
Compact Hardware Implementation of

Ring-LWE Cryptosystems

Sujoy Sinha Roy1, Frederik Vercauteren1, Nele Mentens1, Donald Donglong
Chen2 and Ingrid Verbauwhede1

1ESAT/SCD-COSIC and iMinds, KU Leuven
Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium

Email: {firstname.lastname}@esat.kuleuven.be
2Department of Electronic Engineering,

City University of Hong Kong
Tat Chee Avenue, Kowloon, Hong Kong SAR

Email: donald.chen@my.cityu.edu.hk

Abstract. In this paper we propose an efficient and compact hardware
implementation of a polynomial multiplier based on the Fast Fourier
Transform (FFT) for use in ring-LWE cryptosystems. We optimize the
forward wrapped convolution by merging the pre-processing and the FFT
and propose an advanced memory access scheme which reduces the num-
ber of memory accesses and the number of RAM slices used in the design.
These techniques result in a hardware implementation of a polynomial
multiplier for the ring-LWE cryptosystem of dimension 256 that uses
only 281 slices and one block RAM on a Virtex V.
Finally, we also propose a modification of a ring-LWE encryption system
that reduces the number of FTT operations from five to four resulting
in a near 20% speed-up.

Keywords. Lattice-based cryptography, Polynomial multiplication, Hard-
ware implementation, Fast Fourier Transform, Number Theoretic Trans-
form, ring-LWE

1 Introduction

Modern public key cryptography algorithms such as RSA, DSA and ECDSA [8]
are based on number theoretic problems which are hard to solve using present-
day computers. However in the post-quantum era, these problems are solvable
in polynomial time. In order to prevent such potential risks in the future, cryp-
tosystems that are also secure in post-quantum world has gained vast interest
from the research world.

Lattice-based cryptography is considered as a potential candidate for quantum-
secure public key cryptography due to its wide applicability [15] and its security
proofs which are based on worst-case hardness of well known lattice problems.
Beside significant progress in theoretical lattice-based cryptography [9, 10, 13],

practical implementations are gaining importance in the research community [1,
4, 5, 11]. The learning with errors (LWE) problem [14] has become a foundation
of several cryptographic schemes. The ring variant of the LWE problem, known
as the ring-LWE [7] is more efficient than LWE and has been used to build
several practical public key encryption schemes.

The most computationally intensive operation in the ring-LWE cryptosys-
tem is the multiplication of two polynomials in Zq[x]/〈x

n+1〉. Hence the imple-
mentation of an efficient polynomial multiplier architecture is essential to push
forward the use of ring-LWE public key cryptography in practical systems. The
Fast Fourier Transform (FFT) is considered as the most efficient algorithm to
multiply two polynomials due its quasi-linear complexity θ(n logn) [3].

The most important hardware implementations of polynomial multiplication
architectures are [1, 5, 11]. In [5], a parallel butterfly structure is used to im-
plement the polynomial multipliers for the ring-LWE cryptosystems of various
dimensions. However the polynomial multipliers are very large because of the
fully parallel structure. In [11], a sequential polynomial multiplier architecture
is designed to use the FPGA resources in an efficient way. The polynomial mul-
tiplier uses a dedicated ROM to store all the twiddle factors which are required
during the FFT computation. To reduce the area requirement, the polynomial
multiplier in [1] does not keep any dedicated ROM and computes the twiddle
factors whenever required. The implementation also focuses on increasing the
utilization of the computation blocks present in the polynomial multiplier archi-
tecture.

Our contributions: In this paper we present a polynomial multiplier architec-
ture based on the Number Theoretic Transform (NTT) algorithm. The polyno-
mial multiplier is designed to have small area and memory requirement, but we
also focus on computational optimization to keep the number of cycles small.
This paper makes following contributions.

1. During the NTT computation, the coefficients are multiplied by the twid-
dle factors that are computed using repeated multiplications. In [11] a pre-
computed table (ROM) is used to avoid this fixed computation cost. A more
compact implementation in [1] does not use the ROM and computes the
twiddle factors by performing repeated multiplications. In this paper we re-
duce the number of multiplications by handling the nested loops in a better
way.

2. The implementations in [1, 11] uses negative wrapped convolution to reduce
the number of evaluations in both forward and backward NTT computa-
tions. However, the use of negative wrapped convolution has a pre and post
computation overhead. In this paper we propose an efficient pre-computation
technique which reduces the cost of the forward NTT.

3. The intermediate coefficients are stored in memory (RAM) during the NTT
computation. Access to the RAM is a bottleneck for speeding-up the NTT
computation. In the implementations [11, 1], FPGA-RAM slices are placed
in parallel to avoid this bottleneck. In this paper we propose an efficient

memory access scheme which reduces the number of RAM accesses, optimizes
the number of block RAMs and still achieves maximum utilization of the
computational blocks present in the polynomial multiplier.

4. We propose an optimization in the ring-LWE public key cryptosystem. The
proposed scheme requires four NTT computations compared to five [12] and
thus can achieve nearly 20% reduction in the computation cost.

The remainder of the paper is organized as: In Section 2 we provide a brief
mathematical background and our optimization techniques of the NTT are de-
scribed in Section 3. Section 4 presents our hardware architecture for the poly-
nomial multiplier and Section 5 reports on the experimental results of this im-
plementation. Finally, in Section 6, we propose an optimization of an existing
ring-LWE encryption system that reduces the number of NTTS from five to four.

2 Background

In this section we present a brief mathematical background required to under-
stand this paper. Since the contribution of our paper is in optimizing the ring-
LWE public key cryptosystem and the polynomial multiplication, we provide a
brief background of the ring-LWE cryptosystem and polynomial multiplication
using FFT.

2.1 The LWE Problem

The learning with errors (LWE) problem is a machine learning problem which
is conjectured to be a hard problem. In 2005 Regev [14] proved that solving the
LWE problem is equivalent to solving several worst-case lattice problems. Since
then, the LWE problem has become a popular basis for developing quantum
secure lattice-based cryptosystems.

The LWE problem is parameterized by a dimension n ≥ 1, an integer modulus
q ≥ 2 and an error distribution (discrete Gaussian distribution) X over integers.
For a uniformly chosen s ∈ Z

n
q , the LWE distribution As,X over Znq ×Zq consists

of the sample points (a, t) where a is chosen uniformly from Z
n
q and t = 〈a, s〉+e

mod q ∈ Zq and e is sampled from the error distribution X . The search version
of the LWE problem asks to find the s given a polynomial number of pairs
(a, t) sampled from the LWE distribution As,X . In the decision version of the
LWE problem, the solver needs to distinguish with an non-negligible advantage
between a polynomial number of samples drawn from As,X and the same number
of samples drawn from Z

n
q × Zq. For hardness proofs of the search and decision

LWE problems, interested readers are referred to [6].

The LWE Public Key Cryptosystem : The initial LWE public key cryp-
tosystem in [14] is based on matrix operations which are quite inefficient and
requires a large key size. To achieve computational efficiency and to reduce key
size, an algebraic variant of the LWE called ring-LWE [7] uses special structured

ideal lattices. Such lattices correspond to ideals in rings Z[x]/〈f〉, where f is an
irreducible polynomial of degree n. For efficiency reason, the ring is taken as
Rq = Zq[x]/〈f〉 and the irreducible polynomial as f(x) = xn + 1, where n is a
power of two and the prime q is taken as q ≡ 1 mod 2n. In this paper we pro-
pose an optimization of a ring-LWE based encryption system from [6] in brief,
which we now recall. The cryptosystem uses a global polynomial a ∈ Rq. The
key generation, encryption and decryption operations are shown below.

1. KeyGen(a) : Two polynomials r1 and r2 ∈ Rq are constructed from a
discrete Gaussian distribution with small standard deviation. As such, the
norms of r1 and r2 are small. The polynomial p = r1−a·r2 ∈ Rq is computed.
The public key is (a, p) and the private key is r2.

2. Enc(a, p,m) : The messagem is first encoded to m̄ ∈ Rq. Three polynomials
e1, e2 and e3 ∈ Rq are sampled from the discrete Gaussian distribution. The
ciphertext is composed of two polynomials [c1 = a · e1+ e2; c2 = p · e1+ e3+
m̄ ∈ Rq] .

3. Dec(c1, c2, r2) : In the decryption phase, first a polynomial m′ = c1 · r2 +
c2 ∈ Rq is computed. The original message m is recovered from m′ using a
decoder.

2.2 Polynomial Multiplication

There are many efficient algorithms in the literature to perform polynomial
multiplication. A survey of fast multiplication algorithms can be found in [2]. In
this paper, we use the Fast Fourier Transform (FFT) to implement polynomial
multiplication in quasi-linear time complexity. For a detailed description of the
FFT and its use in polynomial multiplication, readers may follow [3].

The Fast Fourier Transform : This special technique is an efficient way to
compute the Discrete Fourier Transform (DFT) in quasi-linear time complexity.

The n-point forward DFT of a polynomial a(x) =
∑n−1

k=0 akx
k of degree n − 1

consists of n evaluations of the polynomial a(x) at n distinct points. When n
is a power of two and the points are chosen as ωkn for 0 ≤ k ≤ n − 1, with ωn
the n-th primitive root of unity a very efficient algorithm can be derived. The
forward DFT of a(x) can be expressed as a polynomial A(X) =

∑n−1
k=0 AkX

k

with the following coefficients.

Ak =
n−1
∑

j=0

ajω
kj
n , k = 0 . . . n− 1 (1)

The polynomial a(x) can be recovered from the polynomial A(x) using the in-
verse DFT which retrieves the coefficients as shown below.

ak =
1

n

n−1
∑

j=0

Ajω
−kj
n , k = 0 . . . n− 1 (2)

Naive computation of the forward and backward DFTs have quadratic com-
plexity. The FFT is a divide-and-conquer approach which takes advantage of
the special properties of ωn to compute the forward and backward DFTs in
θ(n logn) time. The input polynomial a(x) of degree n − 1 is divided into two
smaller polynomials aeven(x) and aodd(x) of degree n/2− 1 as shown below.

a(x) = aeven(x
2) + xaodd(x

2) (3)

aeven(x) = a0 + a2x+ · · ·+ an−2x
n/2−1

aodd(x) = a1 + a3x+ · · ·+ an−1x
n/2−1

The task of evaluating the polynomial a(x) at the points ωkn for 0 ≤ k ≤ n− 1
reduces to evaluating the two smaller polynomials at the points ω2k

n . However as
ω2k
n = ωkn/2, the evaluations are performed only at the n/2 distinct points ωkn/2

for 0 ≤ k ≤ n/2 − 1. A similar recursive approach is applied while evaluating
the two smaller polynomials. After completion of the evaluations of aeven(x)
and aodd(x), the results are combined as per Eq. (3) to compute the polynomial
A(X) with the coefficients shown below.

Ak = a(ωkn) = aeven(ω
2k
n) + ωknaodd(ω

2k
n) (4)

The factor ωkn used in the merging of the two smaller evaluations is called the
twiddle factor. As the n-th primitive root of unity ωn is a complex number, the
traditional FFT algorithm involves floating point arithmetic which introduces
computational inaccuracy. The Number Theoretic Transform (NTT) is an FFT
defined over the ring Zq, and is free from inaccurate floating point arithmetic.
In the NTT, ωn is an n-th primitive root of unity modulo q and the coefficients
in Eq. (1) and (2) are computed modulo q. In a ring Rq, the NTT exists if and
only if n divides d− 1 for every prime divisor d of q.

For the NTT computation, there are both recursive and iterative algorithms.
The iterative version has advantage in terms of constant cost over the recursive
one [3]. An iterative NTT is given in Algorithm 1 (source [3]). In line 2, a bit
reverse operation is performed to rearrange the input coefficients of the input
polynomial in a desired order. After the bit reverse operation, three nested loops
perform the divide-and-conquer steps. In line 8, a multiplication by the twiddle
factor is performed before the butterfly steps in line 10 and 11. The butterfly
steps perform the operation in Eq. (4). All the computations in this iterative
NTT algorithm are in-place and hence the algorithm is suitable for memory-
constraint implementations.

Polynomial Multiplication : The multiplication of two polynomials a(x) and
b(x) of degree n− 1 is the polynomial c(x) = a(x) · b(x) of degree 2n− 1 which
can be computed using NTT as shown below.

c(x) = NTT−1ω2n

(

NTTω2n(a) ∗NTTω2n(b)
)

(5)

Here ω2n is the 2n-th primitive root of unity in Rq and NTTω2n(·) consists of
2n point-value pairs. The polynomial multiplication in Eq. (5) has complexity

Algorithm 1: Iterative NTT

Input: Polynomial a(x) ∈ Zq [x] of degree n− 1 and n-th primitive root ωn ∈ Zq of unity
Output: Polynomial A(x) ∈ Zq [x] = NTT(a)
begin1

A← BitReverse(a);2

for m = 2 to n by m = 2m do3

ωm ← ωn/m
n ;4

ω ← 1 ;5

for j = 0 to m/2− 1 do6

for k = 0 to n− 1 by m do7

t← ωA[k + j +m/2] ;8

u← A[k + j] ;9

A[k + j] ← u+ t ;10

A[k + j +m/2]← u − t ;11

end12

ω ← ω · ωm ;13

end14

end15

end16

θ(n logn) since both the forward and backward NTT computations have com-
plexity θ(n log n) and the component-wise multiplication has complexity θ(n).

When polynomial multiplication is performed in Rq = Zq[x]/〈f〉, special
property of the irreducible polynomial f(x) = xn + 1 can be used to reduce the
number of point-value pairs from 2n to n for both forward and backward NTT
conversions. This special technique is known as the negative wrapped convolution

which is explained below.

Let us consider the general case where the polynomial c(x) of degree 2n −
1 is first computed as per Eq. (5) and then the reduction by the irreducible
polynomial xn + 1 is performed to produce the reduced polynomial cR(x) ∈ Rq.
If we look at the computation of the coefficients ck and ck+n of c(x) using the
backward NTT, then we find the following similarity between the two coefficients,
where 0 ≤ k ≤ n− 1.

ck =
1

2n

2n−1
∑

j=0

Cjω
−kj
2n

ck+n =
1

2n

2n−1
∑

j=0

Cjω
−(k+n)j
2n =

1

2n

2n−1
∑

j=0

Cjω
−kj
2n (−1)j (6)

After the reduction of c(x) by the polynomial xn + 1, the result cR(x) has its
k-th coefficient cRk as shown below.

cRk = ck − cn+k =
1

2n

2n−1
∑

j=0

Cjω
−kj
2n

(

1− (−1)j
)

=
1

n

n−1
∑

j=0

C2j+1ω
−k(2j+1)
2n (7)

From the above equation we see that the even-indexed coefficients C2j (where
0 ≤ j ≤ n − 1) have no influence on the final result. Hence we do not need to
compute A2j , B2j and C2j . In the forward NTT, we evaluate a(x) (and b(x))

only at the points ω2j+1
2n as shown below.

A2k+1 =

n−1
∑

j=0

ajω
(2k+1)i
2n =

n−1
∑

j=0

aj(ψω
k
n)
j (8)

Here ψ = ω2n is the square-root of ωn and 0 ≤ k ≤ n− 1.
After the element wise multiplication we get C2k+1 = A2k+1 ·B2k+1. We can

compute the result cR(x) as per Eq. (7). However to keep similarity between
the forward and backward NTT computation (for simplicity of hardware imple-
mentation), we first compute the coefficients of the polynomial c′(x) as shown
below.

c′k =

n−1
∑

j=0

C2j+1ω
−kj
n (9)

Now the polynomial cR(x) is computed from c′(x) using the following relation.

cR(x) =
1

n

n−1
∑

j=0

c′jψ
−jxj (10)

When the modulus q is prime and the number of points n is a power of two, the
negative wrapped convolution is possible iff q ≡ 1 mod 2n.

3 Optimization in the NTT Computation

In this section we optimize the NTT and compare with the recent hardware im-
plementations of polynomial multipliers [1, 11, 12]. First, the fixed cost involved
in computing the powers of ωn is reduced; then the pre-computation overhead
in the forward negative-wrapped convolution is optimized; and finally an effi-
cient memory access scheme is proposed which reduces the number of memory
accesses during the NTT steps and also minimizes the number of block RAMs
in the hardware architecture.

3.1 Optimization in the Fixed Computation Cost

In line 13 of Algorithm 1 the computation of the twiddle factor ω ← ω · ωm is
performed in the j-loop. This computation can be considered as a fixed cost.
However in [1, 11] the j-loop and the k-loop appears in an interchanged posi-
tion. In this interchanged position, ω is updated in the innermost loop which
is more frequent than in Algorithm 1. To avoid the computation of the twiddle
factors, in [11] all the twiddle factors are kept ready in a pre-computed lookup

table (ROM) and are accessed whenever required. As the twiddle factors are
not computed on-the-fly, the order of the two innermost loops does not result
in an additional cost. However in [1] a more compact polynomial multiplier ar-
chitecture is designed without using any lookup table and the twiddle factors
are simply computed on-the-fly during the NTT computation. Hence in this
implementation, the interchanged position of the two loops causes additional
computational overhead. In this paper our target is to design a very compact
polynomial multiplier. Hence we do not use any lookup table for the twiddle
factors and follow Algorithm 1 to avoid extra computation.

3.2 Optimization in the Forward NTT Computation Cost

Here we revisit the forward negative-wrapped convolution technique used in [1,
11, 12]. For the two input polynomials a(x) and b(x), the polynomials ā(x) =
∑n−1

j=0 ajx
jψj and b̄(x) =

∑n−1
j=0 bjx

jψj ∈ Rq are precomputed. The forward

n-point NTT is performed on the polynomials ā(x) and b̄(x). Here ψ is the
square-root of ωn modulo q.

We perform the forward part in a different way to reduce the precomputation
overhead. In Eq. (8), we have described the computation of forward negative-
wrapped convolution. The only difference between computation in Eq. (8) and
the normal n-point NTT in Eq. (1) is the presence of ψ as a multiple. In the
forward negative wrapped convolution, the input polynomial is evaluated in the
n points ψωkn for 0 ≤ k ≤ n − 1. In this case Eq. (4) can be written as shown
below.

Ak = a(ψωkn) = aeven
(

(ψωkn)
2
)

+ ψωknaodd
(

(ψωkn)
2
)

(11)

The final recursive splitting in both Eq. (4) and (11) generates two smaller
polynomials each having only one coefficient. Hence the difference is only in the
combine operations which involves the twiddle factors ωkn and ψωkn in Eq. (4) and
(11) respectively. In the forward negative-wrapped convolution, we do a minor
change in line 5 of Algorithm 1 and initialize the twiddle factor ω to ψ which
is the square-root of ωm. The modified forward NTT computation is shown in
Algorithm 2.

3.3 Optimization in the Memory Access Scheme

During the NTT computation, the initial coefficients and the intermediate coef-
ficients are stored in memory. When the number of coefficients is large, address-
able memory such as RAM is more suitable for hardware implementation [1, 11].
However, in a RAM the number of memory locations that can be accessed in a
cycle is limited by the number of read and write ports of the RAM. Thus the
memory access could be a bottleneck in the NTT implementation. In this section
we propose an efficient memory access scheme which optimizes the number of
memory accesses, minimizes the number of block RAMs and still achieves max-
imum utilization of the arithmetic blocks present in the polynomial multiplier
architecture.

Algorithm 2: Iterative forward NTT

Input: Polynomial a(x) ∈ Zp[x] of degree n− 1 and n-th primitive root ωn ∈ Zp of unity
Output: Polynomial A(x) ∈ Zp[x] = NTT(a)
begin1

A← BitReverse(a);2

for m = 2 to n by m = 2m do3

ωm ← ωn/m
n ;4

ω ← ψ = squareroot(ωm) ;5

for j = 0 to m/2− 1 do6

for k = 0 to n− 1 by m do7

t← ωA[k + j +m/2] ;8

u← A[k + j] ;9

A[k + j] ← u+ t ;10

A[k + j +m/2]← u − t ;11

end12

ω ← ω · ωm ;13

end14

end15

end16

In the innermost loop (lines 8-to-11) of Algorithm 1, two coefficients A[k+ j]
and A[k+j+m/2] are first read from the memory and then arithmetic operations
(one multiplication, one addition and one subtraction) are performed. At the
end of the iteration, the new A[k + j] and A[k + j +m/2] are updated and are
written back in memory. Thus during one iteration of the innermost loop, the
arithmetic circuits are used only once, while the memory is read or written twice.
This leads to idle states in the arithmetic blocks. To avoid under-utilization of
the arithmetic blocks, the polynomial multiplier in [11] uses two parallel memory
blocks for the two input polynomials. Parallel memory blocks help in providing
continuous flow of required coefficients to the coefficient-multiplier circuit. In
this paper, our target is to design a compact and efficient polynomial multiplier.
We propose a memory access scheme which solves the under-utilization problem
without using parallel memory blocks. This memory access scheme is based on
the following observation.

Since the two coefficients A[k+ j] and A[k+ j+m/2] are processed together,
the number of memory accesses can be minimized if these two coefficients are
kept as a pair in a memory location. In that case the coefficient pair can be read
from a memory location in one cycle, and then written back in the memory in one
cycle after performing the arithmetic operations. Let us consider an example of
16-point NTT. During the first iteration of the m-loop in line 3 of Algorithm 1,
the coefficient pairs (A[0], A[1]), (A[2], A[3]) etc. are processed in a sequence.
Figure 1 shows a basic block-level diagram of the memory and the arithmetic
circuits (one coefficient multiplier, one adder and one subtracter). Initially the
memory (Figure 1) has the proper coefficient pairs in different locations. During
the first iteration of the m-loop, for different values of k and j = 0, the coefficient
pairs (A[k + j], A[k + j + m/2]) are first sequentially fetched from memory,
then updated after the arithmetic operations and finally written back in the
same memory location. In hardware, processing of the coefficient pairs can be

A[1] A[0]
A[3] A[2]
A[5] A[4]
A[7] A[6]
A[9] A[8]
A[11] A[10]
A[13] A[12]
A[15] A[14]

+−

A[k+j+m] w

*A[k+j] A[k+j]

Memory

New (A[k+j+m], A[k+j])

Fig. 1. Initial arrangement of the coefficients in memory in a 16-point NTT

performed in a pipeline. Hence the arithmetic components in Figure 1 are always
used during the m-loop for m = 2, and thus resulting in no idle cycles.

However if the coefficient pairs are written back in their previous memory
location, then the problem of not having the required coefficients in the same
memory location reappears again in the next iteration for the incremented value
of m. For example, when m = 4 in Algorithm 1, the coefficient pairs required for
processing are (A[0], A[2]), (A[4], A[6]) etc. which are not present in the memory
as pairs after completion of the m-loop for m = 2. The problem can be solved
using the following observation.

– For any particular value of m in Algorithm 1, any coefficient is processed
only once.

– The processed coefficients in the innermost loop in Algorithm 1 have a dif-
ference m/2 in their index for any particular value of m.

– For every increment in the m-loop in line 3 of Algorithm 1, the difference in
the indexes of the coefficients in the pair doubles.

Let us consider two consecutive iterations m = m1 and m = m2 where
m2 = 2m1 of the m-loop (line 3 in Algorithm 1). In the m1-loop, for some j1
and k1 (maintaining the loop bounds in Algorithm 1) the coefficients (A[k1 +
j1], A[k1+j1+m1/2]) are processed as a pair. Then k increments to k1+m1 and
the processed coefficient pair is (A[k1 +m1 + j1], A[k1 +m1 + j1 +m1/2]). Now
from Algorithm 1 we see that the coefficient A[k1 + j1] will be again processed
in the m2-loop with the coefficient A[k1 + j1 + m2/2]. Since m2 = 2m1, the
coefficient A[k1 + j1 +m2/2] is the coefficient A[k1 + j1 +m1] which is updated
in them1-loop for k = k1+m1. Hence during them1-loop if we swap the updated
coefficients for k = k1 and k = k1+m1 and store (A[k1+j1], A[k1+j1+m1]) and
(A[k1 + j1 +m1/2], A[k1 + j1 + 3m1/2]) as the coefficient pairs in the memory,
then the coefficients in a pair have a difference of m2/2 in their index and thus
are ready for the m2-loop. The operations during the two consecutive iterations
k = k1 and k = k1 + m1 during m = m1 are now shown below. During the

Algorithm 3: Iterative NTT : Memory Efficient

Input: Polynomial a(x) ∈ Zq [x] of degree n− 1 and n-th primitive root ωn ∈ Zq of unity
Output: Polynomial A(x) ∈ Zq [x] = NTT(a)
begin1

A← BitReverse(a); /* Coefficients are stored in the memory as proper pairs */2

for m = 2 to n/2 by m = 2m do3

ωm ← m-th primitiveroot(1) ;4

ω ← squareroot(ωm) or 1 /* Depending on forward or backward NTT */ ;5

for j = 0 to m/2− 1 do6

for k = 0 to n/2− 1 by m do7

(t1, u1)← (A[k + j +m/2], A[k + j]) /* From MEMORY[k+j] */ ;8

(t2, u2)← (A[k + j +m], A[k + j +m/2]) /* MEMORY[k+j+m/2] */ ;9

t1 ← ω · t1 ;10

t2 ← ω · t2 ;11

(A[k + j +m/2], A[k + j])← (u1 − t1, u1 + t1) ;12

(A[k +m+ j +m/2], A[k +m+ j]) ← (u2 − t2, u2 + t2) ;13

MEMORY [k + j] ← (A[k + j +m],A[k + j]) ;14

MEMORY [k + j +m/2]← (A[k + j + 3m/2], A[k + j +m/2]) ;15

end16

ω ← ω · ωn ;17

end18

end19

m← n ;20

k ← 0 ;21

ω ← squareroot(ωm) or 1 /* Depending on forward or backward NTT */ ;22

for j = 0 to m/2− 1 do23

(t1, u1)← (A[j +m/2], A[j]) /* From MEMORY[j] */ ;24

t1 ← ω · t1 ;25

(A[j +m/2], A[j])← (u1 − t1, u1 + t1) ;26

MEMORY [j]← (A[j +m/2], A[j]) ;27

ω ← ω · ωm ;28

end29

end30

operations u1, t1, u2 and t2 are used as temporary storage registers.

(t1, u1)← (A[k1 + j1 +m1/2], A[k1 + j1]);

(t2, u2)← (A[k1 +m1 + j1 +m1/2], A[k1 +m1 + j1]);

t1 ← ω · t1;

t2 ← ω · t2;

(A[k1 + j1 +m1/2], A[k1 + j1])← (u1 − t1, u1 + t1);

(A[k1 +m1 + j1 +m1/2], A[k1 +m1 + j1])← (u2 − t2, u2 + t2);

MEMORY [k1 + j1]← (A[k1 + j1 +m1], A[k1 + j1]);

MEMORY [k1 + j1 +m1/2]← (A[k1 + j1 + 3m1/2], A[k1 + j1 +m1/2]);

The efficient memory access scheme is represented as Algorithm 3. In this
algorithm for all values of m < n except the last one m = n, two coefficient pairs
are processed in the innermost loop and swap of the updated coefficients are
performed before storing back in the memory. When m = n, no swap operations
of the updated coefficients are required as this is the final iteration of the m-
loop. As an example, Table 1 shows the memory contents during the execution
of Algorithm 3 for n = 16. The column-heading represents (m, j, k) during the

iterations. The end loop in line 19 of Algorithm 3 for m = 16 performs no swap
and is shown in the table using ⋆ symbol.

Initial (2,0,0) (2,0,6) (4,0,0) (4,0,4) (4,1,4) (8,3,0) (16,7,0)⋆

A1 A0 A2 A0 A2 A0 A4 A0 A4 A0 A4 A0 A8 A0 A8 A0

A3 A2 A3 A1 A3 A1 A5 A1 A9 A1 A9 A1

A5 A4 A6 A4 A6 A2 A6 A2 A6 A2 A10 A2 A10 A2

A7 A6 A7 A5 A7 A3 A11 A3 A11 A3

A9 A8 A10 A8 A12 A8 A12 A8 A12 A4 A12 A4

A11 A10 A11 A9 A13 A9 A13 A5 A13 A5

A13 A12 A14 A12 A14 A10 A14 A10 A14 A6 A14 A6

A15 A14 A15 A13 A15 A11 A15 A7 A15 A7

Table 1. Memory content during the steps in a 16-point NTT

4 The Polynomial Multiplier Architecture

In this section we present a polynomial multiplier architecture that implements
the optimization techniques described in Section 3. The polynomial multiplier
architecture has been designed for the ring-LWE cryptosystem with dimension
256. The prime modulus used in the architecture is 1049089 which is also used
in the ring-LWE256 implementation in [11]. The prime is a 21 bit number and
thus the coefficients of the polynomials are also 21 bit numbers. Figure 2 shows
the components present in the polynomial multiplier architecture.

During the forward NTT computation, the two input polynomials each hav-
ing 256 coefficients are kept in memory; while only one polynomial (256 coeffi-
cients) is present in memory during the backward NTT computation. Hence if
two coefficients are kept together in a memory word, then a total of 256 words
are sufficient for the forward (and also backward) NTT. In Xilinx FPGAs, one
9K RAM slice can be configured as a memory of word size 36 bits and depth
256. In the case of ring-LWE256 with 21-bit prime modulus, the memory word-
size should be 42 bits to store any two coefficients in one location. Since the
RAM slices on Xilinx FPGAs can be upto 36 bits in width, the extra six bits
can be stored on a LUT based RAM of width six. This helps in achieving better
utilization of the FPGA resources.

The polynomial multiplier architecture in Figure 2 uses only one memory
(RAM) block to store all the coefficients during the forward and backward NTT
computations. The RAM in the figure is a hybrid of one block RAM (word size
36) and one LUT-based RAM (word size 6), each having a depth 256. During
a forward NTT computation, the lower half of the RAM is used by the first
polynomial, while the upper half of the RAM is used by the second polynomial.

ω

RAM

Address
Control

R2
R7
R4
R3
R1’

Din
Dout

DoutHigh

DoutLow

R1

R1’

R2

R2’

R2"

R2"

R2

R1

R1’ωn/m R1’ R3

R4

R6

R5

R7

R8

Coeff Mult R1’

R2’

rst1
rst2
enable

M1 M2

M3 M4

M5

M6

R3’
R1

R8
R6
R1’
R3

DinLow

DinHigh

Fig. 2. Polynomial Multiplier Architecture

The registers present in the outputs of the multiplexers M1 and M2 are used
to store the fetched coefficient pair. This special arrangement of the registers is
used for the following purposes :

– To maintain a continuous flow of coefficients to the arithmetic components.

– To perform a re-arrangement of the coefficients after a forward NTT.

The registers R4 to R8 are used to store the updated coefficients and to perform
the swap operations described in Section 3.3.

The coefficient multiplier uses DSP multipliers and also includes a modular
reduction block. A register R3 (Figure 2) is used to break the critical path at the
output of the coefficient multiplier. The modular adder and subtracter circuits
perform the final addition and subtraction operations required to compute the
updated coefficients. The multiplexers M5 and M6 are connected to different
registers present in the architecture. Outputs from these two multiplexers are
combined to form the input channel for the RAM block.

5 Experimental Results

We have evaluated the proposed polynomial multiplier architecture for ring-
LWE256 with prime modulus 1049089. The results obtained from Xilinx ISE12.2
after place and route analysis are shown in Table 2. The coefficient-multiplier
in the polynomial multiplier architecture requires two and four DSP slices re-
spectively in Virtex-V and Spartan-VI FPGAs. The RAM in our architecture is
composed of a block RAM of data-width 36 bits and a LUT-based distributed
RAM of width six. The block RAM in Spartan VI is implemented using a 9K
block RAM slice. However in Virtex V, the RAM consumes one 18K slice as the
smallest size of block RAM in this family of FPGAs is 18K. The ISE tool reports
few extra slices when the design is synthesized in Spartan VI.

Implementation Device Slices Frequency RAM Clock Computation
(MHz) Block-RAMs LUT-slices Cycles Time (µsec)

Our Virtex-V LX85 281 81 1 (18K) 19 4683 58
Spartan-VI LX100 297 37 1 (9K) 19 4683 127

[11] Spartan-VI LX100 640 218 5 (18K) + 1 (9K) - 4806 22

Table 2. Performance of polynomial multipliers

The focus of our implementation is to reduce area and memory requirement
without increasing the number of clock cycles. While the pipelined implemen-
tation in [11] targets to achieve speed. The polynomial multiplier in [1] uses a
smaller prime modulus 65537 that simplifies the datapath of the architecture;
hence comparison with this implementation is not fair. Our polynomial multi-
plier architecture achieves significant reduction in the number of block RAM
slices compared to [11]. However, our architecture has lower operating frequency
compared to the pipelined architecture in [11]. The reason behind lower fre-
quency is the presence of a long critical path through the integer-multiplier and
the modular reduction block that are present in the coefficient-multiplier. The
focus of our implementation was to test the implementation possibilities of the
optimization techniques proposed in this paper; so far, no additional effort has
been spent on improving the critical path delay of the architecture. A pipeline
strategy can be applied to improve the operating frequency of the polynomial
multiplier at the cost of a marginal increase in the number of clock cycles. More-
over, in resource-constraint devices, the operating frequency is kept low in order
to reduce power consumption. Our small-area-memory implementation with low
clock cycle count can also be used for such platforms.

6 Optimization in the ring-LWE Cryptosystem

An actual hardware implementation of the ring-LWE public key cryptosystem
is present in [12]. The implementation optimizes the number of NTT operations
by using a scheme in which the fixed polynomials such as a, p and r2 are kept

in forward-NTT transformed form. Thus during encryption or decryption oper-
ations, NTT computations for the fixed polynomials are not performed. With
this optimization, the ring LWE public key cryptosystem in [12] requires a total
of five NTT transforms.

In this paper we perform a further optimization in a ring-LWE based encryp-
tion system by reducing the number of NTT operations from five to four. Since
the NTT is the most significant part in the LWE-encryption cryptosystem, the
proposed optimization reduces computation cost by nearly 20%. The proposed
ring-LWE public key scheme is described below.

1. KeyGen(a) : Two polynomials r1 and r2 ∈ Rq are constructed from a dis-
crete Gaussian distribution. The polynomial p = r1−a·r2 ∈ Rq is computed.
The NTT is performed on the three polynomials a, p and r2 to generate ã,
p̃ and r̃2. The public key is (ã, p̃) and the private key is r̃2 [12].

2. Enc(ã, p̃,m) : The message is encoded and the three error polynomials are
generated. The following computations are performed.

ẽ1 ← NTT (e1)

ẽ2 ← NTT (e2)

c̃1 ← ã ∗ ẽ1 + ẽ2

c̃2 ← p̃ ∗ ẽ1 +NTT (e3 + m̄)

The ciphertext is (c̃1, c̃2) and is transmitted to the decryption side.
3. Dec(c̃1, c̃2, r̃2) : After receiving the ciphertext, the polynomial m′ is com-

puted as m′ = INTT (c̃1 ∗ r̃2 + c̃2) ∈ Rq. In the end decoding is performed
on m′ to recover the plaintext m.

The proposed ring-LWE public key scheme performs three NTT operations dur-
ing encryption and one NTT during the decryption operation. The scheme re-
quires both encryption and decryption to use a common primitive root of unity.
It is also possible to perform the ring-LWE public key scheme in an alterna-
tive way : instead of computing c̃2 during the encryption, we can compute
c2 ← INTT (p̃ ∗ ẽ1) + e3 + m̄ and can decrypt as m′ = INTT (c̃1 ∗ r̃2) + c2.
However, in this case, the cost is higher since an inverse NTT requires an extra
scaling compared to the forward NTT.

7 Conclusion and Future Work

This paper proposed two layers of optimization in implementing a ring-LWE
based encryption system. On the top layer, the number of NTT operations re-
quired is reduced from five to four thus resulting in a speed-up of nearly 20%. On
the lower layer, the polynomial multiplication is improved by (1) reducing the
fixed computation cost and (2) implementing an efficient memory access scheme

that increases the utilization of the arithmetic components. The proposed opti-
mization techniques are realized in a polynomial multiplier architecture for the
ring-LWE public key cryptosystem of dimension 256.

The improvements proposed in this paper are mainly on the computation
level, whereas the architecture level has received limited focus in this work. The
polynomial multiplier has a low operating frequency due to the long critical
paths in the architecture. Though our implementation satisfies the requirements
of a resource-constraint platform, we plan to improve the polynomial multiplier
on the hardware-architecture level to match timing requirements of high-speed
applications. A pipeline strategy is one key idea which could reduce the delay of
the architecture significantly. At the same time, our work enhances the scopes
for parallelism in designing a very fast polynomial multiplier architecture by
reducing the computation cost, by minimizing the bottlenecks in memory access,
and by utilizing the arithmetic blocks more efficiently.

Acknowledgment

This work was supported in part by the Research Council KU Leuven: TENSE
(GOA/11/007), by iMinds, by the Flemish Government, FWO G.0550.12N and
by the Hercules Foundation AKUL/11/19.

References

1. A. Aysu, C. Patterson, and P. Schaumont. Low-cost and Area-efficient FPGA
Implementations of Lattice-based Cryptography. In HOST, pages 81–86. IEEE,
2013.

2. D. Bernstein. Fast Multiplication and its Applications. Algorithmic Number The-
ory, 44:325–384, 2008.

3. T. Cormen, C. Leiserson, and R. Rivest. Introduction To Algorithms.
http://staff.ustc.edu.cn/∼csli/graduate/algorithms/book6/toc.htm.

4. T. Frederiksen. A Practical Implementation of Regev’s LWE-based Cryptosystem.
In http://daimi.au.dk/ jot2re/lwe/resources/, 2010.

5. N. Göttert, T. Feller, M. Schneider, J. Buchmann, and S. Huss. On the Design of
Hardware Building Blocks for Modern Lattice-Based Encryption Schemes. In Cryp-
tographic Hardware and Embedded Systems CHES 2012, volume 7428 of LNCS,
pages 512–529. Springer Berlin, 2012.

6. R. Lindner and C. Peikert. Better Key Sizes (and Attacks) for LWE-based En-
cryption. CT-RSA 2011, pages 319–339, 2011.

7. V. Lyubashevsky, C. Peikert, and O. Regev. On Ideal Lattices and Learning with
Errors over Rings. In Advances in Cryptology EUROCRYPT 2010, volume 6110 of
Lecture Notes in Computer Science, pages 1–23. Springer Berlin Heidelberg, 2010.

8. A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied
Cryptography. CRC Press, 2001.

9. D. Micciancio. Lattices in Cryptography and Cryptanalysis. 2002.
10. P. Q. Nguyen and J. Stern. The Two Faces of Lattices in Cryptology. In Cryptog-

raphy and Lattices, International Conference (CaLC 2001), volume 2146 of LNCS,
pages 146–180. Springer-Verlag, Berlin, 2001.

11. T. Pöppelmann and T. Güneysu. Towards Efficient Arithmetic for Lattice-Based
Cryptography on Reconfigurable Hardware. In A. Hevia and G. Neven, editors,
Progress in Cryptology LATINCRYPT 2012, volume 7533 of LNCS, pages 139–
158. Springer Berlin, 2012.

12. T. Pöppelmann and T. Güneysu. Towards Practical Lattice-Based Public-Key
Encryption on Reconfigurable Hardware. In Selected Areas in Cryptography SAC
2013, LNCS. Springer-Verlag, Burnaby, Canada, 2013, Preprint.

13. O. Regev. Quantum Computation and Lattice Problems. SIAM J. Comput.,
33(3):738–760, Mar. 2004.

14. O. Regev. On Lattices, Learning with Errors, Random Linear Codes, and Cryp-
tography. In Proceedings of the thirty-seventh annual ACM symposium on Theory
of computing, STOC ’05, pages 84–93, New York, NY, USA, 2005. ACM.

15. O. Regev. Lattice-Based Cryptography. In C. Dwork, editor, Advances in Cryp-
tology - CRYPTO 2006, volume 4117 of LNCS, pages 131–141. Springer Berlin,
2006.

