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1 Introduction

Let f be a one-way function, and h a function that has the same domain as f . We say that
h is hardcore for f if the distributions (f, h, f(x), h(x)) and (f, h, f(x), r) are computationally
indistinguishable when x is chosen at random from the domain of f and r is a random |h(x)|-bit
string.1 We will refer to the output length of h, which is the number of (simultaneously) hardcore
bits produced by h, as the span of h, and say that f achieves a certain span if there exists a hardcore
function h for f with the span in question. Hardcore predicates are hardcore functions with span
one.

Introduced in [10, 33, 20], hardcore functions have played a central role in the theory of cryp-
tography. Historically, their motivating application was to achieve semantically-secure public-key
encryption [20]. Here the public-key of the encryption scheme is a trapdoor, one-way permutation
f together with hardcore function h, and the ciphertext encrypting message m is (f(x), h(x)⊕m)
for random x. The span thus determines the number of message bits that can be encrypted. Since
then, many other usages have emerged.

Our work presents hardcore functions with arbitrary polynomial span for arbitrary one-way
functions, resolving a problem that had remained open, despite significant effort, since the 1980s.
The tool we use is differing-input obfuscation (diO), an extension of indistinguishability obfuscation
(iO) [5] introduced by Ananth, Boneh, Garg, Sahai and Zhandry (ABGSZ) [4].

Prior work. Early results gave hardcore predicates (ie. span one) for specific one-way functions
including discrete exponentiation modulo a prime, RSA and Rabin [10, 33, 31, 9, 24, 3, 27, 21, 16].
Eventually, in an impactful and influential work, Goldreich and Levin [19] gave a hardcore predicate
for any one-way function. Extensions of these results are able to achieve logarithmic span [32, 26,
19, 1, 15].

Hardcore functions with polynomial span2 have been provided for specific, algebraic functions
including by H̊astad, Schrift and Shamir [22] for discrete exponentiation modulo a composite,
by Catalano, Gennaro and Howgrave-Graham [14] for the Pailler function [28], and by Akavia,
Goldwasser and Vaikuntanathan [2] for certain LWE-based functions. Peikert and Waters showed
that lossy trapdoor functions [29] achieve polynomial span, yielding further examples of specific
one-way functions with polynomial span [29, 17].

The basic question that remained open from this work was whether polynomial span is achiev-
able for any one-way function. One answer was provided by [6], who showed that UCE-security
(specifically, relative to split, computationally-unpredictable sources) of a function h with polyno-
mial span suffices for h to be hardcore for any one-way function, but the assumption made is close
to the desired conclusion and an instantiation of h would simply have to assume UCE-security, no
functions achieving this being known under more standard assumptions.

Constructions and results. Let G be a PRF [18] and let h(x) = G(gk, x) where gk is a random
key for G that is embedded in the description of h. The distributions (f(x), h(x)) and (f(x), r)
are then indistinguishable when r is a random string of length |h(x)|, but not the distributions
(f, h, f(x), h(x)) and (f, h, f(x), r) as required for a secure hardcore function, because the descrip-
tion of h contains the PRF key, revealing which compromises the security of the PRF. Our first
construction is the natural one, namely to let h be an obfuscation of the circuit G(gk, ·). The
difficulty is to show that this works assuming an achievable form of obfuscation. As explained

1 In the formal definitions in Section 2, both one-way functions and hardcore functions are families. Think here
of f, h as instances chosen at random from the respective families, their descriptions public.

2 Once one can obtain a particular polynomial number of output bits, one can always expand to an arbitrary
polynomial via a PRG, so we do not distinguish these cases.
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in more depth below, we are able to resolve this difficulty by an extension of the Sahai-Waters
technique [30] in which we couple punctured PRFs [11, 25, 13] with diO-security rather than iO-
security. However, this requires that f is injective. This yields our first result, a construction of a
hardcore function with polynomial span for any injective one-way function.

For the case of a general (arbitrary) one-way function, we modify the construction so that
G(gk, ·) is applied, not to x, but to f(x). This at first sounds insecure, because if a circuit doing
this was provided, even obfuscated, an adversary knowing f(x) could provide it to the circuit and
get back the hardcore bits h(x). Our circuit, however, will take input x rather than f(x), itself
computing the latter and returning the result on it of G(gk, ·). The proof, again expanded on
below, makes crucial use of diO-security. This yields our second result, a construction of a hardcore
function with polynomial span for any one-way function.

Beyond the one-wayness of f , both results assume nothing other than a diO-secure obfuscator.
(Punctured PRFs are not an extra assumption since we are already assuming a one-way function.)
In fact, by exploiting a result of Boyle, Chung and Pass (BCP) [12], the assumption for the first
result can be reduced from diO to plain iO. We do not know how to do this for the second result.

A closer look. We now take a closer look at the proofs to highlight the technical difficulties
and new techniques. Recall that the guarantee of iO [5, 30] is that the obfuscations of two circuits
are indistinguishable if the circuits themselves are equivalent, meaning return the same output on
all inputs. Differing-input obfuscation [4] relaxes the equivalence condition, asking instead that it
only be hard, given the (unobfuscated) circuits, to find an input where they differ. See Section 2
for formal definitions. Both our proofs are sequences of hybrids in which we exploit obfuscation
security several times. Only one, crucial one of these steps will use diO, the rest relying just on iO.

Recall that in the injective case, h is an obfuscation of the circuit G(gk, ·) where gk is a random
key for punctured PRF G, so that h(x) = G(gk, x). We consider an adversary H provided with
f, h, f(x∗), r∗ and want to move from the real game, in which r∗ = G(gk, x∗), to the random game,
in which r∗ is random. We begin by using the SW technique [30] to move to a game in which r∗ is
random and h is an obfuscation of the circuit C1 that embeds the target input x∗, a punctured PRF
key, and a random point r∗, returning the latter when called on x = x∗ (the trigger) and otherwise
returning G(gk, x), computed via the punctured key. (This move relies on iO and punctured PRF
security, and does not require diO.) While this has made r∗ random as desired, h is not what it
should be in the random game, where it is in fact an obfuscation of the real circuit G(gk, ·). The
difficulty is to move h back to an obfuscation of this real circuit while leaving r∗ random. We
realize that such a move must exploit the one-wayness of f , which has not so far been used. A
one-wayness adversary, given f(x∗) and aiming to find x∗, needs to run H. The problem is that H
needs an obfuscation of the above-described circuit C1 as input, and construction of C1 requires
knowing the very point x∗ that the one-wayness adversary is trying to find. The difficulty is inherent
rather than merely one of proof, for the forms of obfuscation being used give no guarantee that
an obfuscation of C1 does not reveal x∗. We get around this by changing the trigger check from
x = x∗ to f(x) = f(x∗), so that now the circuit can embed f(x∗) rather than x∗, a quantity there
is no harm in revealing. The new check is equivalent to the old if f is injective, which is where we
use this assumption. But we have still not arrived at the random game. We note that our modified
circuit C2 and the target circuit G(gk, ·) of the random game are inherently non-equivalent, and iO
would not apply. However, these circuits differ only at input x∗. We exploit the one-wayness of f
to prove that it is hard to find this input even given the two circuits. The assumed diO-security of
the obfuscator now implies that the obfuscations of these circuits are indistinguishable, allowing us
to conclude. Finally, since we exploit diO only for circuits that differ at one (hard to find) point,
BCP [12] says that iO in fact suffices, making iO the only assumption needed for the result beyond
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the necessary one-wayness of f .
The above argument makes crucial use of the assumption that f is injective. To handle an

arbitrary one-way function, we modify the construction so that h is an obfuscation of the circuit
G(gk, f(·)) where gk is a random key for punctured PRF G. Thus, h(x) = G(gk, f(x)). We
consider an adversary H provided with f, h, f(x∗), r∗ and want to move from the real game, in
which r∗ = G(gk, f(x∗)), to the random game, in which r∗ is random. We begin, as before, by
using iO and punctured PRF security to move to a game in which r∗ is random and h is an
obfuscation of the circuit C1 that embeds y∗ = f(x∗), a punctured PRF key, and a random point
r∗, returning the latter when called on x such that f(x) = y∗ (the trigger) and otherwise returning
G(gk, f(x)), computed via the punctured key. Having made r∗ random, we now need to revert h
back to an obfuscation of the real circuit G(gk, f(·)). But C1 and this real circuit differ only on
inputs x that are pre-images of y∗ under f . We use the one-wayness of f to show that it is hard
to find any such differing input from the circuits, and then invoke diO-security of the obfuscator
to conclude. This time we cannot invoke BCP [12] to say that iO suffices because the final circuits
could differ on exponentially-many inputs, so our assumption remains diO.

Discussion and related work. Random oracles (ROs) are “ideal” hardcore functions, able
to provide polynomial span for any one-way function. This fact underlies, and is implicit in, the
BR93 ROM public-key encryption scheme [7]. Our results, akin to [6, 23], can thus be seen as
instantiating the RO in a natural ROM construction, in particular showing hardcore functions in
the standard model that are just as good as those in the ROM. As a consequence, we are able to
instantiate the RO in the BR93 scheme to obtain a standard-model scheme.

Extractable iO (xiO), introduced by BCP [12], implies diO [4], and hence suffices for our results.
The two notions are very close, the difference being that diO can be seen as xiO allowing non
blackbox extractors, but diO is defined in a way that does not explicitly talk of extraction, which
we have found convenient in our proofs.

Interestingly, our second construction is non blackbox, in that the hardcore function depends
on f and uses a circuit for computing f , reminescent of HSW [23]. The hardcore function in our
first result is universal, meaning h does not depend on f , another reason the first result is not
subsumed by the second. (The first reason is that the first result can rely only on iO while the
second requires diO.) Also interestingly, the hardcore function constructed in our second result is
the reverse of the hash function used to instantiate FDH in HSW [23]: in our case, the circuit being
obfuscated first applies a one-way function and then a punctured PRF, while in their case it first
applies a punctured PRF and then a one-way function.

Our work adopts the standard definition of a one-way function in which any polynomial-time
adversary must have negligible inversion advantage. Polynomial span is known to be achievable for
any exponentially hard to invert function [19] .

Inversion in the standard definition of a one-way function is on images of random inputs. Our
results apply also when the distribution of inputs on which the function is one-way is arbitrary.

2 Preliminaries

We recall definitions for one-way functions, hardcore predicates, punctured PRFs and relevant
variants of indistinguishability obfuscation.

Notation. We denote by λ ∈ N the security parameter and by 1λ its unary representation. We
denote the size of a finite set X by |X|, and the length of a string x ∈ {0, 1}∗ by |x|. We let ε denote
the empty string. If X is a finite set, we let x←$X denote picking an element of X uniformly at
random and assigning it to x. Algorithms may be randomized unless otherwise indicated. Running
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Game OWFF (λ)

fk←$ F.Kg(1λ)

x∗←$ {0, 1}F.il(λ)

y∗ ← F.Ev(fk, x∗)

x′←$ F(1λ, fk, y∗)

Return (x∗ = x′)

Game HCHF,H(λ)

b←$ {0, 1}
fk←$ F.Kg(1λ) ; hk←$ H.Kg(1λ, fk)

x∗←$ {0, 1}F.il(λ) ; y∗ ← F.Ev(fk, x∗)

If b = 1 then r∗ ← H.Ev(hk, x∗)

Else r∗←$ {0, 1}H.ol(λ)

b′←$H(1λ, fk,hk, y∗, r∗)

Return (b = b′)

Game PPRFGG(λ)

b←$ {0, 1}; gk←$ G.Kg(1λ); b′←$ GCH(1λ)

Return (b = b′)

CH(x∗)

gk∗←$ G.PKg(1λ, gk, x∗)

If b = 1 then r∗ ← G.Ev(gk, x∗)

Else r∗←$ {0, 1}G.ol(λ)

Return (gk∗, r∗)

Game DIFFDS (λ)

b←$ {0, 1}; (C0,C1, aux )←$ S(1λ)

x←$D(C0,C1, aux )

Return (C0(x) 6= C1(x))

Game IOOObf,S(λ)

b←$ {0, 1} ; (C0,C1, aux )←$ S(1λ)

C←$ Obf(1λ,Cb); b′←$O(1λ,C, aux )

Return (b = b′)

Figure 1: Games defining one-wayness of F, security of H as a hardcore function for F,
punctured-PRF security of G, difference-security of circuit sampler S and iO-security
of obfuscator Obf relative to circuit sampler S.

time is worst case. “PT” stands for “polynomial-time,” whether for randomized algorithms or
deterministic ones. If A is an algorithm, we let y ← A(x1, . . . ; r) denote running A with random
coins r on inputs x1, . . . and assigning the output to y. We let y←$A(x1, . . .) be the resulting of
picking r at random and letting y ← A(x1, . . . ; r). We let [A(x1, . . .)] denote the set of all possible
outputs of A when invoked with inputs x1, . . .. We say that f : N → R is negligible if for every
positive polynomial p, there exists np ∈ N such that f(n) < 1/p(n) for all n > np. We use the code
based game playing framework of [8]. (See Fig. 1 for examples of games.) By GA(λ) we denote the
event that the execution of game G with adversary A and security parameter λ results in the game
returning true.

Function families. A family of functions F specifies the following. PT key generation algorithm
F.Kg takes 1λ and possibly another input to return a key fk ∈ {0, 1}F.kl(λ), where F.kl: N→ N is the
key length function associated to F. The deterministic, PT evaluation algorithm F.Ev takes key fk
and an input x ∈ {0, 1}F.il(λ) to return an output F.Ev(fk, x) ∈ {0, 1}F.ol(λ), where F.il,F.ol: N→ N
are the input and output length functions associated to F, respectively. The pre-image size of F is
the function PreImgF defined for λ ∈ N by

PreImgF(λ) = max
fk,x∗

∣∣∣{ x ∈ {0, 1}F.il(λ) : F.Ev(fk, x) = F.Ev(fk, x∗) }
∣∣∣

where the maximum is over all x∗ ∈ {0, 1}F.il(λ) and all keys fk. We say that F is injective if
PreImgF(λ) = 1 for all λ ∈ N, meaning F.Ev(fk, x1) 6= F.Ev(fk, x2) for all distinct x1, x2 ∈
{0, 1}F.il(λ), all fk and all λ ∈ N. We say that F has polynomial pre-image size if there is a
polynomial p such that PreImgF(·) ≤ p(·).

One-wayness and hardcore functions. Function family F is one-way if Advow
F,F (·) is negligible

for all PT adversaries F , where Advow
F,F (λ) = Pr[OWF

F (λ)] and game OWF
F (λ) is defined in Fig. 1.

Let H be a family of functions with H.il = F.il. We say that H is hardcore for F if Advhc
F,H,H(·) is

negligible for all PT adversaries H, where Advhc
F,H,H(λ) = 2 Pr[HCHF,H(λ)]− 1 and game HCHF,H(λ) is

defined in Fig. 1.
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Punctured PRFs. A punctured function family G specifies (beyond the usual algorithms) addi-
tional PT algorithms G.PKg,G.PEv. On inputs 1λ, a key gk ∈ [G.Kg(1λ)] and target input x∗ ∈
{0, 1}G.il(λ), algorithm G.PKg returns a “punctured” key gk∗ such that G.PEv(gk∗, x) = G.Ev(gk, x)

for all x ∈ {0, 1}G.il(λ) \{x∗}. We say that G is a punctured PRF if Advpprf
G,G (·) is negligible for all PT

adversaries G, where Advpprf
G,G (λ) = 2 Pr[PPRFGG(λ)] − 1 and game PPRFGG(λ) is defined in Fig. 1.

Here G must make exactly one oracle query where it picks a target point x∗ and gets back the
corresponding punctured key together with a challenge for the value of G.Ev on the target point.

The concept of punctured PRFs is due to [11, 25, 13] who note that they can be built via the
GGM construction [18]. This however yields a family G with G.il = G.ol. For our purposes, we need
a stronger result, namely a punctured PRF with arbitrary polynomial output length:

Proposition 2.1 Let ι, ` be polynomials and assume one-way functions exist. Then there is a
punctured PRF G with G.il = ι and G.ol = `.

The claimed punctured PRF G can be obtained by starting from a GGM-based punctured PRF
G with G.il = G.ol = ι and letting G.Ev(gk, x) = S.Ev(G.Ev(gk, x)) where S is a PRG with input
length ι and output length `. We omit the details.

Obfuscation. A circuit sampler is a PT algorithm S that on input 1λ returns a triple (C0,C1, aux )
where C0,C1 are circuits which have the same size, number of inputs and number of outputs, and
aux is a string. An obfuscator is a PT algorithm Obf that on input 1λ and a circuit C returns
a circuit C such that C(x) = C(x) for all x. We say that Obf is S-secure, where S is a class
(set) of circuit samplers, if Advio

Obf,S,O(·) is negligible for every PT adversary O and every circuit

sampler S ∈ S , where Advio
Obf,S,O(λ) = 2 Pr[IOOObf,S(λ)] − 1 and game IOOObf,S(λ) is defined in

Fig. 1. Different types of iO security can now be captured by considering different classes of circuit
samplers, as follows.

We say that a circuit sampler S is difference secure if Advdiff
S,D(·) is negligible for every PT

adversary D, where Advdiff
S,D(λ) = 2 Pr[DIFFDS (λ)] − 1 and game DIFFDS (λ) is defined in Fig. 1.

Difference security of S means that given C0,C1, aux it is hard to find an input on which the
circuits differ. Let Sdiff be the class of all difference-secure circuit samplers. Then Obf being
Sdiff -secure means it is a differing-inputs obfuscator as per [4].

We say that circuits C0,C1 are equivalent, written C0 ≡ C1, if they agree on all inputs. We say
that circuit sampler S produces equivalent circuits if C0 ≡ C1 for all λ ∈ N and all (C0,C1, aux ) ∈
[S(1λ)]. Let Seq be the class of all circuit samplers that produce equivalent circuits. Then Obf being
Seq-secure means it is an indistinguishability obfuscator as per [5, 30]. Note that Seq ⊆ Sdiff (if S
produces equivalent circuits it is certainly difference-secure) and hence any Sdiff -secure obfuscator
is a Seq-secure obfuscator. That is, diO implies iO, a fact we will often use.

We say that circuit sampler S produces d-differing circuits, where d: N→ N, if C0 and C1 differ
on at most d(λ) inputs for all λ ∈ N and all (C0,C1, aux ) ∈ [S(1λ)]. Let Sddiff be the class of all
difference-secure circuit samplers that produce d-differing circuits, so that Seq ⊆ Sddiff ⊆ Sdiff . The
interest of this definition is a result of BCP [12] showing that if d is a polynomial then any Seq-

secure obfuscator is also a Sddiff -secure obfuscator. We will exploit this to reduce our assumptions
from Sdiff -secure obfuscation to Seq-secure obfuscation in some cases.

3 Poly-many hardcore bits for injective OWFs

In this section we consider the natural construction of a hardcore function with arbitrary span,
namely an obfuscated PRF. We show that this works assuming the one-way function is injective and
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Games G0–G4

fk←$ F.Kg(1λ) ; gk←$ G.Kg(1λ) ; x∗←$ {0, 1}F.il(λ) ; y∗ ← F.Ev(fk, x∗) ; gk∗←$ G.PKg(1λ, gk, x∗)

r∗ ← G.Ev(gk, x∗) ; C← G.Ev(gk, ·) // G0

r∗ ← G.Ev(gk, x∗) ; C← C1
gk∗,x∗,r∗ // G1

r∗←$ {0, 1}G.ol(λ) ; C← C1
gk∗,x∗,r∗ // G2

r∗←$ {0, 1}G.ol(λ) ; C← C2
fk,gk,y∗,r∗ // G3

r∗←$ {0, 1}G.ol(λ) ; C← G.Ev(gk, ·) // G4

C←$ Obf(1λ,C) ; hk ← C ; b′ ← H(1λ, fk,hk, y∗, r∗) ; Return (b′ = 1)

Circuit C1
gk∗,x∗,r∗(x)

If x 6= x∗ then return G.PEv(gk∗, x)
Else return r∗

Circuit C2
fk,gk,y∗,r∗(x)

If F.Ev(fk, x) 6= y∗ then return G.Ev(gk, x)
Else return r∗

Figure 2: Games for proof of Theorem 3.1.

the obfuscation is diO-secure, yielding our first result, namely a hardcore function with arbitrary
polynomial span for any injective one-way function.

Construction. Let F,G be function families with G.il = F.il. Let Obf be an obfuscator. We define
function family H = HC1[F,G,Obf] as follows, with H.il = G.il and H.ol = G.ol:

H.Kg(1λ)

gk←$ G.Kg(1λ) ; C← G.Ev(gk, ·) ; C←$ Obf(1λ,C)

hk ← C ; Return hk

H.Ev(hk, x)

C← hk ; r ← C(x)
Return r

Here G.Ev(gk, ·) represents the circuit that given x returns G.Ev(gk, x). The description hk of the
hardcore function is an obfuscation of this circuit. The hardcore function output is the result of
this obfuscated circuit on x, which is simply G.Ev(gk, x), the result of the original circuit on x. The
output of the hardcore function is thus the output of a PRF, the key for the latter embedded in an
obfuscated circuit to prevent its being revealed.

Results. Recall that a S1
diff -secure obfuscator is weaker than a full Sdiff -secure obfuscator since it

is only required to work on circuits that differ on at most one (hard to find) input. We have:

Theorem 3.1 Let F be an injective one-way function family. Let G be a punctured PRF with
G.il = F.il. Let Obf be a S1

diff-secure obfuscator. Then the function family H = HC1[F,G,Obf]
defined above is hardcore for F.

Proposition 2.1 yields punctured PRFs with as long an output as desired, so that the above allows
extraction of an arbitrary polynomial number of hardcore bits. The one-way function assumption
made in Proposition 2.1 is already implied by the assumption that F is one way. Theorem 3.1
assumes a differing-inputs obfuscator only for circuits that differ on at most one input, which
by BCP13 [12] can be obtained from an indistinguishability obfuscator, making the latter the only
assumption beyond one-wayness of F needed to extract polynomially-many hardcore bits. Formally,
we have:

Corollary 3.2 Let ` be any polynomial. Let F be any injective one-way function. If there exists a
Seq-secure obfuscator then there exists a hardcore function H for F with H.ol = `.
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Proof of Theorem 3.1: Let H be a PT adversary. Consider the games and associated circuits
of Fig. 2. Lines not annotated with comments are common to all five games. The games begin by
picking keys fk, gk for the one-way function F and the punctured-PRF G, respectively. They pick
the challenge input x∗ and then create a punctured PRF key gk∗ for it. Then the games differ
in how they define r∗ and the circuit C to be obuscated. These defined, the games re-unite to
obfuscate the circuit and run H.

Game G0 does not use the punctured keys, and is equivalent to the b = 1 case of HCHF,H(λ) while
G4, similarly, is its b = 0 case, so

Advhc
F,H,H(λ) = Pr[G0]− Pr[G4] . (1)

We now show that Pr[Gi−1] − Pr[Gi] is negligible for i = 1, 2, 3, 4, which by Equation (1) implies
that Advhc

F,H,H(·) is negligible and proves the theorem. We begin with some intuition. In game G1,
we switch the circuit being obfuscated to one that uses the punctured key when x 6= x∗ and returns
an embedded r∗ = G.Ev(gk, x∗) otherwise. This circuit is equivalent to G.Ev(gk, ·) so iO-security,
implied by diO, will tell us that the adversary H will hardly notice. This switch puts us in position
to use the security of the punctured-PRF, based on which G2 replaces r∗ with a random value.
These steps are direct applications of the Sahai-Waters technique [30], but now things get more
difficult. Having made r∗ random is not enough because we must now revert the circuit being
obfuscated back to G.Ev(gk, ·). We also realize that we have not yet used the one-wayness of F, so
this reversion must rely on it. But the circuit in G2 embeds x∗, the point a one-wayness adversary
would be trying to find, and it is not clear how we can simulate the construction of this circuit,
required to run H, in the design of an adversary violating one-wayness. To address this, instead
of testing whether x equals x∗, the circuit in G3 tests whether the values of F.Ev(fk, ·) on these
points agree, which can be done given only y∗ = F.Ev(fk, x∗) and avoids putting x∗ in the circuit.
But we need this to not alter the functionality of the circuit. This is where we make crucial use
of the assumption that F.Ev(gk, ·) is injective. Finally, in game G4 we revert the circuit back to
G.Ev(gk, ·). But the circuits in G3,G4 are now manifestedly not equivalent. However, the input on
which they differ is x∗. We show that the one-wayness of F implies that this point is hard to find,
whence diO (here iO is not enough) allows us to conclude. We now proceed to the details.

Below, on the left we (simultaneously) define three circuit samplers that differ at the commented
lines and have the uncommented lines in common. On the right, we define an iO-adversary:

Circuit Samplers S1(1λ), S3(1λ), S4(1λ)

fk←$ F.Kg(1λ) ; gk←$ G.Kg(1λ)

x∗←$ {0, 1}F.il(λ) ; y∗ ← F.Ev(fk, x∗) ; gk∗←$ G.PKg(1λ, gk, x∗)
r∗ ← G.Ev(gk, x∗) ; C1 ← G.Ev(gk, ·) ; C0 ← C1

gk∗,x∗,r∗ // S1

r∗ ← {0, 1}G.ol(λ) ; C1 ← C1
gk∗,x∗,r∗ ; C0 ← C2

fk,gk,y∗,r∗ // S3

r∗ ← {0, 1}G.ol(λ) ; C1 ← C2
fk,gk,y∗,r∗ ; C0 ← G.Ev(gk, ·) // S4

aux ← (fk, y∗, r∗) ; Return (C0,C1, aux )

Adversary O(1λ,C, aux )

(fk, y∗, r∗)← aux

hk ← C
b′ ← H(1λ, fk, hk, y∗, r∗)
Return b′

Above, it is understood that C0,C1 are suitably padded to have the same size. Now we have

Pr[Gi−1]− Pr[Gi] = Advio
Obf,Si,O(λ) for i = 1, 3, 4 . (2)

We now make three claims: (1) S1 ∈ Seq (2) S3 ∈ Seq (3) S4 ∈ S1
diff . Since Seq ⊆ S1

diff and Obf is
assumed S1

diff -secure, the RHS of Equation (2) is negligible in all three cases.

We now establish claim (1). If x 6= x∗ then C1
gk∗,x∗,r∗(x) = G.PEv(gk∗, x) = G.Ev(gk, x). If x = x∗

then C1
gk∗,x∗,r∗(x) = r∗, but S1 sets r∗ = G.Ev(gk, x∗). This means that S1 produces equivalent
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circuits, and hence S1 ∈ Seq.

Next we establish claim (2). The assumed injectivity of F implies that circuits C1
gk∗,x∗,r∗ and

C2
fk,gk,y∗,r∗ are equivalent when y∗ = F.Ev(fk, x∗), and hence S3 ∈ Seq.

Now we establish claim (3). Given any PT difference adversary D for S4, we build one-wayness
adversary F via

Adversary F(1λ, fk, y∗)

gk←$ G.Kg(1λ) ; r∗ ← {0, 1}G.ol(λ) ; C1 ← C2
fk,gk,y∗,r∗ ; C0 ← G.Ev(gk, ·)

aux ← (fk, y∗, r∗) ; x←$D(C0,C1, aux ) ; Return x

If C1(x) 6= C0(x) then it must be that F.Ev(fk, x) = y∗. Thus Advdiff
S4,D(·) ≤ Advow

F,F (·). The assumed
one-wayness of F thus means that S4 is difference-secure. But we also observe that, due to the
injectivity of F, circuits C0,C1 differ on only one input, namely x∗. So S4 ∈ S1

diff .

One transition remains, namely that from G1 to G2. Here we have

Pr[G1]− Pr[G2] = Advpprf
G,G (λ) (3)

where adversary G is defined via

Adversary GCH(1λ)

fk←$ F.Kg(1λ) ; x∗←$ {0, 1}F.il(λ) ; y∗ ← F.Ev(fk, x∗) ; (gk∗, r∗)←$ CH(x∗)
C← C1

gk∗,x∗,r∗ ; hk ← Obf(1λ,C) ; b′ ← H(1λ, fk,hk, y∗, r∗) ; Return b′

The RHS of Equation (3) is negligible by the assumption that G is a punctured PRF. This concludes
the proof.

4 Poly-many hardcore bits for any OWF

The proof of Theorem 3.1 makes crucial use of the assumed injectivity of F. To remove this
assumption, we modify the construction so that the obfuscated PRF is applied, not to x, but to
the result of the one-way function on x.

Construction. Let F,G be function families with G.il = F.ol. Let Obf be an obfuscator. We
define function family H = HC2[F,G,Obf] as follows, with H.il = G.il and H.ol = G.ol:

H.Kg(1λ, fk)

gk←$ G.Kg(1λ) ; C← G.Ev(gk,F.Ev(fk, ·)) ; C←$ Obf(1λ,C)

hk ← C ; Return hk

H.Ev(hk, x)

C← hk ; r ← C(x)
Return r

On input x, the circuit C computes y = F.Ev(fk, x) and returns G.Ev(gk, y). The description hk of
the hardcore function is an obfuscation of this circuit. The hardcore function output on input x is
thus G.Ev(gk,F.Ev(fk, x)).

Results. The following says that diO-security of the obfuscator suffices for the security of the
above hardcore function, and that this may further be restricted to circuits that differ at a number
of points determined by the pre-image size of the one-way function:

Theorem 4.1 Let F be a one-way function family. Let G be a punctured PRF with G.il = F.ol. Let
d = PreImgF and let Obf be a Sddiff-secure obfuscator. Then the function family H = HC2[F,G,Obf]
defined above is hardcore for F.
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Games G0–G3

fk←$ F.Kg(1λ) ; gk←$ G.Kg(1λ) ; x∗←$ {0, 1}F.il(λ) ; y∗ ← F.Ev(fk, x∗) ; gk∗←$ G.PKg(1λ, gk, y∗)

r∗ ← G.Ev(gk, y∗) ; C← G.Ev(gk,F.Ev(fk, ·)) // G0

r∗ ← G.Ev(gk, y∗) ; C← C1
fk,gk∗,y∗,r∗ // G1

r∗←$ {0, 1}G.ol(λ) ; C← C1
fk,gk∗,y∗,r∗ // G2

r∗←$ {0, 1}G.ol(λ) ; C← G.Ev(gk,F.Ev(fk, ·)) // G3

C←$ Obf(1λ,C) ; hk ← C ; b′ ← H(1λ, fk,hk, y∗, r∗) ; Return (b′ = 1)

Circuit C1
fk,gk∗,y∗,r∗(x)

y ← F.Ev(fk, x)
If y 6= y∗ then return G.PEv(gk∗, y) else return r∗

Figure 3: Games for proof of Theorem 4.1.

This means that in the most general case, a differing-inputs obfuscator will suffice:

Corollary 4.2 Let ` be any polynomial. Let F be any one-way function. If there exists a Sdiff-
secure obfuscator then there exists a hardcore function H for F with H.ol = `.

When the pre-image size of F is polynomial, however, we can again exploit BCP [12] to obtain our
conclusion assuming nothing beyond iO:

Corollary 4.3 Let ` be any polynomial. Let F be any one-way function with polynomially-bounded
pre-image size. If there exists a Seq-secure obfuscator then there exists a hardcore function H for F
with H.ol = `.

Proof of Theorem 4.1: Let H be a PT adversary. Consider the games and associated circuits of
Fig. 3. Game G0 does not use the punctured keys, and is equivalent to the b = 1 case of HCHF,H(λ)
while G3, similarly, is its b = 0 case, so

Advhc
F,H,H(λ) = Pr[G0]− Pr[G3] . (4)

We now show that Pr[Gi−1]−Pr[Gi] is negligible for i = 1, 2, 3, which by Equation (4) implies that
Advhc

F,H,H(·) is negligible and proves the theorem.

Below, on the left we (simultaneously) define two circuit samplers. On the right we define an
iO-adversary:

Circuit Samplers S1(1λ), S3(1λ)

fk←$ F.Kg(1λ) ; gk←$ G.Kg(1λ)

x∗←$ {0, 1}F.il(λ) ; y∗ ← F.Ev(fk, x∗) ; gk∗←$ G.PKg(1λ, gk, y∗)
r∗ ← G.Ev(gk, y∗) ; C1 ← G.Ev(gk,F.Ev(fk, ·)) ; C0 ← C1

fk,gk∗,y∗,r∗ // S1

r∗ ← {0, 1}G.ol(λ) ; C0 ← G.Ev(gk,F.Ev(fk, ·)) ; C1 ← C1
fk,gk∗,y∗,r∗ // S3

aux ← (fk, y∗, r∗) ; Return (C0,C1, aux )

Adversary O(1λ,C, aux )

(fk, y∗, r∗)← aux

hk ← C
b′ ← H(1λ, fk,hk, y∗, r∗)
Return b′

Above, it is understood that C0,C1 are suitably padded to have the same size. Now we have

Pr[Gi−1]− Pr[Gi] = Advio
Obf,Si,O(λ) for i = 1, 3 . (5)

11



We now make two claims: (1) S1 ∈ Seq (2) S3 ∈ Sddiff . Since Seq ⊆ Sddiff and Obf is assumed

Sddiff -secure, the RHS of Equation (5) is negligible in both cases.

We now establish claim (1). If F.Ev(fk, x) 6= y∗ then C1
fk,gk∗,y∗,r∗(x) = G.PEv(gk∗, y) = G.Ev(gk, y).

If F.Ev(fk, x) = y∗ then C1
fk,gk∗,y∗,r∗(x) = r∗, but S1 sets r∗ = G.Ev(gk, y∗). This means that S1

produces equivalent circuits, and hence S1 ∈ Seq.

Next we establish claim (2). Given any PT difference adversary D for S3 we build one-wayness
adversary F via

Adversary F(1λ, fk, y∗)

gk←$ G.Kg(1λ) ; r∗ ← {0, 1}G.ol(λ) ; C1 ← C1
fk,gk∗,y∗,r∗ ; C0 ← G.Ev(gk,F.Ev(fk, ·))

aux ← (fk, y∗, r∗) ; x←$D(C0,C1, aux ) ; Return x

If C1(x) 6= C0(x) then it must be that F.Ev(fk, x) = y∗. Thus Advdiff
S3,D(·) ≤ Advow

F,F (·). The assumed
one-wayness of F thus means that S3 is difference-secure. But we also observe that circuits C0,C1

differ exactly on pre-images of y∗ under F.Ev(fk, ·), so S4 ∈ Sddiff .

One transition remains, namely that from G1 to G2. Here we have

Pr[G1]− Pr[G2] = Advpprf
G,G (λ) (6)

where adversary G is defined via

Adversary GCH(1λ)

fk←$ F.Kg(1λ) ; x∗←$ {0, 1}F.il(λ) ; y∗ ← F.Ev(fk, x∗) ; (gk∗, r∗)←$ CH(y∗)
C← C1

fk,gk∗,y∗,r∗ ; hk ← Obf(1λ,C) ; b′ ← H(1λ, fk,hk, y∗, r∗) ; Return b′

The RHS of Equation (6) is negligible by the assumption that G is a punctured PRF. This concludes
the proof.
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