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Abstract

A revocation mechanism in cryptosystems for a large number of users is absolutely necessary to
maintain the security of whole systems. A revocable identity-based encryption (RIBE) provides an
efficient revocation method in IBE that a trusted authority periodically broadcasts an update key for non-
revoked users and a user can decrypt a ciphertext if he is not revoked in the update key. Boldyreva, Goyal,
and Kumar (CCS 2008) defined RIBE and proposed an RIBE scheme that uses a tree-based revocation
encryption scheme to revoke users. However, this approach has an inherent limitation that the number of
private key elements and update key elements cannot be constant. In this paper, to overcome the previous
limitation, we devise a new technique for RIBE and propose RIBE schemes with a constant number of
private key elements. We achieve the following results:

• We first devise a new technique for RIBE that combines hierarchical IBE (HIBE) scheme and a
public-key broadcast encryption (PKBE) scheme by using multilinear maps. In contrast to the
previous technique for RIBE, our technique uses a PKBE scheme in bilinear maps for revocation
to achieve short private keys and update keys.

• Following our new technique for RIBE, we propose an RIBE scheme in 3-leveled multilinear maps
that combines the HIBE scheme of Boneh and Boyen and the PKBE scheme of Boneh, Gentry, and
Waters. The private key and update key of our scheme have a constant number of group elements.
To prove the security of our scheme, we introduce a new complexity assumption in multilinear
maps, and prove its security in the selective revocation list model.

• Next, we propose another RIBE scheme that reduces the number of public parameters by using
the parallel construction technique of PKBE. We could reduce the number of public parameters by
using the fact that only the trusted authority in RIBE can broadcast an update key.
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1 Introduction

Providing an efficient revocation mechanism in cryptosystems for a large number of users is very important
since it can prevent a user from accessing sensitive data in cryptosystems by revoking a user whose private
key is revealed or a user whose credential is expired. In public-key encryption (PKE) that employs the
public-key infrastructure (PKI), there are many studies that deal with the certificate revocation problem
[1,14,27,29]. In identity-based encryption (IBE) [6,34], a natural approach for this revocation problem that
is that a trusted authority periodically renews a user’s private key for his identity and a current time period
and a sender creates a ciphertext for a receiver identity and a current time period. However, this approach
has some problems that the trusted authority should be always online to renew user’s private keys, all users
should always renew their private key regardless of whether their private keys are revoked or not, and a
secure channel should be established between the trusted authority and a user to transmit a renewed private
key.

An IBE scheme that provides an efficient revocation mechanism (RIBE) was proposed by Boldyreva,
Goyal, and Kumar [3]. In RIBE, each user receives a (long-term) private key SKID for his identity ID from
a trusted authority, and the trusted authority periodically broadcasts an update key UKT,R on a current time
T by including a revoked identity set R. If a user with a private key SKID is not revoked by the revoked
identity set R of the update key UKT,R, then he can derive his (short-term) decryption key DKID,T from his
private key SKID and the update key UKT,R. This decryption key can be used to decrypt a ciphertext CTID,T

for a receiver identity ID and a time period T . The main advantage of this approach is that the trusted
authority can be offline since the authority only need to broadcast the update key periodically. To build an
RIBE scheme, Boldyreva et al. [3] used the tree-based revocation encryption scheme of Naor, Naor, and
Lotspiech [28] for revocation and the ABE scheme of Sahai and Waters [31] for encryption on an identity
and a time period. Other RIBE schemes also follow this design approach that uses the tree-based revocation
encryption scheme for revocation [26, 32, 33]. This design approach, however, has an inherent limitation
that the number of private key elements and update key elements cannot be constant since a private key is
associated with path nodes in a tree and an update key is associated with covering nodes in the tree [28].
Therefore, in this paper, we ask the following questions for RIBE:

Can we build an RIBE scheme with a constant number of private key elements and update key
elements? Can we devise a new technique for efficient RIBE that is different with the previous
approach?

1.1 Our Results

In this work, we give affirmative answers for the above questions. That is, we first devise a new technique
for RIBE that is quite different from the previous technique, and we propose two RIBE schemes with a
constant number of private key elements. The following is our results:

New Techniques for Revocable IBE. The previous RIBE schemes [3, 26, 33] use IBE (or ABE) schemes
for the main encryption functionality and the tree-based revocation encryption of Naor, Naor, and Lotspiech
[28] for the revocation functionality. As mentioned, one inherent limitation of the tree-based revocation
encryption scheme is that the number of private key elements and update key elements cannot be constant.
To achieve an RIBE scheme with a constant number of private key elements and update key elements, we
observe that PKBE schemes [7, 18] in bilinear groups can be used for revocation since these schemes have
a constant number of private key elements and ciphertext elements. That is, we use an HIBE scheme for
encryption and a PKBE scheme in bilinear groups for revocation by associating the private key of PKBE to
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Table 1: The comparison of revocable identity-based encryption schemes

Scheme PP Size SK Size UK Size Security Model Maps Assumption

BGK [3] O(1) O(logN) O(r log(N/r)) Selective Bilinear DBDH

LV [26] O(λ ) O(logN) O(r log(N/r)) Adaptive Bilinear DBDH

SE [33] O(λ ) O(logN) O(r log(N/r)) Adaptive Bilinear DBDH

Ours O(N +λ ) O(1) O(1) SelectiveRL Multilinear (3,N)-MDHE

Ours O(λ ) O(1) O(
√

N) SelectiveRL Multilinear (3,N)-MDHE

λ = a security parameter, N = the maximum number of users, r = the maximum number of revoked users.
SelectiveRL = selective revocation list.

the private key of RIBE and associating the ciphertext of PKBE to the update key of RIBE. However, this
simple idea for RIBE has two problems: The first problem is that it is insecure against a collusion attack,
and the second problem is that a decryption key that is derived from a private key and an update key by
performing a pairing operation cannot be used to decrypt a ciphertext since the decryption key is the result
of the pairing operation in bilinear groups. To overcome the first problem (i.e. collusion attack problem),
we set the private key SK of RIBE by tying the private key of HIBE and the private key of PKBE, and set
the update key UK of RIBE by tying the private key of HIBE and the ciphertext of PKBE. To overcome
the second problem (i.e. pairing operation problem), we use multilinear maps that were recently proposed
by Garg, Gentry, and Halevi [13]. That is, if we use 3-leveled multilinear maps for RIBE, we can derive a
decryption key DK from SK and UK by using a bilinear map, and then we can use DK to decrypt a ciphertext
by using an additional bilinear map provided by the 3-leveled multilinear maps.

RIBE with Shorter Private Keys and Update Keys. We first propose an RIBE scheme with a constant
number of private key elements and update key elements by applying our new technique for RIBE on the
3-leveled multilinear maps. For a concrete RIBE construction, we use the PKBE scheme of Boneh, Gentry,
and Waters [7] for revocation and the HIBE scheme of Boneh and Boyen [4] for encryption on an identity ID
and a time T . The public parameters, the private key, the update key, and the ciphertext of our RIBE scheme
just consist of O(N+λ ), O(1), O(1), and O(1) group elements respectively. As we know, our RIBE scheme
is the first one that achieves a constant number of private key elements and update key elements. To prove
the security of our RIBE scheme, we introduce a new complexity assumption named Multilinear Diffie-
Hellman Exponent (MDHE) that is a natural multilinear version of the Bilinear Diffie-Hellman Exponent
(BDHE) assumption of Boneh et al. [7]. Using the MDHE assumption, we prove the security of our scheme
in the selective revocation list model where an adversary should submits a challenge identity, a challenge
time, and the revoked set of identities on the challenge time initially.

RIBE with Shorter Pubic Parameters and Private Keys. The number of public parameters’ elements
in our first RIBE scheme is proportional to the maximum number of users. To overcome this problem,
we propose another RIBE scheme with shorter public parameters by employing the parallel construction
method of Boneh et al. [7]. The interesting feature of this RIBE scheme is that the public parameters just
consists of O(λ ) group elements whereas the public key of the general PKBE scheme of Boneh et al. [7]
consists of O(

√
N) group elements. The main reason of this difference is that a trusted authority only can

broadcast an update key in RIBE whereas anyone can broadcast a ciphertext in PKBE. We also prove the
security of our scheme in the selective revocation list model under the MDHE assumption.
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1.2 Related Work

Identity-Based Encryption and Its Extensions. IBE, introduced by Shamir [34], can solve the key man-
agement problem of PKE since it uses an identity string as a public key instead of using a random value.
The first IBE scheme was proposed by Boneh and Franklin [6] by using bilinear groups, and many other
IBE schemes were proposed in bilinear maps [4, 15, 35]. IBE also can be realized under different primi-
tives like quadratic residues or lattices [12, 16]. Another importance of IBE is that it has many surprising
extensions like hierarchical IBE (HIBE), attribute-based encryption (ABE), predicate encryption (PE), and
functional encryption (FE). HIBE was introduced by Horwitz and Lynn [21] and it additionally provides
private key delegation functionality [4, 5, 17, 36]. ABE was introduced by Sahai and Waters [31] and it
can provide access controls on ciphertexts by associating a ciphertext with attributes and a private key with
a policy [20, 25]. PE can provide searches on encrypted data by hiding attributes in ciphertexts [10, 22].
Recently, the concept of FE that includes all the extensions of IBE was introduced by Boneh, Sahai, and
Waters [8], and it was shown that FE schemes for general circuits can be constructed [19].

Revocation in IBE. As mentioned, providing an efficient revocation mechanism that can revoke a user
whose private key is revealed is a very important issue in cryptosystems. In PKE that employs the public-
key infrastructure (PKI), the certificate revocation problem was widely studied [1, 14, 27, 29]. In IBE, there
are some work that deal with the key revocation problem [2, 3, 6, 26, 33]. We can categorize the revocation
methods for IBE as the following two ways. The first revocation method is that a trusted authority periodi-
cally broadcasts a revoked user set R and a sender creates a ciphertext by additionally including a receiver
set S that excludes the revoked user set R [2]. That is, this method conceptually combines an IBE scheme
with a PKBE scheme. Though this method is simple to construct and does not require a user to update his
private key, the sender should check the validity of the revoked list and the sender has the responsibility for
the revocation. Ideally, the sender should proceed as in any IBE scheme and encrypt a message without
worrying about potential revoked users.

The second revocation method is that a sender creates a ciphertext for a receiver identity ID and a time T
and a receiver periodically updates his private key on a time T from a trusted authority if he is not revoked on
the time T . That is, this method can revoke a user by preventing the user to obtain his key components from
the authority. Boneh and Franklin [6] proposed a revocable IBE scheme by representing a user’s identity
as ID‖T and a user periodically receives his private key on a time T by communicating with the authority.
However, this RIBE scheme is impractical for a large number of users since all users should be connected to
the authority to receive his private key. To improve the efficiency of RIBE, Boldyreva, Goyal, and Kumar [3]
proposed a new RIBE scheme that a trusted authority periodically broadcasts an update key for a time T
and non-revoked users by using the revocation encryption of Naor et al. [28]. After that, many other RIBE
schemes were proposed by following this design principle [26,32,33]. Recently, Sahai et al. [30] proposed a
revocable-storage ABE scheme for cloud storage by extending the idea of RIBE schemes, and Lee et al. [23]
proposed an improved revocable-storage ABE scheme and a revocable-storage PE scheme.

2 Preliminaries

In this subsection, we first define revocable identity-based encryption (RIBE) and its security model, and
then we review multilinear maps and complexity assumptions for our RIBE schemes.
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2.1 Revocable Identity-Based Encryption

Revocable identity-based encryption (RIBE) is an extension of identity-based encryption (IBE) such that a
user with an identity ID can be revoked later if his credential is expired [3]. In RIBE, each user receives
his (long-term) private key that is associated with an identity ID from a key generation center. After that,
the key generation center periodically broadcasts an update key for the non-revoked set of users where the
update key is associated with a time T and a revoked set R. If a user is not revoked in the update key, then
he can derive his (short-term) decryption key for his identity ID and the current time T from the private key
and the update key. Using the decryption key for ID and T , the user can decrypt a ciphertext for a receiver
identity IDc and a time Tc if ID = IDc and T = Tc. The following is the syntax of RIBE.

Definition 2.1 (Revocable IBE). A revocable IBE (RIBE) scheme that is associated with the identity space
I, the time space T , and the message spaceM, consists of seven algorithms Setup, GenKey, UpdateKey,
DeriveKey, Encrypt, Decrypt, and Revoke, which are defined as follows:

Setup(1λ ,N): The setup algorithm takes as input a security parameter 1λ and the maximum number of
users N. It outputs a master key MK, an (empty) revocation list RL, a state ST , and public parameters
PP.

GenKey(ID,MK,ST,PP): The private key generation algorithm takes as input an identity ID ∈ I, the
master key MK, the state ST , and public parameters PP. It outputs a private key SKID for ID and an
updated state ST .

UpdateKey(T,RL,MK,ST,PP): The update key generation algorithm takes as input an update time T ∈ T ,
the revocation list RL, the master key MK, the state ST , and the public parameters PP. It outputs an
update key UKT,R for T and R where R is a revoked identity set on the time T .

DeriveKey(SKID,UKT,R,PP): The decryption key derivation algorithm takes as input a private key SKID,
an update key UKT,R, and the public parameters PP. It outputs a decryption key DKID,T or ⊥.

Encrypt(ID,T,M,PP): The encryption algorithm takes as input an identity ID ∈ I, a time T , a message
M ∈M, and the public parameters PP. It outputs a ciphertext CTID,T for ID and T .

Decrypt(CTID,T ,DKID′,T ′ ,PP): The decryption algorithm takes as input a ciphertext CTID,T , a decryption
key DKID′,T ′ , and the public parameters PP. It outputs an encrypted message M or ⊥.

Revoke(ID,T,RL,ST ): The revocation algorithm takes as input an identity ID to be revoked and a revoca-
tion time T , a revocation list RL, and a state ST . It outputs an updated revocation list RL.

The correctness property of RIBE is defined as follows: For all MK, RL, ST , and PP generated by Setup(1λ ,N),
SKID generated by GenKey(ID,MK,ST,PP) for any ID, UKT,R generated by UpdateKey(T,RL,MK,ST,PP)
for any T and RL, CTIDc,Tc generated by Encrypt(IDc,Tc,M,PP) for any IDc, Tc, and M, it is required that

• If (ID /∈ R), then DeriveKey(SKID,UKT,R,PP) = DKID,T .

• If (ID ∈ R), then DeriveKey(SKID,UKT,R,PP) =⊥ with all but negligible probability.

• If (IDc = ID)∧ (Tc = T ), then Decrypt(CTIDc,Tc ,DKID,T ,PP) = M.

• If (IDc 6= ID)∨ (Tc 6= T ), then Decrypt(CTID,T ,DKID,T ,PP) =⊥ with all but negligible probability.
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The security property of RIBE was formally defined by Boldyreva, Goyal, and Kumar [3]. Recently
Seo and Emura [33] refined the security model of RIBE by considering decryption key exposure attacks.
In this paper, we consider the selective revocation list security model of the refined security model. In the
selective revocation list security game, an adversary initially submits a challenge identity ID∗, a challenge
time T ∗, and a revoked identity set R∗ on the time T ∗, and then he can adaptively request private key, update
key, and decryption key queries with restrictions. In the challenge step, the adversary submits two challenge
messages M∗0 ,M

∗
1 , and then he receives a challenge ciphertext CT ∗ that is an encryption of M∗b where b is a

random coin used to create the ciphertext. The adversary may continue to request private key, update key,
and decryption key queries. Finally, the adversary outputs a guess for the random coin b. If the queries of
the adversary satisfy the non-trivial conditions and the guess is correct, then the adversary wins the game.
The following is the formal definition of the selective revocation security.

Definition 2.2 (Selective Revocation List Security). The selective revocation list security property of RIBE
under chosen plaintext attacks is defined in terms of the following experiment between a challenger C and a
PPT adversary A:

1. Init: A initially submits a challenge identity ID∗ ∈ I, a challenge time T ∗ ∈ T , and a revoked identity
set R∗ ⊆ I on the time T ∗.

2. Setup: C generates a master key MK, a revocation list RL, a state ST , and public parameters PP by
running Setup(1λ ,N). It keeps MK,RL,ST to itself and gives PP to A.

3. Phase 1: A adaptively request a polynomial number of queries. These queries are processed as
follows:

• If this is a private key query for an identity ID, then it gives the corresponding private key SKID

to A by running GenKey(ID,MK,ST,PP) with the restriction: If ID = ID∗, then the revocation
query for ID∗ and T must be queried for some T ≤ T ∗.

• If this is an update key query for a time T , then it gives the corresponding update key UKT,R to
A by running UpdateKey(T,RL,MK,ST,PP) with the restriction: If T = T ∗, then the revoked
identity set of RL on the time T ∗ should be equal to R∗.

• If this is a decryption key query for an identity ID and a time T , then it gives the corresponding
decryption key DKID,T to A by running DeriveKey(SKID,UKT,R,PP) with the restriction: The
decryption key query for ID∗ and T ∗ cannot be queried.

• If this is a revocation query for an identity ID and a revocation time T , then it updates the
revocation list RL by running Revoke(ID,T,RL,ST ) with the restriction: The revocation query
for a time T cannot be queried if the update key query for the time T was already requested.

Note that A is allowed to request the update key query and the revocation query in non-decreasing
order of time, and an update key UKT,R implicitly includes a revoked identity set R derived from RL.

4. Challenge: A submits two challenge messages M∗0 ,M
∗
1 ∈M with equal length. C flips a random coin

b ∈ {0,1} and gives the challenge ciphertext CT ∗ to A by running Encrypt(ID∗,T ∗,M∗b ,PP).

5. Phase 2: Amay continue to request a polynomial number of private keys, update keys, and decryption
keys subject to the same restrictions as before.

6. Guess: Finally, A outputs a guess b′ ∈ {0,1}, and wins the game if b = b′.
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The advantage of A is defined as AdvIND-sRL-CPA
RIBE,A (λ ) =

∣∣Pr[b = b′]− 1
2

∣∣ where the probability is taken over
all the randomness of the experiment. A RIBE scheme is secure in the selective revocation list model under
chosen plaintext attacks if for all PPT adversaryA, the advantage ofA in the above experiment is negligible
in the security parameter λ .

Remark 2.3. The selective revocation list security model is weaker than the well-known selective security
model since the adversary additionally submits the revoked identity set R∗ in advance. However, this weaker
model was already introduced by Boldyreva et al. [3] to prove the security of their revocable ABE scheme.

2.2 Leveled Multilinear Maps

We define generic leveled multilinear maps that are the leveled version of the cryptographic multilinear
maps introduced by Boneh and Silverberg [9].

Definition 2.4 (Leveled Multilinear Maps). We assume the existence of a group generator G, which takes
as input a security parameter λ and a positive integer k. Let a sequence of groups ~G = (G1, . . . ,Gk) each
of large prime order p > 2λ . In addition, we let gi be a canonical generator of Gi. We assume the existence
of a set of bilinear maps {ei, j : Gi×G j→Gi+ j|i, j ≥ 1; i+ j ≤ k} that have the following properties:

• Bilinearity: The map ei, j satisfies the following relation: ei, j(ga
i ,g

b
j) = gab

i+ j : ∀a,b ∈ Zp

• Non-degeneracy: We have that ei, j(gi,g j) = gi+ j for each valid i, j.

We say that ~G is a multilinear group if the group operations in ~G as well as all bilinear maps are efficiently
computable.

Definition 2.5 (3-Leveled Multilinear Maps). Let a sequence of groups ~G = (G1,G2,G3) each of large
prime order p > 2λ . In addition, we let gi be a canonical generator of Gi. We assume the existence of a set
of bilinear maps {ei, j : Gi×G j→Gi+ j|i, j ≥ 1; i+ j ≤ 3} that have the following properties:

• Bilinearity: The map ei, j satisfies the following relation: e1,1(ga
1,g

b
1)= gab

2 :∀a,b∈Zp and e1,2(ga
1,g

b
2)=

e2,1(ga
2,g

b
1) = gab

3 : ∀a,b ∈ Zp.

• Non-degeneracy: We have that e1,1(g1,g1) = g2 and e1,2(g1,g2) = e2,1(g2,g1) = g3.

We say that ~G is a multilinear group if the group operations in ~G as well as all bilinear maps are efficiently
computable.

2.3 Complexity Assumptions

We introduce a new complexity assumption named Multilinear Diffie-Hellman Exponent (MDHE). This
new assumption is the multilinear version of the well-known Bilinear Diffie-Hellman Exponent (BDHE)
assumption of Boneh, Gentry, and Waters [7].

Assumption 2.6 (Decisional Multilinear Diffie-Hellman Exponent, (k, l)-MDHE). Let (p,~G,{ei, j|i, j ≥
1; i+ j ≤ k}) be the description of k-leveled multilinear groups of order p. Let gi be a random genera-
tor of Gi. The decisional (k, l)-MDHE assumption is that if the challenge tuple

D =
(
g1,ga

1,g
a2

1 , . . . ,gal

1 ,g
al+2

1 , . . . ,ga2l

1 ,gc1
1 , . . . ,gck−1

1

)
and Z
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are given, no PPT algorithmA can distinguish Z = Z0 = gal+1
∏

k−1
i=1 ci

k from Z = Z1 = gd
k with more than a neg-

ligible advantage. The advantage ofA is defined as Adv(k,l)-MDHE
A (λ ) =

∣∣Pr[A(D,Z0) = 0]−Pr[A(D,Z1) =
0]
∣∣ where the probability is taken over random choices of a,c1, . . . ,ck−1,d ∈ Zp.

For the security proof of our RIBE scheme, we define 3-leveled MDHE assumption that is a special type
of the MDHE assumption since our scheme is built on the 3-leveled multilinear maps.

Assumption 2.7 (Decisional 3-Leveled Multilinear Diffie-Hellman Exponent, (3, l)-MDHE). Let (p,~G,e1,1,
e1,2,e2,1) be the description of 3-leveled multilinear groups of order p. Let gi be a random generator of Gi.
The decisional (3, l)-MDHE assumption is that if the challenge tuple

D =
(
g1,ga

1,g
a2

1 , . . . ,gal

1 ,g
al+2

1 , . . . ,ga2l

1 ,gb
1,g

c
1
)

and Z

are given, no PPT algorithmA can distinguish Z = Z0 = gal+1bc
3 from Z = Z1 = gd

3 with more than a negligible
advantage. The advantage of A is defined as Adv(3,l)-MDHE

A (λ ) =
∣∣Pr[A(D,Z0) = 0]− Pr[A(D,Z1) = 0]

∣∣
where the probability is taken over random choices of a,b,c,d ∈ Zp.

3 Revocable IBE with Shorter Keys

In this section, we propose an RIBE scheme with a constant number of private key elements and update key
elements from 3-leveled multilinear maps, and prove its selective security.

3.1 Design Principle

To devise an RIBE scheme with a constant number of private key elements and update key elements, we use
the PKBE scheme of Boneh, Gentry, and Waters [7] for revocation instead of using the revocation encryption
of Naor, Naor, and Lotspiech [28]. The revocation encryption of the NNL framework mainly uses a tree
for broadcasting, and it is hard to provide a constant number of RIBE private key elements since the private
key of the NNL framework is associated with path nodes in the tree and the update key is associated with
subset covering nodes in the tree [28]. The PKBE scheme of Boneh et al. [7], by contrast, can provide a
constant number of RIBE private key elements since the PKBE scheme has a constant number of private
key elements.

For our RIBE construction, we use the PKBE scheme of Boneh et al. [7] for revocation and the 2-level
HIBE scheme of Boneh and Boyen [4] for encryption on an identity ID and a time T . However, the simple
combination of the PKBE scheme and the HIBE scheme does not provide the security against collusion
attacks. To provide collusion-resistance, we first set the RIBE private key as SKID =

(
gαdγF(ID)r1 ,gr1

)
that

is a careful combination of the PKBE private key SKBE,d = gαdγ and the HIBE private key SKHIBE,ID =
(gaF(ID)r1 ,gr1) where an index d is associated with the identity ID and F(·) is a function from identities
to group elements. That is, we replace the master key part ga of the HIBE private key component with the
PKBE private key component. Next, we set the RIBE update key as UKT,R =

(
(gγ

∏ j∈N\R gαN+1− j
)β H(T )r2 ,gr2

)
that is a careful combination of the PKBE ciphertext CTBE,R =

(
gβ ,(gγ

∏ j∈N\R gN+1− j)β
)

for a revocation
set R and the HIBE private key SKHIBE,T =

(
gaH(T )r2 ,gr2

)
on an update time T where H(·) is a function

from times to group elements. That is, we replace the master key part ga of the HIBE private key compo-
nent with the PKBE ciphertext component. If a user with a private key SKID is not revoked in an update
key UKT,R on a time T , then he can derive a decryption key DKID,T =

(
gαN+1β F(ID)r1H(T )r2 ,gr1 ,gr2

)
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for his identity ID and the time T . This decryption key can be used to decrypt a ciphertext CTID,T =(
e(gαN+1

,gβ )s ·M,gs,F(ID)s,H(T )s
)
.

However, there is a big problem in the above idea. That is, a session key that is derived from the
ciphertext and the private key of PKBE in bilinear groups is an element of GT and this session key cannot be
used for pairing in bilinear groups. This means that the RIBE decryption key DKID,T that is related with the
session key of PKBE cannot be used to decrypt a RIBE ciphertext CTID,T since the pairing operation cannot
be applicable any longer. To solve this problem, we use 3-leveled multilinear maps [13]. Note that bilinear
maps correspond to 2-leveled multilinear maps. In our RIBE scheme that uses 3-leveled multilinear maps, a
private key SKID is in G1, an update key UKT,R is in G1, a decryption key DKID,T is in G2, and a ciphertext
CTID,T is in G1. The ciphertext CTID,T in G1 and the decryption key DKID,T in G2 can be used to derive a
session key by using a bilinear map e1,2(−,−) that is additionally provided by 3-leveled multilinear maps.
Therefore, we can build an RIBE scheme with a constant number of private key elements and update key
elements from 3-leveled multilinear maps.

3.2 Construction

Let N = {1, . . . ,N}, I = {0,1}l1 , and T = {0,1}l2 . Our RIBE scheme from 3-leveled multilinear maps is
described as follows:

RIBE.Setup(1λ ,N): This algorithm takes as input a security parameter 1λ and the maximum number N of
users.

1. It first generates 3-leveled multilinear groups ~G = (G1,G2,G3) of prime order p. Let g1,g2,g3
be generators of G1,G2,G3 respectively. Let (p,~G,e1,1,e1,2,e2,1) be the description of 3-leveled
multilinear groups.

2. Next, it selects random elements f1,0,{ f1,i, j}1≤i≤l1, j∈{0,1},h1,0,{h1,i, j}1≤i≤l2, j∈{0,1} ∈G1 and sets

f2,0 = e1,1(g1, f1,0), { f2,i, j = e1,1(g1, f1,i, j)}1≤i≤l1, j∈{0,1},

h2,0 = e1,1(g1,h1,0), {h2,i, j = e1,1(g1,h1,i, j)}1≤i≤l2, j∈{0,1}.

It also sets ~fk = ( fk,0,{ fk,i, j}1≤i≤l1, j∈{0,1}) and ~hk = (hk,0,{hk,i, j}1≤i≤l2, j∈{0,1}) for k ∈ {1,2}.
We define Fk(ID) = fk,0 ∏

l1
i=1 fk,i,ID[i] and Hk(T ) = hk,0 ∏

l2
i=1 hk,i,T [i] where ID[i] is a bit value at

the position i and T [i] is a bit value at the position i.

3. It selects random exponents α,β ,γ ∈ Zp. It outputs a master key MK = (α,β ,γ), an empty
revocation list RL, an empty state ST , and public parameters as

PP =
(
(p,~G,e1,1,e1,2,e2,1), g1, {gα j

1 }1≤ j, j 6=N+1≤2N , gβ

1 ,

~f1, ~h1, ~f2, ~h2, g2, Ω = gαN+1β

3

)
∈G2N+4l1+4l2+5

1 ×G2×G3.

RIBE.GenKey(ID,MK,ST,PP): This algorithm takes as input an identity ID ∈ I, the master key MK, the
state ST , and public parameters PP.

1. It first assigns an index d ∈ N that is not in ST to the identity ID, and updates the state ST by
adding a tuple (ID,d) to ST .
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2. It selects a random exponent r1 ∈ Zp and outputs a private key by implicitly including ID and
the index d as

SKID =
(

K0 = gαdγ

1 F1(ID)−r1 , K1 = g−r1
1

)
∈G2

1.

RIBE.UpdateKey(T,RL,MK,ST,PP): This algorithm takes as input a time T , the revocation list RL, the
master key MK, the state ST , and public parameters PP.

1. It first defines the revoked set R of user identities on the time T from RL. That is, if there exists
(ID′,T ′) such that (ID′,T ′) ∈ RL for any T ′ ≤ T , then ID′ ∈ R.

2. Next, it defines the revoked index set RI ⊆N of the revoked identity set R by using the state ST
since ST contains (ID,d). It also defines the non-revoked index set SI =N \RI.

3. It selects a random exponent r2 ∈ Zp and outputs an update key by implicitly including T , R,
and the revoked index set RI as

UKT,R =
(

U0 =
(
gγ

1 ∏
j∈SI

gαN+1− j

1
)β H1(T )r2 , U1 = g−r2

1

)
∈G2

1.

RIBE.DeriveKey(SKID,UKT,R,PP): This algorithm takes as input a private key SKID = (K0,K1) for an
identity ID, an update key UKT,R = (U0,U1) for a time T and a revoked set R of identities, and the
public parameters PP. If ID ∈ R, then it outputs ⊥ since the identity ID is revoked. Otherwise, it
proceeds the following steps:

1. Let d be the index of ID and RI be the revoked index set of R. Note that these are implicitly
included in SK and UK respectively. It sets a non-revoked index set SI = N \RI and derives
temporal components T0,T1 and T2 as

T0 = e1,1(gαd

1 ,U0) · e1,1(g
β

1 ,K0 ∏
j∈SI, j 6=d

gαN+1− j+d

1 )−1, T1 = e1,1(g
β

1 ,K1), T2 = e1,1(gαd

1 ,U1).

2. Next, it chooses random exponents r′1,r
′
2 ∈ Zp and re-randomizes the temporal components as

D0 = T0 ·F2(ID)r′1H2(T )r′2 , D1 = T1 ·g
−r′1
2 , D2 = T2 ·g

−r′2
2 .

Note that the components of the decryption key are formed as D0 = gαN+1β

2 F2(ID)r′′1 H2(T )r′′2 , D1 =

g−r′′1
2 , D2 = g−r′′2

2 where r′′1 = β r1 + r′1 and r′′2 = αdr2 + r′2.

3. Finally, it outputs a decryption key by implicitly including ID and T as DKID,T =
(
D0,D1,D2

)
∈

G3
2.

RIBE.Encrypt(ID,T,M,PP): This algorithm takes as input an identity ID, a time T , a message M, and the
public parameters PP. It first chooses a random exponent s∈Zp and outputs a ciphertext by implicitly
including ID and T as

CTID,T =
(

C = Ω
s ·M, C0 = gs

1, C1 = F1(ID)s, C2 = H1(T )s
)
∈G3×G3

1.

RIBE.Decrypt(CTID,T ,DKID′,T ′ ,PP): This algorithm takes as input a ciphertext CTID,T = (C,C0,C1,C2), a
decryption key DKID′,T ′ = (D0,D1,D2), and the public parameters PP. If (ID = ID′)∧ (T = T ′), then
it outputs the encrypted message M as M =C ·

(
∏

2
i=0 e1,2(Ci,Di)

)−1
. Otherwise, it outputs ⊥.
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RIBE.Revoke(ID,T,RL,ST ): This algorithm takes as input an identity ID, a revocation time T , the revo-
cation list RL, and the state ST . If (ID,−) /∈ ST , then it outputs ⊥ since the private key of ID was not
generated. Otherwise, it adds (ID,T ) to RL. It outputs the updated revocation list RL.

3.3 Correctness

Let SKID be a private key for an identity ID that is associated with an index d, and UKT,R be an update
key for a time T and a revoked identity set R. If ID /∈ R, then the decryption key derivation algorithm first
correctly derives temporal components as

T0 = e1,1(gαd

1 ,U0) · e1,1(g
β

1 ,K0 ∏
j∈SI, j 6=d

gαN+1− j+d

1 )−1

= e1,1(gαd

1 ,(gγ

1 ∏
j∈SI

gαN+1− j

1 )β H1(T )r2) · e1,1(g
β

1 ,g
αdγ

1 F1(ID)−r1 · ∏
j∈SI, j 6=d

gαN+1− j+d

1 )−1

= e1,1(g
β

1 ,g
αN+1

1 ) · e1,1(g
β

1 ,F1(ID)r1) · e1,1(gαd

1 ,H1(T )r2),

= gαN+1β

2 F2(ID)β r1H2(T )αdr2 ,

T1 = e1,1(g
β

1 ,K1) = e1,1(g
β

1 ,g
−r1
1 ) = g−β r1

2 ,

T2 = e1,1(gαd

1 ,U1) = e1,1(gαd

1 ,g−r2
1 ) = g−αdr2

2

where RI is the revoked index set of R and SI =N \RI. Next, a decryption key is correctly derived from the
temporal components by performing re-randomization as

D0 = T0 ·F2(ID)r′1H2(T )r′2 = gαN+1β

2 F2(ID)β r1H2(T )αdr2 ·F2(ID)r′1H2(T )r′2

= gαN+1β

2 F2(ID)β r1+r′1H2(T )αdr2+r′2 = gαN+1β

2 F2(ID)r′′1 H2(T )r′′2 ,

D1 = T1 ·g
−r′1
2 = g−β r1−r′1

2 = g−r′′1
2 , D2 = T2 ·g

−r′2
2 = g−αdr2−r′2

2 = g−r′′2
2

where r′′1 = β r1 + r′1 and r′′2 = αdr2 + r′2.
Let CTID,T be a ciphertext for an identity ID and a time T , and DKID′,T ′ be a decryption key for an

identity ID′ and a time T ′. If (ID = ID′)∧ (T = T ′), then the decryption algorithm correctly outputs an
encrypted message by the following equation.

2

∏
i=0

e1,2(Ci,Di) = e1,2(gs
1,g

αN+1β

2 F2(ID)r′′1 H2(T )r′′2 ) · e1,2(F1(ID)s,g−r′′1
2 ) · e1,2(H1(T )s,g−r′′2

2 )

= e1,2(gs
1,g

αN+1β

2 ) ·
e1,2(gs

1,F2(ID)r′′1 ) · e1,2(gs
1,H2(T )r′′2 )

e1,2(F1(ID)s,gr′′1
2 ) · e1,2(H1(T )s,gr′′2

2 )

= e1,2(gs
1,g

αN+1β

2 ) = (gαN+1β

3 )s = Ω
s.

3.4 Security Analysis

Theorem 3.1. The above RIBE scheme is secure in the selective revocation list model under chosen plaintext
attacks if the (3,N)-MDHE assumption holds where N is the maximum number of users in the system. That
is, for any PPT adversary A, we have that AdvIND-sRL-CPA

RIBE,A (λ )≤ Adv(3,N)-MDHE
B (λ ).
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Proof. To prove the security of our RIBE scheme, we carefully combine the partitioning methods of the
PKBE scheme of Boneh, Gentry, and Waters [7] and the HIBE scheme of Boneh and Boyen [4].

Suppose there exists an adversary A that attacks the above RIBE scheme with a non-negligible ad-
vantage. A simulator B that solves the MDHE assumption using A is given: a challenge tuple D =
(g1,ga

1,g
a2

1 , . . . ,gaN

1 ,gaN+2

1 , . . . ,ga2N

1 ,gb
1,g

c
1) and Z where Z = Z0 = gaN+1bc

3 or Z = Z1 ∈R G3. Then B that
interacts with A is described as follows:

Init: A initially submits a challenge identity ID∗, a challenge time T ∗, and a revoked identity set R∗ on the
time T ∗. It first sets a state ST and a revocation list RL as empty one. For each ID ∈ {ID∗}∪R∗, it selects
an index d ∈ N such that (−,d) /∈ ST and adds (ID,d) to ST . Let RI∗ ⊆N be the revoked index set of R∗

on the time T ∗ and SI∗ be the non-revoked index set on the time T ∗ such that SI∗ =N \RI∗.
Setup: B first chooses random exponents f ′0,{ f ′i, j}1≤i≤l1, j∈{0,1},h

′
0,{h′i, j}1≤i≤l2, j∈{0,1},θ ∈ Zp. It sets gγ

1 =

gθ
∏ j∈SI∗(gaN+1− j

)−1 by implicitly setting γ = θ −∑ j∈SI∗ aN+1− j and publishes the public parameters PP by
implicitly setting α = a,β = b as

g1,
{

gα i

1 = gai

1
}

1≤i,i6=N+1≤2N , gβ

1 = gb
1,

~f1 =
(

f1,0 = g f ′0
1

( l1

∏
i=1

f1,i,ID∗[i]
)−1

,
{

f1,i, j = (gaN

1 ) f ′i, j
}

1≤i≤l1, j∈{0,1}
)
,

~h1 =
(
h1,0 = gh′0

1

( l2

∏
i=1

h1,i,T ∗[i]
)−1

,
{

h1,i, j = (gb
1)

h′i, j
}

1≤i≤l2, j∈{0,1}
)
,

~f2 =
(

f2,0 = e1,1(g1, f1,0),{ f2,i, j = e1,1(g1, f1,i, j)}1≤i≤l1, j∈{0,1}
)
,

~h2 =
(
h2,0 = e1,1(g1,h1,0),{h2,i, j = e1,1(g1,h1,i, j)}1≤i≤l2, j∈{0,1}

)
,

g2, Ω = e2,1
(
e1,1(gα

1 ,g
αN

1 ),gb
1
)
= gαN+1b

3 .

For notational simplicity, we define ∆ID = ∑
l1
i=1( f ′i,ID[i]− f ′i,ID∗[i]) and ∆T = ∑

l2
i=1(h

′
i,T [i]−h′i,T ∗[i]). We have

∆ID 6≡ 0 mod p except with negligible probability if ID 6= ID∗ since there exists at least one index i such
that f ′i,ID[i] 6= f ′i,ID∗[i] and { f ′i, j} are randomly chosen. We also have ∆T 6≡ 0 mod p except with negligible
probability if T 6= T ∗.

Phase 1: A adaptively requests a polynomial number of private key, update key, and decryption key queries.
If this is a private key query for an identity ID, then B proceeds as follows:

• Case ID ∈ R∗: In this case, the simulator can use the partitioning method of Boneh et al. [7].

1. It first retrieves a tuple (ID,d) from ST where the index d is associated with ID. Note that the
tuple (ID,d) exists since all identities in R∗ were added to ST in the initialization step.

2. It selects a random exponent r1 ∈ Zp and creates a private key SKID as

K0 = (gad

1 )θ ( ∏
j∈SI∗

gaN+1− j+d

1 )−1F1(ID)−r1 , K1 = g−r1
1 .

• Case ID 6∈ R∗: In this case, we have ID 6= ID∗ from the restriction of Definition 2.2 and the simulator
can use the partitioning method of Boneh and Boyen [4].

1. It first selects an index d ∈N such that (−,d) /∈ ST and adds (ID,d) to ST .
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2. It selects a random exponents r′1 ∈ Zp and creates a private key SKID by implicitly setting r1 =
−a/∆ID+ r′1 as

K0 = gadθ
1 ∏

j∈SI∗\{d}
g−aN+1− j+d

1 (ga
1)

f ′0/∆IDF1(ID)−r′1 , K1 = (ga
1)
−1/∆IDgr′1

1 .

If this is an update key query for a time T , then B defines a revoked identity set R on the time T from RL
and proceeds as follows:

• Case T 6= T ∗: In this case, the simulator can use the partitioning method of Boneh and Boyen [4].

1. It first sets a revoked index set RI of R by using ST . It also sets SI =N \RI.

2. It selects a random exponent r′2 ∈ Zp and creates an update key UKT,R by implicitly setting
r2 =−(−∑ j∈SI∗\SI aN+1− j +∑ j∈SI\SI∗ aN+1− j)/∆T + r′2 as

U0 = (gb
1)

θ
(

∏
j∈SI∗\SI

g−aN+1− j

1 ∏
j∈SI\SI∗

gaN+1− j)−h′0/∆T H1(T )r′2 ,

U1 =
(

∏
j∈SI∗\SI

g−aN+1− j

1 ∏
j∈SI\SI∗

gaN+1− j

1
)−1/∆T gr′2 .

• Case T = T ∗: In this case, we have R = R∗ and the simulator can use the partitioning method of
Boneh et al. [7].

1. For each ID ∈ R∗, it adds (ID,T ∗) to RL if (ID,T ′) /∈ RL for any T ′ ≤ T ∗.

2. It selects a random exponent r2 ∈ Zp and creates an update key UKT,R as

U0 = (gb
1)

θ H1(T ∗)r2 , U1 = g−r2
1 .

If this is a decryption key query for an identity ID and a time T , then B proceeds as follows:

• Case ID 6= ID∗: In this case, the simulator can use the partitioning method of Boneh and Boyen [4].

1. If (ID,−) /∈ ST , then it selects an index d ∈N such that (−,d) /∈ ST and adds (ID,d) to ST .

2. It selects random exponents r′1,r2 ∈Zp and creates a decryption key DKID,T by implicitly setting
r1 = (−a/∆ID+ r′1)b as

D0 = e1,1
(
(ga

1)
− f ′0/∆IDF1(ID)r′1 ,gb

1
)
H2(T )r2 , D1 = e1,1((ga

1)
−1/∆IDgr′1

1 ,g
b), D2 = gr2

2 .

• Case ID = ID∗: In this case, we have T 6= T ∗ from the restriction of Definition 2.2, and the simulator
can use the partitioning method of Boneh and Boyen [4].

1. It selects random exponents r1,r′2 ∈Zp and creates a decryption key DKID,T by implicitly setting
r2 = (−a/∆T + r′2)a

N as

D0 = e1,1
(
(ga

1)
−h′0/∆T H1(T )r′2 ,gaN

1
)
·F2(ID)r1 , D1 = gr1

2 , D2 = e1,1((ga
1)
−1/∆T gr′2

1 ,g
aN

1 ).
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Challenge: A submits two challenge messages M∗0 ,M
∗
1 . B chooses a random bit δ ∈ {0,1} and creates the

challenge ciphertext CT ∗ by implicitly setting s = c as

C = Z ·M∗
δ
, C0 = gc

1, C1 = (gc
1)

f ′0 , C2 = (gc
1)

h′0 .

Phase 2: Same as Phase 1.
Guess: Finally, A outputs a guess δ ′ ∈ {0,1}. B outputs 0 if δ = δ ′ or 1 otherwise.

To finish the proof, we first show that the distribution of the simulation is correct from Lemma 3.2. Let η

be a random bit for Zη . From the above simulation, we have Pr[δ = δ ′|η = 0] = 1
2 +AdvIND-sRL-CPA

RIBE,A (λ ) since
the distribution of the simulation is correct, and we also have Pr[δ = δ ′|η = 1] = 1

2 since δ is completely
hidden to A. Therefore we can obtain the following equation

Adv(3,N)-MDHE
B (λ ) =

∣∣Pr[B(D,Z0) = 0]−Pr[B(D,Z1) = 0]
∣∣

≥
∣∣Pr[δ = δ

′|η = 0]
∣∣− ∣∣Pr[δ = δ

′|η = 1]
∣∣

=
1
2
+AdvIND-sRL-CPA

RIBE,A (λ )− 1
2
= AdvIND-sRL-CPA

RIBE,A (λ ).

This completes our proof.

Lemma 3.2. The distribution of the above simulation is correct if Z = Z0, and the challenge ciphertext is
independent of δ in the adversary’s view if Z = Z1.

Proof. The distribution of public parameters is correct since random exponents f ′0,{ f ′i, j},h′0,{h′i, j},θ ∈ Zp

are chosen.
We show that the distribution of private keys is correct. In case of ID ∈ R∗, we have that the private key

is correctly distributed from the setting γ = θ −∑ j∈SI∗ aN+1− j as the following equation

K0 = gαdγ

1 F1(ID)−r1 = g
ad(θ−∑ j∈SI∗ aN+1− j)

1 F1(ID)−r1 = gadθ
1 ( ∏

j∈SI∗
gaN+1− j+d

1 )−1F1(ID)−r1 .

In case of ID /∈R∗, we have that the private key is correctly distributed from the setting γ = θ−∑ j∈SI∗ aN+1− j

and r1 =−a/∆ID+ r′1 as the following equation

K0 = gαdγ

1 F1(ID)−r1 = gadθ
1 ∏

j∈SI∗
g−aN+1− j+d(

f1,0

l

∏
i=1

f1,i,ID[i]
)−r1

= gadθ
1 ∏

j∈SI∗\{d}
g−aN+1− j+d

1 ·g−aN+1

1

(
g f ′0

1 gaN∆ID
1

)a/∆ID−r′1

= gadθ
1 ∏

j∈SI∗\{d}
g−aN+1− j+d

1 (ga
1)

f ′0/∆IDF1(ID)−r′1 ,

K1 = gr1
1 = (ga

1)
−1/∆IDgr′1

1 .

Next, we show that the distribution of update keys is correct. In case of T 6= T ∗, we have that the
update key is correctly distributed from the setting γ = θ −∑ j∈SI∗ aN+1− j and r2 =−(−∑ j∈SI∗\SI aN+1− j +
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∑ j∈SI\SI∗ aN+1− j)/∆T + r′2 as the following equation

U0 = (gγ

1 ∏
j∈SI

gαN+1− j

1 )β H1(T )r2 = (gθ
1 ( ∏

j∈SI∗
gaN+1− j

1 )−1
∏
j∈SI

gaN+1− j

1 )b(h1,0

t

∏
i=1

h1,i,T [i])
r2

= (gb
1)

θ
(

∏
j∈SI∗\SI

g−aN+1− j

1 ∏
j∈SI\SI∗

gaN+1− j

1
)b(gh′0

1 gb∆T
1
)−(−∑ j∈SI∗\SI aN+1− j+∑ j∈SI\SI∗ aN+1− j)/∆T+r′2

= (gb
1)

θ
(

∏
j∈SI∗\SI

g−aN+1− j

1 ∏
j∈SI\SI∗

gaN+1− j)−h′0/∆T H1(T )r′2 ,

U1 = gr2
1 =

(
∏

j∈SI∗\SI
g−aN+1− j

1 ∏
j∈SI\SI∗

gaN+1− j

1
)−1/∆T gr′2 .

In case of T = T ∗, we have that the update key is correctly distributed from the setting γ = θ−∑ j∈SI∗ aN+1− j

as the following equation

U0 = (gγ

1 ∏
j∈SI∗

gαN+1− j

1 )β H1(T ∗)r2 = (gθ
1 ( ∏

j∈SI∗
gaN+1− j

1 )−1 · ∏
j∈SI∗

gaN+1− j

1 )bH1(T ∗)r2 = (gb
1)

θ H1(T ∗)r2 .

We show that the distribution of decryption keys is correct. In case of ID 6= ID∗, the decryption key
is correctly distributed from the setting logg2

F2(ID) = αN∆ID and r1 = (−α/∆ID+ r′1)b as the following
equation

D0 = gαN+1β

2 F2(ID)r1H2(T )r2 = gaN+1b
2 ( f2,0

l

∏
i=1

f2,i,ID[i])
(−a/∆ID+r′1)bH2(T )r2

= e1,1
(
gaN+1

1 (g f ′0
1 gaN∆ID

1 )−a/∆ID+r′1 ,gb
1
)
H2(T )r2 = e1,1

(
(ga

1)
− f ′0/∆IDF1(ID)r′1 ,gb

1
)
H2(T )r2 ,

D1 = gr1
2 = e1,1(g1,g1)

(−a/∆ID)b = e1,1((ga
1)
−1/∆IDgr′1

1 ,g
b
1).

In case of ID = ID∗, the decryption key is correctly distributed from the setting logg2
H2(T ) = b∆T and

r2 = (−a/∆T + r′2)a
N as the following equation

D0 = gαN+1β

2 F2(ID)r1H2(T )r2 = gaN+1b
2 F2(ID)r1(uT

2,2h2,2)
(−a/∆T+r′2)a

N

= e1,1
(
gab

1 (gb∆T
1 gh′2

1 )−a/∆T+r′2 ,gaN

1
)
F2(ID)r1 = e1,1

(
(ga

1)
−h′0/∆T H1(T )r′2 ,gaN

1
)
F2(ID)r1 ,

D2 = gr2
2 = e1,1(g1,g1)

(−a/∆T+r′2)a
N
= e1,1((ga

1)
−1/∆T gr′2

1 ,g
aN

1 ).

Finally, we show that the distribution of the challenge ciphertext is correct. If Z = Z0 = gaN+1bc
3 is given,

then the challenge ciphertext is correctly distributed as the following equation

C = Ω
s ·M∗

δ
= gaN+1bs

3 ·M∗
δ
= Z0 ·M∗δ , C0 = gs

1 = gc
1,

C1 =
(
g f ′0

1

l

∏
i=1

f1,i,ID∗[i] f
−1
1,i,ID∗[i]

)c
= (gc

1)
f ′0 , C2 =

(
gh′0

1

t

∏
i=1

h1,i,T ∗[i]h
−1
1,i,T ∗[i]

)c
= (gc

1)
h′0 .

Otherwise, the component C of the challenge ciphertext is independent of δ in the A’s view since Z1 is a
random element in G3. This completes our proof.

15



3.5 Discussions

Graded Encoding Systems. The candidate multilinear maps of Garg, Gentry, and Halevi [13] is different
with the leveled multilinear maps in Section 2.2. The main difference is that the encoding of a group element
is randomized in the GGH framework whereas the encoding is deterministic in the leveled multilinear maps.
This means that it is not trivial to check whether two strings encode the same element or not. Thus additional
procedures for this checking are essentially required in the GGH framework. In Appendix A, we define the
graded encoding system of Garg et al. [13] and translate our RIBE scheme into the graded encoding system.

Reducing Public Parameters. In our RIBE scheme, the number of group elements in public parameters is
proportional to the maximum number of users N and the security parameter λ . To reduce the size of public
parameters, we can use the parallel construction technique of PKBE [7]. Additionally, we reduce the public
parameters further since some elements in public parameters can be moved into an update key. The general
RIBE scheme is described in Section 4.

Chosen-Ciphertext Security. The security against chosen-ciphertext attacks (CCA) is similar to the se-
curity against chosen-plaintext attacks (CPA) except that an adversary can request a ciphertext decryption
query. To provide chosen-ciphertext security, we can use the general transformation of Canetti, Halevi,
and Katz [11] since the structure of our RIBE scheme is similar to that of the HIBE scheme of Boneh and
Boyen [4]. That is, we can modify our RIBE scheme to support three-level by providing additional elements,
and then the modified RIBE scheme easily converted to a CCA-secure RIBE scheme since a tree-level HIBE
scheme with CPA security converted to a two-level HIBE scheme with CCA security.

Achieving Full Security. Our RIBE scheme is only secure in the selective revocation list model since the
underlying PKBE scheme of Boneh et al. [7] only provides the static security. If we are willing to use
complexity leveraging arguments, then it can be adaptively secure with loosing an exponential factor in the
security reduction. Alternatively, we may try to use other PKBE schemes that are adaptively secure [18,24],
but it is not yet clear to combine the schemes and prove their security in multilinear maps.

4 Revocable IBE with Shorter Public Parameters

In this section, we propose another RIBE scheme such that the number of public parameters is reduced from
O(N +λ ) to O(λ ) group elements, and prove its security in the selective revocation list model. The basic
idea of our general construction is to use the parallel construction technique of PKBE that reduces the size
of public parameters and ciphertexts [7]. Additionally, we can reduce the size of public parameters further
in our scheme since an authorized authority in RIBE only can broadcast an update key. That is, we can
safely move some elements in public parameters that are used for broadcasting into an update key.

4.1 Construction

Let N be the maximum number of users and m= d
√

Ne. An index d ∈ {1, . . . ,N} is represented as a position
(dx,dy) in a m×m matrix where d = (dy−1)m+dx for some 1≤ dy ≤m and 1≤ dx ≤m. Let SI be a subset
of {1, . . . ,N}, and define SI′k = SI ∩{(k− 1)m+ 1, . . . ,(k− 1)m+m} and SIk = {x− (k− 1)m|x ∈ SI′k} ⊆
{1, . . . ,m}. A subset SI is divided to subsets SI1, . . . ,SIm. LetN = {1, . . . ,N}, I = {0,1}l1 , and T = {0,1}l2 .
Our RIBE scheme with shorter public parameters in 3-leveled multilinear maps is described as follows:

RIBE.Setup(1λ ,N): This algorithm takes as input a security parameter 1λ and the maximum number N of
users.
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1. It first generates 3-leveled multilinear groups ~G = (G1,G2,G3) of prime order p. Let g1,g2,g3
be canonical generators of G1,G2,G3 respectively. Let (p,~G,e1,1,e1,2,e2,1) be the description
of 3-leveled multilinear groups.

2. Next, it selects random elements f1,0,{ f1,i, j}1≤i≤l1, j∈{0,1},h1,0,{h1,i, j}1≤i≤l2, j∈{0,1} ∈G1 and sets

f2,0 = e1,1(g1, f1,0), { f2,i, j = e1,1(g1, f1,i, j)}1≤i≤l1, j∈{0,1},

h2,0 = e1,1(g1,h1,0), {h2,i, j = e1,1(g1,h1,i, j)}1≤i≤l2, j∈{0,1}.

It also sets ~fk = ( fk,0,{ fk,i, j}1≤i≤l1, j∈{0,1}) and ~hk = (hk,0,{hk,i, j}1≤i≤l2, j∈{0,1}) for k ∈ {1,2}.
We define Fk(ID) = fk,0 ∏

l1
i=1 fk,i,ID[i] and Hk(T ) = hk,0 ∏

l2
i=1 hk,i,T [i] where ID[i] is a bit value at

the position i and T [i] is a bit value at the position i.

3. It selects random exponents α,β ,γ1, . . . ,γm ∈Zp. It outputs a master key MK =
(
α,β ,{γ j}1≤ j≤m,

{gα j

1 }1≤ j, j 6=m+1≤2m, gβ

1 , {g
γk
1 }1≤k≤m

)
, an empty revocation list RL, an empty state ST , and pub-

lic parameters as

PP =
(
(p,~G,e1,1,e1,2,e2,1), g1, ~f1, ~h1, ~f2, ~h2, g2, Ω = gαm+1β

3

)
∈G4l1+4l2+5

1 ×G2×G3.

RIBE.GenKey(ID,MK,ST,PP): This algorithm takes as input an identity ID ∈ I, the master key MK, the
state ST , and public parameters PP.

1. It first assigns an index d ∈ N that is not in ST to the identity ID, and updates the state ST by
adding a tuple (ID,d) to ST . Note that we can represent d as (dx,dy).

2. It selects a random exponent r1 ∈ Zp and outputs a private key by implicitly including ID and
the index d as

SKID =
(

K0 = g
αdx γdy
1 F1(ID)−r1 , K1 = g−r1

1

)
∈G2

1.

RIBE.UpdateKey(T,RL,MK,ST,PP): This algorithm takes as input a time T , the revocation list RL, the
master key MK, the state ST , and public parameters PP.

1. It first defines the revoked set R of user identities on the time T from RL. That is, if there exists
(ID′,T ′) such that (ID′,T ′) ∈ RL for any T ′ ≤ T , then ID′ ∈ R.

2. Next, it defines the revoked index set RI ⊆ N of the revoked identity set R by using the state
ST since ST contains (ID,d). It also defines the non-revoked index set SI = N \RI such that
SI = SI1∪·· ·∪SIm.

3. It selects a random exponent r2,1, . . . ,r2,m ∈Zp and outputs an update key by implicitly including
T , R, and the revoked index set RI as

UKT,R =
(
{gα j

1 }1≤ j, j 6=m+1≤2m, gβ

1 ,{
Uk,0 =

(
gγk

1 ∏
j∈SIk

gαm+1− j

1
)β H1(T )r2,k , Uk,1 = g−r2,k

1

}
1≤k≤m

)
∈G4m

1 .

RIBE.DeriveKey(SKID,UKT,R,PP): This algorithm takes as input a private key SKID = (K0,K1) for an
identity ID, an update key UKT,R = ({gα j

1 },g
β

1 ,{Uk,0,Uk,1}) for a time T and a revoked set R of
identities, and the public parameters PP. If ID ∈ R, then it outputs ⊥ since the identity ID is revoked.
Otherwise, it proceeds the following steps:
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1. Let d = (dx,dy) be the index of ID and RI be the revoked index set of R. Note that these are
implicitly included in SK and UK respectively. It sets a non-revoked index set SI =N \RI such
that SI = SI1∪·· ·∪SIm and derives temporal components T0,T1 and T2 as

T0 = e1,1(gαdx

1 ,Udy,0) · e1,1(g
β

1 ,K0 ∏
j∈SIdy , j 6=dx

gαm+1− j+dx

1 )−1,

T1 = e1,1(g
β

1 ,K1), T2 = e1,1(gαdx

1 ,Udy,1).

2. Next, it chooses random exponents r′1,r
′
2 ∈ Zp and re-randomizes the temporal components as

D0 = T0 ·F2(ID)r′1H2(T )r′2 , D1 = T1 ·g
−r′1
2 , D2 = T2 ·g

−r′2
2 .

3. Finally, it outputs a decryption key by implicitly including ID and T as DKID,T =
(
D0,D1,D2

)
∈

G3
2.

RIBE.Encrypt(ID,T,M,PP): This algorithm takes as input an identity ID, a time T , a message M, and the
public parameters PP. It first chooses a random exponent s∈Zp and outputs a ciphertext by implicitly
including ID and T as

CTID,T =
(

C = Ω
s ·M, C0 = gs

1, C1 = F1(ID)s, C2 = H1(T )s
)
∈G3×G3

1.

RIBE.Decrypt(CTID,T ,DKID′,T ′ ,PP): This algorithm takes as input a ciphertext CTID,T = (C,C0,C1,C2), a
decryption key DKID′,T ′ = (D0,D1,D2), and the public parameters PP. If (ID = ID′)∧ (T = T ′), then
it outputs the encrypted message M as M =C ·

(
∏

2
i=0 e1,2(Ci,Di)

)−1. Otherwise, it outputs ⊥.

RIBE.Revoke(ID,T,RL,ST ): This algorithm takes as input an identity ID, a revocation time T , the revo-
cation list RL, and the state ST . If (ID,−) /∈ ST , then it outputs ⊥ since the private key of ID was not
generated. Otherwise, it adds (ID,T ) to RL. It outputs the updated revocation list RL.

4.2 Security Analysis

Theorem 4.1. The above RIBE scheme is secure in the selective revocation list model under chosen plaintext
attacks if the (3,m)-MDHE assumption holds where N is the maximum number of users and m =

√
N. That

is, for any PPT adversary A, we have that AdvIND-sRL-CPA
RIBE,A ≤ Adv(3,m)-MDHE

B .

Proof. Suppose there exists an adversary A that attacks the above RIBE scheme with a non-negligible
advantage. A simulator B that solves the MDHE assumption using A is given: a challenge tuple D =
(g1,ga

1,g
a2

1 , . . . ,gam

1 ,gam+2

1 , . . . ,ga2m

1 ,gb
1,g

c
1) and Z where Z = Z0 = gam+1bc

3 or Z = Z1 ∈R G3. Then B that
interacts with A is described as follows:

Init: A initially submits a challenge identity ID∗, a challenge time T ∗, and a revoked identity set R∗ on the
time T ∗. It first sets a state ST and a revocation list RL as empty one. For each ID ∈ {ID∗}∪R∗, it selects
an index d ∈ N such that (−,d) /∈ ST and adds (ID,d) to ST . Let RI∗ ⊆N be the revoked index set of R∗

on the time T ∗ and SI∗ be the non-revoked index set on the time T ∗ such that SI∗ =N \RI∗. Note that SI∗

is divided to subsets SI∗1 , . . . ,SI∗m.
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Setup: B first chooses random exponents θ1, . . . ,θm ∈ Zp and sets master key elements by implicitly setting
α = a,β = b, {γk = θk−∑ j∈SI∗k

am+1− j} as{
gα j

1 = ga j

1
}

1≤ j, j 6=m+1≤2m, gβ

1 = gb
1,
{

gγk
1 = gθk

1 ∏
j∈SI∗k

(gam+1− j
)−1}

1≤k≤m.

Next, it selects random exponents f ′0,{ f ′i, j}1≤i≤l1, j∈{0,1},h
′
0,{h′i, j}1≤i≤l2, j∈{0,1} ∈Zp and publishes the public

parameters PP as

g1, ~f1 =
(

f1,0 = g f ′0
1

( l1

∏
i=1

f1,i,ID∗[i]
)−1

,
{

f1,i, j = (gaN

1 ) f ′i, j
}

1≤i≤l1, j∈{0,1}
)
,

~h1 =
(
h1,0 = gh′0

1

( l2

∏
i=1

h1,i,T ∗[i]
)−1

,
{

h1,i, j = (gb
1)

h′i, j
}

1≤i≤l2, j∈{0,1}
)
,

~f2 =
(

f2,0 = e1,1(g1, f1,0),{ f2,i, j = e1,1(g1, f1,i, j)}1≤i≤l1, j∈{0,1}
)
,

~h2 =
(
h2,0 = e1,1(g1,h1,0),{h2,i, j = e1,1(g1,h1,i, j)}1≤i≤l2, j∈{0,1}

)
,

g2, Ω = e2,1
(
e1,1(ga

1,g
am

1 ),gb
1
)
= gam+1b

3 .

For notational simplicity, we define ∆ID = ∑
l1
i=1( f ′i,ID[i]− f ′i,ID∗[i]) and ∆T = ∑

l2
i=1(h

′
i,T [i]−h′i,T ∗[i]).

Phase 1: A adaptively requests a polynomial number of private key, update key, and decryption key queries.
If this is a private key query for an identity ID, then B proceeds as follows:

• Case ID ∈ R∗: In this case, the simulator can use the partitioning method of Boneh et al. [7].

1. It first retrieves a tuple (ID,d) from ST where the index d = (dx,dy) is associated with ID. Note
that the tuple (ID,d) exists since all identities in R∗ were added to ST in the initialization step.

2. It selects a random exponent r1 ∈ Zp and creates a private key SKID as

K0 = (gadx

1 )θdy ( ∏
j∈SI∗dy

gam+1− j+dx

1 )−1F1(ID)−r1 , K1 = g−r1
1 .

• Case ID 6∈ R∗: In this case, we have ID 6= ID∗ from the restriction of Definition 2.2 and the simulator
can use the partitioning method of Boneh and Boyen [4].

1. It first selects an index d ∈N such that (−,d) /∈ ST and adds (ID,d) to ST . Note that the index
d can be represented as (dx,dy).

2. It selects a random exponents r′1 ∈ Zp and creates a private key SKID by implicitly setting r1 =
−a/∆ID+ r′1 as

K0 = (gadx

1 )θdy ∏
j∈SI∗dy\{dx}

g−am+1− j+dx

1 (ga
1)

f ′0/∆IDF1(ID)−r′1 , K1 = (ga
1)
−1/∆IDgr′1

1 .

If this is an update key query for a time T , then B defines a revoked identity set R on the time T from RL
and proceeds as follows:

• Case T 6= T ∗: In this case, the simulator can use the partitioning method of Boneh and Boyen [4].
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1. It first sets a revoked index set RI of R by using ST . It also sets SI = N \RI. Note that SI is
divided to SI1, . . . ,SIm.

2. It selects random exponents r′2,1, . . . ,r
′
2,m ∈ Zp and creates an update key UKT,R by implicitly

setting {r2,k =−(−∑ j∈SI∗k \SIk
am+1− j +∑ j∈SIk\SI∗k

am+1− j)/∆T + r′2,k} as

{gα j
1 }1≤ j, j 6=m+1≤2m, gβ

1 ,{
Uk,0 = (gb

1)
θk
(

∏
j∈SI∗k \SIk

g−am+1− j

1 ∏
j∈SIk\SI∗k

gam+1− j)−h′0/∆T H1(T )r′2,k ,

Uk,1 =
(

∏
j∈SI∗k \SIk

g−am+1− j

1 ∏
j∈SIk\SI∗k

gam+1− j

1
)−1/∆T gr′2,k

}
1≤k≤m

.

• Case T = T ∗: In this case, we have R = R∗ and the simulator can use the partitioning method of
Boneh et al. [7].

1. For each ID ∈ R∗, it adds (ID,T ∗) to RL if (ID,T ′) /∈ RL for any T ′ ≤ T ∗.
2. It selects random exponents r2,1, . . . ,r2,m ∈ Zp and creates an update key UKT,R as

{gα j
1 }1≤ j, j 6=m+1≤2m, gβ

1 ,
{

Uk,0 = (gb
1)

θk H1(T ∗)r2,k , Uk,1 = g−r2,k
1

}
1≤k≤m

.

If this is a decryption key query for an identity ID and a time T , then B proceeds as follows:

• Case ID 6= ID∗: In this case, the simulator can use the partitioning method of Boneh and Boyen [4].

1. If (ID,−) /∈ ST , then it selects an index d ∈N such that (−,d) /∈ ST and adds (ID,d) to ST .
2. It selects random exponents r′1,r2 ∈Zp and creates a decryption key DKID,T by implicitly setting

r1 = (−a/∆ID+ r′1)b as

D0 = e1,1
(
(ga

1)
− f ′0/∆IDF1(ID)r′1 ,gb

1
)
H2(T )r2 , D1 = e1,1((ga

1)
−1/∆IDgr′1

1 ,g
b), D2 = gr2

2 .

• Case ID = ID∗: In this case, we have T 6= T ∗ from the restriction of Definition 2.2, and the simulator
can use the partitioning method of Boneh and Boyen [4].

1. It selects random exponents r1,r′2 ∈Zp and creates a decryption key DKID,T by implicitly setting
r2 = (−a/∆T + r′2)a

m as

D0 = e1,1
(
(ga

1)
−h′0/∆T H1(T )r′2 ,gam

1
)
F2(ID)r1 , D1 = gr1

2 , D2 = e1,1((ga
1)
−1/∆T gr′2

1 ,g
am

1 ).

Challenge: A submits two challenge messages M∗0 ,M
∗
1 . B chooses a random bit δ ∈ {0,1} and creates the

challenge ciphertext CT ∗ by implicitly setting s = c as

C = Z ·M∗
δ
, C0 = gc

1, C1 = (gc
1)

f ′0 , C2 = (gc
1)

h′0 .

Phase 2: Same as Phase 1.
Guess: Finally, A outputs a guess δ ′ ∈ {0,1}. B outputs 0 if δ = δ ′ or 1 otherwise.

To finish the proof, we should show that the distribution of the simulation is correct. The distribution
of private keys, update keys, and decryption keys is correct since the simulation of these keys is almost
the same as that of Theorem 3.1 except that it uses a matrix to represent an identity. The distribution of the
challenge ciphertext is correct since it is also the same as that of Theorem 3.1. This completes our proof.
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5 Conclusion

In this paper, we devised a new technique for RIBE that uses multilinear maps to combine an IBE scheme
with a PKBE scheme. Following our technique, we first proposed an RIBE scheme with a constant number
of private key elements and update key elements by combining the HIBE scheme of Boneh and Boyen [4]
and the PKBE scheme of Boneh, Gentry, and Waters [7], and then we proved its security in the selective re-
vocation list model. Next, we proposed another RIBE scheme that reduces the number of public parameters
from O(N+λ ) to O(λ ) group elements whereas the number of update key elements increases from O(1) to
O(
√

N) where N is the maximum number of users. We expect that our technique will open a new direction
to build an efficient RIBE scheme and their extensions.

There are many interesting open problems in RIBE. The first one is to construct an RIBE scheme with
a constant number of private key elements and update key elements that is secure in the adaptive security
model instead of the selective revocation list model. The second one is to construct a revocable HIBE
(RHIBE) scheme with better parameters. RHIBE provides the private key delegation functionality and the
revocation functionality for each user. The RHIBE scheme of Seo and Emura [33] has O(l2 logN) number
of private key elements and O(r log(N/r)) number of update key elements where l is the depth of hierarchy,
N is the maximum number of users, and r is the maximum number of revoked users. The third one is to
build an RIBE scheme with a constant number of private key elements and update key elements that can
handle exponential number of users in the system.
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A Revocable IBE in Graded Encoding Systems

In this section, we translate our RIBE scheme in Section 3 into the graded encoding system of Garg, Gentry,
and Halevi [13].

A.1 Graded Encoding Systems

We recall the formal definition of a k-graded encoding system and the procedures for the manipulation of
this encoding in [13].

Definition A.1 (k-Graded Encoding System [13]). A k-Graded Encoding System for a ring R is a system of
sets S = {S(α)

i ⊂ {0,1}∗ : i ∈ [0,k],α ∈ R}, with the following properties:

1. For every i ∈ [0,k], the sets {S(α)
i : α ∈ R} are disjoint .

2. There are binary operations + and − (on {0,1}∗) such that for every α1,α2 ∈ R, every i ∈ [0,k], and
every u1 ∈ S(α1)

i and u2 ∈ S(α2)
i , it holds that u1 +u2 ∈ S(α1+α2)

i and u1−u2 ∈ S(α1−α2)
i where α1 +α2

and α1−α2 are addition and subtraction in R.

3. There is an associative binary operation× (on {0,1}∗) such that for every α1,α2 ∈ R, every i1, i2 with
0 ≤ i1 + i2 ≤ k, and every u1 ∈ S(α1)

i1 and u2 ∈ S(α2)
i2 , it holds that u1× u2 ∈ S(α1·α2)

i1+i2 where α1 ·α2 is
multiplication in R.

The k-graded encoding system for a ring R includes a system for sets S = {S(α)
i ⊂ {0,1}∗ : i∈ [0,k],α ∈

R}. The set S(α)
i consists of the “level-i encodings of α”. Moreover, the system is equipped with efficient

procedures.

Definition A.2 (Efficient Procedures for a k-Graded Encoding System [13]). A k-Graded Encoding System
(see above) consists of the following efficient procedures:
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Instance Generation. The randomized InstGen(1λ ,1k) takes as inputs the parameters λ and k, and outputs
(params, pzt), where params is a description of a k-Graded Encoding System as above, and pzt is a
zero-test parameter.

Ring Sampler. The randomized samp(params) outputs a “level-zero encoding” a ∈ S(α)
0 for a nearly uni-

form element α ∈R R. Note that the encoding a does not need to be uniform in S(α)
0 .

Encoding. The (possibly randomized) enc(params,a) takes as input a level-zero encoding a∈ S(α)
0 for some

α ∈ R, and outputs the level-one encoding u ∈ S(α)
1 for the same α .

Re-Randomization. The randomized rerand(params, i,u) re-randomizes encodings relative to the same
level i, Specifically, given an encoding u ∈ S(α)

i , it outputs another encoding u′ ∈ S(α)
i . Moreover for

any two u1,u2 ∈ S(α)
i , the output distributions of rerand(params, i,u1) and rerand(params, i,u2) are

nearly the same.

Addition and negation. Given params and two encodings relative to the same level, u1 ∈ S(α1)
i and u2 ∈

S(α2)
i , we have add(params,u1,u2) ∈ S(α1+α2)

i and neg(params,u1) ∈ S(−α1)
i . Below we write u1 +u2

and −u1 as a shorthand for applying these procedures.

Multiplication. For u1 ∈ S(α1)
i and u2 ∈ S(α2)

j , we have mul(params,u1,u2) ∈ S(α1·α2)
i+ j . Below we write

u1 ·u2 as a shorthand for applying this procedure.

Zero-test. The procedure isZero(params, pzt ,u) outputs 1 if u ∈ S(α)
k and 0 otherwise.

Extraction. The procedure extracts a random function of ring elements from their level-k encoding. Namely
ext(params, pzt ,u) outputs s ∈ {0,1}λ , such that:

1. For any α ∈ R and two u1,u2 ∈ S(α)
k , ext(params, pzt ,u1) = ext(params, pzt ,u2).

2. The distribution {ext(params, pzt ,u) : α ∈R R,u ∈ S(α)
κ } is nearly uniform over {0,1}λ .

For notational simplicity, we omit the repeated params arguments that are passed to input arguments in
all algorithms. For instance, we write a = samp() instead of a = samp(params).

A.2 Construction

Let N = {1, . . . ,N}, I = {0,1}l1 , and T = {0,1}l2 . Our RIBE scheme in the 3-graded encoding system is
described as follows:

RIBE.Setup(1λ ,N): This algorithm takes as input a security parameter 1λ and the maximum number N of
users.

1. It first obtains (params, pzt) by running InstGen(1λ ,13). Note that params includes a level 1
encoding of 1, which is denoted as g1.
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2. Next, it chooses random encodings f ′0,{ f ′i, j}1≤i≤l1, j∈{0,1},h
′
0,{h′i, j}1≤i≤l2, j∈{0,1} by freshly call-

ing samp() and sets

f1,0 = rerand(1,enc(1, f ′0)), { f1,i, j = rerand(1,enc(1, f ′i, j))}1≤i≤l1, j∈{0,1},

h1,0 = rerand(1,enc(1,h′0)), {h1,i, j = rerand(1,enc(1,h′i, j))}1≤i≤l2, j∈{0,1},

f2,0 = rerand(2,g1 · f1,0), { f2,i, j = rerand(2,g1 · f1,i, j)}1≤i≤l1, j∈{0,1},

h2,0 = rerand(2,g1 ·h1,0), {h2,i, j = rerand(2,g1 ·h1,i, j)}1≤i≤l2, j∈{0,1}.

It also sets ~fk = ( fk,0,{ fk,i, j}1≤i≤l1, j∈{0,1}) and~hk = (hk,0,{hk,i, j}1≤i≤l2, j∈{0,1}) for k ∈ {1,2}.
3. It chooses random encodings α,β ,γ by freshly calling samp(). It outputs a master key MK =

(α,β ,γ), an empty revocation list RL, an empty state ST , and public parameters as

PP =
(
(params, pzt), {A j = rerand(1,enc(1,α j))}1≤ j, j 6=N+1≤2N , B = rerand(1,enc(1,β )),

~f1,~h1, ~f2,~h2, Ω = rerand(3,enc(3,αN+1
β ))
)
.

RIBE.GenKey(ID,MK,ST,PP): This algorithm takes as input an identity ID ∈ I, the master key MK, the
state ST , and public parameters PP.

1. It first assigns an index d ∈ N that is not in ST to the identity ID, and updates the state ST by
adding a tuple (ID,d) to ST .

2. It chooses a random encoding r1 by calling samp() and outputs a private key by implicitly
including ID and the index d as

SKID =
(

K0 = rerand(1,enc(1,αd · γ)+( f1,0 +
l1

∑
i=1

f1,i,ID[i]) · (−r1)),

K1 = rerand(1,enc(1,−r1))
)
.

RIBE.UpdateKey(T,RL,MK,ST,PP): This algorithm takes as input a time T , the revocation list RL, the
master key MK, the state ST , and public parameters PP.

1. It first defines the revoked set R of user identities on the time T from RL. That is, if there exists
(ID′,T ′) such that (ID′,T ′) ∈ RL for any T ′ ≤ T , then ID′ ∈ R.

2. Next, it defines the revoked index set RI ⊆N of the revoked identity set R by using the state ST
since ST contains (ID,d). It also defines the non-revoked index set SI =N \RI.

3. It chooses a random encoding r2 by calling samp() and outputs an update key by implicitly
including T , R, and the revoked index set RI as

UKT,R =
(

U0 = rerand(1,enc(1,(γ + ∑
j∈SI

α
N+1− j) ·β )+(h1,0 +

l2

∑
i=1

h1,i,T [i]) · r2)),

U1 = rerand(1,enc(1,−r2))
)
.

RIBE.DeriveKey(SKID,UKT,R,PP): This algorithm takes as input a private key SKID = (K0,K1) for an
identity ID, an update key UKT,R = (U0,U1) for a time T and a revoked set R of identities, and the
public parameters PP. If ID ∈ R, then it outputs ⊥ since the identity ID is revoked. Otherwise, it
proceeds the following steps:
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1. Let d be the index of ID and RI be the revoked index set of R. Note that these are implicitly
included in SK and UK respectively. It sets a non-revoked index set SI = N \RI and derives
temporal components T0,T1 and T2 as

T0 = rerand(2,(Ad ·U0−B · (K0 + ∏
j∈S, j 6=d

AN+1− j+d))),

T1 = rerand(2,B ·K1), T2 = rerand(2,Ad ·U1).

2. Next, it selects random encodings r′1,r
′
2 by freshly calling samp() and re-randomizes the tem-

poral components as

D0 = rerand(2,T0 +( f2,0 +
l1

∑
i=1

f2,i,ID[i]) · r′1 +(h2,0 +
l2

∑
i=1

h2,i,T [i]) · r′2),

D1 = rerand(2,T1 + enc(2,−r′1)), D2 = rerand(2,T2 + enc(2,−r′2)).

Note that the components of the decryption key are formed as D0 = rerand(2,enc(2,αN+1β )+
( f2,0+∑

l1
i=1 f2,i,ID[i])·r′′1 +(h2,0+∑

l2
i=1 h2,i,T [i])·r′′2),D1 = rerand(2,enc(2,−r′′1)),D2 = rerand(2,

enc(2,−r′′2)) where r′′1 = β · r1 + r′1 and r′′2 = αd · r2 + r′2.

3. Finally, it outputs a decryption key by implicitly including ID and T as DKID,T =
(
D0,D1,D2

)
.

RIBE.Encrypt(ID,T,M,PP): This algorithm takes as input an identity ID, a time T , a message bit M ∈
{0,1}, and the public parameters PP. It first chooses a random encoding s by calling samp(). If
M = 0, it sets C = rerand(3,Ω · s). Otherwise, it sets C = rerand(3,enc(3,samp())). It outputs a
ciphertext by implicitly including ID and T as

CTID,T =
(

C, C0 = rerand(1,enc(1,s)), C1 = rerand(1,( f1,0 +
l1

∑
i=1

f1,i,ID[i]) · s),

C2 = rerand(1,(h1,0 +
l2

∑
i=1

h1,i,T [i]) · s)
)
.

RIBE.Decrypt(CTID,T ,DKID′,T ′ ,PP): This algorithm takes as input a ciphertext CTID,T = (C,C0,C1,C2), a
decryption key DKID′,T ′ = (D0,D1,D2), and the public parameters PP. If (ID = ID′)∧ (T = T ′), then
it computes C′ =C1 ·D1+C2 ·D2 and outputs M = 1 if C =C′ by using isZero(pzt ,C−C′) and M = 0
otherwise. Otherwise, it outputs ⊥.

RIBE.Revoke(ID,T,RL,ST ): This algorithm takes as input an identity ID, a revocation time T , the revo-
cation list RL, and the state ST . If (ID,−) /∈ ST , then it outputs ⊥ since the private key of ID was not
generated. Otherwise, it adds (ID,T ) to RL. It outputs the updated revocation list RL.

Remark A.3. Although we can translate our RIBE scheme in Section 3 into the GGH framework, we cannot
directly translate the security proof in Section 3 into the GGH framework since a level-zero encoding is
defined for a ring R in the GGH framework instead of Zp.
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