
A Unified Security Model of Authenticated Key
Exchange with Specific Adversarial Capabilities

Weiqiang Wen1,2 Libin Wang1,2 Jiaxin Pan3

1School of Computer, South China Normal University,
Guangzhou 510631, China

2State Key Laboratory of Information Security (Institute of Information Engineering,
Chinese Academy of Sciences, Beijing 100093)
weiqwen@gmail.com, lbwang@scnu.edu.cn

3Faculty of Mathematics
Horst Görtz Institute for IT-Security
Ruhr University Bochum, Germany

jiaxin.pan@rub.de

Abstract. The most widely accepted models in the security proofs of
Authenticated Key Exchange protocols are the Canetti-Krawczyk model
and the extended Canetti-Krawczyk model. They are shown to be in-
comparable due to the subtleties that they admit different adversarial
queries and the definitions of the queries are not specific and strict e-
nough to allow a rigorous comparison be made. Concerning the security
of one-round implicitly authenticated Diffie-Hellman key exchange pro-
tocols, we present a stronger security model that characterizes specific
adversarial capabilities and encompass the Ephemeral Key Reveal and the
Session-State Reveal simultaneously. To demonstrate the usability of our
model, a new protocol based on the OAKE protocol is proposed, which
satisfies the presented stronger security notion and at the same time at-
tains high efficiency as the OAKE protocol. The protocol is proven secure
in random oracle model under the gap Diffie-Hellman assumption.

Keywords: Authenticated Key Exchange; Provable Security; Security
Model

1 Introduction

Motivation. Authenticated Key Exchange (AKE) is an important cryptograph-
ic primitive which enables two parties, who hold each others’ public key, to es-
tablish a common secret key in an insecure network. Numerous AKE protocols
have been proposed in the last decade, it is desirable that the proposed protocols
can be proven secure in a security model. Indeed, many of the protocols have
been formally proven secure, but some of them have been shown to be insecure.
Roughly, a security model describes realistic attack capabilities in open network-
s, and gives the precise definition of security. After the seminal work of Bellare
and Rogaway [1], a number of security models were proposed [2,3,4], among these
models, the Canetti-Krawczyk (CK) model and the extended Canetti-Krawczyk

2

(eCK) model are the most widely accepted models in security proofs of AKE
protocols.

An important goal of the security model is to specify the potential capabilities
of adversaries. In general, the adversary can control the communication links
between parties, moreover, the adversary is allowed access to secret information
used or generated in the protocol via reveal queries. In the CK model, three
types of reveal queries are defined, including Session Key Reveal, Session-State
Reveal and Corrupt query. The eCK model aims to define a stronger notion of
security by providing significantly severer queries to the adversary. The model
defines a new Ephemeral Key Reveal query, which outputs all session-specific
secret information of a party, to replace the Session-State Reveal query of the
CK model, and provides a new definition of freshness that permits Ephemeral
Key Reveal queries on the test session. Seemingly, the eCK model is stronger
than the CK model, however, this is not the case, as many work showed that
they are incompatible and incomparable [5,6,7], which means some protocols can
be proven secure in one model but can be proven insecure in the other, and vice
versa. For example, it is showed that the NAXOS protocol is proven secure in
the eCK model, but it is insecure in the CK model [5].

The subtle issues that arises between the CK model and the eCK model stem
from the fact that they admit different adversarial queries and the definitions
of the queries are not specific and strict enough to allow a rigorous comparison
be made. In the CK model, the Session-State Reveal query models an adversary
who can capture all the intermediate computation results of a given session.
The ambiguity lies on the fact that what information is included in the session
state will be specified by each AKE protocol [2]. In some papers, to present a
proven secure protocol in the CK model, the session state is carefully defined as
public values, or will be erased immediately, such that the Session-State Reveal
query has a very limited power of information leakage. As for the eCK model,
the original Ephemeral Key Reveal is allowed to output all session-specific secret
information, but in some subsequent papers [5,6,7,8,9], it is defined that the
Ephemeral Key Reveal query only outputs the ephemeral private key held by the
specific session. Due to these ambiguities, it is not clearly explained why one kind
of information can (or can not) be leaked. Even worse, if the output of the reveal
queries can be deliberately tailored from the protocol values, the security claims
based on these models will reflect more or less subjective opinion of the protocol
designers. We remark that to achieve objective evaluation of AKE protocols a
security model with specific adversarial capabilities is needed.

Many works analyze the differences between the CK model and the eCK
model by examining the strength of the Ephemeral Key Reveal query and the
Session-State Reveal query, however it is worth noting that the two queries are
proposed to model two different kinds of adversary in practice and they embody
different harmfulness of attacks. We observe that a significant difference between
the Ephemeral Key Reveal and the Session-State Reveal is that the session which
is compromised by the Ephemeral Key Reveal may keep its freshness, but the
session which is compromised by the Session-State Reveal will lose its freshness.

3

In other words, the two queries may be subject to different security levels in
effect. Thus we need not simply support one query and oppose the other, on the
contrary, it is desirable to incorporate these queries into a single unified security
model and establish a stronger security notion.

In this work, we focus on the security of one-round implicitly authenticated
Diffie-Hellman key exchange protocols, and aim to propose a stronger securi-
ty model that characterizes specific adversarial capabilities and encompass the
Ephemeral Key Reveal and the Session-State Reveal simultaneously. To achieve
this goal, we must solve a major problem. If the leakages of the Ephemeral Key
Reveal and the Session-State Reveal are precisely defined in a determinate man-
ner, instead of chosen strategically by the designer of the protocol, and these
two queries are allowed simultaneously for a session, the security proof appears
to be extremely hard since encountering such a powerful adversary, to construct
a consistent simulation in the security proof is very difficult. In another word, it
is highly technical to unify Session-State Reveal and Ephemeral Key Reveal into
one model. Fortunately, we present a solution to the problem in this paper.

Contributions. The contribution of the paper are two-fold. Firstly, we propose
a new security model of AKE with powerful and specific adversarial capabilities,
which is roughly a combination of the CK model and the eCK model and named
as PACK, which stands for Powerful and specific Adversarial capabilities CK
model and also means that our model PACKs the CK model and the eCK model
into a single model. We set up the protocol implementation environment, and
from a practical perspective, we clearly define four kinds of reveal queries and
determinately specify what kind of information can be accessed by each query.
Subsequently, we present a new definition of freshness of protocol sessions and
establish a stronger notion of security for AKE protocols, which encompasses
both CK model and eCK model.

Secondly, we present a new AKE protocol called VOAKE which is a variant
of the OAKE protocol [10]. The OAKE protocol is proved to be strongly secure
in the CK model (reformulated in the paper [11], named as CK-HMQV) with
superior efficiency, however it is insecure in the eCK model (refer to Appendix B),
thus is not resistant to Ephemeral Key Reveal, which is also characterized in the
PACK model. In this paper, we derive a new protocol from the OAKE protocol
and prove that it is secure in the PACK model. Our results demonstrate that
the VOAKE protocol is a substantial improvement of the OAKE protocol since
it attains almost the same efficiency as the OAKE protocol while at the same
time satisfies a strictly stronger security notion.

Related Works. The CK and eCK models are well-known formal security mod-
els for AKE protocols. In recent years, a number of variants of these models have
been proposed, including CK-HMQV [11], seCK [4], eCKw [12]. There are a trend
of works devoted to investigate the relationship of strength between CK and
eCK [5,6,7]. Cremers [5] analyzed the subtleties between the CK and eCK mod-
els and showed that Session-State Reveal is stronger than Ephemeral Key Reveal,
thus these two models are incomparable. Our work aims to further clarify the
security notion of the formal model.

4

The closest related work to ours is the work of Sarr et al.. Aiming to combine
the CK and eCK models, they propose the strengthened eCK (seCK) model [4].
Two implementation environments are firstly set up in the seCK model. Then
two sets of adversarial queries are defined to model leakages that may occur
on either implementation environments, one set corresponds to the eCK model
and the other corresponds to the CK model. It is shown that the seCK model
encompasses the eCK model and is practically stronger than the CK model.
As suggested in paper of Yoneyama et al. [13], it is highly subtle to design a
provably secure Diffie-Hellman type protocol in the seCK model. Thus it is a
major concern to design a provably secure AKE protocol in a stronger model.

A number of AKE protocols claimed to be strongly secure in a formal model
have been proposed [4,14,15,10,16]. The SMQV protocol [4] achieves high effi-
ciency as (H)MQV protocols and strongly secure in the seCK model. However,
the security proof of SMQV protocol in the seCK model was shown to be in-
complete as the leakage of intermediate values can not be perfectly simulated in
the proof, to fix the problem appears to be hard as Yoneyama et al. suggested in
[13]. Zhao et al. [15] present a new protocol family named (s)YZ family which is
later reformulated and improved to be (T)OAKE family [10], which also achieves
high efficiency as HMQV protocol. The OAKE protocol is eCK insecure (refer
to Appendix B), and its variant T-OAKE (also named srYZ) is also shown to be
eCK insecure [17], which limits their implementation. Thus, it is still an urgent
work to design a strongly secure protocol with high efficiency. In this paper, we
improve the OAKE protocol by applying NAXOS technique, which strengthens
the security of OAKE as well as retains high efficiency as OAKE.
Organization. The rest of this paper is organized as follows. Firstly, we in-
troduce the PACK model in section 2. In section 3, we describe the proposed
VOAKE protocol as well as its security proof in the PACK model. Some com-
parison focusing on models and protocols as well as concluding remark are given
in Section 4.

2 Security Model

In this section, we present a security model which is a combination of the CK
model and the eCK model and allows more powerful and specific adversarial
capabilities. Our model follows the basic notions of the previous security mod-
els [2,11,3,4], including the message-driven style description of AKE protocols
and the security definition etc., but strengthens the reveal queries and strictly
classifies the secret information to be leaked.

2.1 Design Rationale

Before presenting the formal definition, we present the intuitive principles behind
the design of the model by setting up the system implementation environment.
Then we clarify what kind of the security breach happens in practice will be mod-
eled by which adversarial query, and explicitly specify what kind of information
can be accessed by which query.

5

System Environment. An AKE protocol if often implemented in a common
system setting where a tamper-resistant device is used to store the long-term
private key and do some limited computations, such as hashing message, gen-
erating pseudorandom numbers or performing some basic arithmetic or logical
operations. In such setting, a break-in cracker or a malicious insider can not triv-
ially access to the long-term private key, but we do not assume any additional
properties for the build-in functions. For instance, it is not assumed the hash
function can resist side-channel attacks, or the pseudorandom number generator
(PRNG) always products high quality randomness [18]. To accommodate more
protocol scenarios, we do not mandatorily require that some computationally
expensive functions, such as modular exponentiation, are (or not) implemented
in the device, it will be optionally decided by the designer of the protocol.

It should be emphasized that assuming the existence of a tamper-resistant
device is a normal requirement, we rely on the assumption to let the reveal
queries be natural and reasonable. If the long-term private key is not stored in
a tamper-resistant device, we have no reason to believe that to compromise the
long-term private key is more difficult than to reveal ephemeral random numbers,
or to reveal the intermediate computation results.

Additionally, implementations of hash functions in keyed settings are po-
tential targets of side-channel attacks when the adversary’s goal is to obtain
information on the key, previous works include differential power analysis on
HMAC-SHA-2 and template attacks on HMAC-SHA-1 [19]. Thus, we do not
assume the implementation of hash function is side-channel attack resistant.
The PRNG and the key derivation function may be realized by a hash function,
therefore they are also suffered the same attacks as the hash function.

Practical Interpretation. Our model defines four types of queries to model the
realistic attacks, we present the practical interpretation of the queries as follows
to give the intuitive insight. The relationship between the system implementation
environment and the adversarial queries is depicted in Fig. 1. The double-line
box indicates the system region that will be compromised by the query linking
to it with an arrow. Though all the names of the queries are adopted from the
former models, but the connotation may be different. We prefer to retain the
used names instead of coining new names for the queries because we wish that to
retain these names will help the community discuss and compare related works,
since these conventional names are quite famous.

– Ephemeral Key Reveal. The query models attacks or compromises of the
PRNG or the hash function used by one of the parties, it returns the se-
cret randomness (denoted as EphemeralKey in Fig. 1) of a specific protocol
session.

– Session-State Reveal. The query captures the attacks of crackers who tem-
porarily break into the computer system or the malicious action of insiders,
it outputs all the intermediate secret values (denoted as InterResult in
Fig. 1) computed or used in the host machine’s memory and the session key
(denoted as SessionKey in Fig. 1).

6

– Session Key Reveal. The query characterizes leakage on the session key ei-
ther via the misusage of the key by application, or the cryptanalysis of the
encryption algorithm etc., it returns the session key of a named session.

– Long-Term Key Reveal. The query describes an attacker who bypasses the
tamper-resistant device, and gains read access to the device’s private mem-
ory, it provides the attacker with the device owner’s long-term private key
(denoted as LongTermKey in Fig. 1).

Host Machine’s Memory

InterResult SessionKey

Card Reader

Tamper-Resistant Device

SessionKey LongTermKey

Arithmetic
Module PRNG Hash

InterResult EphemeralKey

Session-State Reveal

Session Key Reveal

Long-Term Key Reveal

Ephemeral Key Reveal

Fig. 1. The system implementation environment and the adversarial queries.

We remark that an important principle of the model is that which values
should be leaked by the Ephemeral Key Reveal and the Session-State Reveal are not
strategically defined by the protocol designer, instead, the computation process
of the protocol will automatically determine which values should be leaked by
which query. Furthermore, any declaration that the specific values will not be
leaked because they are erased immediately after being used or are not stored
in memory is invalid in the model.

The principle is adopted for three reasons. Firstly, to erase the specific values
can not ensure they can not be leaked. For instance, a malicious insider who
monitoring the system can reveal all the values in memory before they are erased.
What is even worse, the Ephemeral Key Reveal attacks the underlying algorithms
but not the memory. Secondly, the secrecy of session-specific values relies on the
fact that in which part of the system will the values be computed, thus what the
protocol designer should do is to carefully specify the computation processes,
but not to optionally declare what values can be compromised. Finally, erasing
data stored in memory is quite a difficult job as many research indicated [20].
Hopefully, by faithfully following the principle, an objective evaluation of the
protocol under examination will be achieved.

It is also worth noting that our model allows the Ephemeral Key Reveal and the
Session-State Reveal simultaneously, which makes our model much stronger than
the previous ones. The queries have different adverse effects on the protocols

7

sessions, thus we should clearly specify how the queries can be used by the
adversary. Intuitively, we require that the leakage of ephemeral randomness of
a session should not compromise the specified session, and the leakage of the
secret values in the host machine’s memory should not compromise other non-
matching sessions. Formally, we need a new definition of freshness to restrict the
test session that the adversary can choose.

In our model, the Session-State Reveal is defined to model the malicious action
of an insider, it outputs all the secret values computed in the host machine’s
memory. In general, when a protocol session is completed, the session key will be
generated and outputted from the tamper-resistant device to the host machine’s
memory. In this case, the Session-State Reveal is allowed to reveal the session key
of a named session, which is also the capability of the Session Key Reveal. We
incline to keep the Session Key Reveal as a separate query instead of replacing
it with the Session-State Reveal for several reasons. Most of all, the two queries
separately models different actions of attackers, in practice we need the Session
Key Reveal to capture some kinds of attack, e.g., the known-key attack.

2.2 Formal Description

In this subsection, we formally describe the security model. Our notation follows
the previous models [11,3,8,4]. In the model, all the parties and the adversary are
modeled as probabilistic polynomial-time (PPT) Turing machines. We assume
that there is a certification authority (CA) trusted by all parties, however we
do not assume that the CA requires parties to prove possession of their static
private keys.
Session. A party Â can be activated to run an instance of an AKE proto-
col, called a session. The adversary controls the activation of sessions via the
Send query. Â is activated by a Send query with one of the following forms: (i)
Send(Â, B̂) or (ii) Send(Â, B̂,XB) where XB is B̂’s outgoing protocol message. If
Â is activated by (Â, B̂) then Â is the session initiator (denoted as I) with peer
B̂, otherwise the session responder (denoted as R) with peer B̂. A session iden-
tifier is a quadruple (Role, Â, B̂,XA, XB) where Â is the owner of the session,
B̂ is the peer. The session (R, B̂, Â,XB , XA) (if it exists) is said to be matching
to the session (I, Â, B̂,XA, ∗) or (I, Â, B̂,XA, XB). Note that a session cannot
have (except with negligible probability) more than one matching session.
Adversary. The adversary A presents parties with incoming messages via Send
queries, obtains the outgoing messages of the parties, and makes decisions about
their delivery, thereby controlling all communications between parties .

– Send(Message). The message has one of the following forms: (Â, B̂), (Â, B̂,XB)
or (Â, B̂,XA, XB).

To capture information leakage the adversary is allowed the following queries,
their output are denoted as data sets EphemeralKey, SessionState, SessionKey
and LongTermKey respectively. We use EphemeralKey to denote the secret ran-
domness of a session and SessionState to denote all the intermediate secret

8

values of a session computed or used in the host machine’s memory and the
session key. The SessionState is a union of InterResult and SessionKey.

– Ephemeral Key Reveal(sid): The adversary obtains the EphemeralKey asso-
ciated with session sid.

– Session-State Reveal(sid): The adversary A obtains the SessionState of the
owner of session sid.

– Session Key Reveal(sid): The adversary obtains the SessionKey in a com-
pleted session sid.

– Long-Term Key Reveal(P̂i): By making this query the adversary learns the
LongTermKey of party P̂i.

Freshness of PACK. To define a stronger security definition, we need a new
notion of freshness.

Definition 1 (Freshness of PACK) Let sid = (I, Â, B̂, XA, XB) or (R, UA,
UB, XA, XB) be a completed session between honest parties Â and B̂. Let sid be
the matching session of sid. We say session sid is fresh if none of the following
conditions holds:

1. A issues Session-Key Reveal(sid), or Session-Key Reveal(sid) if sid exists;
2. A issues Session-State Reveal(sid), or Session-State Reveal(sid) if sid exists;
3. sid exists and the adversary A makes either of the following queries

- both Long-Term Key Reveal(Â) and Ephemeral Key Reveal(sid), or
- both Long-Term Key Reveal(B̂) and Ephemeral Key Reveal(sid),

4. sid does not exist and the adversary A makes the following query
- both Long-Term Key Reveal(Â) and Ephemeral Key Reveal(sid), or
- Long-Term Key Reveal(B̂).

Security Experiment. The aim of the adversary A is to distinguish a session
key from a random key, the experiment proceeds as follows. Initially, A is given
a set of honest parties and makes any sequence of the queries described above.
During the experiment, A makes the following query.

– Test(sidt): In this query, sidt must be a fresh session. To respond to this
query, a random bit b is selected. If b = 0 then the session key of sidt is
output. Otherwise, a random key is output.

The experiment continues until A makes a guess b′. A wins the game if the
test session sidt is still fresh and if the guess of A is correct, i.e., b′ = b. The
advantage of the adversary in the experiment with the AKE protocol Φ is defined
as

AdvAKE
Φ (A) = Pr[A wins]− 1

2
.

Definition 2 (AKE Security) A key exchange protocol Φ is called AKE secure
if for all PPT adversaries A with the above capabilities running against Φ it
holds:

– Parties who complete matching sessions compute the same session key.
– For any adversary A with the above capabilities, AdvAKE

Φ (A) is negligible.

9

3 VOAKE Protocol

Since many previous AKE protocols are not secure any more in the PACK
model, and it also seems that to prove the security of a protocol in a strong
model is quite hard [13]. One of the major goals of this work is to design an
efficient AKE protocol that is provably secure in the PACK model, thereby to
demonstrate the usability of the model. To fulfil the goal, we present a protocol
called VOAKE which is a variant of the OAKE [15]. In this section, we present
our design rationale, and describe the protocol in detail as well. The protocol
is proven secure in random oracle model under the gap Diffie-Hellman (GDH)
assumption.

3.1 Design Rationale

We base the design and proof of VOAKE on two techniques: the environment
of all computations is specified; the NAXOS technique is applied to the compu-
tation of the ephemeral public key. By introducing the methods, we show that
the VOAKE protocol satisfies strictly stronger security notions defined in the
PACK model, and at the same time holds all the advantages of the original
OAKE protocol with the cost of a little efficiency.
Computation Environment. To balance the tradeoff between performance
and security, we set up the system implementation environment and explicitly
specify the information flow between the host machine and the tamper-resistant
device for the whole computing process of the protocol. Because the long-term
private key should not be used in the host machine, therefore all computations
involving the long-term private key will be settled in the tamper-resistant device.
For instance, in the session owned by party Â, the value x, outputted by hashing
the ephemeral and long-term private keys, is computed in the tamper-resistant
device. To achieve high efficiency, our strategy is to perform as less exponentia-
tions in the tamper-resistant device as possible. Since the values x, gx and Bx

are exposable, thus the value x can be used in the host machine to compute the
values gx and Bx. In order to ensure the master secret σ not to be leaked, the
computation of γÂ = a + xe and the exponentiation of Y γÂ are performed in
the tamper-resistant device. In this way, the VOAKE protocol achieves stronger
security in the PACK model as well as the best performance from the aspect of
efficiency.
NAXOS Technique. To achieve the PACK security, the basis idea of our pro-
tocol is to apply the well-known NAXOS technique in the computation of the
exponent of the ephemeral public key, which is recently criticized by some paper-
s [5,21]. In our system setting, we give a practical interpretation why the method
can be reasonably applied. In the tamper-resistant device, the ephemeral private
key (x′ or y′) is chosen randomly and the exponent of the ephemeral public key
(x or y) is computed by hashing the long-term private key and the ephemeral pri-
vate key (e.g., x = H1(x

′, a)). Normally, the ephemeral private key x′ (or y′) can
be compromised by the Ephemeral Key Reveal holding the freshness of the session.
Unlike the NAXOS protocol, which requires the exponent not to be leaked, the

10

exponent x (or y) can be revealed by the Session-State Reveal which will breach
the freshness of the session, since the exponent is used in the host machine. As
clarified in the security model, we specifically characterize the realistic attacks
that can capture these values. The essential point is when the exponent of the
ephemeral public key and some related value Bx (Ay) can be leaked, we must
deliberately design the protocol to thwart the attacks amounted to the NAXOS
protocol [5], concerning the efficiency at the same time. Concretely, two goals
should be attained: (i) Even though the ephemeral private key is leaked out by
Ephemeral Key Reveal the adversary can not compromise the secret exponent x
(or y) without issuing Long-Term Key Reveal or Session-State Reveal; (ii) The
leakages of the secret exponent x (or y) by the Session-State Reveal should not
compromise other non-matching sessions.

Minor Modifications. We also mention some minor differences between our
construction and the OAKE protocol as follows. One of the minor modifications
is that the protocol transcripts (e.g. Â, B̂, X and Y) are integrated into the
key derivation together with σ to simplify the security proof. With the help of
additional protocol transcripts, the simulator can distinguish which session the
σ belongs to, thus the advantage of querying H3 with correct master secret σ by
adversary can be effectively used to solve the GDH problem (see Appendix A).
Another modification is that the long-term public key is removed from the pro-
tocol messages. In the description of OAKE [10], the values Bx and Ay can be
computed offline before the execution of the protocol in party Â and B̂ respec-
tively, hence requiring to send the certificate containing the public key explicitly
may invalidate the precomputation. The certificates are handled by the higher
level applications in our construction.

Â(a,A = ga) B̂(b, B = gb)

x′
$
← Z∗

q y′
$
← Z∗

q

x ← H1(x
′, a) y ← H1(y

′, b)

X = gx Y = gy

B̂, Â, X

Â, B̂, X, Y
Check if Y ∈ G? Check if X ∈ G?

LÂ = Bx LB̂ = Ay

γÂ = a+ xe, RÂ = Y γ
Â γB̂ = b+ ye, RB̂ = Xγ

B̂

σ = LÂ · RÂ σ = LB̂ · RB̂

SKA = H3(σ, Â, B̂, X, Y) SKB = H3(σ, Â, B̂, X, Y)

e = H2(Â, B̂,X, Y)

Fig. 2. The description of the VOAKE protocol.

11

3.2 Protocol Description

Notation. Let G′ be a finite Abelian group of order N , G be a cyclic subgroup
of prime order q in G′. Denote by g a generator of G, by 1G the identity element,
by G\{1G} the set of elements of G except 1G . In this work, we use multiplicative
notation for the group operation in G′. The computational Diffie-Hellman (CDH)
assumption says that given X = gx, Y = gy, where x, y ← Z∗

q , no efficient
CDH-solver algorithm can compute CDH(X, Y) with non-negligible probability.
The gap Diffie-Hellman (GDH) assumption [22] roughly says that the CDH
assumption holds even if the CDH solver is equipped with a decisional Diffie-
Hellman (DDH) oracle for the group G and the generator g, where on arbitrary
input (U , V , W) ∈ G3 the DDH oracle outputs 1 if and only if W = CDH(U ,
V).
Public Parameters. Let H1: {0,1}λ × Z∗

q → Z∗
q , H2: {0,1}∗ → Z∗

q , H3 : {0,1}∗
→ {0,1}λ be the functions modeled as random oracles.
Private and Public Keys. Party Û randomly selects u ∈ Z∗

q , and computes

U = gu. Party Û ’s long-term private and public key are (u, U).
Key Exchange. Party Â with private and public keys (a, A) acts as the initia-
tor, and party B̂ with private and public keys (b, B) acts as the responder, they
perform the following two-pass key exchange protocol. The outline is presented
in Fig. 2, the computations in the box of double-line are done in the tamper-
resistant device, the values stored in the host machine’s memory can be used
freely in the tamper-resistant device, but not vice versa.

1. Upon activation (Â, B̂), party Â (the initiator) performs the steps:
(a) Select an ephemeral private key x′ ∈R {0, 1}λ and compute x = H1(x

′, a)
in the tamper-resistant device, and then send x to the host machine’s
memory.

(b) Compute the ephemeral public key X = gx in the host machine.
(c) Send (B̂, Â, X) to party B̂.

2. Upon receive (B̂, Â, X), party B̂ (the responder) performs the steps:
(a) Verify that X ∈ G.
(b) Select an ephemeral private key y′ ∈R {0, 1}λ and compute y = H1(y

′, b)
in the tamper-resistant device, and then send y to the host machine’s
memory.

(c) Compute the ephemeral public key Y = gy in the host machine.
(d) Compute e = H2(Â, B̂, X, Y) in the host machine.
(e) Compute LB̂ = Ay in the host machine; compute γB̂ = b+ ye and RB̂

= XγB̂ in the tamper-resistant device.
(f) Compute σ = LB̂ · RB̂ and SKB̂ = H3(σ, Â, B̂, X, Y) in the tamper-

resistant device.
(g) Send (Â, B̂, X, Y) to party Â.

3. Upon receive (Â, B̂, X, Y), party Â performs the steps:
(a) Verify that Y ∈ G.
(b) Compute e = H2(Â, B̂, X, Y) in the host machine.
(c) Compute LÂ = Bx in the host machine; compute γÂ = a+ xe and RÂ

= Y γÂ in the tamper-resistant device.

12

(d) Compute σ = LÂ · RÂ and SKÂ = H3(σ, Â, B̂, X, Y) in the tamper-
resistant device.

Ephemeral Key and Session State. The EphemeralKey of a session owned
by the party Â (or B̂) is the randomly generated ephemeral private key x′ (or
y′). The SessionState of a session owned by the party Â (or B̂) is explicitly
defined, including all the intermediate secret values computed or used in the
host machine’s memory, which are x (or y) and LÂ (or LB̂), and the session key
SKÂ (or SKB̂). All the session state above could be erased after the session is
completed, but can be obtained by issuing Session-State Reveal, as all the values
above appear in the host machine’s memory.

3.3 Security Proof for VOAKE

This section presents a formal security argument for the two-pass VOAKE.

Theorem 1. If H1, H2 and H3 are modeled as random oracles, and G is a group
where the GDH assumption holds, then the advantage of any PPT adversary A
to attack the AKE security of VOAKE in the PACK model is negligible.

Proof (Sketch). We outline the proof as follows. Let A be any AKE adversary
against VOAKE. We start by observing that since the session key of the test
session is computed as SK = H3(δ) for some 5-tuple δ, the adversary has only
two ways to distinguish SK from a random string:

– Key Replication Attack. In this attack, the adversary A succeeds in forcing
the establishment of another session that has the same session key as the test
session. Since the session key in VOAKE is computed via a random oracle,
the probability that two sessions derive the same session key without using
the same session string input to the random oracle is negligible.

– Forging Attack. The attack is valid if at some point the adversary A queries
H3 on the same 5-tuple δ.

To bound the advantage of forging attack, we define the following events and
their complementary events:

– Win: The adversary A wins the security experiment described in Section 2
with probability 1

2 + p(λ), where p(λ) is non-negligible;
– AskH3: The adversary A asks random oracle H3 with same 5-tuple δ of the

test session;
– QH1: There exists a party Â, the adversary A queries H1 with (∗, a) before

issuing Long-Term Key Reveal(Â);
– Mat: The test session has matching session.

The complementary events are denoted as Win, AskH3, QH1 and Mat respec-
tively. The probability bounding process starts from the event Win. Because
the adversary A has no advantage to win if the event AskH3 does not occur.
Therefore, we concentrate on the event Win ∧ AskH3. In this case, if the event

13

QH1 happens, then we can construct a simulator to solve GDH problem. Fur-
thermore, it is left to bound the probability that the events Win ∧ AskH3 ∧
QH1 occurs. This situation is further separated into two events according to
the event Mat happens or not. Both of the two cases occurs with negligible
probability, which are also bounded by GDH assumption and the proof of the
latter case relies on Forking Lemma. Detailed proofs of each of the above claims
can be found in Appendix A.

4 Comparison and Concluding Remark

4.1 Models Comparison

We unify the CK model and the eCK model into the PACK model which is
practically stronger than the previous models. Because the PACK model defines
the system environment that the protocol will be implemented, which is not
specified by the previous models, and some definitions of the previous models
are not precisely clear, it is hard to formally establish a relationship of strength
between previous models and ours.

The closest related work to ours is the seCK model proposed by Sarr et al. [4],
we highlight some differences between the two models.
Environment. We both assume the existence of a tamper-resistant device in
the system environment. In the seCK model, two implementation modes are
set up, and two sets of adversarial queries are defined corresponding to the two
modes. While in the PACK model, there is only one implementation mode, and
only one set of adversarial queries are defined accordingly.
Reveal queries. In the PACK model, Session-State Reveal and Ephemeral Key
Reveal can be issued to one same session simultaneously, which can not be
achieved by seCK. In the seCK model, the adversaries can only ask Inter-Result
Reveal (which has roughly the same functionality as Session-State Reveal) in mod-
e 2 and Ephemeral Key Reveal in mode 1. That means the adversary can only
reveal one kind of information (either intermediate values or ephemeral keys) for
every session, therefore, it means the PACK model is stronger than the seCK
model.

There are some minor differences between the reveal queries. In the seCK
model, the Ephemeral Key Reveal models leakages on ephemeral Diffie-Hellman
exponents; in the PACK model, the Ephemeral Key Reveal models leakages on
bad randomness in general. The Inter-Result Reveal models the leakages that may
occur on intermediate results in computing session keys; the Session-State Reveal
of our model returns all the secret values (may include the session keys) in the
host machine’s memory.

4.2 Protocols Comparison

The proposed AKE protocol, VOAKE, satisfies a stronger security notion defined
in the PACK model without sacrificing much efficiency.

14

Table 1 provides a comparison between VOAKE and some well accepted
AKE protocols in the random oracle model. “#Exp-Online” and “#Exp-Total”
denote the numbers of exponentiations needed to compute the input to the key
derivation function H3 with and without pre-offline computation (which can be
done without incoming messages) respectively, as all the other operations are
the same for all these protocols. “e” and “se” denote one modular and one
simultaneous exponentiation respectively. “em” and “et” denote one modular
exponentiation executed in the host machine and tamper-resistant device re-
spectively. “#Hash” denotes the number of hash computation. Without loss of
generality, we consider the session owned by party Â. The item of “Exposable
Secret Value” refers to the secret values that can be exposed. For consistence, we
denote the ephemeral private key as x′, and the output of hashing long-term and
ephemeral private keys as x (if any). The comparison focuses on the security (se-
curity model used, cryptographic assumption and exposable secret values) and
efficiency (numbers of exponentiations in total, hash computation per session
and the online computation efficiency).

Protocol
#Exp- #Exp-

#Hash
Pre-Offline

Model Assumptions
Exposable

Online Total Computation Secret Value

HMQV 1se 1se 3 None
CK-

GDH+KEA1 (x′)
HMQV

NAXOS 2e 3e 2 (Bx) eCK GDH (x′)

CMQV 1se 1se 4 None eCK GDH (x′)

OAKE 1e 1se 2 (Bx′
)

CK- GDL+SJKEA,
(x′,Bx′

)
HMQV or GDH

T-OAKE 1e 1se 2 (Ba+x′
)

CK- GDL+SJKEA,
(x′)

HMQV or GDH

VOAKE 1et 1et+1em 3 (Bx) PACK GDH (x′,x,Bx)
Table 1. Comparison among VOAKE and some well-known efficient protocols.

Precisely, VOAKE is proven secure in the PACK model, while OAKE and
T-OAKE are vulnerable to attacks in eCK, thus are PACK insecure. Moreover,
NAXOS and CMQV are only provably secure in the eCK model, where only
the ephemeral key (e.g. randomness) can be exposed. On the contrary, VOAKE
remains secure even if more session states are leaked out (e.g. x and Bx etc.).
In the security reduction, VOAKE only needs the standard GDH assumption,
while HMQV requires both GDH and KEA assumptions.

The VOAKE protocol attains high efficiency as the OAKE protocol. In to-
tal, we perform one online modular exponentiation in the tamper-resistant device
and one offline modular exponentiation in the host machine. In terms of online
efficiency, Bx in VOAKE can be computed offline before the execution, then on-
ly one modular exponentiation is performed online, which is more efficient than
one simultaneous exponentiation [8] done in the HMQV and CMQV protocol,
namely, the VOAKE protocol attains the optimal online efficiency. We perform

15

one modular exponentiation in the tamper-resistant device because some specific
kind of information (e.g. RÂ) must be kept unexposed and thereby to achieve a
stronger security. We remark, to achieve PACK security one modular exponen-
tiation in the tamper-resistant device is almost inevitable.
Concluding Remark. It is hard to make a precise comparison between the pro-
tocols under different models, in the future work, we will reexamine the security
and the efficiency of some well-known protocols in the PACK model. Another
urgent work is to design a provably PACK secure protocol in the standard model
with high efficiency, to avoid the random oracle and the Forking Lemma.

References

1. Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution. In
CRYPTO, pages 232–249, 1993.

2. Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols and their
use for building secure channels. In Proceedings of the International Conference on
the Theory and Application of Cryptographic Techniques: Advances in Cryptology,
pages 453–474. Springer-Verlag, 2001.

3. Brian LaMacchia, Kristin Lauter, and Anton Mityagin. Stronger security of au-
thenticated key exchange. In Willy Susilo, JosephK. Liu, and Yi Mu, editors,
Provable Security, volume 4784 of Lecture Notes in Computer Science, pages 1–16.
Springer Berlin Heidelberg, 2007.

4. Augustin P. Sarr, Philippe Elbaz-Vincent, and Jean-Claude Bajard. A new security
model for authenticated key agreement. In JuanA. Garay and Roberto Prisco,
editors, Security and Cryptography for Networks, volume 6280 of Lecture Notes in
Computer Science, pages 219–234. Springer Berlin Heidelberg, 2010.

5. Cas J. F. Cremers. Session-state reveal is stronger than ephemeral key reveal:
Attacking the NAXOS key exchange protocol. In Abdalla, M., Pointcheval, D.,
Fouque, P. A., Vergnaud, D. (Eds.) ACNS 2009. LNCS, Vol. 5536, pages 20–33.
Springer, Heidelberg, 2009.

6. Cas J. F. Cremers. Formally and practically relating the CK, CK-HMQV, and eCK
security models for authenticated key exchange. IACR Cryptology ePrint Archive,
2009:253, 2009.

7. Berkant Ustaoglu. Comparing SessionStateReveal and EphemeralKeyReveal for
Diffie-Hellman protocols. In Josef Pieprzyk and Fangguo Zhang, editors, Prov-
able Security, volume 5848 of Lecture Notes in Computer Science, pages 183–197.
Springer Berlin Heidelberg, 2009.

8. Berkant Ustaoglu. Obtaining a secure and efficient key agreement protocol from
(H)MQV and NAXOS. Designs, Codes and Cryptography, 46(3):329–342, March
2008.

9. Tatsuaki Okamoto. Authenticated key exchange and key encapsulation in the
standard model. In Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833,
pages 474–484. Springer, Heidelberg, 2007.

10. Andrew Chi-Chih Yao and Yunlei Zhao. OAKE: A new family of implicitly au-
thenticated Diffie-Hellman protocols. In ACM Conference on Computer and Com-
munications Security, 2013. to appear.

11. Hugo Krawczyk. HMQV: A high-performance secure Diffie-Hellman protocol. In
Advances in Cryptology CRYPTO 2005, volume 3621, pages 546–566, 2005.

16

12. Cas J. F. Cremers and Michèle Feltz. Beyond eCK: Perfect forward secrecy under
actor compromise and ephemeral-key reveal. In Sara Foresti, Moti Yung, and Fabio
Martinelli, editors, Computer Security - ESORICS 2012, volume 7459 of Lecture
Notes in Computer Science, pages 734–751. Springer Berlin Heidelberg, 2012.

13. Kazuki Yoneyama and Yunlei Zhao. Taxonomical security consideration of au-
thenticated key exchange resilient to intermediate computation leakage. In Xavier
Boyen and Xiaofeng Chen, editors, ProvSec, volume 6980 of Lecture Notes in Com-
puter Science, pages 348–365. Springer, 2011.

14. Augustin P. Sarr, Philippe Elbaz-Vincent, and Jean-Claude Bajard. A secure and
efficient authenticated Diffie-Hellman protocol. In Proceedings of the 6th European
conference on Public key infrastructures, services and applications, EuroPKI’09,
pages 83–98, Berlin, Heidelberg, 2010. Springer-Verlag.

15. Andrew Chi-Chih Yao and Yunlei Zhao. A new family of practical non-malleable
protocols. IACR Cryptology ePrint Archive, pages 35–35, 2011.

16. Atsushi Fujioka, Koutarou Suzuki, Keita Xagawa, and Kazuki Yoneyama. Strongly
secure authenticated key exchange from factoring, codes, and lattices. In Public
Key Cryptography, pages 467–484, 2012.

17. Augustin P. Sarr and Philippe Elbaz-Vincent. A complementary analysis of the
(s)YZ and DIKE protocols. In Aikaterini Mitrokotsa and Serge Vaudenay, editors,
Progress in Cryptology - AFRICACRYPT 2012, volume 7374 of Lecture Notes in
Computer Science, pages 203–220. Springer Berlin Heidelberg, 2012.

18. Mihir Bellare, Zvika Brakerski, Moni Naor, Thomas Ristenpart, Gil Segev, Hovav
Shacham, and Scott Yilek. Hedged public-key encryption: How to protect against
bad randomness. IACR Cryptology ePrint Archive, pages 220–220, 2012.

19. Olivier Benôıt and Thomas Peyrin. Side-channel analysis of six SHA-3 candi-
dates. In Stefan Mangard and François-Xavier Standaert, editors, Cryptographic
Hardware and Embedded Systems, CHES 2010, volume 6225 of Lecture Notes in
Computer Science, pages 140–157. Springer Berlin Heidelberg, 2010.

20. J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson, William
Paul, Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum, and Edward W.
Felten. Lest we remember: Cold-boot attacks on encryption keys. Communications
of the ACM, 52(5):91–98, May 2009.

21. Daisuke Moriyama and Tatsuaki Okamoto. An eCK-secure authenticated key ex-
change protocol without random oracles. In Josef Pieprzyk and Fangguo Zhang,
editors, Provable Security, volume 5848 of Lecture Notes in Computer Science,
pages 154–167. Springer Berlin Heidelberg, 2009.

22. Tatsuaki Okamoto and David Pointcheval. The gap-problems: A new class of
problems for the security of cryptographic schemes. In Kwangjo Kim, editor, Public
Key Cryptography, volume 1992 of Lecture Notes in Computer Science, pages 104–
118. Springer Berlin Heidelberg, 2001.

23. David Pointcheval and Jacques Stern. Security arguments for digital signatures
and blind signatures. Journal of Cryptology, 13:361–396, 2000.

A Proof of Theorem 1

The following convention will be used in the security argument. Let λ denotes
the security parameter, whence q = |G| = Θ(2λ). Let A be a polynomially (in
λ) bounded adversary in the security experiment. If the adversary A can win
the security experiment with non-negligible probability, then we can construct

17

a GDH solver S that succeeds with non-negligible probability in the standard
way. Let (U , V) be a random GDH instance. Assume that A operates in an
environment that involves at most n(λ) parties, A activates at most s(λ) sessions
within a party, and makes at most h1(λ), h2(λ) and h3(λ) queries to oracles H1,
H2 and H3, respectively; and terminates after time at most tA. Let ν: G × G
→ G be a random function known only to S, such that ν(X, Y) = ν(Y , X).
The algorithm S will use ν to “represent” CDH(X, Y) in the situation where S
may not know logg(X) and logg(Y). Except with negligible probability, A will
not detect that ν(X, Y) is being used instead of CDH(X, Y). A naive way to
instantiate ν is to choose a random element Z in G as the output of ν(X, Y).

We start by observing that since the session key of the test session is comput-
ed as SK = H3(δ) for some 5-tuple δ, the adversary can only distinguish SK from
a random string by the key replication attack or the forging attack. Note that in
the key replication attack, the adversary A succeeds in forcing the establishment
of another session that has the same session key as the test session. Since the
session key in VOAKE is computed via a random oracle, the probability that two
sessions derive the same session key without using the same session string input
to the random oracle is negligible. Therefore, to win the security experiment, A
must perform a forging attack in which the event querying H3 on the same δ of
the test session happens. Let the test session be sidt = (∗, Â, B̂, X, Y) and let
AskH3 denote the event that A queries H3 with δ = (σ, Â, B̂, X, Y), where
σ = CDH(X, B) · CDH(Y , AXe). Let AskH3 be the complementary event of
AskH3 and sid∗ be any other completed session owned by an honest party, such
that sidt and sid∗ are non-matching. Since sidt and sid∗ are non-matching, the
input to the key derivation function H3 are different for sidt and sid∗. And since
H3 is a random oracle it follows that A cannot obtain any information about the
test session key from the session key of non-matching sessions. Hence Pr(Win ∧
AskH3) ≤ 1

2 . The adversary A is said to be successful (denoted as event Win)
with non-negligible probability if A wins in the security experiment described in
Section 2 with probability 1

2 + p(λ) and p(λ) is non-negligible. In addition,

Pr(Win) = Pr(Win ∧AskH3) + Pr(Win ∧AskH3) ≤ 1

2
+ Pr(Win ∧AskH3),

whence Pr(Win ∧ AskH3) ≥ p(λ). The event Win ∧ AskH3 is denoted by
Win∗.

Subsequently, we define the following complementary events related to the
queries of the random oracle H1 (named as QH1):

QH1. This event means that there exists a party B̂ and the adversary A queries
H1 with (∗, b) before issuing a Long-Term Key Reveal(B̂) query during its ex-
ecution. Note that A does not necessarily make a Long-Term Key Reveal(B̂)
query.

QH1. This event means that for every party B̂, if the adversary A queries H1

with (∗, b) then A issued Long-Term Key Reveal(B̂) before the first (∗, b)
query to H1 during its execution.

18

If A succeeds with non-negligible probability, and hence Pr(Win∗) ≥ p(λ),
it must be the case that either event QH1 ∧ Win∗ or event QH1 ∧ Win∗

occurs with non-negligible probability. The former case happens with negligible
probability according to Lemma 1 and the latter one is further subdivided into
the following complementary events related to the test session has a matching
session or not (we denote the event “the test session has a matching session
owned by an honest party” by Mat and its complementary event by Mat):

(i) Tar = (QH1 ∧ Win∗ ∧ Mat), and

(ii) Tar = (QH1 ∧ Win∗ ∧ Mat).

Because Tar and Tar are complementary, if event QH1 ∧ Win∗ occurs with
non-negligible probability, then either Tar or Tar occurs with non-negligible
probability. Both events Tar and Tar are bounded by negligible probability
(refer to Lemma 2 and Lemma 3 respectively.).

Conclusion. Suppose that event Win occurs. Combining Lemma 1, 2 and
3, the success probability of S is

SuccGDH
G (S) ≥ max{ 1

n(λ)
pQH1(λ),

2

(n(λ)s(λ))2
pTar(λ),

1

n(λ)2s(λ)
O(

1

h2(λ)
)pTar(λ)},

which is non-negligible in λ.

If A is polynomially bounded, then there is a PPT algorithm S that succeeds
in solving the GDH problem in G with non-negligible probability, contradicting
the GDH assumption in G. This concludes the proof of Theorem 1. �

Lemma 1. If the event QH1 ∧ Win∗ occurs with probability pQH1, we can
construct a GDH solver S that can solve the GDH problem with probability

SuccGDH
G (S) ≥ 1

n(λ)
pQH1.

Lemma 2. If the event Tar occurs with probability pTar, we can construct a
GDH solver S that can solve the GDH problem with probability

SuccGDH
G (S) ≥ 2

(n(λ)s(λ))2
pTar.

Lemma 3. If the event Tar occurs with probability pTar, we can construct a
GDH solver S that can solve the GDH problem with probability

SuccGDH
G (S) ≥ 1

n(λ)2s(λ)
O(

1

h2(λ)
)pTar

19

A.1 Proof of Lemma 1

Simulation. Suppose that event QH1 ∧Win∗ occurs with non-negligible prob-
ability. In this case the GDH solver S modifies the experiment by selecting a
random party Â and setting A = V . Note that S doesn’t know the private key
corresponding to this public key and thus it cannot properly simulate the ses-
sions executed by Â. S handles the sessions executed by Â as follows (without
loss of generality, assume that Â is the initiator). S randomly selects x′, picks
x at random from Z∗

q and sets X = gx instead of gH1(x
′,logg(V)). S computes

LÂ = Xb with the knowledge of b. The master secret is derived by setting σ =

LÂ × ν(Y,AXe) and the session key SK is computed as H3(σ, Â, B̂, X, Y).
Note that S can respond Session Key Reveal and Ephemeral Key Reveal with SK
and x′, and the Session-State Reveal can be responded by returning x, LÂ and
SK. If the event QH1 indeed happens, Long-Term Key Reveal queries need not
be simulated on party Â.

Note that if B̂ is a fictitious party, A can compute the session key on its
own, reveal SK and detect that it is fake. To address this issue, S watches A’s
random oracle queries and if A queries (σ, Â, B̂, X, Y) to H3 (for some σ ∈ G),
S checks if DDH(Y , AXe, σX−b) equals 1, replies with the key SK. Similarly,
on the computation of SK, S checks if SK should equal any previous response
from the random oracle.

For every A’s queries (∗, α) to H1, S checks if the equation gα = V holds,
in which case S stops A and is successful by outputting CDH(U , V) = Ua. We
observe that in this simulation, A cannot detect that it is in the simulated AKE
experiment unless it queries (x′, a) to H1 (this way, A will find out that X was
not computed correctly).

Analysis of event QH1 ∧Win∗. S’s simulation of A’s environment is perfect
except with negligible probability. S randomly chooses an honest party Â and
assigns its public key to be V . With probability at least 1

n(λ) , the event QH1

occurs at the party Â. If event QH1 ∧Win∗ occurs with probability pQH1, then
the success probability of S is bounded by

SuccGDH
G (S) ≥ 1

n(λ)
pQH1. (1)

A.2 Proof of Lemma 2

Simulation. Suppose that event Tar occurs with non-negligible probability. In
this case assume that A always selects a test session for which the matching
session exists. Then the GDH solver S modifies the experiment as follows. S
randomly selects two sessions executed by some honest parties Â and B̂ at ran-
dom and continues only if they are matching. Denote by X and Y the ephemeral
public keys sent by the respective parties in these matching sessions. When ei-
ther of these sessions is activated, S does not follow the protocol. Instead, S
generates x′ and y′ normally but sets X = U (in place of gH1(x′, a)) and Y =

20

V (in place of gH1(y′, b)). Note that S can respond Long-Term Key Reveal query
on the selected parties and Ephemeral Key Reveal query on the selected sessions
with a (or b) and x′ (or y′). If one of the sessions selected is indeed the test
session, whose freshness should not be breached, both Session-State Reveal and
Session Key Reveal queries need not be simulated on the selected sessions.

If at some point, the event AskH3 happens, the adversary queries same 5-
tuple δ = (σ, Â, B̂, X, Y) of test session to the random oracle H3, in which
DDH(Xe, Y , σX−bY −a) = 1, then S aborts A and is successful by outputting
CDH(U , V) = (σX−bY −a)−e.

We observe that in this case, the only way that A can distinguish this sim-
ulated AKE experiment from a true AKE experiment is that if A queries (x′,
a) or (y′, b) to H1 (this way, A will find out that X and Y were not computed
correctly). Since x′ is used only in the test session, A must obtain it via an
Ephemeral Key Reveal query before making an H1 query that includes x′. Simi-
larly, A must obtain y′ from the matching session via an Ephemeral Key Reveal
query before making an H1 query that includes y′. If event QH1 happens, the
adversary first issues a Long-Term Key Reveal query to a party before making an
H1 query that includes that party’s static private key. If the session selected is
indeed the test session, whose freshness should not be breached, A can query for
at most one value in each of the pairs (x′, a) and (y′, b). Thus, A has no advan-
tage to distinguish simulated AKE experiment from a true AKE experiment.

Analysis of event Tar. S simulates A’s environment perfectly except with
negligible probability. The probability that A selects sidU and sidV as the test
session and its matching is at least 2

(n(λ)s(λ))2 . Hence if event Tar occurs with

probability pTar, then the success probability of S is bounded by

SuccGDH
G (S) ≥ 2

(n(λ)s(λ))2
pTar. (2)

A.3 Proof of Lemma 3

Simulation. Suppose that event Tar occurs with non-negligible probability.
Assume that A always selects a test session such that the matching session does
not exist. In this case the GDH solver S modifies the experiment as follows. S
selects a random party Â and set A = V , and then S simulates the sessions
executed by Â and the queries to H3 as the simulation in event Win∗ ∧ QH1.

Besides, S also randomly selects an session owned by B̂, in which Â is the
peer. When the session is activated, S follows the protocol only partially: S
generates y′ normally but sets Y = U (in place of gH(y

′,b)). Note that S can
respond Long-Term Key Reveal query on party B̂ and Ephemeral Key Reveal
query on the session with b and y′. If the session selected is indeed the test
session, whose freshness should not be breached, the Session-State Reveal and
Session Key Reveal queries on the session as well as the Long-Term Key Reveal
query on party Â need not be simulated.

21

Without loss of generality let X denote the incoming ephemeral public key
selected by A for the test session sidt. If at some point, the event AskH3 hap-
pens, A queries H3 with same 5-tuple δ = (σ, Â, B̂, X, Y) of test session where
A = V and Y = U and DDH(Y , AXe, σX−b) = 1, in which case S computes

Ω = σX−b = guv+xue.

Without the knowledge of x = logg(X), S is unable to compute CDH(U , V).
Following the Forking Lemma [23] approach, S runs A on the same input and the
same coin flips but with carefully modified answers to the H2 queries. Note that
A must have queried H2 with (Â, B̂, X, Y) in its first run, because otherwise
A would be unable to compute σ except with negligible probability. For the
second run of A, S responds to H2(Â, B̂, X, Y) with a new value e′ ̸= e selected
uniformly at random. If A succeeds in the second run, S computes

Ω′ = σ′X−b = guv+xue′

and thereafter obtains

CDH(U, V) = (
Ω

e′
e

Ω′)
(e′

e −1)−1

.

We observe that in this case, A cannot detect that it is in the simulated AKE
experiment unless it either issues a Long-Term Key Reveal(Â) query or queries
(y′, b) to H1 (this way, A will find out that Y was not computed correctly). Since
x′ is used only in the test session, A must obtain it via an Ephemeral Key Reveal
query before making an H1 query that includes x′. If event QH1 happens, the
adversary first issues a Long-Term Key Reveal query to a party before making an
H1 query that includes that party’s static private key. If the session selected is
indeed the test session, whose freshness should not be breached, A is not allow
to issue Long-Term Key Reveal(Â) and can query for at most one value in the
pair (y′, b). Thus, A can not distinguish between simulated AKE experiment
and a true AKE experiment.

Analysis of event Tar. The simulation of A’s environment is perfect except
with negligible probability. The probability that the test session has peer Â
(whose public key is V) and outgoing ephemeral public key U is at least 1

n(λ)2s(λ) .

Hence if event Tar occurs with probability pTar, then the success probability of
S, excluding negligible terms, is

SuccGDH
G (S) ≥ 1

n(λ)2s(λ)
O(

1

h2(λ)
)pTar (3)

where O(1
h2(λ)

) comes from the use of the Forking Lemma [23].

B A Trivial Attack Against OAKE in the eCK Model

For the benefit of the reader we present a trivial attack against OAKE in the
eCK model demonstrating that the OAKE protocol is eCK-insecure.

22

1. The party Â sends (Â, A, X) to the party B̂.
2. The party B̂ responds with (B̂, B, Y) to the party Â.
3. The adversary A issues Ephemeral Key Reveal to the session owned by the

party Â (denoted as sidÂ) and another one owned by the party B̂ (denoted
as sidB̂) and learns x and y.

4. The adversary A issues Test(sidÂ).

According to the definition of freshness in the eCK model, the session associated
with session identifier sidÂ is fresh. Note that the adversary A can compute

the session key of the session owned by the party Â as KÂ = HK(Bx(AXe)y),

where e = h(Â, A, B̂, B, X, Y). Thus, the adversary A can perfectly distinguish
the real session key from the random one and break the SK security of OAKE
protocol in the eCK model.

