
SNR to Success Rate: Reaching the Limit of
Non-Profiling DPA

Suvadeep Hajra
Dept. of Computer Science & Engg.

Indian Institute of Technology, Kharagpur, India
suvadeep.hajra@gmail.com

Debdeep Mukhopadhyay
Dept. of Computer Science & Engg.

Indian Institute of Technology, Kharagpur, India.
debdeep.mukhopadhyay@gmail.com

Abstract—Many profiling power analysis attacks estimate the
multivariate probability distribution using a profiling step, and
thus, can optimally combine the leakages of multiple sample
points. Though there exist several approaches like filtering, Prin-
cipal Component Analysis for combining the leakages of multiple
sample points in non-profiling DPA, their optimality has been
been rarely studied. We study the issue of optimally combining
the leakages of multiple sample points in non-profiling DPA
attacks using a linear function. In this work, our contributions are
three-fold: 1) we first derive a relation between the success rate of
a CPA attack and the SNR of the power traces, 2) we introduce
a multivariate leakage model for Virtex-5 FPGA device, and 3)
using the proposed multivariate leakage model, we devise linear
filters to maximize the SNR of the output leakage which, in turn,
optimizes the success rate of the CPA attacks in a non-profiling
setup.

I. INTRODUCTION

Differential Power Analysis (DPA) [17] has been proven
to be an extremely lethal tool for side-channel analysis. It is
highly effective in finding the secret key of a secure device by
analysing the power traces of the device, even without knowing
the implementation details. One of its strengths comes from
its ability to exploit minute data-dependency of leakage by
accumulating them over a large number of power traces. Since
power traces are the scarce resource, reducing the number
of required power traces for a successful DPA attack, or
increasing the success rate of a DPA attack using a limited
number of power traces has been in the focus of DPA literature
since its introduction.

The success rate of the DPA [20] attacks is largely influ-
enced by the Signal-to-Noise Ratio (SNR) [20] of the power
traces. As a consequence, in many applications, Power Analy-
sis attacks are preceded by various pre-processing techniques
like integration [20], PCA [3], filtering [21], [7] for the reduc-
tion of noise in the power traces. These techniques attempt
to improve the performance of the DPA attacks directly or
indirectly by extracting information from multiple sample
points. Some of these techniques like PCA are based on
some implicit assumptions, thus optimally applicable to some
specific scenarios only, while others deploy some heuristic
methods (please refer to Section II-D).

Various profiling attacks like Template attack [6] and
Stochastic attack [29] provide optimal performance by jointly
evaluating the leakages at multiple sample points. However,

they use a separate profiling step for approximating the multi-
variate leakage distribution [32] of the power traces. The pro-
filing step requires a large number of power traces to estimate
the multivariate leakage distribution with sufficient accuracy.
Moreover, in most of the cases, it needs the knowledge of
the secret key which may not be available in many attacking
scenarios.

Principal Component Analysis (PCA) has been introduced
as a tool to reduce the size of the sample points in Template
attacks [2]. Later in [31], PCA is used as a distinguisher. Re-
cently in [3], Batina et al. have presented it as a pre-processing
tool for the reduction of noise in a non-profiling setup.
However, it performs better under the assumption that the
data-dependent variations is larger than the noise variations.
Unfortunately, in side-channel analysis, this assumption does
not hold always. Though in [3], Batina et al. have proposed
a new distinguisher based on some empirical observation, the
performance of such distinguisher is far from being optimal.

Contributions: In this paper, we have studied how to
maximize the success rate of a DPA attack by combining the
leakages of multiple sample points. We have explored two pos-
sible ways of combining: a) combine the leakages of multiple
sample points first and then apply a univariate distinguisher on
the combined leakage, and b) apply a univariate distinguisher
on multiple sample points independently and then combine
their outputs. We have further shown that in certain cases
both the approaches are equivalent in terms of the success
rate of the attack. Next, we have devised an optimal way of
combining the leakages of multiple sample points using the
following three steps:

1) We derive an exact relation between the SNR of the
power traces and the success rate of univariate Correla-
tion Power Analysis (CPA) for arbitrary distribution of
plaintext. Thanks to the relation, maximization of the
success rate by combining leakages of multiple sample
points becomes equivalent to the maximization of the
effective SNR by combining the leakages.

2) We introduce a multivariate leakage model by extending
the conventional leakage model for multiple sample
points for Xilinx Virtex-5 FPGA device. The proposed
multivariate leakage model enables us to determine the
variance of the data dependant signal of a sample point
without knowing the correct key, thus the SNR of the



sample points.
3) We derive a linear FIR filter which, when applied to

the power traces, maximizes the SNR of its output. The
derivation does not require the knowledge of the secret
key, thus can be used in non-profiling DPA attacks.
We also study how the derived linear FIR filter can
be made more resistant to the estimation error and
computationally more efficient in practice.

We have supported our theoretical study by experimental
evaluation.

Rest of the paper is organized in this way: Section II
describes the background of DPA along with the necessary
notations used in the work. In Section III, a relation between
the success rate of CPA and the SNR of the power traces
has been derived. Section IV has extended the conventional
leakage model over multiple sample points which results into
a multivariate leakage model. In Section V, an expression has
been derived to compute the coefficients of the linear FIR
filter which optimizes the SNR of its output. Section VI has
approximated the linear FIR filter for making it more resistant
to estimation error and computationally more efficient. In
Section VII, the improvements in the performance of CPA
using the proposed filtering techniques have been experimen-
tally verified for various scenarios. Section VIII verifies the
optimality of the proposed pre-processing techniques. Finally,
conclusion has been drawn in Section IX.

II. PRELIMINARIES

A. Notations

For the rest of the paper, we will use a calligraphic letter
like X to denote a finite set. The corresponding capital and
small letter, X and x, are used to denote a random variable
over the set and a particular element of it respectively. E[X],
σX and V ar(X) are used to denote mean, standard deviation
and variance of the random variable X respectively. We also
denote by Cov(X,Y ) and Corr(X,Y ), the covariance and the
Pearson’s correlation coefficient between the random variables
X and Y respectively. The vector {x0, · · · , xk} is denoted by
{xi}0≤i≤k. Alternatively, it is also denoted by a letter in bold
like x. For convenience, sometimes we use µX to denote the
mean of the random variable X . Gaussian distribution with
mean m and standard deviation σ is represented by N(m,σ).
x′ denotes the transpose of the vector or matrix x.

B. Differential Power Analysis

We will mainly follow the formalisation of Differential
Power Analysis by Standaert et al. in [32]. It is briefly
described below.

Generally, the DPA attacks have two parts. In the first part, a
Device Under Test (DUT) is under the control of the attacker.
The attacker collects the leakage Lt∗ at sample point t∗ due to
the manipulation of some intermediate key-dependent variable
S = Fk∗(X) by executing the DUT repeatedly, say q times,
for q different inputs. S is commonly referred to as target and
Fk∗ : X → S be a function of a known part of the plaintext
x ∈ X . Fk∗ is determined by both the algorithm and a small

part of the secret key referred to as the subkey k∗ ∈ K. The
leakage Lt∗ satisfies

Lt∗ = Ψ̃t∗(S) +Nt∗ (1)

where the function Ψ̃t∗ : S → R maps the target
S to the deterministic part of the leakage and Nt∗ ∼
N(µNt∗ , σNt∗ ) accounts for the independent Gaussian noise.
At the end, the attacker collects q measurement curves lt∗ =
{l0t∗ , · · · , lq−1

t∗ } corresponding to the execution of q plaintexts
x = {x0, · · · , xq−1}.

In the second part, the attacker chooses a suitable prediction
model Ψ : S → R and compute the predicted leakage
represented by the random variable Pk using Pk = Ψ(Sk) =
Ψ(Fk(X)), where Sk = Fk(X), for each key hypothesis
k ∈ K. It should be noted that S = Fk∗(X) = Sk∗ .
If Ψ is a good approximation for Ψ̃t∗ , the leakage Lt∗ is
strongly dependent on the correct predicted leakage Pk∗ .
However, since Fk∗(X) and Fk(X) are almost independent
for k∗ 6= k, Lt∗ is independent of the prediction vari-
able Pk. Then, a statistical tool D is used to detect this
dependence between the actual leakage and the predicted
leakage for the correct key. The theoretical distinguisher is
given by D(t∗) = {dk(t∗)}k∈K = {D(Lt∗ , Pk)}k∈K =
{D(Ψ̃t∗(Fk∗(X))+Nt∗ ,Ψ(Fk(X)))}k∈K. The theoretical first
order success rate (1-OSR) [32] of the attack is given by
Pr(k∗ = argmaxk∈K dk(t∗)). However in practice, the ran-
dom variables X , Lt∗ , Nt∗ and Pk are estimated by the vector
x, lt∗ , nt∗ = {n0

t∗ , · · · , nq−1
t∗ } and pk = {Ψ(Fk(xj))}0≤j<q

respectively. Thus, the practical distinguisher is given by
D̂(t∗) = {d̂k(t∗)}k∈K = {D̂(lt∗ ,pk)}k∈K and the practical 1-
OSR of the attack is given by Pr(k∗ = argmaxk∈K d̂k(t∗)).

C. Correlation Power Analysis with a model

When the hardware leakage behavior follows an well known
leakage model like Hamming weight model or Hamming
distance model, some known prediction model Ψ closely
approximates Ψ̃ i.e. Ψ̃(s) ≈ at∗Ψ(s) holds for some real con-
stant a and for all s ∈ S . Then, Eq. (1) can be approximated
[5] as

Lt∗ = at∗Ψ(S) +Nt∗ (2)

Under the above equation, the relation between the actual
leakage Lt∗ and the predicted leakage for the correct key
Pk∗ = Ψ(S) (since S = Sk∗ ) becomes linear. In Correlation
Power Analysis (CPA) [5], Pearson’s correlation is used to
detect the linearity by computing

ρk(t∗) =
1

qσ̂lt∗ σ̂k

q−1∑
j=0

(ljt∗ − Ê[lt∗ ])(p
j
k − Ê[pk]) (3)

=
Ĉov(lt∗ ,pk)

σ̂lt∗ σ̂k
(4)

for all k ∈ K where pk is the vector {p0
k, . . . , p

q−1
k } =

{Ψ(Fk(x0)), . . . ,Ψ(Fk(xq−1))}, Ê[u] is the mean of the
elements of the vector u, σ̂k = σ̂pk and Ĉov(u,v) be the
maximum likelihood estimator of the covariance between u



and v. Since, Pearson’s correlation detects the linear relation
between two variables, it performs better than other attacks
like Mutual Information Analysis (MIA) [12], Difference of
Mean (DoM) [17] when the leakage follows a well known
leakage model. When the hardware leakage model is not
sufficiently known, ‘generic’ attacks like MIA perform better
than CPA. In the rest of the paper, we will consider only the
scenarios where the hardware follows a well known leakage
behavior.

D. Multivariate DPA

In practical attacks, multiple leakage samples at discrete
sample points are collected during the encryptions or decryp-
tions. As a result, the leakage L is a T -dimensional random
variable {L0, · · · , LT−1} where Lt represents the leakage of
sample point t for 0 ≤ t < T . One snapshot of L denoted by
l = {l0, · · · , lT−1} is referred to as a trace or power trace. In
that case, a univariate distinguisher is applied on each of the
sample points independently and then the attacker chooses the
best result among those.

While all the profiling attacks like Template attack [6]
and Stochastic attack [29] optimizes their performance by
considering the multivariate leakage distribution of the power
traces, combining the leakages of multiple sample points is
rare in non-profiling DPA. Though a few distinguishers like
MIA can be extended as a multivariate distinguisher, most
of them are not easily extendable for multivariate DPA. Even
though they can be extended for multivariate DPA, they do not
always improve the performance of the attacks. Instead, such
multivariate approaches mainly exist in the forms of various
pre-processing techniques like PCA [31], [3], integration [20]
and filtering [22]. However, they are either heuristic in nature
or based on some assumption. Moreover, to the best of
the authors knowledge, there is no such techniques which
optimally combines the leakages of multiple sample points. In
the paper, we investigate the possibility of combining leakages
of multiple sample points in a way that optimizes the success
rate.

As shown in Fig. 1, there are two alternative approaches to
combine the leakages of multiple sample points: 1) combine
the leakages of multiple sample points first using a function
g : RT → R and then apply a univariate distinguisher on the
resultant leakage g(L0, · · · , LT−1) (as shown in Fig. 1a), and
2) apply the univariate distinguisher D on all the sample points
independently resulting in |K| vectors {dk(t)}0≤t<T for each
k ∈ K and then apply the function g to generate the final
distinguisher {d̃k}k∈K having d̃k = g(dk(0), · · · , dk(T − 1))
(as shown in Fig. 1b).

Interestingly, if we consider Pearson’s correlation (as in
CPA) as the univariate distinguisher and restrict the function g
to the space of linear functions, then the above two approaches
are equivalent. To see it, let us denote the Pearson’s correlation
at sample point t for key guess k by ρk(t). Since, g is a
T × 1 linear mapping, g(y0, . . . , yT−1) can be represented as
an inner product of the vector {y0, . . . , yT−1} and the real
coefficient vector {h0, . . . , hT−1}. Hence, the output for the

key guess k obtained in the second approach

d̃k = g(d̂k(0), . . . , d̂k(T − 1))

=

T−1∑
t=0

htρk(t)

=

T−1∑
t=0

htĈov(lt,pk)

σ̂lt σ̂k

=

T−1∑
t=0

Ĉov(htlt/σ̂lt ,pk)

σ̂k

=
Ĉov(

∑T−1
t=0 htlt/σ̂lt ,pk)

σ̂k

=
Ĉov(g̃(l0, . . . , lq−1),pk)

σ̂k

=
Ĉov(lo,pk)

σ̂lo σ̂k
σ̂lo

where g̃ be a T × 1 linear mapping with coefficient vector
{ht/σ̂lt}T−1

t=0 and lo = g̃(l0, . . . , lq−1). Since σ̂lo does not
influence the success rate of a univariate distinguisher, for
each linear function g in the second approach, there exists
a linear function g̃ in the first approach which results in the
same success rate. In other words, optimization of the success
rate in the first approach also optimizes the success rate in the
second approach and vice-versa. Since the first approach is
computationally more efficient, we consider the first approach
in the rest of the paper.

In the next section, we derive a relation between the success
rate of CPA and the SNR of the power traces.

III. RELATION BETWEEN SUCCESS RATE AND SNR

The first attempt to estimate the number of traces required
to achieve a level of success rate from the value of correlation
coefficient was made in [19] for the restricted case of only
two subkeys. This relation was extended for arbitrary key set
in [33]. In both the works, the authors assumed the correlation
for a wrong key is asymptotically null [34]. The later work
also considered the distributions of the correlation coefficients
for different keys as independent from one another. Later in
[28], Rivain made the relation more precise by considering
the linear dependency between the correlation coefficients of
two different keys. In [10], Fei et al. established a relationship
among the success rate of a mono-bit DPA attack, the side
channel characteristic and the algorithm dependent parameters
called confusion coefficients. Recently in [34], the idea of
confusion coefficients has been extended for multi-bit CPA
under uniform setting hypothesis [28].

The uniform setting hypothesis does not hold in many prac-
tical applications. The uniform setting hypothesis considers a
simpler leakage model like Hamming weight model. In a more
general model like Hamming distance model [5], the hypothe-
sis may not hold (for example Pk = HW (sbox(X⊕k)⊕X)).
Additionally, the hypothesis assumes the plaintext distribution
to be uniform which also may not be true in many chosen
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Fig. 1: Alternative approaches for combining leakages of multiple sample points.

plaintext attack setting [18], [35]. In this chapter, we have
derived the 1-OSR of univariate CPA by relaxing the uniform
setting hypothesis assumption. Thus, our model only uses the
fact that the noise follows a Gaussian distribution.

In this section, we consider a univariate CPA on the leakage
of interesting time instant, Lt∗ , which follows Eq. (2). In the
rest of the section, without loss of generality, we neglect the
sub-script t∗ from the terms in Eq. (2).

In [28], the occurrence ratio of x ∈ X in the input vector
x has been defined as

rx =
|{i|xi = x}|

q
. (5)

Then, Ê[pk] can be given by
∑
x∈X rxPk(x) =∑

x∈X rxΨ(Fk(x)) where Pk(x) represents the value of
Pk given X = x. [28] has defined

ρ̇k =
1

qσ̂k

q−1∑
i=0

(pik − Ê[pk])lit∗

=
1

qσ̂k

q−1∑
i=0

(Pk(xi)− Ê[pk])lit∗ (6)

Replacing ρk by ρ̇k, success rate remains unchanged in a
univariate attack. The distribution of ρ̇k is given by the
following proposition.

Proposition 1: [28] The vector of coefficients {ρ̇k}k∈K has
multivariate Gaussian distribution with mean vector µρ̇ having
elements

E[ρ̇k] =
1

σ̂k

∑
x∈X

rx(Pk(x)− Ê[pk])E[L|x] (7)

for all k ∈ K and with covariance matrix Σρ̇ having elements

Cov(ρ̇k1 , ρ̇k2) =
1

qσ̂k1 σ̂k1

∑
x∈X

rx(Pk1(x)− Ê[pk1 ])×

(Pk2(x)− Ê[pk2 ])V ar(L|x) (8)

for all (k1, k2) ∈ K2.

Applying the above proposition on the leakage L which fol-
lows the leakage model given in Eq. (2), we state and prove the
following result about the distribution of the comparison vector
(as defined in [28]) {∆ρ̇k}k∈K\{k∗} = {ρ̇k∗− ρ̇k}k∈K\{k∗} =
∆ρ̇:

Corollary 1: The comparison vector ∆ρ̇ has a multivariate
Gaussian distribution with mean vector µ∆ρ̇ having elements

E[∆ρ̇k] = a · Ĉov(∆pk,pk∗) (9)

for all k ∈ K \ {k∗} where ∆pk = pk∗
σ̂k∗
− pk

σ̂k
. The distribution

of the vector has a covariance matrix Σ∆ρ̇ having elements

Cov(∆ρ̇k1 ,∆ρ̇k2) =
σ2
N

q
Ĉov(∆pk1 ,∆pk2) (10)

for all (k1, k2) ∈ (K \ {k∗})2 where ∆pk is defined as before.

Proof: From the definition of ∆ρ̇k and Eq. (6), we get

∆ρ̇k =ρ̇k∗ − ρ̇k

=
1

qσ̂k∗

q−1∑
i=0

(Pk∗(xi)− Ê[pk∗ ])l
i
t∗

− 1

qσ̂k

q−1∑
i=0

(Pk(xi)− Ê[pk])lit∗

=
1

q

q−1∑
i=0

(∆Pk(xi)− Ê[∆pk])lit∗

where ∆Pk(xi) denotes Pk∗ (xi)
σ̂k∗

− Pk(xi)
σ̂k

. Replacing ρ̇k by
∆ρ̇k in Proposition 1 and using Eq. (2), we get

E[∆ρ̇k] =
1

q

∑
x∈X

rx(∆Pk(x)− Ê[∆pk])E[L|x]

=
1

q

∑
x∈X

rx(∆Pk(x)− Ê[∆pk])(a · Pk∗(x) + µN )

=
1

q

∑
x∈X

rx(∆Pk(x)− Ê[∆pk])(a · Pk∗(x))

= a · Ĉov(∆pk,pk∗)



Similarly,

Cov(∆ρ̇k1 ,∆ρ̇k2) =
1

q

∑
x∈X

rx(∆Pk1(x)− Ê[∆pk1 ])×

(∆Pk2(x)− Ê[∆pk2 ])V ar(L|x)

=
σ2
N

q
Ĉov(∆pk1 ,∆pk2)

For a successful attack, the condition {∆ρ̇k}k∈K\{k∗} > 0
holds where 0 is a zero vector of size |K| − 1 and v1 > v2

implies each element of v1 is greater than the corresponding
element of v2. Thus the first order success rate can be given
by the term Pr({∆ρ̇k}k∈K\{k∗} > 0). We mention by passing
that for a negative value of a in Eq. (2), one would expect a
negative correlation for the correct key and thus the definition
of success rate should be changed accordingly. For the time
being we assume a positive correlation for the correct key
and state Proposition 2. Without loss of generality, we also
assume that the distribution of ∆ρ̇ = {∆ρ̇k}k∈K\{k∗} is non-
degenerative [26] (see Appendix B for the degenerative case).

Proposition 2: The first order success rate (1-OSRCPA(x))
of CPA for the input plaintext vector x is given by

1-OSRCPA(x) = Φ0,Σ∆ρ̇
(µ∆ρ̇) (11)

where Φ0,Σ∆ρ̇
be the cdf of a multivariate normal distribution

with (|K| − 1)-dimensional zero mean vector and covariance
matrix Σ∆ρ̇.

Proof: Since, ∆ρ̇ follows the multivariate normal distri-
bution with mean µ∆ρ̇ and covariance matrix Σ∆ρ̇, the first
order success rate is given by

1-OSRCPA(x) = Pr(∆ρ̇ > 0)

= f∆ρ̇(0 < ∆ρ̇ <∞)

= f∆ρ̇(−µ∆ρ̇ < ∆ρ̇− µ∆ρ̇ <∞)

= f∆ρ̇(−∞ < ∆ρ̇− µ∆ρ̇ < µ∆ρ̇)

= Φ0,Σ∆ρ̇
(µ∆ρ̇)

where f∆ρ̇ denotes the pdf of the distribution of ∆ρ̇, and ∞
and −∞ are the (|K|−1)-dimensional vector of which all the
elements are ∞ and −∞ respectively.

To analyse the first order success rate further, from Corol-
lary 1, we note that µ∆ρ̇ = aµ∆P(x) and Σ∆ρ̇ =

σ2
N

q Σ∆P(x)

where µ∆P(x) be the vector {Ĉov(∆pk,pk∗)}k∈K\{k∗} and
Σ∆P(x) be the (|K| − 1) × (|K| − 1) matrix with elements
Ĉov(∆pk1 ,∆pk2) for all (k1, k2) ∈ (K\{k∗})2. Let us also
define the signal-to-noise ratio [20] of traces as

SNR =
V ar(E[L|Pk∗ ])

V ar(L− E[L|Pk∗ ])
=
a2σ2

k∗

σ2
N

(12)

Then we state the following result. Again we assume that
Σ∆P(x) is a positive definite matrix. Please refer to Ap-
pendix B for the situation when Σ∆P(x) is not a positive
definite matrix.

Corollary 2: The first order success rate (1-OSRCPA(x)) of
CPA for the input plaintext vector x is given by

1-OSRCPA(x) = Φ0,Σ∆P(x)(
√
q
√
SNRσ−1

k∗ µ∆P(x)) (13)

where Φ, Σ∆P(x) and µ∆P(x) is defined as before.

Proof: Let us first denote the multi-dimensional inti-
gration

∫ ul0
ll0
· · ·
∫ ul|K|−1

ll|K|−1
f(y0, . . . , y|K|−1)dy|K|−1 · · · dy0 as∫ ul

ll
f(y0, · · · , y|K|−1)dy where ll = {ll0, . . . , ll|K|−1}, ul =

{ul0, . . . , ul|K|−1} and y = {y0, . . . , y|K|−1}. From Proposi-
tion 2, we get

1-OSRCPA(x) =

∫ µ∆ρ̇

−∞

e−
1
2y′Σ−1

∆ρ̇y√
(2π)k−1|Σ∆ρ̇|

dy

=

∫ √
q

σN
µ∆ρ̇

−∞

e−
1
2 ỹ′(Σ∆P(x))−1ỹ√

(2π)k−1|Σ∆P(x)|
dỹ,

where ỹ =

√
q

σN
y

= Φ0,Σ∆P(x)

(√
q

σN
µ∆ρ̇

)
= Φ0,Σ∆P(x)

(√
qa

σN
µ∆P(x)

)
= Φ0,Σ∆P(x)

(
√
q

√
a2σ2

k∗

σ2
N

σ−1
k∗ µ∆P(x)

)
= Φ0,Σ∆P(x)

(√
q
√
SNRσ−1

k∗ µ∆P(x)
)

The parameters µ∆P(x) and Σ∆P(x) depend on the fre-
quency distribution of the elements of x. However, for a fixed
set of power traces, the values of the parameters are fixed.
Moreover, as the number of power traces q increases, the
parameters µ∆P(x) and Σ∆P(x) evolve. For a sufficiently
large value of q, the frequency distribution of X converges
to some distribution fX , and hence, the parameters µ∆P(x)
and Σ∆P(x) to some values, denoted by µfX∆P and ΣfX

∆P

respectively, which are independent of q. In that case, Eq. (13)
can be written as

1-OSRfXCPA(q) = Φ
0,Σ

fX
∆P

(
√
q
√
SNRσ−1

k∗ µ
fX
∆P) (14)

To experimentally validate Eq. (14), we computed practical
1-OSR by simulation. For the simulation, we generated power
traces by adding Gaussian noise to the Hamming weight of
the output of PRESENT S-box. The success rate is computed
by repeating CPA on the simulated power traces 10000 times.
On the other hand, we estimated 1-OSR using the model given
by Eq. (14). Both the results are plotted in Fig. (2) with the
increasing variance of Gaussian noise.

Similar relation between more general oth order success
rate with SNR can be found. Thus, for a given algorithm
and a fixed set of traces, maximization of the success rate
requires the maximization of SNR. In this work, we combine
the leakages L0, · · · , LT−1 using a linear function g in such
a way that it maximizes the SNR of the resultant leakage
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(b) Plaintext distribution is non-uniform. Each plain-
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Fig. 2: Plots of the practical and theoretical 1-OSR (1st order success rate) for CPA on the output of PRESENT S-box using HW model.
The 1-OSR is estimated using number of traces q equals to 64, 256 and 1024 respectively.

g(L0, · · · , LT−1). However, such combining is not possible
in non-profiling setup without any estimation of the informa-
tion contained in each sample point. Thus, in the following
sections, we try to estimate the information at each sample
point using some parameters which can be computed without
knowing the correct key.

IV. MULTIVARIATE LEAKAGE MODEL: EXTENDING THE
LEAKAGE MODEL OVER MULTIPLE TIME SAMPLES

A. Profiling the Power Traces of AES

In this section, our objective is to investigate how leakage
due to a known computation varies over a range of sample
points. The nature of leakages at several sample points have
been investigated with respect to the predicted leakage for the
correct key Pk∗ = Ψ(S) using the following metrics.

1) Squared Pearson’s Correlation between Data Dependent
Leakage and Predicted Leakage (SCDP): It is defined as
follows:

SCDPt = Corr2(E[Lt|Pk∗ ], Pk∗)

Since, Pearson’s correlation detects the
linear relation between two variables [8],
SCDPt = Corr2(E[Lt|Pk∗ ], Pk∗) reveals the linear
dependency between the deterministic leakage at t and
the predicted leakage Pk∗ . It should be noted that if the
leakage of a sample point t follows Eq. (2), then the
value of SCDP at t is almost one. On the other hand,
if Lt and Pk∗ are almost independent, E[Lt|p] will
be almost constant for all p ∈ P , resulting to SCDPt
almost zero.

2) Variation of Data Dependent Leakage (VDL):

V DLt = V ar(E[Lt|Pk∗ ])

It reveals the variations in leakage caused by the pre-
dicted leakage Pk∗ at sample point t. Sometimes, it is

used to quantify the signal in the leakage. On the other
hand, noise is quantified by V ar(Lt − E[Lt|Pk∗ ]).

3) Squared Mean Leakage (SML):

SMLt = E2[Lt]

It quantifies the magnitude or the strength of the leakage
at a sample point.
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Fig. 3: Plots of the chosen metrics in the last round of unprotected
implementation of AES.

Fig. 3 shows the plot for the above three metrics which are
estimated over 20000 traces of AES encryptions. The AES
is implemented using parallel iterative hardware architecture
on the setup described in Appendix A. The correct predicted
leakage Pk∗ is taken as the Hamming distance between the
ciphertext and the input to the last round. The metrics are
plotted only for 400 sample points around the last round
register update.

The figure shows that as the cycle begins, with the mean
leakage (SML), SCDP also rises rapidly, remains almost con-
stant for about 150 sample points and then it decreases slowly.
The slight fluctuations in the curve are due to the presence of



small amount of noise after averaging a limited number of
power traces. This leads us to the following observation:

Observation 1: The deterministic leakage at a large number
of sample points show high linear dependencies with the correct
predicted leakage Pk∗ .
In other words, a large number of sample points contain
information about the correct predicted leakage Pk∗ . It should
be noted that various profiling attacks optimally extract the
information from multiple sample points by estimating the
multivariate leakage distribution of the sample points using
a profiling step.

From the figure, we can also see that VDL almost super-
imposes on SML i.e. VDL is highly correlated to SML. This
leads us to the following observation:

Observation 2: The variation in deterministic leakage of a
sample point is correlated to the square of the mean leakage of
the sample point.
In other words, the second observation states that the mag-
nitude of the variation in leakage at a sample point due to
some computation is proportional to the mean value (strength)
of the leakage at that sample point. It should be noted that
similar kinds of observation can be found in Chapter 4.3.2 of
[20] for the leakages of a micro-controller. The authors have
also suggested several trace compression techniques based on
the observation and have shown their usefulness to attack
software implementation of AES. However, to the best of our
knowledge, no attempt has been made to incorporate these
observations into the leakage model.

In the next part of the section, we extend the conventional
leakage model over multiple sample points using the above
two observations.
B. Modeling the Leakage over Multiple Time Samples

Observation 1 and 2 immediately extend the conventional
leakage model given by Eq. (2), into the following multivariate
leakage model:

Lt = atΨ(S) +Nt = atPk∗ +Nt (15)

for t0 ≤ t < t0 + τ where at ∈ R and the random vector
N = {Nt0 , . . . , Nt0+τ−1} follows a multivariate Gaussian
distribution covariance matrix ΣN. It should be noted that
the linear relation in Eq. (15) is a consequence of Obser-
vation 1 while Observation 2 enforces the mean vector of
N to be either a zero vector or a multiple of the vector
a = {at0 , · · · , at0+τ−1}.

In a parallel iterative hardware architecture, a single round
consists of several parallel S-boxes and the attacker targets
only a part of it (usually a single S-box). Thus, in addition
to the predicted leakage Pk∗ due to the computation of the
target S = Fk∗(X), leakage due to the computation of the
other parallel bits adds to it. This is known as algorithmic
noise and we denote it by U . It should be noted that for a
fully serialized architecture, U takes the value zero. Leakages
due to the key bits and the control bits is denoted by c. Since
key scheduling and the controlling operations are fixed for a
specific round in all the encryptions, c is constant for all the
inputs.

Thus, we can adopt Eq. (15) to incorporate these new
variables as follows:

Lt = at(Pk∗ + U + c) +Nt (16)
= at(I + c) +Nt, t0 ≤ t < t0 + τ (17)

where I = Pk∗ + U . We are interested in the leakages of the
above window namely {t0, . . . , t0 +τ−1} that can be roughly
determined by the clock cycle in which the target operation
is being performed (see the next paragraph). We denote this
time span by {0, . . . , τ−1} and in the rest of the paper, power
trace is referred by the sample points of this time span only.

CPA and the Multivariate Leakage Model: In classical
CPA, Pearson’s correlation is applied to each of the sample
points independently i.e. Corr(Lt, Pk∗) is computed for all
0 ≤ t < T . From the relation between Pearson’s correlation
and linear regression [25], each Lt can be written as

Lt = atPk∗ + bt +Nt (18)

where at is given by Corr(Lt, Pk∗)σLt/σPk∗ and bt =
E[Lt] − atE[Pk∗ ]. The random variable Nt is independent
of Pk∗ and has zero mean. Thus, CPA also assumes a linear
leakage model for all the sample points. However, comparing
Eq. (16) and (18), we note that Eq. (16) additionally assumes
the constant bias bt to be proportional to at in the window
{t0, . . . , t0 + τ − 1}. In practice, bt may not be exactly
proportional to at. However, for our practical experiments,
the approximation provides better results.

Determination of Window: The model is valid only in the
clock cycle in which the target operation is being performed
(called the target clock cycle). If implementation details are
available, then the target clock cycle can be easily determined.
When implementation details are not available, other methods
such as in [23] can be incorporated. In [23], the authors
suggested to use Inter-Class Variance (ICV), V ar(E[Lt|X]),
for the selection of correct time-window in collision attack.
Recently in [4], Normalized Inter-Class Variance (NICV) has
been introduced as a metric for window selection. NICV
takes the ratio of Inter-Class Variance, V ar(E[Lt|X]), and the
leakage variance, V ar(Lt), to determine the relevant sample
points. We have found better result using Corrected Inter-Class
Variance (CICV) which has been computed as follows. Since
the expectation E[Lt|X] is estimated using a finite number of
power traces, say q, the estimated value for ICV at sample
point t is actually ÎCV t ≈ V ar(E[Lt|X]) + σ2

Nt
/f where

f = q/|X | is the average frequency of the elements of X . On
the other hand, we can write the estimated leakage variance
at t as σ̂2

Lt
≈ V ar(E[Lt|X]) + σ2

Nt
. Thus, we computed the
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value of CICV at t as

CICVt = ÎCV t −
1

f
σ2
Nt

= ÎCV t −
1

f − 1
(σ2
Nt −

σ2
Nt

f
)

≈ ÎCV t −
1

f − 1
(σ̂2
Lt − ÎCV t)

=
f

f − 1
ÎCV t −

1

f − 1
σ̂2
Lt .

Fig. 4 shows the CICV computed for the last two rounds of
an AES encryptions using 1000 traces. For the correct clock
cycle, CICV shows a higher peak. Once the target clock cycle
has been identified using the CICV, a window of sample points
for which the mean leakages E[Lt] are significantly higher can
be chosen as the target window.

C. Experimental Validation of the Multivariate Leakage
Model

We experimentally validated Eq. (16) and (17) on the
side-channel evaluation board SASEBO-GII. The validation
is carried over the following steps. We first classify all the
traces according to the values of I . Then we estimate the
deterministic leakage di = {E[Lt|I = i]}0≤t<τ for all i ∈ I
by computing the mean leakage curve of each class. Lastly, we
verify the linear equation E[Lt|I = i]− E[Lt|I = 0] = at · i
for all i ∈ I \ {0} and 0 ≤ t < τ using linear regression.
However, we do not know the values of at, 0 ≤ t < τ . Thus,
we infer the values of at from the deterministic leakage curves
dis.

We implemented an iterative structure of 32 parallel 10× 4
S-boxes using distributed ROM in the setup described in Ap-
pendix A. All of the S-boxes were connected to the same input
to increase the SNR of the power traces by the synchronous
computations of the S-boxes. It should be noted that though
the duplication of a single S-box increases the SNR of all the
sample points, their relative SNR remains same. We collected
1600 power traces each having 200 sample points with random
inputs. The values of the target variable S is taken to be the
output of the S-box. We have also considered the Hamming
distance model i.e. Ψ(s) is taken to be the Hamming distance

between s and the least significant 4 bit of the S-box input
for all s ∈ S. Since all the parallel S-boxes have the same
input and the output, the algorithmic noise U is zero i.e.
I = Pk∗ = Ψ(S).

The classification involves partitioning all the 1600 traces
into five HD classes for I = 0 to 4. Fig. 5 shows the
deterministic leakage curve di = {E[Lt|I = i]}0≤t<τ for
0 ≤ i ≤ 4 i.e. for each of the five classes. It is seen in the
figure that the deterministic leakage for different HD classes
i.e. different values of I are following almost same pattern.
However, the non-zero leakage for HD class 0 is caused by
the switching activities of the control bits and the DC power
consumption which is also present in the leakages of all
other classes. To remove this factor, we computed absolute
deterministic leakage curves as d̄i = di − d0 = {E[Lt|I =
i] − E[Lt|I = 0]}τ−1

t=0 = {at · i}τ−1
t=0 (from Eq. (17)) for

i = 1, · · · , 4. Table I shows the correlation between d̄i1 and

Correlation d̄1 d̄2 d̄3 d̄4

d̄1 1 0.9991 0.9981 0.9978

d̄2 0.9991 1 0.9995 0.9992

d̄3 0.9981 0.9995 1 0.9997

TABLE I: Pearson’s correlation between absolute deterministic leak-
age curves of different pairs of HD Classes
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d̄i2 for all i1, i2 ∈ I\{0}. The values of these correlations are
close to one which ensure that all of these vectors follow linear
relations with a common vector namely a = {a0, · · · , aτ−1}.
We estimate a by

∑4
i=1 d̄i∑4
i=1 i

.
Next, we plot the vectors d̄i for all i ∈ I \ {0} against the

estimated a. The plot is shown in Fig. 6. The figure shows
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Fig. 6: Scatter Plots of d̄1, d̄2, d̄3 and d̄4 against a.

the linear relationships of d̄i’s with the estimated a. So, we
have further used linear regression to find the closest linear
models of the relation between each of d̄1, d̄2, d̄3 and d̄4

and the estimated a = {at}τ−1
t=0 . The relations obtained using

linear regression are sufficiently close to the expected relation
which are shown in Table II. This provides an evidence of the
validity of Eq. (17).

Variable Obtained Relation Expected Relation

E[Lt|I = 1] − E[Lt|I = 0] at × 1.23 − 1.60 × 10−5 at × 1

E[Lt|I = 2] − E[Lt|I = 0] at × 2.17 − 7.26 × 10−8 at × 2

E[Lt|I = 3] − E[Lt|I = 0] at × 2.95 − 1.41 × 10−6 at × 3

E[Lt|I = 4] − E[Lt|I = 0] at × 3.65 − 1.75 × 10−5 at × 4

TABLE II: Relations of d̄1, d̄2, d̄3 and d̄4 with a = {at}τ−1
t=0 .

In the next section, we explore optimal pre-processing of
power traces using linear FIR filter for non-profiling DPA
attacks.

V. OPTIMUM FILTERING IN NON-PROFILING DPA

Matched filter is commonly used to maximize the SNR of
a noisy signal. In the next part of the section, we derive the
impulse response of the matched filter for the application in
SCA.

A. Finding the Impulse Response of the Matched Filter

In SCA, the output of a filter with impulse response h =
{h0, · · · , hτ−1} applied on the leakage L = {L0, · · · , Lτ−1}
can be given by the convolution between the impulse response
h and the leakage L i.e. Lo =

∑τ−1
t=0 hτ−t−1Lt. However, for

convenience, we use the inner product form. Thus, using the
inner product form, we express the output leakage Lo by the
following equation.

Lo =

τ−1∑
t=0

htLt. (19)

The impulse response h of the matched filter is derived such
that the SNR of the output leakage Lo is maximized. Using
Eq. (12), we compute the SNR of Lo.

SNRLo =
V ar (E [Lo|Pk∗ ])

V ar (Lo − E [Lo|Pk∗ ])
(20)

Putting Lo =
∑τ−1
t=0 htLt, we simplify the numerator of RHS

of the above equation as

V ar (E [Lo|Pk∗ ])

= V ar

(
E

[(
τ−1∑
t=0

htLt

)
|Pk∗

])

= V ar

(
E

[(
τ−1∑
t=0

ht(at(Pk∗ + U + c) +Nt)

)
|Pk∗

])

= V ar

(
τ−1∑
t=0

htatPk∗

)
= |h′a|2σ2

k∗ (21)

where σk∗ denotes σPk∗ . Similarly, we simplify the denomi-
nator of RHS of Eq. (20) as

V ar (Lo − E [Lo|Pk∗ ])

= V ar

(
τ−1∑
t=0

ht(at(U + c) +Nt)

)

= V ar

(
τ−1∑
t=0

htÑt

)
,

= V ar
(
h′Ñ

)
,

= E
[(

h′
(
Ñ− E[Ñ]

))(
h′
(
Ñ− E[Ñ]

))′]
= h′E

[(
Ñ− E[Ñ]

)(
Ñ− E[Ñ]

)′]
h

= h′ΣÑh (22)

where Ñt = at(U + c) +Nt, Ñ = {Ñ0, · · · , Ñτ−1} and ΣÑ

is the covariance matrix of Ñ. Using Eq. (21) and (22), we
write Eq. (20):

SNRLo =
|h′a|2σ2

P

h′ΣÑh
(23)

The optimization of the above expression is an well studied
problem in DSP. The following theorem provides the value of
h which maximizes the above expression.

Theorem 1: [30], [36] The impulse response hMF of the
matched filter, the linear filter which maximizes the SNR of
the output leakage Lo, can be given by

hMF = Σ−1

Ñ
a (24)

where a and ΣÑ are defined as before.
The proof of Theorem 1 is given in Appendix C. To compute

hMF, we need the covariance matrix ΣÑ and the vector a. Both
require the knowledge of the secret key to estimate. Thus, the
impulse response of the matched filter cannot be estimated in
non-profiling DPA attacks. In the next section, we introduce an
optimum linear filter which maximizes the SNR of the output
leakage and can also be estimated without the knowledge of
the secret key.



B. Optimum Linear FIR Filter for Non-profiling DPA

To overcome the issue of estimating the noise covariance
matrix for computing the impulse response of the matched
filter, we introduce Signal Ratio (SR) of the output leakage
Lo as follows.

SRLo =
V ar (E [Lo|Pk∗ ])

V ar (Lo)
. (25)

From Eq. (21), we get that the numerator of RHS of the
above expression equals to |h′a|2σ2

k∗ . The denominator can
be simplified as

V ar (Lo) = V ar

(
τ−1∑
t=0

htLt

)
= V ar

(
h′L

)
= E

[
(h′(L− E [L]))(h′(L− E [L]))′

]
= h′E

[
(L− E [L])(L− E [L])′

]
h

= h′ΣLh (26)

where ΣL be the covariance matrix of the multivariate leakage
L. Putting the values of the numerator and denominator of
RHS of Eq. (25) from Eq. (21) and Eq. (26), we get

SRLo =
|h′a|2σ2

P

h′ΣLh
. (27)

The following lemma provides a relationship between SNR
and SR

Lemma 1: The SR of the output leakage Lo reaches its
maximum if and only if SNR of that also reaches its maximum.

Proof: The denominator of the RHS of Eq. (25) can be
simplified as

V ar (Lo) = V ar

(
τ−1∑
t=0

htLt

)

= V ar

(
τ−1∑
t=0

ht(atPk∗ + at(I + c) +Nt)

)

= V ar

(
τ−1∑
t=0

ht(atPk∗ + Ñt)

)
= V ar

(
h′aPk∗

)
+ V ar

(
h′Ñ

)
= |h′a|2σ2

P + h′ΣÑh (28)

where, as defined before, Ñt = at(I + c) + Nt and
Ñ = {Ñ0, · · · , Ñτ−1}. Putting the values of numerator and
denominator of RHS of Eq. 25 from Eq. (21) and (28), we get

SRLo =
|h′a|2σ2

P

|h′a|2σ2
P + h′ΣÑh

=
1

1 +
h′ΣÑh

|h′a|2σ2
P

=
1

1 + 1
SNRLo

We rewrite the above equation as,

1

SRLo
= 1 +

1

SNRLo
Thus, the conclusion follows.

Thus, the optimization of SNR of the output leakage Lo is
equivalent to the optimization of the SR. Comparing Eq. (23)
and (27), we note that ΣÑ in the denominator of the definition
of SNR is replaced by ΣL in the definition of SR. Thus,
replacing ΣÑ by ΣL in Theorem 1, we get the following
lemma.

Lemma 2: The impulse response h of a linear FIR filter
which maximizes the SR of the output leakage Lo can be given
by Σ−1

L a.
We, now, state and prove our final result in Theorem 2. Before
that let us denote by µL the mean leakage vector E[L] =
{E[L0], · · · , E[Lτ−1]}.

Theorem 2: Let the leakage L follows Eq. (17). The linear
FIR filter with impulse response hopt = Σ−1

L µL maximizes the
SNR of the output leakage Lo = h′optL.

Proof: If we let hopt = Σ−1
L a, according to Lemma 2, hopt

optimizes the SR of Lo. Thus, according to Lemma 1, hopt also
optimizes the the SNR of Lo. Taking the expectation of both
sides of Eq. (17), we get

µL = a(E [I] + c)

or, a = µL/(E [I] + c).

Putting this value of a into hopt = Σ−1
L a, we get hopt =

Σ−1
L µL/(E[I] + c). Since a constant factor in the impulse

response of a filter does not have any affect on the SNR of the
output, by neglecting the constant factor, we get hopt = Σ−1

L µL.

Thus, the impulse response of an optimum linear filter can
be computed using the expression Σ−1

L µL. It should be noted
that neither ΣL nor µL requires the knowledge of the correct
key to estimate. Hence, the filter can be useful in non-profiling
DPA also.

VI. APPROXIMATING THE OPTIMUM LINEAR FIR FILTER

Computation of Σ−1
L µL involves the computation of the

inverse of a τ×τ matrix which has a computational complexity
O(τ3). Moreover, the inverse operation is highly susceptible
to the error in the estimation of the covariance matrix. To
avoid this operation, we note that the diagonal elements ct,t
of the matrix ΣL = {ct1,t2}0≤t1,t2<τ are the variance of the
leakage Lt and the off-diagonal elements ct1,t2 , where t1 6= t2,
are the covariance between Lt1 and Lt2 . Let us approximate
the leakage covariance matrix ΣL by setting all of its off-
diagonal elements to zero. Thus, the approximated covariance
matrix Σ̃L is a diagonal matrix having the diagonal elements
{c0,0, · · · , cτ−1,τ−1} = {σ2

L0
, · · · , σ2

Lτ−1
}. Thus, the impulse

response of the approximation of the optimum linear filter is
given by

happr = Σ̃−1
L µL =

{
E [L0]

σ2
L0

, · · · , E [Lτ−1]

σ2
Lτ−1

}
(29)

It should be noted that the approximate optimum filter given
by Eq. (29) neglects the correlation between the leakages
of two different sample points. Thus, it is more suitable in



scenarios where leakages of different sample points are loosely
correlated.

When the leakages of different sample points are signifi-
cantly correlated, the approximation of Eq. (29) might result
into sub-optimal pre-processing. To avoid this, the leakage
L = {L0, · · · , Lτ−1} can be transformed into a new basis
system L̃ = {L̃0, · · · , L̃τ−1} by some linear transformation
such that the leakage components along two different axes L̃t1
and L̃t2 become uncorrelated. Here, we discuss two such basis
conversions.
Eigenvector Domain: In eigenvector domain, the basis is given
by the set of eigenvectors of the covariance matrix of the
original data-set. In this new basis, components along different
eigenvectors (referred to as Principal Components or PCs)
are uncorrelated to each other. Principal Component Analysis
(PCA) [9] is a means to convert a data set into the basis
of eigenvectors. PCA also sorts the PCs by their variance
i.e. the first PC has maximum variance, the second PC has
second maximum variance, and so on. Thus in low noise
scenario, where most of variations in traces is due to the
target S, PCA projects the data dependent variations (signal)
into the first PC while variations in all other PCs are mainly
caused by noise. Thus, performing DPA on the first PC
greatly increases performance of a DPA attacks [2], [31], [3].
However in high noise scenario, data dependent variations are
rather scattered among all the PCs [3], [15]. Since, PCA is a
linear transformation [9], Eq. (17) is valid in the domain of
eigenvector also. Consequently, we can apply the approximate
optimal linear filter given by Eq. (29) on this domain i.e. on
the PCs.
Frequency Domain: Other alternative is to use Discrete Fourier
Transform (DFT) to convert the leakage samples into fre-
quency domain which can be achieved using only O(τ log(τ))
operations. In frequency domain, the absolute value of the
complex coefficients obtained from the DFT is commonly used
to attack [11], [24]. By taking only the absolute value, phase
component is ignored which is useful to attack misaligned
traces. However, we do not use it since the absolute operation
is not a linear operation. Rather, we keep both the real part
(cosine coefficient) and the imaginary part (sine coefficient) as
separate sample points. Since, both the real and the imaginary
parts are obtained using linear transformations, the resulting
DFT traces also follows Eq. (16) and (17). Moreover, even
if there exist significant correlations among sample points in
time domain, we can assume the covariance matrix of the
leakages in frequency domain is sparsed. Hence, we can apply
the approximate optimal filter given by Eq. (29) for optimal
pre-processing in this domain.

Computational Complexity: To estimate the impulse response
of the optimum linear filter, hopt = Σ−1

L µL, using q traces of
size τ , one needs O(qτ2) operations for estimating ΣL and
O(τ3) operations for computing the inverse. Multiplication
of Σ−1

L and µL requires O(τ2) operations. Thus in total, it
requires O(τ2(τ + q)) operations to compute. On the other
hand, to compute happr, one needs only O(qτ) operations.
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Fig. 7: Plots of the global success rate (GSR) of CPA after applying
various pre-processing techniques on real traces of AES encryption.
The GSR is computed over 40 sets of 3000 power traces.

VII. EXPERIMENTAL RESULTS

For experimental evaluation, we have collected 40 sets of
3000 traces of AES encryptions. The cipher is implemented
using parallel iterative hardware architecture on SASEBO-GII
using the setup described in Appendix A. The S-boxes are
implemented using Xilinx device primitive: distributed ROM.
The setup is properly calibrated to reduce the quantization
noise.

The effectiveness of the two proposed pre-processing tech-
niques has been evaluated by comparing the success rate
of CPA performed on the pre-processed traces by (1) the
optimum filter (OF) and (2) the approximate optimum filter
(AOF) with the success rate of CPA performed on (3) all the
sample points independently. The attacks are performed on
the power traces in three domains: time domain, frequency
domain and eigenvector domain i.e. on the PCs. Fig. 7 shows
global success rate [1] of CPA after applying all the above
pre-processing. For parallel implementation of AES, global
success rate is defined by the probability of getting the correct
subkey for all the 16 bytes simultaneously. The figure shows
that CPA performs better on the pre-processed traces in each
of the three domains.

We have further evaluated the pre-processing techniques by
adding a constant noise to each of the sample points of the
traces. Such noise may be caused by vertical misalignment of
the power traces. In the presence of constant noise, leakages
of the different sample points get positively correlated. Thus
filtering using AOF, which neglects the correlation between the
leakages of two different sample points, becomes sub-optimal.
This can be seen in Fig. 8. The figure shows the GSR of CPA
on the output of AOF in time domain is badly affected by
the constant noise. However, AOF in frequency domain and
on the PCs performs almost optimally since, in the new basis,
the sample points get sparsely correlated.

To test the effect of error in the estimation of covariance
matrix ΣL when the number of power traces is small, we
performed the attacks with the increasing number of power
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Fig. 8: Plots of the global success rate (GSR) of CPA after applying
various pre-processing techniques on AES encryption traces. A
constant noise is added to each sample point of the traces and then
GSR is computed by adding independent Gaussian noise to each
sample points of increasing variance.

traces on the original acquired traces. As shown in Fig. 9, CPA
on the output of OF does not performs well for lesser number
of power traces. The performance of CPA on the output of
AOF on the PCs is also slightly effected when the number of
power traces is small. However, the success rate of the CPA
on the output of AOF in both time and frequency domains
reaches to one faster than all other attacks.

In conclusion, we can say that CPA performs better on the
output of OF when the number of power traces is sufficiently
large. But, it performs worse when the number of power traces
is less due to erroneous estimation of the covariance matrix
ΣL. On the other hand, AOF provides a computationally
efficient alternative to OF which also performs well when the
number of power traces is small. However in the presence of
highly correlated noise, AOF in time domain is not a good
choice since it neglects the correlations between the leakage
of two different sample points. This shortcoming of AOF can
be circumvented by transforming the power traces into a new
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Fig. 9: Global success rate (GSR) is computed with the increasing
number of power traces without adding any noise.

domain like frequency domain where the leakages of multiple
sample points become sparsely correlated.

VIII. OPTIMALITY OF OF

In this section, our objective is to experimentally verify the
optimality of OF as a technique for combining the leakages
of multiple sample points. We assume that a multivariate
profiling attack can exploit the leakages of multiple sample
points optimally, thus, gives the limit of the improvement in
the success rate which can be achieved by combining the
leakages of multiple sample points. Hence, the optimality of
OF has been verified by comparing the success rate of a
univariate profiling attack performed on the output of OF with
the success rate of the multivariate profiling attack performed
on the unprocessed power traces. We choose the Stochastic
attack [29] as the profiling attack since it can “learn” quickly
using smaller number of traces [13].

A. Experimental Evaluation on Simulated Traces

For the experimental evaluation of OF, we generated simu-
lated leakage using HW model. The leakage of 300-dimension,
L, has been generated as L = HW(sbox(X ⊕ k∗))a + N
where a is a chosen vector of 300 elements. The attacks
are performed with increasing variance of the noise. In the
profiling phase, 100000 traces have been used and in the attack
phase, a different set of 100000 traces has been used.

Fig.10 plots the success rate of Stochastic attack performed
(1) on all sample points, (2) on the output of MF (matched
filter) (3) on the output of OF. The figure shows that the
success rate obtained in the three attacks are same.

B. Experimental Evaluation on Real Traces

For experimental evaluation of the optimality of OF on real
traces, we performed the profiling stochastic attack on the
same set of 120000 traces used in Section VII. Three variants
of the attack have been performed: (1) multivariate stochastic
attack on all the sample points, (2) univariate stochastic attack
at the sample point where leakage is maximum, and (3)
univariate stochastic attack on the output of OF. For all the
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Fig. 10: Plots of the success rate of profiling Stochastic attack on
simulated power traces.
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Fig. 11: Plots of the global success rate (GSR) of profiling Stochastic
attack on real traces.

three attacks, Hamming distance model has been used and the
same set of 120000 power traces has been used for both the
profiling and attack phase. Fig.11 plots the global success rate
(GSR) obtained using the three attacks. The plots of the GSR
obtained using the univariate stochastic attack on the sample
point with maximum leakage shows the limit of the GSR
which can be obtained by exploiting the leakage of a single
sample point. The plots for the multivariate stochastic attack
on all the sample points shows the limit of the improvement
in the GSR which can be obtained by optimally combining the
leakages of all the sample points. The plots for the univariate
stochastic attack on the output of OF shows that the GSR of
the attack has been improved by the pre-processing using OF
and reaches very close to the GSR of multivariate stochastic
attack.

IX. CONCLUSION

The paper has investigated the optimization of non-profiling
multivariate DPA attacks by linearly combining the leakages of
multiple sample points. The investigation has been carried over
in three parts. In the first part, a theoretical study of the factors
influencing the DPA attacks has been conducted. The study has
established a theoretical relationship among the success rate
of CPA, number of power traces used in the attack, the SNR
of the power traces, and other algorithm and model dependent
parameters. In the second part, a multivariate leakage model
for Xilinx Virtex-5 FPGA device has been proposed. The
proposed model has also been experimentally verified. In the
third part, optimum pre-processing of the power traces using
linear FIR filter has been studied. We have proposed two pre-
processing techniques for the non-profiling DPA attacks based
the proposed multivariate leakage model. Optimality of one
pre-processing techniques has been empirically evaluated on
both simulated and real traces.

REFERENCES

[1] Dpa contest/v2/, http://www.dpacontest.org/v2/index.php, 2012.
[2] C. Archambeau, E. Peeters, F.-X. Standaert, and J.-J. Quisquater. Tem-

plate Attacks in Principal Subspaces. In Goubin and Matsui [14], pages
1–14.

[3] L. Batina, J. Hogenboom, and J. G. J. van Woudenberg. Getting More
from PCA: First Results of Using Principal Component Analysis for
Extensive Power Analysis. In O. Dunkelman, editor, CT-RSA, volume
7178 of Lecture Notes in Computer Science, pages 383–397. Springer,
2012.

[4] S. Bhasin, J.-L. Danger, S. Guilley, and Z. Najm. NICV: Normalized
Inter-Class Variance for Detection of Side-Channel Leakage. Cryptology
ePrint Archive, Report 2013/717, 2013.

[5] E. Brier, C. Clavier, and F. Olivier. Correlation Power Analysis with a
Leakage Model. In M. Joye and J.-J. Quisquater, editors, CHES, volume
3156 of Lecture Notes in Computer Science, pages 16–29. Springer,
2004.

[6] S. Chari, J. R. Rao, and P. Rohatgi. Template Attacks. In B. S. K. Jr.,
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APPENDIX A
EXPERIMENTAL SETUP AND PRE-PROCESSING

For all the experiments, we have used standard side-
channel evaluation board SASEBO-GII [16]. It consists of two
FPGA device: Spartan-3A XC3S400A and Virtex-5 xc5vlx50.
Spartan-3A acts as the control FPGA where as Virtex-5
contains the target cryptographic implementation. The cryp-
tographic FPGA is driven by a clock frequency of 2 MHz.
During the encryption process, voltage drops across VCC
and GND of Virtex-5 are captured by Tektronix MSO 4034B
Oscilloscope at the rate of 2.5 GS/s i.e. 1, 250 samples per
clock period.

The traces acquired using the above setup are already hori-
zontally aligned. However, they are not vertically aligned. The
vertical alignment of the traces are performed by subtracting
the DC bias from each sample point of the trace. The DC
bias of each trace is computed by averaging the leakages of a
window taken from a region when no computation is going on.
This step is also necessary since the derived impulse response
of the matched filter is sensitive to the absolute value of mean
leakages.

For mounting the attacks, we selected a window of 300
sample points around the last round register update. After
transforming into a different domain, variance of some of
the sample points may become very close to zero in the new
domain. As a result, while applying approximate matched filter
in this new domain, the weights (which are mean/variance of
the sample points) of those sample points may become very
high even if their mean values are very less. In other words,
due to very low variance, some low SNR sample points may

get very high weight. We solved this problem by setting the
weight of a sample point having variance less than a fraction
of 1/500 of the maximum variance to zero.

APPENDIX B
DEGENERATE NORMAL DISTRIBUTION

To have a density, the covariance matrix Σ of the multi-
variate normal distribution N(0,Σ) must be a positive definite
matrix [26](i.e. all of its eigenvalues must be positive). When
the covariance matrix is positive semi-definite, the distribution
is said to be degenerate normal distribution and does not have
a density. In that case, we converted it into a positive definite
matrix by the following way. We first performed eigendecom-
position of Σ by factoring it into QΛQ′ where each column
of Q represents a eigenvector of Σ and Λ is a diagonal
matrix whose jth diagonal element is the eigenvalue of the
jth eigenvector. Then, we computed a new positive definite
matrix Σ1 = QΛ1Q

′ where Λ1 is obtained by replacing the
diagonal elements having zero (in practice, elements having
values below a cut-off value) by a very small positive value.
The new matrix Σ1 is then used in the multivariate density.

APPENDIX C
PROOF OF THEOREM 1

A formal proof of the theorem can be found in [30].
However, for the shake of completeness, we provide a proof
following the proof in [36]. In Eq. (12), SNR is given as,

SNRLo =
|h′a|2σ2

k∗

h′ΣÑh

The term σ2
k∗ in the RHS of the above expression does not

have any influence when we maximize the SNR. Thus by
neglecting it, we re-write the above expression as

SNRLo =
|h′a|2
h′ΣÑh

Now, if ΣÑ is not invertible, a subset of the τ time instants
of size rank(ΣÑ) can be chosen such that the covariance
matrix of the chosen time instants is invertible and all the
computations can be carried out in this lower dimension. Thus
without loss of generality, we assume ΣÑ is positive-definite.
Thus, SNR can be written as
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Using the Cauchy-Schwarz inequality, the numerator of the
RHS of the above equation can be bounded by
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Ñ
h)′(Σ

−1/2

Ñ
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Ñ
a)′(Σ

−1/2

Ñ
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Thus,
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Moreover, this upper bound is achieved when Σ
1/2

Ñ
h and

Σ
−1/2

Ñ
a are linearly dependent or Σ

1/2

Ñ
h = αΣ

−1/2

Ñ
a, which

simplifies to h = αΣ−1

Ñ
a for some normalization factor α.

Setting the value of α to one, we complete the proof.


