of our data
and earlier results [32], [34].

B. Logistic Regression with RProp

From earlier work [32], [34], it is known that an adapted
form of logistic regression (LR) performs best on the three
PUFs of the last Section II-A. LR is a well-investigated super-
vised machine learning framework, which has been described,
for example, in [1]. In its application to PUFs with single-bit
outputs, each challenge C = b1 · · · bk is assigned a probability
p (C, r | w⃗) that it generates a output r ∈ {0, 1}). The vector
w⃗ encodes the relevant internal parameters, for example the
particular runtime delays, of the individual PUF. The proba-
bility is given by the logistic sigmoid σ(x) = (1 + e−x)−1

acting on a function f(w⃗, C) parametrized by the vector w⃗ as

p (C, r | w⃗) = rσ(f) + (1− r)(1− σ(f)) (2)

. Thereby the decision function f determines through f = 0
a decision boundary of equal output probabilities. For a
given training set M of CRPs the boundary is positioned
by choosing the parameter vector w⃗ in such a way that the
likelihood of observing this set is maximal, respectively the
negative log-likelihood is minimal:

ˆ⃗w = argminw⃗ l(M, w⃗) = argminw⃗
∑

(C, r)∈M

−ln p (C, r | w⃗)

(3)

5

As there is no analytical solution to determine the optimal
parameter vector ˆ⃗w, it has to be optimized iteratively, e.g.,
using the gradient information

∇l(M, w⃗) =
∑

(C, r)∈M

(σ (f (w⃗))− r)∇f(w⃗) (4)

From the different possible optimization methods, RProp [1]
[25] has been identified as optimal in earlier ML works
on PUFs [32], [34]. RProp makes a very big difference in
convergence speed and stability of the LR algorithms (k-XOR
Arbiter PUFs for medium or large k were only learnable with
RProp).

In general, logistic regression has the asset that the exam-
ined problems need not be (approximately) linearly separable
in feature space, as is required for successful application of
support vector machines, for example, but merely differen-
tiable.

C. Linear Additive Delay Model

It has become standard to describe the functionality of
Arbiter PUF variants via an additive linear delay model [13],
[32], [34]. The overall delays of the two racing signals are
modeled as the sum of the delays in the stages. The final
delay difference ∆ between the upper and the lower path in
an n-bit Arbiter PUF is expressed as

∆ = w⃗T Φ⃗, (5)

where w⃗ and Φ⃗ are vectors of dimension n+1. The parameter
vector w⃗ encodes the delays for the subcomponents in the
Arbiter PUF stages, whereas the feature vector Φ⃗ is solely a
function of the applied n-bit challenge C [13], [32], [34].

In greater detail, the following holds. We denote by δ
0/1
i

the runtime delay in stage i for the crossed (1) respectively
uncrossed (0) signal path. Then

w⃗ = (w1, w2, . . . , wk, wn+1)T , (6)

where w1 =
δ01 − δ11

2 , wi =
δ0i−1 + δ1i−1 + δ0i − δ1i

2 for all

i = 2, . . . , n, and wn+1 =
δ0n + δ1n

2 . Furthermore,

Φ⃗(C⃗) = (Φ1(C⃗), . . . ,Φk(C⃗), 1)T , (7)

where Φl(C⃗) =
∏n

i=l(1− 2bi) for l = 1, . . . , n.
The output r of an Arb-PUF is determined by the sign of

the final delay difference ∆:

r = Θ(∆) = Θ(w⃗T Φ⃗). (8)

with Θ being the Heaviside step function, i.e., Θ(x) =
0 if x < 0 and Θ(x) = 1 if x ≥ 0. Eqn. 8 shows that the
vector w⃗ via w⃗T Φ⃗ = 0 determines a separating hyperplane in
the space of all feature vectors Φ⃗. Any challenges C that have
their feature vector located on the one side of that plane give
response r = 0, those with feature vectors on the other side
r = 1. Determination of this hyperplane allows prediction of
the PUF and can be achieved by setting the decision function
f in Eqn. 2 to the linear delay model f = w⃗T Φ⃗.

More complex architectures that use k standard Arbiter
PUFs in parallel, possibly together with special input or output

mappings, can then simply be modelled by using the linear
additive delay model for each of the parallel Arbiter PUFs.
Overall, this involves k feature vectors Φ⃗1, . . . , Φ⃗k derived
from the effective challenges at the individual Arbiter PUFs
(given by the input mapping) and k weight vectors w⃗1, . . . , w⃗k:

o = Θ(
k∏

i=1

∆i) = Θ(
k∏

i=1

w⃗T
i Φ⃗i) (9)

Eqn. 9 defines a decision boundary at
∏k

i=1 w⃗
T
i Φ⃗i = 0. Any

challenges C that have their feature vector set Φ⃗1, . . . , Φ⃗k

located on the one side of the boundary (e.g. o < 0 respectively
an odd number of individual delays ∆i smaller than zero) give
response r = 0, those with feature vectors on the other side
r = 1. Determination of this boundary allows prediction of
the PUF and can be achieved by setting the decision function
f in Eqn. 2 to this boundary f =

∏k
i=1 w⃗

T
i Φ⃗i. It implies an

optimization along the gradient in Eqn. 4:

∇f(w⃗j) = Φ⃗j

∏
i ̸=j

w⃗T
i Φ⃗i (10)

This principle has been applied to the XOR Arbiter PUF
and Lightweight PUF of this paper.

D. Numerical CRP Generation, Simulated Side Channels

A subset of the attacks presented in this paper are executed
on simulated CRPs generated by the additive linear delay
model of the last section. The simulated challenge-response
pairs (CRPs) were generated in the following fashion: (i) The
delay values for all single Arbiter PUFs within the respective
PUF variant were chosen pseudo-randomly according to a
standard normal distribution. We sometimes refer to this as
choosing a certain PUF instance in the paper. In the language
of Eqn. 5, it amounts to choosing the n + 1 entries of the
vector w⃗ pseudo-randomly according to a standard normal
distribution. (ii) If a response of this PUF instance to a given
challenge is needed, it is calculated by use of the delays
selected in step (i). The delays of the two electrical signal
paths are simply added up and compared. Or, again in the
language of of Eqn. 5, the value of ∆ is computed.

In a subset of our attacks, also simulated side channel
information is used. The cumulative number of ones in the
outputs of the single Arbiter PUFs was obtained directly
from the above CRP simulation in the linear additive delay
model, i.e., simply by adding up the outputs of the single,
parallel Arbiter PUFs in the above CRP simulation. An analog
statement holds for the cumulative number of zeros.

E. Training Set, Test Set, and Prediction Error

We use the following definitions throughout the paper: The
prediction error ϵ is the ratio of incorrect responses of the
trained ML algorithm when evaluated on the test set. For all
ML experiments throughout this paper, each test set consisted
of 10,000 randomly chosen CRPs. The size of the employed
training sets varies, and is given individually on each occasion.
The prediction rate is 1− ϵ.

6

Fig. 2. The power tracking side channel analysis for a latch that had a transition to 1, with different driving loads, in SPICE simulation. The inset is the
amount of drawn charges, which is calculated from the area under each curve. The amount of charges is linearly proportional with the number of gates, noting
that the amount of charges normally drawn for a floating load should be subtracted.

The term NCRP (or simply “CRPs”) denotes the number of
CRPs employed in an attack. In the case of logistic regression
(LR), which is the only ML algorithm employed in this paper,
this number is always equal to the size of the training set.

F. Employed Computational Resources and Training Times

We used an Intel Xeon X5650 processor at 2.67GHz with
48 GB of RAM in all of our ML experiments, representing
a worth of a few thousand Euros. All computation times (=
“training times”) are calculated for one core of one processor
of this hardware.

III. POWER SIDE CHANNELS ON ARBITER PUF VARIANTS

The basic concept of our power side channel is to apply
power tracing to determine the transition from zero to one of
the latches (=arbiter elements) that are part of Arbiter PUF
based architectures. The power tracing technique is based
on measuring the amount of current drawn from the supply
voltage during any latch transition to one.

In order to validate our approach, we implemented a SPICE
simulation that uses only one latch with three different outputs
loading (floating output, output connected to one gate, and
output connected to four gates). Figure 2 illustrates our results,
and shows the different amount of current drawn for the three
different output loading. The reason for having different values
for the different loading is that an additional amount of charges
is required to charge the capacitance of each gate. Hence,
the amount of drawn charges, which is the integration of
the current curve, is linearly proportional with the number
of gates. Taking into consideration, the amount of charges
normally drawn in case of a floating load should be subtracted.
Consequently, for extreme cases when all latches’ output in the

Circuit-under-test DFFLaunch Flip Flop Sample Flip Flops Capture Flip FlopsDFF DFFVDDBinary ChallengeTTiming Challenge S D Q E L
Fig. 3. The timing signature extraction circuit.

device are zeros or all are ones, this power tracing technique
would allow the attacker to determine these cases very easily.

By applying this idea to XOR Arbiter PUFs and Lightweight
PUFs, which utilize more than one single Arbiter PUF in
parallel, one could determine the cumulative number of ones
(and zeros) stored in the latches (arbiters) within the PUF.
Following our above discussion, the power consumption will
tell us the cumulative number of zeros and ones that are stored
in the latches (or, in other words, the cumulative number of
zeros and ones that is output by the single Arbiter PUFs
before the large, final XOR gate. Please note, however, that
we cannot derive which of the single Arbiter PUFs in an
XOR Arbiter PUF have output one and which have output
zero. We only know the overall number of zeros and ones
before the XOR. Taken by itself, the side channel thus appears
relatively worthless. We will nevertheless show that this basic
information can boost PUF attacks significantly if it is used
in the right manner in Section V.

IV. TIMING SIDE CHANNELS ON ARBITER PUF VARIANTS

A. Delay Measurement Circuitry

Let us now describe our timing side channel approach,
starting with our delay measurement circuit. It operates on

7

the basis of FPGA reconfigurability. Figure 3 demonstrates an
abstraction of the delay measurement concept and circuitry. To
measure the timing of the circuit under test (CUT), three on-
chip flip flops (FFs) connected to the chip clock are utilized:
launch, sample, and capture FFs. For now, assume that the
CUT input is held the same and therefore, the circuit delay is
fixed.

The clock signal with a period of 2T is applied to the CUT
when all the FFs are set to an initial value. For the sake of
explanation, assume that the initial value of each FF is zero
and the CUT’s output, after applying the input, is expected
to change from zero to one. At the clock’s rising edge, the
launch FF sends a low-to-high signal to the CUT. At time T ,
i.e., half the clock period, the sample FF samples the output
at the falling clock edge. (Note the inverted clock signal at the
sample FF.)

There are three possible scenarios for the value of the
sample FF: (i) the CUT delay is less than T , in which case
the sample FF will be set to the correct value (one); (iii) the
CUT delay is (almost) equal to T and therefore the FF shall
be in a transition mode; and (ii) the CUT delay is greater than
T and thus the sample FF will not be set to the final value. As
shown on the Figure, an XOR gate compares the values of the
actual output and the sample FF. The capture FF would hold
the comparison results for one clock cycle. In case (i), the
comparison would demonstrate equal values of the two XOR
inputs, while in case (iii) the two XOR inputs would differ,
generating an error signal (one) at the capture FF. Case (ii)
is trickier to predict, as the output signal in transition may be
interpreted as zero or one at the input of the XOR gate with
a certain probability.

We now perform a more careful timing analysis. Let tcut,
tc2Q, tskew, tsetS , tholdS , tsetC , tholdC , and txor denote the
values for the CUT, clock-to-Q of the launch FF, clock skew
between the launch and sample FFs, the sample FF’s setup,
the sample FF’s hold, the capture FF’s setup, the capture FF’s
hold, and XOR timings respectively. If tp denotes the total
propagation delay from the moment the launch FF is clocked
to the moment the signal passes through CUTs and settles at
the sample FF, then tp = tcut + tc2Q − tskew.

In case of near equality of tp and T , i.e., scenario (ii) above,
because of the setup and hold timing violations the sample
FF would enter a metastable point. The probability of the
metastable point resolving to a zero or one value at the capture
FF is a function of the proximity of tp and T . As an example,
in case of having equal T and tcut both clock and signal
simultaneously arrive at the sample FF. Thus, the metastable
point resolves to a zero or one with equal probability.

When the XOR output at the capture FF does not demon-
strate a discrepancy, the following relationship holds:

tholdC < tp < T − tsetS (11)

As tp enters the following interval,

T − tsetS < tp < T + tholdS (12)

the capture FF shows the output metastability.

Note that the probability of occurrence of timing errors
demonstrates a periodic rise and fall pattern. First, the proba-
bility of timing error rises as tp gets closer to the upper bound
of Inequality above. The timing error would occur every cycle
(with a high probability) once the following condition holds:

T + tholdS < tp < 2T − (tsetC + txor) (13)

Next, once the value of tp exceeds the 2T − (tsetC + tXOR)
in Equation 13, the timing error’s rate starts to decline. The
fall in error probability is not because of the correctness of
functionality, but it is because of the limitations of the capture
FF in observing and recording the timing errors.

Equation 14 (below) demonstrates the transition from the
scenario where there is a high probability of error in each
clock cycle (Equation 13) to the scenario where no errors shall
be detected (Equation 15).

2T − (tsetC + txor) < tp < 2T + (tholdC − txor) (14)

2T + (tholdC − txor) < tp < 3T − tsetS (15)

In case tp is larger than 3T − tsetS , the timing errors shall
not be hidden anymore. Indeed, the timing errors emerge and
could be captured if tp is within the interval below:

3T − tsetS < tp < 3T + tholdS (16)

Assuming that Inequality 17 holds, the timing errors would be
detectable in each clock cycle:

3T + tholdS < tp < 4T − (tsetC + txor) (17)

This rise and fall pattern repeats for integer multiplies of T ;
the maximum FPGA clock frequency sets an upper bound on
this behavior. If the value of T >> txor and T >> tset and
T >> thold (for the FFs), it is possible to approximate the
intervals as n × T < tp < (n + 1) × T where timing errors
shall be detected for odd n values.

Note that in Figure 3, the propagation delay of the CUT
circuit may be different, in practice, for the low-to-high and
high-to-low transitions. Suppose that one of them is greater
than the other, e.g., tl→h

p < tl→h
p . In this case, the th→l

p satisfies
the Equation 13. The timing errors for this scenario only occur
for the high-to-low transition and therefore, the errors can be
observed only half of the times. The final measurement shows
a superposition of both transition effects.

Figure 4 demonstrates the measured probability of timing
error with respect to T in the top plot. Inequality 13 drives
the pattern seen in region R5. The metastability in inequality
14 is reflected in regions R6 and R8. The error-free area R9

corresponds to Inequality 15. Regions R3, R7 and R11 are
results of the difference between tl→h

p and tl→h
p . Inequality

16 is reflected in regions R10 and R12. Lastly, region R13

depicts the Equation 17.
Note that all the delays defined in this section, i.e., for the

FFs, clock skews, and XOR, shall have two different values for
the rising and falling edge transitions. The inequalities defined
in this section hold for both rising and falling transitions.

In the remainder of this paper, we refer to the timing
characterization circuit in Figure 3 as a timing characterization
cell or simply a cell. In our implementation, we place each cell
in one configurable logic block (CLB) on FPGA.

8

T

1

0

0.5

σ6 σ4 σ3 σ2 σ1σ5

d6 d5 d4 d3 d2 d1

R1

R3

R12

R2

R4R5R6

R7

R8

R9

R10

R11

R13Er
ro

r
P

ro
ba

bi
lit

y

T0

1
σ6 σ4 σ3 σ2 σ1σ5

d6 d5 d4 d3 d2 d1

R1R3R12

R2

R4R5

R6

R7R8R9

R10

R11R13

T0

1
σ6 σ4 σ3 σ2 σ1σ5

d6 d5 d4 d3 d2 d1

R1R3

R12

R2

R4

R5R6R7

R8

R9R10R11R13E
rr

or
 P

ro
b.

E
rr

or
 P

ro
b.

Total

Probability of timing errors for low-to-high transitions

Probability of timing errors for high-to-low transitions

Fig. 4. Probability of incurring timing errors as a function of half clock
period (T).

B. Timing Characterization Method

We now describe the timing measurement system which
efficiently extracts the probability of obtaining timing failure
for various clock pulse widths on the FPGA. The circuit
demonstrated in Figure 3 only generates a single bit flag
indicating the presence or absence of an error. Our objective
is to design a method to measure the rate or probability at
which errors appear at the circuit output in Figure 3 to extract
the transitions as discussed in Figure 4.

In order to measure the probability of error at a certain
clock frequency, an error histogram accumulator is realized
by two counters. The first one is an error counter whose value
increments by one each time an error occurs. The second
one counts the clock cycles and also after 2N clock cycles
clears (resets) the error counter and restarts again, where N
is the binary counters’ size. The error counter value is stored
in the memory one clock cycle before it is reset. Now, the
stored number of flaws normalized to N would yield the error
probability value.

Next, we linearly and continually sweep the input clock
frequency: in Tsweep seconds from fi = 1

2Ti
to ft = 1

2Tt
,

where Tt < tp < Ti. For each frequency sweep a separate
set of registers count the number of clock pulses. We use this
counter as an accurate timer which records the frequency of
the timing errors. This counter value is retrieved every time
the content of the error counter is written into memory. The
value of this counter is retrieved every time the error counter
content is written into memory.

OROR
Column Address Decoder

Row Address Decoder Error CounterControllerGlobal Clock WriteIncrement
Cell Address

Address CounterClearClock pulse numberClock Pulse Counter
ORORChallenge MomeryClear

Fig. 5. The architecture for chip level delay extraction of logic components.

The system described above is utilized for extracting the
delays of any CUT implemented on FPGA. A logic config-
uration can be used within the CUT in the characterization
circuit. The delay of each CUT component can be found by
sweeping the clock frequency once. Note that the scanning for
extracting delay values could also be performed in parallel to
reduce the characterization time .

C. Characterization Accuracy

The resolution of the delay measurement, i.e., the measured
delay’s accuracy, is a function of a few factors: (i) the clock
noise and skew, (ii) the sweeping frequency resolution, and
(iii) the number of pulses at each frequency. The output of
the characterization circuit is a binary zero/one value. A real-
valued output can be measured by repeating several (same
width) clock pulses to the circuitry and accumulating the
number of ones at the output. The resulting value, when
normalized, shows the probability at which the timing errors
occur for each input clock’s pulse width. The more the input
clock pulse is repeated, the higher sampling resolution and
accuracy can be achieved.

Next, assume that the clock pulse (of width T) is sent to the
CUT for M times. Because of clock skew and phase noise,
the characterization circuitry receives a clock pulse with width
Teff = T + Tj , where Tj is the additive jitter. Suppose that
Tj is a random variable with a zero mean and symmetric
distribution around its mean. The output probability is a con-
tinuous and smooth function of Teff ; thus, approximating the
probability by averaging shall be an asymptotically unbiased
estimator as M → ∞. Lastly, the minimum measurable timing
is a function of the maximum clock speed at which the FFs can
be run (maximum clock frequency). During a linear frequency
sweep, a longer sweep time increases both items (ii) and (iii)
and thus the characterization accuracy.

9

D. Parameter Extraction

Thus far, we have described a system that measures the
probability of timing errors for various clock pulse widths.
The error probability can be fully represented by a set of
few parameters; the parameters are directly related to the
CUT delay and FF setup and hold times. It can be shown
that the probability of timing errors shall be written as the
sum of shifted Gaussian CDFs. The central limit theorem can
determine the Gaussian nature of the error probabilities which
can be explained by Equation 18 shows the parameterized error
probability function.

fD,Σ(t) = 1 + 0.5

|Σ|−1∑
i=1

−1⌈i/2⌉
[
Q(

t− di
σi

)

]
(18)

where Q(x)= 1√
2π

∫∞
x

exp
(
−u2

2

)
and di+1 > di. To estimate

the timing parameters, f is fit to the set of measured data
points (ti,ei), where ei is the error value recorded when the
pulse width equals ti.

E. Side-channel timing analysis of XOR’ed outputs

The objective of the timing circuitry and measurement
method (described above) is for providing additional infor-
mation about the individual response bits (i.e., PUF output
bits) even though the response bits are XOR’ed together for
providing the output. Assume that k response bits {r1, . . . , rk}
are XOR’ed to form a single output bit o. (Note that a k-input
XOR shall consist of several stages of smaller XOR gates.
For the same of demonstration, assume that the delay of the
response bit ri, denoted by tri follows a certain order, say
tr1 ≤ tr2 · · · ≤ trk−1

≤ trk).
As we sweep the clock frequency (in a rising trend) to

measure the XOR’ed response bit, we eventually get to a
regime where the frequency of the sweeping clock is close
to the overall output (after XOR’ing). However, before we get
to that regime, there are clock periods for which only a few
XOR inputs (i.e., response bits) change. Sweeping the clock
frequency could yield the information about the approximate
timing of the XOR inputs. Even though we would not be able
to tell which of the response bits had changes, we shall, with
a good probability, determine the number of flipping XOR
inputs. This number shall be vague if the timings of two or
more response bits coincide. Since the probability of such a
coincidence is rather low, in most instances clock sweeping
can give us an approximation of the number of flipped XOR
inputs, i.e., on the cumulative number of zeros and ones among
the single Arbiter PUF responses r1, . . . , rk.

V. COMBINING OUR SIDE CHANNEL INFORMATION WITH
MACHINE LEARNING TECHNIQUES

The question if (and how) the side channel information on
the cumulative number of zeros and ones can be efficiently
exploited in modeling attacks turned out to be non-trivial. The
obvious problem is that this number does not indicate which
of the single Arbiter PUF outputs has been zero or one. In
a first attempt to resolve the problem, we only used those
CRPs where the side channel indicates that all single Arbiter

PUF outputs are one or that all are zero in the modeling
process. In these cases, we obviously do know every single
output. By collecting such “special” CRPs, the problem of
modeling an entire Lightweight PUF decomposes into the
problem of modeling single Arbiter PUFs, which is known to
be simple, and can be done with a linear number of CRPs and
an approximately quadratic computational complexity [32],
[34]. However, one of several problems with this strategy is
that the “special” CRPs are exponentially rare, and merely
constitute a fraction of 1/2k−1 of all CRPs. One therefore
needs to collect an exponential amount of CRPs to implement
this strategy.

Finally, we found a gradient based optimization similar to
the logistic regression (LR) algorithm that has been used in
earlier ML attacks on the XOR Arbiter PUF and Lightweight
PUF [32], [34], and which is described in Section II-B.
The following treatment assumes some familiarity with this
algorithm and with the work in [32], [34].

Let ri(C) ∈ {0, 1} be the output of the ith Arbiter PUF
within a k-XOR Arbiter PUF (or within a Lightweight PUF
with k parallel Arbiter PUFs) to a challenge C. The side
channel information then yields the number n of individual
Arbiter PUFs with output one: n =

∑
i ri(C). It lies in

contrast to the general setting of binary outputs in LR on an
interval scale. Therefore, instead of optimizing the binary class
probabilities Eqn. 2, we rely on minimizing the squared error
between a side channel model f(w⃗, C) and the actual outputs
n:

l(M, w⃗) =
∑

(C, t)∈M

(f(w⃗, C)− n)2.

The corresponding gradient

∇l(M, w⃗) =
∑

(C, r)∈M

2 (f (w⃗)− n)∇f(w⃗) (19)

is highly similar to the gradient in LR (Eqn. 4) and we will
again apply the RProp update scheme (as in [32], [34]) to find
a solution ˆ⃗w with minimal error l.

Assuming the standard linear additive delay model (see
Section II-C and Eqn. 5), one obtains the following model
of the side channel information:

f(w⃗, C) =
∑
i

Θ(w⃗T
i Φ⃗i).

Note that the model only depends on the direction, but not
on the length ∥w⃗i∥ of the weight vectors. That is, any two
solutions w⃗i and αw⃗i, α ∈ R+ are equivalent. Therefore
we might substitute the Heaviside function by the differ-
entiable logistic sigmoid σ(x) = (1 + e−x)−1 to enable
gradient based optimization. This is a reasonable substitution
as lim∥w⃗∥→∞ σ(w⃗T Φ⃗) = Θ(w⃗T Φ⃗) and, as noted above, a
valid solution is unaffected by scaling of w⃗.

As this substitution makes the model differentiable, we
obtain the following gradient to insert in Eqn. 19:

∇f(w⃗j) = σ(w⃗T
j Φ⃗j)(1− σ(w⃗T

j Φ⃗j))Φ⃗j . (20)

This gradient of an individual Arbiter PUF’s weight vector w⃗j

depends only on the value of the weight vector itself. It is in
contrast to the gradient of Eqn. 10, which does depend on the

10

weight vectors w⃗i of all other Arbiter PUFs. The decoupling
of individual Arbiter PUF updates thus drastically simplifies
the ML problem, provided that side channel information is
available.

In addition to the above new regression, we applied a two
step optimization methodology: First we optimized the PUF
model based on the above process and gradient, using the
side channel information, until a fraction of f = 0.95 percent
of the final XOR Arbiter output was correctly reproduced.
Secondly, we further refined and optimized the model with
the “standard” LR algorithm applied in [32], [34] for 1000
iterations. This led to very low error rates around 2% or below.
For all experiments, we used hundred times more CRPs than
free parameters in the model, i.e.,

NCRP ≈ 100× bitlength × no. of XORs.

Note that the above equation merely describes a linear CRP
consumption in the problem parameters. This is in stark
contrast to the exponentially growing complexities of pure
machine learning attacks on XOR Arbiter and Lightweight
PUFs (see Table I and [32], [34]).

While our above process in the first step of the above
methodology mostly converged to the global minimum, in
a few cases it got stuck (i.e., the performance after 5000
iterations was worse than 5% remaining missclassifications).
In this case, we restarted the algorithm with a different random
initialization of w⃗.

VI. RESULTS ON SIMULATED CRPS

We now analyze the performance of our combined modeling
and side channel technique on simulated, noise-free CRPs and
side channels, as detailed in Section II. As discussed earlier,
simulated CRPs generated by the linear additive delay model
are very close to silicon CRPs of Arbiter PUF variants, as
proven in [34]. A very detailed discussion on the use of
simulated CRPs, PUF noise, and ML performance, which
advocates and justifies the use of simulated CRPs in security
analyses of any Arbiter PUF variants, is given Section II-G of
Rührmair et al. [34].

All results of our ML algorithms on simulated CRPs and
side channel information are given as data points on a log-
arithmic scale in Figure 6. They reach from 2 to 16 XORs
with a stepwidth of 1, and concern 64, 128, 256 and 512 bits.
For selected values, the detailed Figures are given in Table
II. Note that the side channel information on the cumulative
number of zeros and ones is the same for both our power and
timing side channel. The results of the table therefore apply
to both side channel approaches.

Table II and Figure 6 shows that the training times and CRP
consumptions of our approach are remarkably small, especially
compared to the exponentially growing complexities of pure
machine learning attacks on XOR Arbiter and Lightweight
PUFs (see Table I and [32], [34]). The number of CRPs that
we used in all cases followed the earlier formula

NCRP ≈ 100× bitlength × no. of XORs.

The only exception were the cases of 14 XORs and 16 XORs
for bitlengths 512, where our RAM was insufficient to carry

all CRPs. In these cases, we used 50×bitlength×no. of XORs
(see Table II). This led to slightly longer computation times,
but did not prevent successful learning. Once more, this
indicates the robustness of our method against small parameter
changes.

We also thoroughly analyzed the training times of our
algorithm. The results are illustrated on a logarithmic scale in
Figure 6. The data shows that the computation times (=training
times) are low-degree polynomial, presumably cubic, in the
problem size (i.e., in the bitlengths and the number of XORs).
Therefore our attacks can, in principle, be extended quite
easily to larger PUF sizes. At the same time, the sizes of XOR-
based Arbiter PUFs cannot be rised indefinitely: The practical
instability of the XOR Arbiter PUF and the Lightweight PUF
increases exponentially with the number of XORs, as already
observed in [32], [34]. The two considered PUF designs hence
can no longer be regarded secure without countermeasures in
the presence of side channel attacks.

102 103 104

free parameters = bitlength x no. XORs

101

102

103

104

105

106

107

#
C
R
P
s

 64 bit LW PUF

128 bit LW PUF

256 bit LW PUF

512 bit LW PUF

 64 bit XOR Arb. PUF

128 bit XOR Arb. PUF

256 bit XOR Arb. PUF

512 bit XOR Arb. PUF

y=x3

Fig. 6. The training times for our ML-algorithm on Lightweight PUFs (LW
PUFs) and XOR Arbiter PUFs on a logarithmic scale. They show that the
computational complexity regarding training times is cubic, i.e., O(x3).

A final interesting effect is that with side channel informa-
tion, the performance of our ML algorithms on Lightweight
PUFs is slightly faster than for XOR Arbiter PUF, leading
to smaller computation times. Without side channels, the
converse effect has been observed [32], [34]. Intuitively, the
challenge input mapping of the Lightweight PUF creates a
more diverse and stable information basis for the ML algo-
rithm, which leads to faster convergence. A full mathematical
analysis of this effect will be conducted in future work.

VII. PROOF OF CONCEPT FOR FPGA IMPLEMENTATIONS

A. Implementation of Lightweight PUFs and XOR Arbiter
PUFs on FPGAs

To verify the feasibility of the proposed methods, both XOR
Arbiter PUFs and Lightweight PUFs are built on Spartan-6
FPGAs, using the architecture for Lightweight PUFs described
in Section II-A. The basic element for the described PUFs is
a single Arbiter PUF, like any of the two single Arbiter PUFs

11

No. of Bit Source of CRPs and CRPs Prediction Rate Training Time Prediction Rate Training Time
XORs Length Side Channel Info (×103) XOR Arb. PUF XOR Arb. PUF Lightw. PUF Lightw. PUF

8

64

Simulation

51.2 98.6% 5:21 min 98.6% 2:25 min
128 102 98.7% 15:06 min 98.5% 11:48 min
256 205 98.5% 1:46 hrs 98.7% 1:10 hrs
512 410 98.5% 9:31 hrs 98.9% 5:11 hrs

10

64

Simulation

64.0 98.5% 7:25 min 98.2% 3:40 min
128 128 98.4% 25:49 min 98.5% 20:15 min
256 256 98.2% 3:16 hrs 98.8% 1:55 hrs
512 512 98.2% 13:10 hrs 98.8% 6:47 hrs

12

64

Simulation

76.8 98.8% 53:59 min 98.2% 4:49 min
128 154 98.1% 46:09 min 98.2% 31:54 min
256 307 98.0% 4:56 hrs 98.5% 2:55 hrs
512 614 98.0% 21:01 hrs 98.1% 10:42 hrs

14

64

Simulation

89.6 98.4% 1:18 hrs 98.1% 7:06 min
128 179 98.1% 1:29 hrs 98.2% 47:07 min
256 358 97.6% 6:54 hrs 98.2% 4:04 hrs
512 358 97.0% 38:55 hrs 96.8% 7:18 hrs

16

64

Simulation

102 98.2% 2:31 hrs 97.9% 9:14 min
128 205 97.9% 3:30 hrs 97.9% 1:15 hrs
256 410 97.7% 7:33 hrs 98.2% 5:06 hrs
512 410 96.4% 46:28 hrs 96.7% 9:20 hrs

TABLE II
PERFORMANCE OF COMBINED MODELING AND SIDE CHANNEL ATTACKS ON XOR ARBITER PUFS AND LIGHTWEIGHT PUFS. ALL SHOWN RESULTS

WERE OBTAINED ON SIMULATED CRPS GENERATED BY THE ADDITIVE LINEAR DELAY MODEL [13], [32], [34]. THE SIDE CHANNEL INFORMATION ON
THE NUMBER OF ZEROS AND ONES BEFORE THE XOR GATE IS SIMULATED AND NOISE-FREE, TOO; PLEASE NOTE THAT IT IS THE SAME FOR POWER AND

TI MING SIDE CHANNELS (NAMELY THE CUMULATIVE NUMBER OF ZEROS AND ONES BEFORE THE XOR GATE).

in Figure 1. In order to balance FPGA routing asymmetries,
which would otherwise dominate the effect of manufacturing
variations, a lookup table (LUT) based Programmable Delay
Line (PDL) has been implemented, as in Figure7, as suggested
by Majzoobi et al. [18], [15].

A1

1

1

1

1

0

0

0

0

A2 A3

SRAM

VALUE

OUT

3-input

LUT

A2 A3

A1 OUT

3-input

LUT

A3

A2

A1

OUT

v

t

v

t

tA

v

t

tB

Fig. 7. LUT based Programmable Delay Line

For each CRP, majority voting over five repeated measure-
ments of the response to the same challenge was performed
in order to determine the final response. For example, if the
five measurements resulted in three ”0”s and two ”1”s, the
final response was set to ”0”. The challenges were generated
by aN-bit pseudorandom number generator (PRNG), which

was based on a maximal-length linear feedback shift register
(LFSR). The chosen LFSR polynomial generated the maximal-
length sequence according to Eqn. 21:

F = 1 +X1 +X3 +X4 +X64 (21)

B. Implementation of the Timing Side Channel Measurements

We executed the timing measurements of Section IV on our
PUF implementations on Digilent Spartan 6 FPGAs of Section
VII-A. Both XOR Arbiter PUFs and Lightweight PUF with
8 XORs and bitlengths 64, 128, 256 and 512 were built. For
delay signature extraction, designed PUF circuits are utilized
as the CUT part in Figure 3. For each CRP, we collected both
side channel info on the cumulative number of ones and zeros,
as well as the “global” response o of the PUF after the final
XOR gate. The latter response was stabilized by repeating
the CRP measurement five times, and by applying majority
voting (see above). As indicated above, in most instances clock
sweeping only gives us an approximation of the number of
flipped XOR inputs (i.e., of the cumulative ones and zeros).

In order to avoid errors in the side channel info, we applied
the following procedure: (i) We executed a constency check:
If the measured global response o is zero, is the measured
number of ones in the side channel info even? Likewise, if o
is one, is the number of ones in the side channel odd? If any
inconsistencies occured, this CRP was discarded and not used
in the ML process. (ii) We decrease the range of each response
pattern to make the classification more disambiguous, from 12
ps to 8ps. If the measured side channel data data lay outside
these narrowed ranges, the CRP again was not used in ML.
After these two steps, 52% of all CRPs could still be used.
Table III gives the number of usable CRPs in the CRP column.

12

No. of Bit Source of CRPs and CRPs Prediction Rate Training Time Prediction Rate Training Time
XORs Length Side Channel Info (×103) XOR Arb. PUF XOR Arb. PUF Lightw. PUF Lightw. PUF

8

64

FPGA

26 98.5% 2 min 98.5% 1 min
128 51.6 97.5% 12 min 98.2% 9 min
256 103 97.7% 1:35 hrs 97.8% 1:00 hrs
512 205 97.4% 16:50 hrs 97.5% 3:30 hrs

12

64

FPGA

39 98.1% 16.5 min 98.5% 2 min
128 77.4 97.4% 38.5 min 97.9% 24.1 min
256 154.5 97.1% 3.8 hrs 97.3% 1.75 hrs
512 308 96.92% 56.25 hrs 97.11% 9.55 hrs

16

64

FPGA

52 98% 37 min 98% 7 min
128 103.2 97.5% 2 hrs 97.5% 51.7 min
256 206 97.3% 15.1 hrs 96.9% 4.8 hrs
512 410 96.5% 102 hrs 96.7% 20.2 hrs

TABLE III
FULL EXPERIMENTAL PROOF OF CONCEPT OF COMBINED MODELING AND TIMING SIDE CHANNEL ATTACKS, CARRIED OUT ON FPGA

IMPLEMENTATIONS OF THE XOR ARBITER PUF AND LIGHTWEIGHT PUF.

C. Results

We applied our adapted ML algorithms of Section V to sili-
con CRP data collected from the above FPGA implementation
of Lightweight PUFs and XOR Arbiter PUFs, using silicon
side channel information collected directly from these FPGAs
(see Sections VII-B and VII).

Our approach led to the results shown in Table III. There
is very little performance loss compared to the results for
8 XORs and bitlengths 64, 128, 256, and 512 on simulated
data (see Table II). The number of used CRPs followed the
formula 50× bitlength × no. of CRPs, i.e., we only used half
as many CRPs as in the silicon case. The good results shows
the robustness of our method, and indicate the efficiency of
our above measures for the error-free collection of CRPs and
associated side channel info. They also settle once more the
viability of ML results on simulated CRPs, which was already
postulated and confirmed in earlier work [32], [34], even for
very large number of XORs and bitlengths, and even in the
presence of side channel information. Our result breaks “real”,
silicon FPGA implementations of 8 XOR Arbiter PUFs with
bitlengths up to 512. The latter construction had been explicitly
suggested as secure against pure modeling approaches in
earlier work [32], [34].

VIII. COUNTERMEASURES

A. Countermeasures against our Power Side Channel

In order to immunize arbiter-based PUFs against power
tracking SCA, one could add an additional, symmetric arbiter
at the last stage of the PUF. The input signal for the added
arbiter is inverted before it enters the arbiter (see Figure 8).

This idea behind the architecture is obviously to keep the
number of zeros and ones in the entire PUF architecture con-
stant, thereby preventing power tracking side channel attacks.
A differential output of the described kind could also be
desirable in fault tolerant applications, since it might allow
error correction, and indicate unstable responses. Recall that
the arbiter (=latch element) typically is one of the main sources
of instability in an arbiter PUF: Signal pathes with a runtime
difference that is on the order of the switching time of the
latch often cause unstable responses. If the two differential

b
1

b
2 b

3 b
n-1

b
n

Fig. 8. Standard Arbiter PUF with a differential output. Two arbiters are
employed to generate two differential response bits, which have inverted
input signals. The architecture would prevent the use of power tracking SCA.
Asides, it also provides new error detection and correction capabilities.

latches have inconsistent content, this indicates the occurence
of an unstable PUF response.

Use of k latches in such a differential design, together
with standard majority voting over the latches’ outputs, could
be used as a simple and very efficient means for response
stabilization and error correction. We did not work out this
idea in detail, however, since it is not within the main scope
of this paper.

B. Countermeasures againt our Timing Side Channel

The timing side channel attacks depend on the correlations
between the secret and the information leaked through the side
channels. Several different countermeasures appear possible.
For example, it is possible to jam the leaked timing side-
channel with random pulses after the XOR so the attacher
is not able to find the exact switching time of the XOR gates.
Another plausible countermeasure is to place XOR/XNOR
devices such that every time we get exactly one of them
switching so it is hard to know which of the signal directions
was the legitimate one.

For the sake of brevity, we concentrated on an effective
countermeasure where we devise an isochronous hardware
and thus, it runs exactly a constant amount of time and is
independent of secret values. The reason we focus on this
one is that the hardware overhead is rather small. In this
countermeasure, we place a 2-input AND gate right after each
of the XOR gates. One input of the gate will he the XOR
output. The other input of the gate will be a signal with a

13

constant delay (lower bounded by the 99% maximum PUF
and XOR line delay. (Recall that the AND gate switches only
if both of its inputs are ’1’.) The constant delay is generated by
a line of buffers. The output of this line is fed into the second
port of the AND gate. (Care shall be taken to equalize the
routing to all the AND gates.) Now, the outputs of the AND
gates will all switch simultaneously (or within a short time
interval based on the AND gate process variations). In this
way, the timing of output of the XOR gates shall be constant
and (mostly) no-leaking information about the internal values
before the XOR gates.

IX. SUMMARY AND CONCLUSIONS

In this paper, we investigated the reach of combined mod-
eling and side channel attacks on electrical Strong PUFs
architectures. We exemplified our attacks on XOR Arbiter
PUFs and Lightweight PUFs, since they are considered two of
the most secure electrical Strong PUF architectures [32], [34].
Previous works had found that these two PUFs could only
be attacked successfully for up to five or six XORed single
Arbiter PUFs, and for bitlengths of 64 bits or 128 bits [32],
[34], by the state of the art in pure modeling attacks. XOR
Arbiter PUFs or Lightweight PUFs with bitlenghts of 512
and eight single Arbiter PUFs had explicitly been suggested
as both practical (i.e., sufficiently stable) and fully secure in
earlier works [32], [34].

The two side channels we have suggested and examined
in this work were power tracing of the arbiter element (i.e.,
the latch) in Arbiter PUFs and variants thereof, and marking
different response patterns with corresponding timing signa-
tures. These are the first power and timing side channels for
PUFs reported in the literature. Both tell us the cumulative
number of zeros and ones in the outputs of the k parallel
Arbiter PUFs within an XOR Arbiter PUF or Lightweight
Arbiter PUF structure. Taken by itself, this side channel info
is almost worthless, since the attacker does not learn which of
the single Arbiter PUF outputs is zero or one. As we showed
in this paper, however, it is possible to adapt existing ML
techniques in such a way that they can efficiently exploit this
simple side channel information. This adaption turned out to
be non-trivial, and constitutes one of the main contributions
of this paper.

It very strongly boosts ML performance, and reduces the
ML training complexity and CRP consumption on the above
two PUFs from exponential [32], [34] to an empirically
estimated low degree polynomial in this work. Without coun-
termeasures against our side channels, the two above PUFs can
hence no longer be regarded secure: Their practical instability
increases exponentially in the number of XORs [32], [34],
while the attack complexity (or security) rises only low-degree
polynomial in this parameter.

Firstly, we attacked XOR Arbiter PUFs and Lightweight
PUFs for up to 16 XORs and bitlengths of up to 512 on
simulated side channel info and CRPs (see Table II). The
use of simulated data poses no very strong restriction on
our results: Earlier investigations had shown that simulated
CRPs are very close to silicon CRPs, and had explicitly

suggested that they can be used very well in any security
analyses of Arbiter PUFs variants [34]. Furthermore, the error
tolerance of our ML algorithms has been demonstrated in [32],
[34], meaning that results obtained on error-free side channels
should carry over well to the silicon case. Please note that
the use of simulated data was an necessary step in order to
conduct a large number of ML experiments, and to empirically
estimate the complexity of our attacks on a sound basis.

Secondly, we carried out a full proof of concept for model-
ing and timing side channel attacks on FPGA implementations
of the XOR Arbiter PUF and the Lightweight PUF (see Table
III). They indeed confirmed that our results on simulated data
carry over with little performance loss to the silicon case.
The sizes and complexities we attacked successfully were 8
XORs and 12 XORs with 64, 128, 256, and 512 bits. One
reason for choosing these specific sizes was that at CCS 2010
and IEEE T-IFS 2013 [32], [34], 8 XORs with bitlength 512
had been been suggested explicitly in theory as both practical
(i.e., stable) and secure against pure modeling attacks. We
stress that comparable sizes of the above two PUF types has
never been implemented in silicon prior to our work. We
implemented them for the first time, and subsequently tackled
them successfully by our new attack method.

Finally, we discussed countermeasures against our side
channels. They could and should be put in place in order to
secure future Arbiter PUF generations against this method.
Our countermeasure against the power side channel consists
of using two symmetric, inverted output signals with two
latches. This construction neutralizes and balances power
consumption, regardless of PUF’s output. Interestingly, it can
also be used to detect and stabilize output errors in Arbiter
PUF variants, even though we did not work out this possibility
in detail in this paper. We also discussed some countermeasure
against our timing side channels, focusing on the construction
of an isochronous hardware.

The PUF-attacks presented in this and other recent papers
could be seen as a natural consolidation process in the
PUF area, similar to the detailed investigations that classical
cryptoprimitives and security systems have already undergone
in the last decades. We believe that this interplay between
attacks and countermeasures in the long term might well be
beneficial for PUFs. Similar as in the case of classical security
systems, it could eventually lead to improved PUF designs and
implementations, which withstand all known attack forms at
some point.

REFERENCES

[1] Christopher M. Bishop, Nasser M. Nasrabadi: Pattern recognition and
machine learning. Springer, New York, 2006.

[2] Christina Bruzska, Marc Fischlin, Heike Schröder, Stefan Katzenbeisser:
Physically Unclonable Functions in the Universal Composition Frame-
work. CRYPTO 2011.

[3] Jeroen Delvaux, Ingrid Verbauwhede: Side channel modeling attacks on
65nm arbiter PUFs exploiting CMOS device noise. HOST 2013.

[4] Srinivas Devadas: Physical unclonable functions and secure processors.
Invited talk, Workshop on Cryptographic Hardware and Embedded
Systems (CHES 2009), September 2009.

[5] Marten van Dijk: System and method of reliable forward secret key
sharing with physical random functions. US Patent No. 7,653,197,
October 2004.

14

[6] Blaise Gassend, Dwaine Clarke, Marten van Dijk, Srinivas Devadas:
Silicon physical random functions. ACM Conference on Computer and
Communications Security 2002: 148-160

[7] Blaise Gassend, Daihyun Lim, Dwaine Clarke, Marten v. Dijk, Srinivas
Devadas: Identification and authentication of integrated circuits. Con-
currency and Computation: Practice & Experience, pp. 1077 - 1098,
Volume 16, Issue 11, September 2004.

[8] Jorge Guajardo, Sandeep S. Kumar, Geert Jan Schrijen, Pim Tuyls:
FPGA Intrinsic PUFs and Their Use for IP Protection. CHES 2007:
63-80

[9] Clemens Helfmeier, Dmitry Nedospasov, Christian Boit, Jean-Pierre
Seifert: Cloning Physically Unclonable Functions. IEEE International
Symposium on Hardware-Oriented Security and Trust (HOST’13), 2013.

[10] Gabriel Hospodar, Roel Maes, Ingrid Verbauwhede: Machine learning
attacks on 65nm Arbiter PUFs: Accurate modeling poses strict bounds
on usability. WIFS 2012: 37-42

[11] Khodjasteh, K., Sastrawan, J., Hayes, D., Green, T. J., Biercuk, M.
J., and Viola, L: Designing a practical high-fidelity long-time quantum
memory. Nature Communications, 4, 2013.

[12] J.-W. Lee, Daihyun Lim, Blaise Gassend, G. Edward Suh, Marten
v. Dijk, and Srinivas Devadas. A technique to build a secret key in
integrated circuits with identification and authentication applications.
In Proceedings of the IEEE VLSI Circuits Symposium, June 2004.

[13] Daihyun Lim: Extracting Secret Keys from Integrated Circuits. MSc
Thesis, MIT, 2004.

[14] Sandeep S. Kumar, Jorge Guajardo, Roel Maes, Geert Jan Schrijen, Pim
Tuyls: The Butterfly PUF: Protecting IP on every FPGA. HOST 2008:
67-70

[15] M. Majzoobi, F. Koushanfar and S. Devadas: FPGA PUF using
programmable delay lines. IEEE Workshop Information Forensics and
Security (WIFS), 2010.

[16] Mehrdad Majzoobi, Farinaz Koushanfar, Miodrag Potkonjak:
Lightweight Secure PUFs. IC-CAD 2008: 607-673.

[17] Mehrdad Majzoobi, Farinaz Koushanfar, Miodrag Potkonjak: Testing
techniques for hardware security. In Proceedings of the International
Test Conference (ITC), pages 1-10, 2008.

[18] M. Majzoobi, F. Koushanfar and M. Potkonjak: Techniques for Design
and Implementation of Secure Reconfigurable PUFs. ACM Trans.
Reconfigurable Technology and Systems, vol. 2, no.1, 2009.

[19] Dominik Merli, Dieter Schuster, Frederic Stumpf und Georg Sigl: Side-
Channel Analysis of PUFs and Fuzzy Extractors. Conference on Trust
and Trustworthy Computing (TRUST 2011). Lecture Notes in Computer
Science, 2011, Volume 6740/2011, 33-47.

[20] Dominik Merli, Dieter Schuster, Frederic Stumpf, Georg Sigl: Semi-
invasive EM attack on FPGA RO PUFs and countermeasures. ACM
Workshop on Embedded Systems Security (WESS’11), 2011.

[21] Dmitry Nedospasov, Clemens Helfmeier, Jean-Pierre Seifert, Christian
Boit: Invasive PUF Analysis. Fault Diagnonsis and Tolerance in Cryp-
tography (FDTC’13), 2013.

[22] Erdinc Öztürk, Ghaith Hammouri, Berk Sunar: Towards robust low cost
authentication for pervasive devices. In PerCom, pages 170-178. IEEE
Computer Society, 2008.

[23] Ravikanth Pappu: Physical One-Way Functions. PhD Thesis, Mas-
sachusetts Institute of Technology, 2001.

[24] Ravikanth Pappu, Ben Recht, Jason Taylor, Neil Gershenfeld: Physical
One-Way Functions, Science, vol. 297, pp. 2026-2030, 20 September
2002.

[25] M. Riedmiller, H. Braun: A direct adaptive method for faster backprop-
agation learning: The RPROP algorithm. IEEE international conference
on neural networks, pp. 586–591, 1993.

[26] Ulrich Rührmair: Oblivious Transfer based on Physical Unclonable
Functions (Extended Abstract). TRUST 2010.

[27] Ulrich Rührmair, Marten van Dijk: Practical Security Analysis of PUF-
based Two-Player Protocols. CHES 2012.

[28] Ulrich Rührmair, Marten van Dijk: On the Practical Use of Physical
Unclonable Functions in Oblivious Transfer and Bit Commitment Pro-
tocols. Journal of Cryptographic Engineering (JCEN), 2013.

[29] Ulrich Rührmair, Marten van Dijk: PUFs in Security Protocols: Attack
Models and Security Evaluations. IEEE Symposium on Security and
Privacy (Oakland’13), 2013.

[30] Ulrich Rührmair, Srinivas Devadas, Farinaz Koushanfar: Security based
on Physical Unclonability and Disorder. In M. Tehranipoor and C. Wang
(Editors): “Introduction to Hardware Security and Trust”. Springer,
2011.

[31] Ulrich Rührmair, Christian Jaeger, Michael Algasiner: An Attack on
PUF-based Session Key Exchange, and a Hardware-based Countermea-
sure: Erasable PUFs. Financial Cryptography and Data Security 2011.

[32] Ulrich Rührmair, Frank Sehnke, Jan Sölter, Gideon Dror, Srinivas
Devadas, Jürgen Schmidhuber: Modeling Attacks on Physical Unclon-
able Functions. ACM Conference on Computer and Communications
Security, 2010.

[33] Ulrich Rührmair, Jan Sölter, Frank Sehnke: On the Foundations of
Physical Unclonable Functions. Cryptology e-Print Archive, June 2009.

[34] Ulrich Rührmair, Jan Sölter, Frank Sehnke, Xiaolin Xu, Ahmed Mah-
moud, Vera Stoyanova, Gideon Dror, Jürgen Schmidhuber, Wayne
Burleson, Srinivas Devadas: PUF Modeling Attacks on Simulated and
Silicon Data. IEEE Transactions on Information Forensics and Security
(IEEE T-IFS), 2013.

[35] G. Edward Suh, Srinivas Devadas: Physical Unclonable Functions for
Device Authentication and Secret Key Generation. DAC 2007: 9-14

[36] Pim Tuyls, Geert Jan Schrijen, Boris Skoric, Jan van Geloven, Nynke
Verhaegh, Rob Wolters Read-Proof Hardware from Protective Coatings.
CHES 2006: 369-383

