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Abstract

The most widely accepted models in the security proofs of Authenticated
Key Exchange protocols are the Canetti-Krawczyk and extended Canetti-
Krawczyk models that admit different adversarial queries with ambiguities
and incomparable strength. It is desirable to incorporate specific and pow-
erful adversarial queries into a single unified security model and establish
a more practical-oriented security notion. Concerning the security of one-
round implicitly authenticated Diffie-Hellman key exchange protocols, we
present a unified security model that has many advantages over the previous
ones. In the model, a system environment is set up, all of adversarial queries
are practically interpreted and definitely characterized through physical en-
vironment, and some rigorous rules of secret leakage are also specified. To
demonstrate usability of our model, a new protocol based on the OAKE pro-
tocol is proposed, which satisfies the presented strong security notion and
attains high efficiency. The protocol is proven secure in random oracle model
under gap Diffie-Hellman assumption.
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1. Introduction

Motivation. Authenticated Key Exchange (AKE) is an important crypto-
graphic primitive which enables two parties, who hold each others’ public
key, to establish a common secret key in an insecure network. Numerous
AKE protocols have been proposed in the last decade, it is desirable that
the proposed protocols can be proven secure in a security model. Indeed,
many of the protocols have been formally proven secure, but some of them
have been shown to be insecure. Roughly, a security model describes real-
istic attack capabilities in open networks, and gives the precise definition of
security. After the seminal work of Bellare and Rogaway [1], a number of
security models were proposed [2, 3, 4], among these models, the Canetti-
Krawczyk (CK) and extended Canetti-Krawczyk (eCK) models are the most
widely accepted models in security proofs of AKE protocols.

An important goal of the security model is to specify the potential ca-
pabilities of adversaries. In general, the adversary can control the commu-
nication links between parties, moreover, the adversary is allowed access to
secret information used or generated in the protocol via reveal queries. In
the CK model, three types of reveal queries are defined, including Session
Key Reveal, Session-State Reveal and Corrupt query. The eCK model aims to
define a stronger notion of security by providing significantly severer queries
to the adversary. The model defines a new Ephemeral Key Reveal query,
which outputs all session-specific secret information of a party, to replace the
Session-State Reveal query of the CK model, and provides a new definition
of freshness that permits Ephemeral Key Reveal queries on the test session.
Seemingly, the eCK model is stronger than the CK model, however, this is
not the case, as many work showed that they are incompatible and incom-
parable [5, 6, 7], which means some protocols can be proven secure in one
model but can be proven insecure in the other, and vice versa. For example,
it is showed that the NAXOS protocol is proven secure in the eCK model,
but it is insecure in the CK model [5].

To objectively evaluate AKE protocols we need a security model with
specific adversarial capabilities. The subtle issues that arises between the
CK and eCK models stem from the fact that they admit different adversarial
queries and the definitions of the queries are not specific and strict enough
to allow a rigorous comparison be made. In the CK model, the Session-
State Reveal query models an adversary who can capture all the intermediate
computation results of a given session. The ambiguity lies on the fact that
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what information is included in the session state will be specified by each
AKE protocol [2]. In some papers, to present a proven secure protocol in
the CK model, the session state is carefully defined as public values, or
will be erased immediately, such that the Session-State Reveal query has
a very limited power of information leakage. As for the eCK model, the
original Ephemeral Key Reveal is allowed to output all session-specific secret
information, but in some subsequent papers [5, 6, 7, 8, 9], it is defined that
the Ephemeral Key Reveal query only outputs the ephemeral private key held
by the specific session. Due to these ambiguities, it is not clearly explained
why one kind of information can (or can not) be leaked. Even worse, if the
output of the reveal queries can be deliberately tailored from the protocol
values, the security claims based on these models will reflect more or less
subjective opinion of the protocol designers.

It is also desirable to incorporate many powerful adversarial queries into
a single unified security model and establish a strong security notion. Many
works analyze the differences between the CK and eCK models by exam-
ining the strength of the Ephemeral Key Reveal query and the Session-State
Reveal query, however it is worth noting that the two queries are proposed to
model two different kinds of adversary in practice and they embody different
harmfulness of attacks. We observe that a significant difference between the
Ephemeral Key Reveal and the Session-State Reveal is that the session which
is compromised by the Ephemeral Key Reveal may keep its freshness, but the
session which is compromised by the Session-State Reveal will lose its fresh-
ness. In other words, the two queries may be subject to different security
levels in effect. Thus we need not simply support one query and oppose the
other, on the contrary, to encompass these queries into a single framework is
urgently needed.

In this work, we focus on the security of one-round implicitly authen-
ticated Diffie-Hellman key exchange protocols, and aim to propose a more
practical-oriented security model that characterizes specific adversarial capa-
bilities and encompass the Ephemeral Key Reveal and the Session-State Reveal
simultaneously. To achieve this goal, we must solve a major problem. If the
leakages of the Ephemeral Key Reveal and the Session-State Reveal are pre-
cisely defined in a determinate manner, instead of chosen strategically by the
designer of the protocol, and these two queries are allowed simultaneously for
a session, the security proof appears to be extremely hard since encountering
such a powerful adversary, to construct a consistent simulation in the secu-
rity proof is very difficult. Fortunately, we present a solution to the problem
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in this paper.
Contributions. The contribution of the paper are two-fold. Firstly, we
propose a new security model of AKE with powerful and specific adversarial
capabilities, which is roughly a combination of the CK and eCK models and
named as PACK, which stands for Powerful and specific Adversarial capa-
bilities CK model and also means that our model PACKs the CK and eCK
models into a single model. We set up the protocol implementation environ-
ment, and from a practical perspective, we clearly define four kinds of reveal
queries and determinately specify what kind of information can be accessed
by each query. Subsequently, we present a new definition of freshness of pro-
tocol sessions and establish a strong notion of security for AKE protocols.
The proposed PACK model is more tightly related to the actual protocol
implementation environment, compared with the CK and eCK models. All
of the attacks defined in the CK and eCK models are captured in the PACK
model, which include unknown key share attack (UKS), key compromise im-
personation attack (KCI) and maximal exposure attack (MEX) etc., as well
as the security notions of weak perfect forward secrecy (wPFS) and perfect
forward secrecy (PFS) etc..

Secondly, we present a new AKE protocol called VOAKE which is a
variant of the OAKE protocol [10]. The OAKE protocol is proved to be
strongly secure in the CK model (reformulated in the paper [11], named as
CK-HMQV) with superior efficiency, however it is insecure in the eCK model,
thus is not resistant to Ephemeral Key Reveal, which is also characterized
in the PACK model. In this paper, we derive a new protocol from the
OAKE protocol and prove that it is secure in the PACK model. Our results
demonstrate that the VOAKE protocol is a substantial improvement of the
OAKE protocol since it attains almost the same efficiency as the OAKE
protocol while at the same time satisfies a strong security notion.
Related Works. The CK and eCK models are well-known formal security
models for AKE protocols. In recent years, a number of variants of these
models have been proposed, including CK-HMQV [11], seCK [4], eCKw [12].
There are a trend of works devoted to investigate the relationship of strength
between the CK and eCK models [5, 6, 7]. Cremers [5] analyzed the subtleties
between the CK and eCK models and showed that Session-State Reveal is
stronger than Ephemeral Key Reveal, thus these two models are incomparable.
Our work aims to further clarify the security notion of the formal model.

The closest related work to ours is the work of Sarr et al.. Aiming to
combine the CK and eCKmodels, they propose the strengthened eCK (seCK)
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model [4]. Two implementation environments are firstly set up in the seCK
model. Then two sets of adversarial queries are defined to model leakages
that may occur on either implementation environments, one set corresponds
to the eCK model and the other corresponds to the CK model. It is shown
that the seCK model encompasses the eCK model and is practically stronger
than the CK model. The detailed comparison between the seCK model and
the PACK model will be presented in section 4. As suggested in paper of
Yoneyama et al. [13], it is hard to design a provably secure Diffie-Hellman
type protocol in the seCK model. Thus it is a major concern to design a
provably secure AKE protocol in a stronger model.

A number of AKE protocols claimed to be strongly secure in a formal
model have been proposed [4, 14, 15, 10, 16]. The SMQV protocol [4] is
proved to be strongly secure in the seCK model. However, the security proof
of SMQV protocol in the seCK model was shown to be incomplete as the
leakage of intermediate values can not be perfectly simulated in the proof, to
fix the problem appears to be hard as Yoneyama et al. suggested in [13]. Zhao
et al. [15] present a new protocol family named (s)YZ family which is later
reformulated and improved to be (T)OAKE family [10], which is strongly
secure in the CK model with more allowed secrecy exposure and achieves
high efficiency as HMQV protocol. Unfortunately, the OAKE protocol is
eCK insecure, and its variant T-OAKE (also named srYZ) is also shown to
be eCK insecure [17], which limits their implementation. Thus, it is still
left as an urgent work to design a strongly secure AKE protocol. In this
paper, we improve the OAKE protocol by applying NAXOS technique, the
improved OAKE protocol is provably secure in the PACK model as well as
retains high efficiency as OAKE.
Organization. The rest of this paper is organized as follows. Firstly, we
introduce the PACK model in section 2. In section 3, we describe the pro-
posed VOAKE protocol as well as its security proof in the PACK model.
Some comparison focusing on models and protocols as well as concluding
remark are given in Section 4.

2. Security Model

In this section, we present a security model which is a combination of
the CK and eCK models and allows more powerful and specific adversarial
capabilities. Our model follows the basic notions of the previous security
models [2, 11, 3, 4], including the message-driven style description of AKE
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protocols and the security definition etc., but strengthens the reveal queries
and strictly classifies the secret information to be leaked.

2.1. Design Rationale

Before presenting the formal definition, we present the intuitive principles
behind the design of the model by setting up the system implementation
environment. Then we clarify what kind of the security breach happens in
practice will be modeled by which adversarial query, and explicitly specify
what kind of information can be accessed by which query.
System Environment. An AKE protocol if often implemented in a com-
mon system setting where a tamper-resistant device is used to store the
long-term private key and do some limited computations, such as hashing
message, generating pseudorandom numbers or performing some basic arith-
metic or logical operations. In such setting, a break-in cracker or a malicious
insider can not trivially access to the long-term private key, but we do not
assume any additional properties for the build-in functions. For instance,
it is not assumed the hash function can resist side-channel attacks, or the
pseudorandom number generator (PRNG) always products high quality ran-
domness [18]. To accommodate more protocol scenarios, we do not mandato-
rily require that some computationally expensive functions, such as modular
exponentiation, are (or not) implemented in the device, it will be optionally
decided by the designer of the protocol.

It should be emphasized that assuming the existence of a tamper-resistant
device is a normal requirement, we rely on the assumption to let the reveal
queries be natural and reasonable. If the long-term private key is not stored
in a tamper-resistant device, we have no reason to believe that to compromise
the long-term private key is more difficult than to reveal ephemeral random
numbers, or to reveal the intermediate computation results.

Additionally, implementations of hash functions in keyed settings are po-
tential targets of side-channel attacks when the adversary’s goal is to obtain
information on the key, previous works include differential power analysis
on HMAC-SHA-2 and template attacks on HMAC-SHA-1 [19]. Thus, we
do not assume the implementation of hash function is side-channel attack
resistant. The PRNG and the key derivation function may be realized by a
hash function, therefore they are also suffered the same attacks as the hash
function.
Practical Interpretation. Our model defines four types of queries to model
the realistic attacks, we present the practical interpretation of the queries
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as follows to give the intuitive insight. The relationship between the system
implementation environment and the adversarial queries is depicted in Fig. 1.
The double-line box indicates the system region that will be compromised by
the query linking to it with an arrow. Though all the names of the queries
are adopted from the former models, but the connotation may be different.
We prefer to retain the used names instead of coining new names for the
queries because we wish that to retain these names will help the community
discuss and compare related works, since these conventional names are quite
famous.

• Ephemeral Key Reveal. The query models attacks or compromises of the
PRNG or the hash function used by one of the parties, it returns the
secret randomness (denoted as EphemeralKey in Fig. 1) of a specific
protocol session.

• Session-State Reveal. The query captures the attacks of crackers who
temporarily break into the computer system or the malicious action of
insiders, it continually outputs all the intermediate secret values (denot-
ed as InterResult in Fig. 1) computed or used in the host machine’s
memory and outputs the session key (denoted as SessionKey in Fig. 1)
if the named session is completed.

• Session Key Reveal. The query characterizes leakage on the session key
either via the misusage of the key by application, or the cryptanalysis
of the encryption algorithm etc., it returns the session key of a named
session.

• Long-Term Key Reveal. The query describes an attacker who bypass-
es the tamper-resistant device, and gains read access to the device’s
private memory, it provides the attacker with the device owner’s long-
term private key (denoted as LongTermKey in Fig. 1). We note that
the attacker described above can also obtain the intermediate values
stored in the tamper-resistant device. The leakage of long-term private
key, combined with the leakage of session state, implies the leakage
of intermediate values in the tamper-resistant device. Thus we pro-
vide definition of Long-Term Key Reveal and do not provide an explicit
definition of the leakage query on intermediate values stored in the
tamper-resistant device.
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Figure 1: The system implementation environment and the adversarial queries.

We remark that an important principle of the model is that which values
should be leaked by the Ephemeral Key Reveal and the Session-State Reveal are
not strategically defined by the protocol designer, instead, the computation
process of the protocol will automatically determine which values should be
leaked by which query. Furthermore, any declaration that the specific values
will not be leaked because they are erased immediately after being used or
are not stored in memory is invalid in the model.

The principle is adopted for three reasons. Firstly, to erase the specific
values can not ensure they can not be leaked. For instance, a malicious
insider who monitoring the system can reveal all the values in memory before
they are erased. What is even worse, the Ephemeral Key Reveal attacks the
underlying algorithms but not the memory. Secondly, the secrecy of session-
specific values relies on the fact that in which part of the system will the
values be computed, thus what the protocol designer should do is to carefully
specify the computation processes, but not to optionally declare what values
can be compromised. Finally, erasing data stored in memory is quite a
difficult job as many research indicated [20]. Hopefully, by faithfully following
the principle, an objective evaluation of the protocol under examination will
be achieved.

It is also worth noting that our model allows the Ephemeral Key Reveal
and the Session-State Reveal simultaneously, which makes our model more
practical-oriented than the previous ones. The queries have different ad-
verse effects on the protocols sessions, thus we should clearly specify how the
queries can be used by the adversary. Intuitively, we require that the leakage
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of ephemeral randomness of a session should not compromise the specified
session, and the leakage of the secret values in the host machine’s memory
should not compromise other non-matching sessions. Formally, we need a
new definition of freshness to restrict the test session that the adversary can
choose.

In our model, the Session-State Reveal is defined to model the malicious
action of an insider, it continually outputs all the secret values computed in
the host machine’s memory. In general, when a protocol session is completed,
the session key will be generated and outputted from the tamper-resistant
device to the host machine’s memory. In this case, the Session-State Reveal
is allowed to reveal the session key of a named session, which is also the
capability of the Session Key Reveal. We incline to keep the Session Key
Reveal as a separate query instead of replacing it with the Session-State Reveal
for several reasons. Most of all, the two queries separately models different
actions of attackers, in practice we need the Session Key Reveal to capture
some kinds of attack, e.g., the known-key attack. We note that the Session-
State Reveal query is an important tool to analyze the security of the protocol.
In the design of the protocol, in order to improve the efficiency, some of the
computation processes are designed to be removed from temper resistant
device to host machine. Then the presence of Session-State Reveal query is
of great importance to leak the values that appear in the host machine’s
memory.

2.2. Formal Description

In this subsection, we formally describe the security model. Our notation
follows the previous models [11, 3, 8, 4]. In the model, all the parties and
the adversary are modeled as probabilistic polynomial-time (PPT) Turing
machines. We assume that binding assurance between an identity and a
public key is provided by a certification authority (CA), which is trusted by
all parties. However we do not assume that the CA requires parties to prove
possession of their long-term private keys.
Session. We suppose parties P̂i=1,··· ,n to be probabilistic polynomial time
machines. A party can be activated to run an instance of an AKE protocol,
called a session. The adversary controls the activation of sessions via the
Send query. P̂i is activated by a Send query with one of the following forms:
(i) Send(P̂i, P̂j) or (ii) Send(P̂i, P̂j, out) where out is P̂j’s outgoing protocol

message. If P̂i is activated by Send(P̂i, P̂j) then P̂i is the session initiator

(denoted as I) with peer P̂j, otherwise the session responder (denoted as R)
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with peer P̂j. A session identifier is a quadruple (Role, P̂i, P̂j, out, in) where

P̂i is the owner of the session, P̂j is the peer, out and in are respectively the

concatenation of the messages P̂i sends to P̂j, or believes to be from P̂j. Two

sessions with identifiers (Role, P̂i, P̂j, out, in) and (Role′, P̂ ′
j , P̂

′
i , out

′, in′) are

said to be matching if Role ̸= Role′, P̂i = P̂ ′
i , P̂j = P̂ ′

j , and at completion
out = in′ and in = out′. A session cannot have (except with negligible
probability) more than one matching session. Note that the session defined
is general enough to cover different types of AKE protocols. Concretely,
the PACK model can capture multi-pass protocols beyond one-round. In
addition, we say a session is completed if and only if the session key of the
session is computed and outputted. If explicit authentication is used, then
a symbol “reject” is outputted if the authentication fails, and the session
outputs “accept” if the authentication succeeds.
Adversary. Essentially, we define the adversary’s capability of registering
public key by using the same style as the eCK model [3]. The adversary
can register arbitrary public key of its choice, including public keys equal to
keys of some honest parties in the system, on behalf of adversary-controlled
parties.

The adversaryA presents parties with incoming messages via Send queries,
obtains the outgoing messages of the parties, and makes decisions about their
delivery, thereby controlling all communications between parties.

• Send(Message). The message has one of the following forms: (P̂i, P̂j),

(P̂i, P̂j, out) or (P̂i, P̂j, in, out). The adversary is given the session’s re-
sponse according to the protocol and the variables in, out are initialized
and updated (by concatenation) accordingly.

To capture information leakage the adversary is allowed the following
queries, their output are denoted as data sets EphemeralKey, SessionState,
SessionKey and LongTermKey respectively. We use EphemeralKey to denote
the secret randomness of a session and SessionState to denote all the in-
termediate secret values of a session computed or used in the host machine’s
memory and the session key. The SessionState contains InterResult, and
contains SessionKey if the session is completed.

• Ephemeral Key Reveal(s): The adversary obtains the EphemeralKey as-
sociated with session s.

• Session-State Reveal(s): The adversary A obtains the SessionState of
the owner of session s.
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• Session Key Reveal(s): The adversary obtains the SessionKey in a com-
pleted session s.

• Long-Term Key Reveal(P̂i): By making this query the adversary learns
the LongTermKey of party P̂i.

Freshness of PACK. To define the PACK security definition, we need
a new notion of freshness to incorporate both Ephemeral Key Reveal and
Session-State Reveal.

Definition 1. (Freshness of PACK) Let s be a completed session owned by
an honest party Â with an honest peer party B̂. Let s be the matching session
of s. We say session sid is fresh if none of the following conditions holds:

1. A issues Session-Key Reveal(s), or Session-Key Reveal(s) if s exists;

2. A issues Session-State Reveal(s), or Session-State Reveal(s) if s exists;

3. s exists and the adversary A makes either of the following queries

(a) both Long-Term Key Reveal(Â) and Ephemeral Key Reveal(s), or
(b) both Long-Term Key Reveal(B̂) and Ephemeral Key Reveal(s),

4. s does not exist and the adversary A makes either of the following
queries

(a) both Long-Term Key Reveal(Â) and Ephemeral Key Reveal(s), or
(b) Long-Term Key Reveal(B̂).

Freshness of PACK-PFS. Informally, an AKE protocol is said to be se-
cure with PFS if disclosure of the long-term secret key of a party does not
compromise the security of session established by that party with an active
involvement of the attacker. The PFS security notion is not captured in the
original eCK model [3], however, the PACK model can be more general. We
define the freshness of PACK-PFS to make the PACK model encompass the
PFS notion captured in the CK model, and to characterize the security of
explicit authenticated key exchange protocol.

The freshness definition of PFS in the PACK model benefits from the
work of Cremers et al. [21]. In order to extend the PACK model to capture
PFS, we require that after the test session is completed, the Long-Term Key
Reveal on the test session’s owner and peer should not breach its freshness
even if it has no matching session. Thus, to define the PFS security notion
in the PACK model, we need a new notion of freshness.
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Definition 2. (Freshness of PACK-PFS) Let s be a completed session owned
by an honest party Â with an honest peer party B̂. Let s be the matching
session of s. We say session s is fresh if none of the following conditions
holds:

1. A issues Session-Key Reveal(s), or Session-Key Reveal(s) if s exists;

2. A issues Session-State Reveal(s), or Session-State Reveal(s) if s exists;

3. s exists and the adversary A makes either of the following queries

(a) both Long-Term Key Reveal(Â) and Ephemeral Key Reveal(s), or
(b) both Long-Term Key Reveal(B̂) and Ephemeral Key Reveal(s),

4. s does not exist and the adversary A makes either of the following
queries

(a) both Long-Term Key Reveal(Â) and Ephemeral Key Reveal(s), or
(b) Long-Term Key Reveal(B̂) before the session s is completed.

Security Experiment. The aim of the adversary A is to distinguish a
session key from a random key, the experiment proceeds as follows. Initially,
A is given a set of honest parties and makes any sequence of the queries
described above. During the experiment, A makes the following query.

• Test(st): In this query, st must be a fresh session. To respond to this
query, a random bit b is selected. If b = 0 then the session key of st is
output. Otherwise, a random key is output.

The experiment continues until A makes a guess b′. A wins the game if the
test session st is still fresh and if the guess of A is correct, i.e., b′ = b. The
advantage of the adversary in the experiment with the AKE protocol Φ is
defined as

AdvAKE
Φ (A) = Pr[A wins]− 1

2
.

Definition 3. (AKE Security) A key exchange protocol Φ is called AKE

secure if for all PPT adversaries A with the above capabilities running against
Φ and and the freshness of session is defined according to the Freshness of
PACK it holds:

• Parties who complete matching sessions compute the same session key.

• For any adversary A with the above capabilities, AdvAKE
Φ (A) is negligi-

ble.
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Definition 4. (AKE Security with Perfect Forward Secrecy) A key
exchange protocol Φ is called AKE secure with PFS if for all PPT adversaries
A with the above capabilities running against Φ and the freshness of session
is defined according to Freshness of PACK-PFS it holds:

• Parties who complete matching sessions compute the same session key.

• For any adversary A with the above capabilities, AdvAKE
Φ (A) is negligi-

ble.

The proposed PACK model have many advantages over previous models.
Detailed analysis is presented in section 4.

3. VOAKE Protocol

Since many previous AKE protocols are not secure any more in the PACK
model, and it also seems that to prove the security of a protocol in a strong
model is quite hard [13]. One of the major goals of this work is to design an
efficient AKE protocol that is provably secure in the PACK model, thereby
to demonstrate the usability of the model. To fulfil the goal, we present a
protocol called VOAKE which is a variant of the OAKE [15]. In this section,
we present our design rationale, and describe the protocol in detail as well.
The protocol is proven secure in random oracle model under the gap Diffie-
Hellman (GDH) assumption.

3.1. Design Rationale

We base the design and proof of VOAKE on two techniques: the environ-
ment of all computations is specified; the NAXOS technique is applied to the
computation of the ephemeral public key. By introducing the methods, we
show that the VOAKE protocol satisfies the strong security notions defined
in the PACK model, and at the same time holds all the advantages of the
original OAKE protocol with the cost of a little efficiency.
Computation Environment. To balance the tradeoff between perfor-
mance and security, we set up the system implementation environment and
explicitly specify the information flow between the host machine and the
tamper-resistant device for the whole computing process of the protocol. Be-
cause the long-term private key should not be used in the host machine,
therefore all computations involving the long-term private key will be settled
in the tamper-resistant device. For instance, in the session owned by party Â,
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the value x, outputted by hashing the ephemeral and long-term private keys,
is computed in the tamper-resistant device. To achieve high efficiency, our
strategy is to perform as less exponentiations in the tamper-resistant device
as possible. Since the values x, gx and Bx are exposable, thus the value x can
be used in the host machine to compute the values gx and Bx. In order to en-
sure the master secret σ not to be leaked, the computation of γÂ = a+xe and
the exponentiation of Y γÂ are performed in the tamper-resistant device. In
this way, the VOAKE protocol achieves strong security in the PACK model
as well as the best performance from the aspect of efficiency.
NAXOS Technique. To achieve the PACK security, the basis idea of our
protocol is to apply the well-known NAXOS technique in the computation
of the exponent of the ephemeral public key, which is recently criticized by
some papers [5, 22]. In our system setting, we give a practical interpretation
why the method can be reasonably applied. In the tamper-resistant device,
the ephemeral private key (x′ or y′) is chosen randomly and the exponent
of the ephemeral public key (x or y) is computed by hashing the long-term
private key and the ephemeral private key (e.g., x = H1(x

′, a)). Normally,
the ephemeral private key x′ (or y′) can be compromised by the Ephemeral
Key Reveal holding the freshness of the session. Unlike the NAXOS protocol,
which requires the exponent not to be leaked, the exponent x (or y) can
be revealed by the Session-State Reveal which will breach the freshness of
the session, since the exponent is used in the host machine. As clarified
in the security model, we specifically characterize the realistic attacks that
can capture these values. The essential point is when the exponent of the
ephemeral public key and some related value Bx (Ay) can be leaked, we
must deliberately design the protocol to thwart the attacks amounted to the
NAXOS protocol [5], concerning the efficiency at the same time. Concretely,
two goals should be attained: (i) Even though the ephemeral private key is
leaked out by Ephemeral Key Reveal the adversary can not compromise the
secret exponent x (or y) without issuing Long-Term Key Reveal or Session-
State Reveal; (ii) The leakages of the secret exponent x (or y) by the Session-
State Reveal should not compromise other non-matching sessions.
Minor Modification. We also mention some minor differences between
our construction and the OAKE protocol as follows. One of the minor mod-
ifications is that the protocol transcripts (e.g. Â, A, B̂, B, X and Y ) are
integrated into the key derivation together with σ to simplify the security
proof. With the help of additional protocol transcripts, the simulator can
distinguish which session the σ belongs to, thus the advantage of querying
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Â(a,A = ga) B̂(b, B = gb)

x′
$
← Z

∗

q y′
$
← Z

∗

q

x ← H1(x
′, a) y ← H1(y

′, b)

X = gx Y = gy

B̂, Â, X

Â, B̂, X, Y
Check if Y ∈ G? Check if X ∈ G?

LÂ = Bx LB̂ = Ay

γÂ = a+ xe, RÂ = Y γ
Â γB̂ = b+ ye, RB̂ = Xγ

B̂

σ = LÂ · RÂ σ = LB̂ · RB̂

SKA = H3(σ, Â, A, B̂, B, X, Y ) SKB = H3(σ, Â, A, B̂, B, X, Y )

e = H2(Â, A, B̂, B,X, Y )

Figure 2: The description of the VOAKE protocol.

H3 with correct master secret σ by adversary can be effectively used to solve
the GDH problem (see Appendix A). Another modification is that the long-
term public key is removed from the protocol messages. In the description of
OAKE [10], the values Bx and Ay can be computed offline before the execu-
tion of the protocol in party Â and B̂ respectively, hence requiring to send
the certificate containing the public key explicitly may invalidate the pre-
computation. The certificates are exchanged by the higher level applications
in our construction.

3.2. Protocol Description

Notation. Let G ′ be a finite Abelian group of order N , G be a cyclic sub-
group of prime order q in G ′. Denote by g a generator of G, by 1G the identity
element, by G \ {1G} the set of elements of G except 1G. In this work, we
use multiplicative notation for the group operation in G ′. The computational
Diffie-Hellman (CDH) assumption says that given X = gx, Y = gy, where
x, y ← Z∗

q, no efficient CDH-solver algorithm can compute CDH(X, Y ) with
non-negligible probability. The gap Diffie-Hellman (GDH) assumption [23]
roughly says that the CDH assumption holds even if the CDH solver is e-
quipped with a decisional Diffie-Hellman (DDH) oracle for the group G and
the generator g, where on arbitrary input (U , V , W ) ∈ G3 the DDH oracle
outputs 1 if and only if W = CDH(U , V ).
Public Parameters. Let H1: {0,1}λ × Z∗

q → Z∗
q, H2: {0,1}∗ → Z∗

q, H3 :
{0,1}∗ → {0,1}λ be the functions modeled as random oracles.
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Private and Public Keys. Party Û randomly selects u ∈ Z∗
q, and computes

U = gu. Party Û ’s long-term private and public key are (u, U).
Key Exchange. Party Â with private and public keys (a, A) acts as the
initiator, and party B̂ with private and public keys (b, B) acts as the respon-
der, they perform the following two-pass key exchange protocol. The outline
is presented in Fig. 2, the computations in the box of double-line are done in
the tamper-resistant device, the values stored in the host machine’s memory
can be used freely in the tamper-resistant device, but not vice versa.

1. Upon activation (Â, B̂), party Â (the initiator) performs the steps:

(a) Select an ephemeral private key x′ ∈R {0, 1}λ and compute x =
H1(x

′, a) in the tamper-resistant device, and then send x to the
host machine’s memory.

(b) Compute the ephemeral public key X = gx in the host machine.

(c) Send (B̂, Â, X) to party B̂.

2. Upon receive (B̂, Â, X), party B̂ (the responder) performs the steps:

(a) Verify that X ∈ G.
(b) Select an ephemeral private key y′ ∈R {0, 1}λ and compute y =

H1(y
′, b) in the tamper-resistant device, and then send y to the

host machine’s memory.

(c) Compute the ephemeral public key Y = gy in the host machine.

(d) Compute e = H2(Â, A, B̂, B, X, Y ) in the host machine.

(e) Compute LB̂ = Ay in the host machine; compute γB̂ = b+ ye and
RB̂ = XγB̂ in the tamper-resistant device.

(f) Compute σ = LB̂ · RB̂ and SKB̂ = H3(σ, Â, A, B̂, B, X, Y ) in
the tamper-resistant device.

(g) Send (Â, B̂, X, Y ) to party Â.

3. Upon receive (Â, B̂, X, Y ), party Â performs the steps:

(a) Verify that Y ∈ G.
(b) Compute e = H2(Â, A, B̂, B, X, Y ) in the host machine.

(c) Compute LÂ = Bx in the host machine; compute γÂ = a+xe and
RÂ = Y γÂ in the tamper-resistant device.

16



(d) Compute σ = LÂ · RÂ and SKÂ = H3(σ, Â, A, B̂, B, X, Y ) in
the tamper-resistant device.

Ephemeral Key and Session State. The EphemeralKey of a session
owned by the party Â (or B̂) is the randomly generated ephemeral private
key x′ (or y′). The SessionState of a session owned by the party Â (or B̂)
is explicitly defined, including all the intermediate secret values computed or
used in the host machine’s memory, which are x (or y) and LÂ (or LB̂), and
the session key SKÂ (or SKB̂). Note that, erasing all the session state can
not prevent the adversary obtaining them by issuing Session-State Reveal, as
all the values appear in the host machine’s memory.
Intermediate Values in the Tamper-Resistant Device. Without loss
of generality, we consider the session owned by party Â. If the intermedi-
ate values γÂ and RÂ are computed in the host machine, then they will be
leaked by Session-State Reveal and the protocol will suffer from attacks. For
example, if the value γÂ is leaked, combining with the value x, the adversary
can compute the long-term private key a. Moreover, the protocol can be
trivially broken by the adversary if the value RÂ is leaked (refer to Appendix
B). Hence these values must be computed and stored in the tamper-resistant
device and can not be outputted to host machine’s memory. This also demon-
strate that the presence of Session-State Reveal query is of great importance
to analyze the security of the protocol.

3.3. Security Proof for VOAKE

This section presents a formal security argument for the two-pass VOAKE.

Theorem 1. If H1, H2 and H3 are modeled as random oracles, and G is
a group where the GDH assumption holds, then the advantage of any PPT
adversary A to attack the AKE security of VOAKE in the PACK model is
negligible.

Proof (Sketch). We outline the proof as follows. Let A be any AKE
adversary against VOAKE. We start by observing that since the session
key of the test session is computed as SK = H3(δ) for some 7-tuple δ, the
adversary has only two ways to distinguish SK from a random string:

• Key Replication Attack. In this attack, the adversary A succeeds in
forcing the establishment of another session that has the same session
key as the test session. Since the session key in VOAKE is computed
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via a random oracle, the probability that two sessions derive the same
session key without using the same session string input to the random
oracle is negligible.

• Forging Attack. The attack is valid if at some point the adversary A
queries H3 on the same 7-tuple δ.

To bound the advantage of forging attack, we define the following events
and their complementary events:

• Win: The adversary A wins the security experiment described in Sec-
tion 2 with probability 1

2
+ p(λ), where p(λ) is non-negligible;

• AskH3: The adversary A asks random oracle H3 with same 7-tuple δ
of the test session;

• QH1: There exists a party Â, the adversary A queries H1 with (∗, a)
before issuing Long-Term Key Reveal(Â);

• Mat: The test session has matching session.

The complementary events are denoted as Win, AskH3, QH1 and Mat
respectively. The probability bounding process starts from the event Win.
Because the adversary A has no advantage to win if the event AskH3 does
not occur. Therefore, we concentrate on the event Win ∧ AskH3. In
this case, if the event QH1 happens, then we can construct a simulator
to solve GDH problem. Furthermore, it is left to bound the probability
that the events Win ∧ AskH3 ∧ QH1 occurs. This situation is further
separated into two events according to the event Mat happens or not. Both
of the two cases occurs with negligible probability, which are also bounded by
GDH assumption and the proof of the latter case relies on Forking Lemma.
Detailed proofs of each of the above claims can be found in Appendix A.

4. Comparison and Concluding Remark

4.1. PACK is more practical-oriented than CK and eCK

We unify the CK and eCK models into the PACK model which is more
practical-oriented than the previous ones. We establish the argument by
showing that the PACK model provides richer adversarial queries and it
captures more attacks than the CK and eCK models.
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Models PACK CK eCK

Queries
Session-State Reveal Session-State Reveal

Long-Term Key Reveal Corrupt Long-Term Key Reveal
Ephemeral Key Reveal Ephemeral Key Reveal

Attacks & Notions
PFS PFS

UKS, wPFS UKS, wPFS UKS, wPFS
KCI, MEX KCI, MEX

Table 1: Comparison among PACK, CK and eCK.

Table 1 provides a comparison between PACK and the CK and eCK
models. First of all, the adversarial queries admitted in the PACK model are
richer than the one defined in both the CK and eCK models. Note that the
Corrupt query defined in the CK model can be simulated by Long-Term Key
Reveal query in the PACK model. Secondly, all of the advanced attacks and
the security properties defined in the CK and eCK models, including UKS,
KCI, MEX, wPFS and PFS etc., are well captured in the PACK model.
Furthermore, the freshness of PACK as shown in Definition 1 can be reduced
to the ones defined in the CK and eCK models.

The PACK model improve the previous queries as it provides a formal
notion to make the design of protocol as well as its security more clear and
unambiguous. In the PACK model, once the protocol description is deter-
mined, which values should be leaked by which queries and why are all clearly
specified by the model without ambiguity. Namely, the designer decides how
the protocol executes, and let the PACK model determines what values can
be leaked. We emphasize this is a major improvement over previous models.
The previous models do not clearly specify which values should be leaked by
which qeuries or explain why, it is the designer who decides what and how
values can be leaked.

Lack of notion to define exact leakage of queries will result in many dis-
crepancies. For example, in the BCGNP protocol [24] and FSXY proto-
col [16], the decapsulated key is strategically excluded from session state.
Because all computations of both protocols are executed in the host ma-
chine, all results appear in the host machine’s memory. A malicious insider
can reveal all the values in memory before the values are erased. Thus the
decapsulated key should be leaked and the security of the aforementioned
protocols are invalidated by a trivial attack presented in the paper [24].

Note that, the definition of matching session in the PACK model benefits
from the eCK model and the CK-HMQV model [11], which is different from
the one in the CK model and more self-contained. In the CK model, a session
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identifier is assigned by a higher layer protocol, and the matching condition
is defined at the onset of each session, which has been commented by Sarr
et al in [4] and improved by Krawczyk in [11]. We claim that the matching
condition in the CK model does not improve the adversarial capabilities,
but makes more restrictions. Concretely, in the CK model, if a session is
never completed and its freshness is breached, then its completed matching
session is immediately un-fresh and can not be selected as test session. On
the contrary, in the PACK model the incomplete sessions will not affect the
freshness of any other sessions.

4.2. Comparison between PACK and seCK

The closest related work to ours is the seCK model proposed by Sarr et
al. [4], we highlight some differences between the PACK model and the seCK
model.
Environment. We both assume the existence of a tamper-resistant device
in the system environment. In the seCK model, two implementation modes
are set up, and two sets of adversarial queries are defined corresponding to
the two modes. While in the PACK model, there is only one implementation
mode, and only one set of adversarial queries are defined accordingly.
Reveal queries. In the PACK model, Session-State Reveal and Ephemeral
Key Reveal can be issued to one same session simultaneously, which can
not be achieved by seCK. In the seCK model, the adversaries can only ask
Inter-Result Reveal (which has roughly the same functionality as Session-State
Reveal) in mode 2 and Ephemeral Key Reveal in mode 1. That means the
adversary can only reveal one kind of information (either intermediate values
or ephemeral keys) for every session, therefore, it means the PACK model is
more powerful than the seCK model.

There are some minor differences between the reveal queries. In the
seCK model, the Ephemeral Key Reveal models leakages on ephemeral Diffie-
Hellman exponents; in the PACK model, the Ephemeral Key Reveal models
leakages on bad randomness in general. The Inter-Result Reveal models the
leakages that may occur on intermediate results in computing session keys;
the Session-State Reveal of our model returns all the secret values (may in-
clude the session keys) in the host machine’s memory.

4.3. Protocols Comparison

The proposed AKE protocol, VOAKE, satisfies a strong security notion
defined in the PACK model without sacrificing much efficiency.
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Table 2 provides a comparison between VOAKE and some well accepted
AKE protocols in the random oracle model. “#Exp-Online” and “#Exp-
Total” denote the numbers of exponentiations needed to compute the input
to the key derivation function H3 with and without pre-offline computation
(which can be done without incoming messages) respectively, as all the oth-
er operations are the same for all these protocols. “e” and “se” denote
one modular and one simultaneous exponentiation respectively. “em” and
“et” denote one modular exponentiation executed in the host machine and
tamper-resistant device respectively. “#Hash” denotes the number of hash
computation. Without loss of generality, we consider the session owned by
party Â. The item of “Exposable Secret Value” refers to the secret values
that can be exposed. For consistence, we denote the ephemeral private key
as x′, and the output of hashing long-term and ephemeral private keys as
x (if any). The comparison focuses on the security (security model used,
cryptographic assumption and exposable secret values) and efficiency (num-
bers of exponentiations in total, hash computation per session and the online
computation efficiency).

Protocols HMQV NAXOS CMQV OAKE T-OAKE VOAKE
#Exp-Online 1se 2e 1se 1e 1e 1et
#Exp-Total 1se 3e 1se 1se 1se 1et+1em

#Hash 3 2 4 2 2 3
Pre-Offline

None (Bx) None (Bx′
) (Ba+x′

) (Bx)
Computation

Model CK-HMQV eCK eCK CK-HMQV CK-HMQV PACK

Assumptions GDH+KEA1 GDH GDH
GDL+SJKEA, GDL+SJKEA

GDH
or GDH or GDH

Exposable
(x′) (x′) (x′) (x′,Bx′

) (x′) (x′,x,Bx)
Secret Values

Table 2: Comparison among VOAKE and some well-known efficient protocols.

Precisely, VOAKE is proven secure in the PACK model, while OAKE and
T-OAKE are vulnerable to attacks in eCK, thus are PACK insecure. More-
over, NAXOS and CMQV are only provably secure in the eCK model, where
only the ephemeral key (e.g. randomness) can be exposed. On the contrary,
VOAKE remains secure even if more session states are leaked out (e.g. x and
Bx etc.). In the security reduction, VOAKE only needs the standard GDH
assumption, while HMQV requires both GDH and KEA assumptions.

The VOAKE protocol attains high efficiency as the OAKE protocol. In
total, we perform one online modular exponentiation in the tamper-resistant
device and one offline modular exponentiation in the host machine. In terms
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of online efficiency, Bx in VOAKE can be computed offline before the ex-
ecution, then only one modular exponentiation is performed online, which
is more efficient than one simultaneous exponentiation [8] done in the H-
MQV and CMQV protocol, namely, the VOAKE protocol attains the opti-
mal online efficiency. We perform one modular exponentiation in the tamper-
resistant device because some specific kind of information (e.g. RÂ) must be
kept unexposed and thereby to achieve the security goal. We remark, to
achieve PACK security one modular exponentiation in the tamper-resistant
device is almost inevitable.

4.4. Concluding Remark

We conclude this work by proposing some suggestions for future investi-
gations.

• In the VOAKE protocol, we carefully design the computation environ-
ment for the whole process of execution to achieve PACK secure. In this
case, not all the intermediate values are revealed by Ephemeral Key Reveal
and Session-State Reveal queries. A subtle issue is that whether we can
design a provably secure protocol such that the adversary can learn all
the intermediate values within a session by issuing these two queries.
Such an protocol may be more efficient for implementation.

• In this work, we mainly focus on the security of the VOAKE protocol
in the random oracle model. Another direction is to design a provably
PACK secure protocol in the standard model with high efficiency.

• Over past few years, one-round AKE protocols with PFS have been
proposed based on authenticated primitives, e.g., signature and MAC
etc., which loss full-deniability. An urgent work is that can we design
a provable AKE protocol with PFS as well as full-deniability based on
weaker primitives, e.g., proof of knowledge [25], in the PACK model.
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Appendix A. Proof of Theorem 1

The following convention will be used in the security argument. Let
λ denotes the security parameter, whence q = |G| = Θ(2λ). Let A be a
polynomially (in λ) bounded adversary in the security experiment. If the
adversary A can win the security experiment with non-negligible probability,
then we can construct a GDH solver S that succeeds with non-negligible
probability in the standard way. Let (U , V ) be a random GDH instance.
Assume thatA operates in an environment that involves at most n(λ) parties,
A activates at most s(λ) sessions within a party, and makes at most h1(λ),
h2(λ) and h3(λ) queries to oracles H1, H2 and H3, respectively; and terminates
after time at most tA. Let ν: G × G → G be a random function known only to
S, such that ν(X, Y ) = ν(Y , X). The algorithm S will use ν to “represent”
CDH(X, Y ) in the situation where S may not know logg(X) and logg(Y ).
Except with negligible probability, A will not detect that ν(X, Y ) is being
used instead of CDH(X, Y ). A naive way to instantiate ν is to choose a
random element Z in G as the output of ν(X, Y ).

We start by observing that since the session key of the test session is com-
puted as SK = H3(δ) for some 7-tuple δ, the adversary can only distinguish
SK from a random string by the key replication attack or the forging attack.
Note that in the key replication attack, the adversary A succeeds in forcing
the establishment of another session that has the same session key as the test
session. Since the session key in VOAKE is computed via a random oracle,
the probability that two sessions derive the same session key without using
the same session string input to the random oracle is negligible. Therefore,
to win the security experiment, A must perform a forging attack in which
the event querying H3 on the same δ of the test session happens. Let the test
session be sidt = (∗, Â, B̂, X, Y ) and let AskH3 denote the event that A
queries H3 with δ = (σ, Â, A, B̂, B, X, Y ), where σ = CDH(X, B) · CDH(Y ,
AXe). Let AskH3 be the complementary event of AskH3 and sid∗ be any
other completed session owned by an honest party, such that sidt and sid∗

are non-matching. Since sidt and sid∗ are non-matching, the input to the
key derivation function H3 are different for sidt and sid∗. And since H3 is a
random oracle it follows that A cannot obtain any information about the test
session key from the session key of non-matching sessions. Hence Pr(Win ∧
AskH3) ≤ 1

2
. The adversary A is said to be successful (denoted as event

Win) with non-negligible probability if A wins in the security experiment
described in Section 2 with probability 1

2
+ p(λ) and p(λ) is non-negligible.
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In addition,

Pr(Win) = Pr(Win∧AskH3)+Pr(Win∧AskH3) ≤ 1

2
+Pr(Win∧AskH3),

whence Pr(Win ∧ AskH3) ≥ p(λ). The event Win ∧ AskH3 is denoted
by Win∗.

Subsequently, we define the following complementary events related to
the queries of the random oracle H1 (named as QH1):

QH1. This event means that there exists a party B̂ and the adversary
A queries H1 with (∗, b) before issuing a Long-Term Key Reveal(B̂)
query during its execution. Note that A does not necessarily make
a Long-Term Key Reveal(B̂) query.

QH1. This event means that for every party B̂, if the adversary A queries
H1 with (∗, b) then A issued Long-Term Key Reveal(B̂) before the first
(∗, b) query to H1 during its execution.

If A succeeds with non-negligible probability, and hence Pr(Win∗) ≥
p(λ), it must be the case that either event QH1 ∧ Win∗ or event QH1 ∧
Win∗ occurs with non-negligible probability. The former case happens with
negligible probability according to Lemma 1 and the latter one is further
subdivided into the following complementary events related to the test session
has a matching session or not (we denote the event “the test session has a
matching session owned by an honest party” by Mat and its complementary
event by Mat):

(i) Tar = (QH1 ∧Win∗ ∧ Mat), and

(ii) Tar = (QH1 ∧Win∗ ∧ Mat).

Because Tar and Tar are complementary, if event QH1 ∧ Win∗ occurs
with non-negligible probability, then either Tar or Tar occurs with non-
negligible probability. Both events Tar and Tar are bounded by negligible
probability (refer to Lemma 2 and Lemma 3 respectively.).

Conclusion. Suppose that event Win occurs. Combining Lemma 1, 2
and 3, the success probability of S is

SuccGDH
G (S) ≥ max{ 1

n(λ)
pQH1(λ),

2

(n(λ)s(λ))2
pTar(λ),

1

n(λ)2s(λ)
O(

1

h2(λ)
)pTar(λ)},
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which is non-negligible in λ.
If A is polynomially bounded, then there is a PPT algorithm S that

succeeds in solving the GDH problem in G with non-negligible probability,
contradicting the GDH assumption in G. This concludes the proof of Theo-
rem 1. �

Lemma 1. If the event QH1 ∧ Win∗ occurs with probability pQH1, we can
construct a GDH solver S that can solve the GDH problem with probability

SuccGDH
G (S) ≥ 1

n(λ)
pQH1.

Lemma 2. If the event Tar occurs with probability pTar, we can construct
a GDH solver S that can solve the GDH problem with probability

SuccGDH
G (S) ≥ 2

(n(λ)s(λ))2
pTar.

Lemma 3. If the event Tar occurs with probability pTar, we can construct
a GDH solver S that can solve the GDH problem with probability

SuccGDH
G (S) ≥ 1

n(λ)2s(λ)
O(

1

h2(λ)
)pTar

Appendix A.1. Proof of Lemma 1

Simulation. Suppose that eventQH1 ∧Win∗ occurs with non-negligible
probability. In this case the GDH solver S modifies the experiment by se-
lecting a random party Â and setting A = V . Note that S doesn’t know
the private key corresponding to this public key and thus it cannot properly
simulate the sessions executed by Â. S handles the sessions executed by
Â as follows (without loss of generality, assume that Â is the initiator). S
randomly selects x′, picks x at random from Z∗

q and sets X = gx instead of

gH1(x′,logg(V )). S computes LÂ = Xb with the knowledge of b. The master
secret is derived by setting σ = LÂ × ν(Y,AXe) and the session key SK is

computed as H3(σ, Â, A, B̂, B, X, Y ). Note that S can respond Session Key
Reveal and Ephemeral Key Reveal with SK and x′, and the Session-State Re-
veal can be responded by returning x, LÂ and SK. If the event QH1 indeed

happens, Long-Term Key Reveal queries need not be simulated on party Â.
Note that if B̂ is a fictitious party, A can compute the session key on its

own, reveal SK and detect that it is fake. To address this issue, S watches
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A’s random oracle queries and if A queries (σ, Â, A, B̂, B, X, Y ) to H3 (for
some σ ∈ G), S checks if DDH(Y , AXe, σX−b) equals 1, replies with the key
SK. Similarly, on the computation of SK, S checks if SK should equal any
previous response from the random oracle.

For every A’s queries (∗, α) to H1, S checks if the equation gα = V holds,
in which case S stops A and is successful by outputting CDH(U , V ) = Ua.
We observe that in this simulation, A cannot detect that it is in the simu-
lated AKE experiment unless it queries (x′, a) to H1 (this way, A will find
out that X was not computed correctly).

Analysis of event QH1 ∧ Win∗. S’s simulation of A’s environment is
perfect except with negligible probability. S randomly chooses an honest
party Â and assigns its public key to be V . With probability at least 1

n(λ)
,

the event QH1 occurs at the party Â. If event QH1 ∧ Win∗ occurs with
probability pQH1, then the success probability of S is bounded by

SuccGDH
G (S) ≥ 1

n(λ)
pQH1. (A.1)

Appendix A.2. Proof of Lemma 2

Simulation. Suppose that event Tar occurs with non-negligible proba-
bility. In this case assume that A always selects a test session for which the
matching session exists. Then the GDH solver S modifies the experiment
as follows. S randomly selects two sessions executed by some honest parties
Â and B̂ at random and continues only if they are matching. Denote by
X and Y the ephemeral public keys sent by the respective parties in these
matching sessions. When either of these sessions is activated, S does not
follow the protocol. Instead, S generates x′ and y′ normally but sets X = U
(in place of gH1(x′, a)) and Y = V (in place of gH1(y′, b)). Note that S can
respond Long-Term Key Reveal query on the selected parties and Ephemeral
Key Reveal query on the selected sessions with a (or b) and x′ (or y′). If one
of the sessions selected is indeed the test session, whose freshness should not
be breached, both Session-State Reveal and Session Key Reveal queries need
not be simulated on the selected sessions.

If at some point, the event AskH3 happens, the adversary queries same
7-tuple δ = (σ, Â, A, B̂, B, X, Y ) of test session to the random oracle H3,
in which DDH(Xe, Y , σX−bY −a) = 1, then S aborts A and is successful by
outputting CDH(U , V ) = (σX−bY −a)−e.
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We observe that in this case, the only way that A can distinguish this
simulated AKE experiment from a true AKE experiment is that if A queries
(x′, a) or (y′, b) to H1 (this way, A will find out that X and Y were not
computed correctly). Since x′ is used only in the test session, A must ob-
tain it via an Ephemeral Key Reveal query before making an H1 query that
includes x′. Similarly, A must obtain y′ from the matching session via an
Ephemeral Key Reveal query before making an H1 query that includes y′. If
event QH1 happens, the adversary first issues a Long-Term Key Reveal query
to a party before making an H1 query that includes that party’s static pri-
vate key. If the session selected is indeed the test session, whose freshness
should not be breached, A can query for at most one value in each of the
pairs (x′, a) and (y′, b). Thus, A has no advantage to distinguish simulated
AKE experiment from a true AKE experiment.

Analysis of event Tar. S simulates A’s environment perfectly except with
negligible probability. The probability that A selects sidU and sidV as the
test session and its matching is at least 2

(n(λ)s(λ))2
. Hence if event Tar occurs

with probability pTar, then the success probability of S is bounded by

SuccGDH
G (S) ≥ 2

(n(λ)s(λ))2
pTar. (A.2)

Appendix A.3. Proof of Lemma 3

Simulation. Suppose that event Tar occurs with non-negligible proba-
bility. Assume that A always selects a test session such that the matching
session does not exist. In this case the GDH solver S modifies the experiment
as follows. S selects a random party Â and set A = V , and then S simulates
the sessions executed by Â and the queries to H3 as the simulation in event
Win∗ ∧ QH1.

Besides, S also randomly selects an session owned by B̂, in which Â is the
peer. When the session is activated, S follows the protocol only partially: S
generates y′ normally but sets Y = U (in place of gH(y′,b)). Note that S can
respond Long-Term Key Reveal query on party B̂ and Ephemeral Key Reveal
query on the session with b and y′. If the session selected is indeed the test
session, whose freshness should not be breached, the Session-State Reveal and
Session Key Reveal queries on the session as well as the Long-Term Key Reveal
query on party Â need not be simulated.

Without loss of generality let X denote the incoming ephemeral public
key selected by A for the test session sidt. If at some point, the event AskH3
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happens, A queries H3 with same 7-tuple δ = (σ, Â, A, B̂, B, X, Y ) of test
session where A = V and Y = U and DDH(Y , AXe, σX−b) = 1, in which
case S computes

Ω = σX−b = guv+xue.

Without the knowledge of x = logg(X), S is unable to compute CDH(U , V ).
Following the Forking Lemma [26] approach, S runs A on the same input
and the same coin flips but with carefully modified answers to the H2 queries.
Note that A must have queried H2 with (Â, A, B̂, B, X, Y ) in its first run,
because otherwise A would be unable to compute σ except with negligible
probability. For the second run of A, S responds to H2(Â, A, B̂, B, X, Y )
with a new value e′ ̸= e selected uniformly at random. If A succeeds in the
second run, S computes

Ω′ = σ′X−b = guv+xue′

and thereafter obtains

CDH(U, V ) = (
Ω

e′
e

Ω′ )
( e

′
e
−1)−1

.

We observe that in this case, A cannot detect that it is in the simulated
AKE experiment unless it either issues a Long-Term Key Reveal(Â) query or
queries (y′, b) to H1 (this way, A will find out that Y was not computed
correctly). Since x′ is used only in the test session, A must obtain it via an
Ephemeral Key Reveal query before making an H1 query that includes x′. If
event QH1 happens, the adversary first issues a Long-Term Key Reveal query
to a party before making an H1 query that includes that party’s static pri-
vate key. If the session selected is indeed the test session, whose freshness
should not be breached, A is not allow to issue Long-Term Key Reveal(Â)
and can query for at most one value in the pair (y′, b). Thus, A can not
distinguish between simulated AKE experiment and a true AKE experiment.

Analysis of event Tar. The simulation of A’s environment is perfect
except with negligible probability. The probability that the test session has
peer Â (whose public key is V ) and outgoing ephemeral public key U is at
least 1

n(λ)2s(λ)
. Hence if event Tar occurs with probability pTar, then the

success probability of S, excluding negligible terms, is

SuccGDH
G (S) ≥ 1

n(λ)2s(λ)
O(

1

h2(λ)
)pTar (A.3)

where O( 1
h2(λ)

) comes from the use of the Forking Lemma [26].
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Appendix B. Damage on VOAKE Caused by leakage of RÂ

For the benefit of the reader we present a trivial attack against VOAKE
in the PACK model if the value RÂ is included in the SessionState and can
be leaked by issuing Session-State Reveal query.

1. The adversary A randomly chooses a value x ∈ Z∗
q, and obtains X =

gx.

2. The adversary A pretends to be Â and initiates a new session with B̂
by sending (B̂, Â, X) to B̂. Party B̂ responses with (Â, B̂, X, Y ).

3. The adversary A pretends to be any other party Ĉ and initiates a new
session with Â by sending (Â, Ĉ, Y ) to Â. Party Â responses with (Ĉ,
Â, Y , W ).

4. The adversary A issues a Session-State Reveal on the new session owned
by Â and obtains RÂ = Y a+e′w and w, where W = gw and e′ = H2(Ĉ,

C, Â, A, Y , W ). Then the adversary A computes Y a = Y a+e′w

Y e′w =
RÂ

Y e′w .

According to the definition of freshness in the PACK model, the session
associated with session identifier (R, Â, B̂, X, Y ) is fresh. Note that the
adversary has the values Y a and x, the session key corresponding to the
session (R, Â, B̂, X, Y ) can be computed as SKB = H3(σ, Â, A, B̂, B, X,
Y ), where σ = LB̂ · RB̂ = Ay · Xb+ye = Y a · (BY e)x and e = H2(Â, A, B̂,
B, X, Y ). Thus, the adversary A can perfectly distinguish the real session
key from the random one and break the AKE security of VOAKE protocol in
the PACK model.
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