New Constructions of Revocable Identity-Based Encryption from Multilinear Maps

Seunghwan Park* Kwangsu Lee ${ }^{\dagger} \quad$ Dong Hoon Lee ${ }^{\ddagger}$

Abstract

A revocation mechanism in cryptosystems for a large number of users is absolutely necessary to maintain the security of whole systems. A revocable identity-based encryption (RIBE) provides an efficient revocation method in IBE that a trusted authority periodically broadcasts an update key for nonrevoked users and a user can decrypt a ciphertext if he is not revoked in the update key. Boldyreva, Goyal, and Kumar (CCS 2008) defined RIBE and proposed an RIBE scheme that uses a tree-based revocation encryption scheme to revoke users. However, this approach has an inherent limitation that the number of private key elements and update key elements cannot be constant. In this paper, to overcome the previous limitation, we devise a new technique for RIBE and propose RIBE schemes with a constant number of private key elements. We achieve the following results:

- We first devise a new technique for RIBE that combines hierarchical IBE (HIBE) scheme and a public-key broadcast encryption (PKBE) scheme by using multilinear maps. In contrast to the previous technique for RIBE, our technique uses a PKBE scheme in bilinear maps for revocation to achieve short private keys and update keys.
- Following our new technique for RIBE, we propose an RIBE scheme in 3-leveled multilinear maps that combines the HIBE scheme of Boneh and Boyen (Eurocrypt 2004) and the PKBE scheme of Boneh, Gentry, and Waters (Crypto 2005). The private key and update key of our scheme have a constant number of group elements. We introduce a new complexity assumption in multilinear maps and prove the security of our scheme in the selective revocation list model.
- Next, we propose another RIBE scheme that reduces the number of public parameters by using the parallel construction technique of PKBE. We could reduce the number of public parameters by using the fact that only the trusted authority in RIBE can broadcast an update key.

Keywords: Identity-based encryption, Key revocation, Broadcast encryption, Multilinear maps.

[^0]
1 Introduction

Providing an efficient revocation mechanism in cryptosystems for a large number of users is very important since it can prevent a user from accessing sensitive data in cryptosystems by revoking a user whose private key is revealed or a user whose credential is expired. In public-key encryption (PKE) that employs the public-key infrastructure (PKI), there are many studies that deal with the certificate revocation problem [1, 14, 27, 29]. In identity-based encryption (IBE) [6,34], a natural approach for this revocation problem that is that a trusted authority periodically renews a user's private key for his identity and a current time period and a sender creates a ciphertext for a receiver identity and a current time period. However, this approach has some problems that the trusted authority should be always online to renew user's private keys, all users should always renew their private key regardless of whether their private keys are revoked or not, and a secure channel should be established between the trusted authority and a user to transmit a renewed private key.

An IBE scheme that provides an efficient revocation mechanism (RIBE) was proposed by Boldyreva, Goyal, and Kumar [3]. In RIBE, each user receives a (long-term) private key $S K_{I D}$ for his identity ID from a trusted authority, and the trusted authority periodically broadcasts an update key $U K_{T, R}$ on a current time T by including a revoked identity set R. If a user with a private key $S K_{I D}$ is not revoked by the revoked identity set R of the update key $U K_{T, R}$, then he can derive his (short-term) decryption key $D K_{I D, T}$ from his private key $S K_{I D}$ and the update key $U K_{T, R}$. This decryption key can be used to decrypt a ciphertext $C T_{I D, T}$ for a receiver identity $I D$ and a time period T. The main advantage of this approach is that the trusted authority can be offline since the authority only need to broadcast the update key periodically. To build an RIBE scheme, Boldyreva et al. [3] used the tree-based revocation encryption scheme of Naor, Naor, and Lotspiech [28] for revocation and the ABE scheme of Sahai and Waters [31] for encryption on an identity and a time period. Other RIBE schemes also follow this design approach that uses the tree-based revocation encryption scheme for revocation [26, 32, 33]. This design approach, however, has an inherent limitation that the number of private key elements and update key elements cannot be constant since a private key is associated with path nodes in a tree and an update key is associated with covering nodes in the tree [28]. Therefore, in this paper, we ask the following questions for RIBE: "Can we build an RIBE scheme with a constant number of private key elements and update key elements? Can we devise a new technique for efficient RIBE that is different with the previous approach?"

1.1 Our Results

In this work, we give affirmative answers for the above questions. That is, we first devise a new technique for RIBE that is quite different from the previous technique, and we propose two RIBE schemes with a constant number of private key elements. The following is our results:
New Techniques for Revocable IBE. The previous RIBE schemes [3, 26, 33] use IBE (or ABE) schemes for the main encryption functionality and the tree-based revocation encryption of Naor, Naor, and Lotspiech [28] for the revocation functionality. As mentioned, the inherent limitation of the tree-based revocation encryption scheme is that the number of private key elements and update key elements cannot be constant. To achieve an RIBE scheme with a constant number of private key elements and update key elements, we observe that PKBE schemes [7, 18] in bilinear groups can be directly used for delivering a partial key of IBE to non-revoked users since these broadcast schemes have short private keys and short ciphertexts. That is, the private key $S K_{I D, T}$ of a 2 -level HIBE scheme with an identity $I D$ and a time period T is divided into two partial keys $S K_{I D}^{\prime}$ and $S K_{T}^{\prime}$. A user's actual key consists of $S K_{I D}^{\prime}$ and the private key of PKBE,

Table 1: Comparison of revocable identity-based encryption schemes

Scheme	PP Size	SK Size	UK Size	Security Model	Maps	Assumption
BGK [3]	$O(1)$	$O(\log N)$	$O(r \log (N / r))$	Selective	Bilinear	DBDH
LV [26]	$O(\lambda)$	$O(\log N)$	$O(r \log (N / r))$	Adaptive	Bilinear	DBDH
SE [33]	$O(\lambda)$	$O(\log N)$	$O(r \log (N / r))$	Adaptive	Bilinear	DBDH
Ours	$O(N+\lambda)$	$O(1)$	$O(1)$	SelectiveRL	Multilinear	$(3, N)$-MDHE
Ours	$O(\lambda)$	$O(1)$	$O(\sqrt{N})$	SelectiveRL	Multilinear	$(3, N)$-MDHE

$\lambda=$ a security parameter, $N=$ the maximum number of users, $r=$ the maximum number of revoked users.
SelectiveRL $=$ selective revocation list.
and a trusted authority broadcasts an update key $U K_{T, R}$ that is the encryption of $S K_{T}^{\prime}$ that excludes revoked users R. If the user is not revoked, then he can derive $S K_{I D, T}$ of HIBE by combining $S K_{I D}^{\prime}$ in his actual key and $S K_{T}^{\prime}$ in $U K_{T, R}$. However, this simple RIBE scheme is vulnerable under a simple attack. That is, if an adversary corrupts a user $I D$ at time T^{\prime}, then he can obtain a partial key $S K_{I D}^{\prime}$ and a PKBE key for $I D$. The adversary then can decrypt a previous ciphertext $C T_{I D, T}$ such that $T<T^{\prime}$ by obtaining a partial key $S K_{T}^{\prime}$ from $U K_{T, R}$ since the PKBE key that was obtained at time T^{\prime} still can be applied to decrypt $U K_{T, R}$ at time T. To overcome the simple attack, we set the private key $S K$ of RIBE by tying the private key of HIBE and the private key of PKBE, and set the update key $U K$ of RIBE by tying the private key of HIBE and the ciphertext of PKBE. However, this RIBE scheme has another problem such that a decryption key derived from a private key and an update key by performing a pairing operation cannot be used to decrypt a ciphertext since the decryption key is the result of the pairing operation in bilinear groups. To solve this new problem, we use multilinear maps that were recently proposed by Garg, Gentry, and Halevi [13]. The detailed techniques are discussed below in this section.
RIBE with Shorter Private Keys and Update Keys. We first propose an RIBE scheme with a constant number of private key elements and update key elements by applying our new technique for RIBE on the 3-leveled multilinear maps. For a concrete RIBE construction, we use the PKBE scheme of Boneh, Gentry, and Waters [7] for revocation and the HIBE scheme of Boneh and Boyen [4] for encryption on an identity ID and a time T. The public parameters, the private key, the update key, and the ciphertext of our RIBE scheme just consist of $O(N+\lambda), O(1), O(1)$, and $O(1)$ group elements respectively. As we know, our RIBE scheme is the first one that achieves a constant number of private key elements and update key elements. To prove the security of our RIBE scheme, we introduce a new complexity assumption named Multilinear DiffieHellman Exponent (MDHE) that is a natural multilinear version of the Bilinear Diffie-Hellman Exponent (BDHE) assumption of Boneh et al. [7]. Using the MDHE assumption, we prove the security of our scheme in the selective revocation list model where an adversary should submits a challenge identity, a challenge time, and the revoked set of identities on the challenge time initially.
RIBE with Shorter Pubic Parameters and Private Keys. The number of public parameter elements in our first RIBE scheme is proportional to the maximum number of users. To overcome this problem, we propose another RIBE scheme with shorter public parameters by employing the parallel construction method of Boneh et al. [7]. The interesting feature of this RIBE scheme is that the public parameters just consist of $O(\lambda)$ group elements whereas the public key of the general PKBE scheme of Boneh et al. [7] consists of $O(\sqrt{N})$ group elements. The main reason of this difference is that a trusted authority only can broadcast an update key in RIBE whereas anyone can broadcast a ciphertext in PKBE. We also prove the security of our
scheme in the selective revocation list model under the MDHE assumption.

1.2 Our Technique

To devise an RIBE scheme with a constant number of private key elements and update key elements, we use the PKBE scheme of Boneh, Gentry, and Waters [7] for revocation instead of using the revocation encryption of Naor, Naor, and Lotspiech [28]. The revocation encryption of the NNL framework mainly uses a tree for broadcasting, and it is hard to provide a constant number of RIBE private key elements since the private key of the NNL framework is associated with path nodes in the tree and the update key is associated with subset covering nodes in the tree [28]. The PKBE scheme of Boneh et al. [7], by contrast, can provide a constant number of RIBE private key elements since the PKBE scheme has a constant number of private key elements.

For our RIBE construction, we use the PKBE scheme of Boneh et al. [7] for revocation and the 2level HIBE scheme of Boneh and Boyen [4] for encryption on an identity $I D$ and a time period T. As mentioned before, the simple approach is vulnerable under a simple attack. To solve this problem, we first set the RIBE private key as $S K_{I D}=\left(g^{\alpha^{d} \gamma} F(I D)^{r_{1}}, g^{r_{1}}\right)$ that is a careful combination of the PKBE private key $S K_{B E, d}=g^{\alpha^{d} \gamma}$ and the HIBE private key $S K_{H I B E, I D}=\left(g^{a} F(I D)^{r_{1}}, g^{r_{1}}\right)$ where an index d is associated with the identity $I D$ and $F(\cdot)$ is a function from identities to group elements. That is, we replace the master key part g^{a} of the HIBE private key component with the PKBE private key component. Next, we set the RIBE update key as $U K_{T, R}=\left(\left(g^{\gamma} \prod_{j \in \mathcal{N} \backslash R} g^{\alpha^{N+1-j}}\right)^{\beta} H(T)^{r_{2}}, g^{r_{2}}\right)$ that is a careful combination of the PKBE ciphertext $C T_{B E, R}=\left(g^{\beta},\left(g^{\gamma} \prod_{j \in \mathcal{N} \backslash R} g^{N+1-j}\right)^{\beta}\right)$ for a revocation set R and the HIBE private key $S K_{H I B E, T}=\left(g^{a} H(T)^{r_{2}}, g^{r_{2}}\right)$ on an update time T where $H(\cdot)$ is a function from times to group elements. That is, we replace the master key part g^{a} of the HIBE private key component with the PKBE ciphertext component. If a user with a private key $S K_{I D}$ is not revoked in an update key $U K_{T, R}$ on a time T, then he can derive a decryption key $D K_{I D, T}=\left(g^{\alpha^{N+1} \beta} F(I D)^{r_{1}} H(T)^{r_{2}}, g^{r_{1}}, g^{r_{2}}\right)$ for his identity $I D$ and the time T. This decryption key can be used to decrypt a ciphertext $C T_{I D, T}=\left(e\left(g^{\alpha^{N+1}}, g^{\beta}\right)^{s} \cdot M, g^{s}, F(I D)^{s}, H(T)^{s}\right)$.

However, there is a big problem in the above idea. That is, a session key that is derived from the ciphertext and the private key of PKBE in bilinear groups is an element of \mathbb{G}_{T} and this session key cannot be used for pairing in bilinear groups. This means that the RIBE decryption key $D K_{I D, T}$ that is related with the session key of PKBE cannot be used to decrypt a RIBE ciphertext $C T_{I D, T}$ since the pairing operation cannot be applicable any longer. To solve this problem, we use 3-leveled multilinear maps [13]. Note that bilinear maps correspond to 2-leveled multilinear maps. In our RIBE scheme that uses 3-leveled multilinear maps, a private key $S K_{I D}$ is in \mathbb{G}_{1}, an update key $U K_{T, R}$ is in \mathbb{G}_{1}, a decryption key $D K_{I D, T}$ is in \mathbb{G}_{2}, and a ciphertext $C T_{I D, T}$ is in \mathbb{G}_{1}. The ciphertext $C T_{I D, T}$ in \mathbb{G}_{1} and the decryption key $D K_{I D, T}$ in \mathbb{G}_{2} can be used to derive a session key by using a bilinear map $e_{1,2}(-,-)$ that is additionally provided by 3 -leveled multilinear maps. Therefore, we can build an RIBE scheme with a constant number of private key elements and update key elements from 3-leveled multilinear maps.

1.3 Related Work

Identity-Based Encryption and Its Extensions. IBE, introduced by Shamir [34], can solve the key management problem of PKE since it uses an identity string as a public key instead of using a random value. The first IBE scheme was proposed by Boneh and Franklin [6] by using bilinear groups, and many other IBE schemes were proposed in bilinear maps [4, 15, 35]. IBE also can be realized under different primitives like quadratic residues or lattices [12, 16]. Another importance of IBE is that it has many surprising
extensions like hierarchical IBE (HIBE), attribute-based encryption (ABE), predicate encryption (PE), and functional encryption (FE). HIBE was introduced by Horwitz and Lynn [21] and it additionally provides private key delegation functionality [4, 5, 17, 36]. ABE was introduced by Sahai and Waters [31] and it can provide access controls on ciphertexts by associating a ciphertext with attributes and a private key with a policy [20, 25]. PE can provide searches on encrypted data by hiding attributes in ciphertexts [10, 22]. Recently, the concept of FE that includes all the extensions of IBE was introduced by Boneh, Sahai, and Waters [8], and it was shown that FE schemes for general circuits can be constructed [19].
Revocation in IBE. As mentioned, providing an efficient revocation mechanism that can revoke a user whose private key is revealed is a very important issue in cryptosystems. In PKE that employs the publickey infrastructure (PKI), the certificate revocation problem was widely studied [1, 14, 27, 29]. In IBE, there are some work that deal with the key revocation problem [2, 3, 6, 26,33]. We can categorize the revocation methods for IBE as the following two ways. The first revocation method is that a trusted authority periodically broadcasts a revoked user set R and a sender creates a ciphertext by additionally including a receiver set S that excludes the revoked user set R [2]. That is, this method conceptually combines an IBE scheme with a PKBE scheme. Though this method is simple to construct and does not require a user to update his private key, the sender should check the validity of the revoked list and the sender has the responsibility for the revocation. Ideally, the sender should proceed as in any IBE scheme and encrypt a message without worrying about potential revoked users.

The second revocation method is that a sender creates a ciphertext for a receiver identity $I D$ and a time T and a receiver periodically updates his private key on a time T from a trusted authority if he is not revoked on the time T. That is, this method can revoke a user by preventing the user to obtain his key components from the authority. Boneh and Franklin [6] proposed a revocable IBE scheme by representing a user's identity as $I D \| T$ and a user periodically receives his private key on a time T by communicating with the authority. However, this RIBE scheme is impractical for a large number of users since all users should be connected to the authority to receive his private key. To improve the efficiency of RIBE, Boldyreva, Goyal, and Kumar [3] proposed a new RIBE scheme that a trusted authority periodically broadcasts an update key for a time T and non-revoked users by using the revocation encryption of Naor et al. [28]. After that, many other RIBE schemes were proposed by following this design principle [26,32,33]. Recently, Sahai et al. [30] proposed a revocable-storage ABE scheme for cloud storage by extending the idea of RIBE schemes, and Lee et al. [23] proposed an improved revocable-storage ABE scheme and a revocable-storage PE scheme.

2 Preliminaries

In this subsection, we first define revocable identity-based encryption (RIBE) and its security model, and then we review multilinear maps and complexity assumptions for our RIBE schemes.

2.1 Revocable Identity-Based Encryption

Revocable identity-based encryption (RIBE) is an extension of identity-based encryption (IBE) such that a user with an identity $I D$ can be revoked later if his credential is expired [3]. In RIBE, each user receives his (long-term) private key that is associated with an identity $I D$ from a key generation center. After that, the key generation center periodically broadcasts an update key for the non-revoked set of users where the update key is associated with a time T and a revoked set R. If a user is not revoked in the update key, then he can derive his (short-term) decryption key for his identity $I D$ and the current time T from the private key
and the update key. Using the decryption key for $I D$ and T, the user can decrypt a ciphertext for a receiver identity $I D_{c}$ and a time T_{c} if $I D=I D_{c}$ and $T=T_{c}$. The following is the syntax of RIBE.

Definition 2.1 (Revocable IBE). A revocable IBE (RIBE) scheme that is associated with the identity space \mathcal{I}, the time space \mathcal{T}, and the message space \mathcal{M}, consists of seven algorithms Setup, GenKey, UpdateKey, DeriveKey, Encrypt, Decrypt, and Revoke, which are defined as follows:
$\boldsymbol{S e t u p}\left(1^{\lambda}, N\right)$: The setup algorithm takes as input a security parameter 1^{λ} and the maximum number of users N. It outputs a master key MK, an (empty) revocation list RL, a state ST, and public parameters $P P$.

GenKey(ID, $M K, S T, P P)$: The private key generation algorithm takes as input an identity $I D \in \mathcal{I}$, the master key $M K$, the state $S T$, and public parameters PP. It outputs a private key $S K_{I D}$ for ID and an updated state ST.
$\operatorname{Update} \operatorname{Key}(T, R L, M K, S T, P P)$: The update key generation algorithm takes as input an update time $T \in \mathcal{T}$, the revocation list RL, the master key $M K$, the state $S T$, and the public parameters $P P$. It outputs an update key $U K_{T, R}$ for T and R where R is a revoked identity set on the time T.

DeriveKey $\left(S K_{I D}, U K_{T, R}, P P\right)$: The decryption key derivation algorithm takes as input a private key $S K_{I D}$, an update key $U K_{T, R}$, and the public parameters PP. It outputs a decryption key $D K_{I D, T}$ or \perp.

Encrypt $(I D, T, M, P P)$: The encryption algorithm takes as input an identity $I D \in \mathcal{I}$, a time T, a message $M \in \mathcal{M}$, and the public parameters $P P$. It outputs a ciphertext $C T_{I D, T}$ for ID and T.

Decrypt $\left(C T_{I D, T}, D K_{I D^{\prime}, T^{\prime}}, P P\right)$: The decryption algorithm takes as input a ciphertext $C T_{I D, T}$, a decryption key $D K_{I D^{\prime}, T^{\prime}}$, and the public parameters PP. It outputs an encrypted message M or \perp.

Revoke(ID,T,RL,ST): The revocation algorithm takes as input an identity ID to be revoked and a revocation time T, a revocation list RL, and a state ST. It outputs an updated revocation list $R L$.

The correctness property of RIBE is defined as follows: For all MK, RL, ST, and PP generated by $\operatorname{Setup}\left(1^{\lambda}, N\right)$, $S K_{I D}$ generated by GenKey (ID,MK,ST, PP) for any ID, $U K_{T, R}$ generated by UpdateKey $(T, R L, M K, S T, P P)$ for any T and $R L, C T_{I D_{c}, T_{c}}$ generated by Encrypt $\left(I D_{c}, T_{c}, M, P P\right)$ for any $I D_{c}, T_{c}$, and M, it is required that

- If $(I D \notin R)$, then DeriveKey $\left(S K_{I D}, U K_{T, R}, P P\right)=D K_{I D, T}$.
- If $(I D \in R)$, then DeriveKey $\left(S K_{I D}, U K_{T, R}, P P\right)=\perp$ with all but negligible probability.
- If $\left(I D_{c}=I D\right) \wedge\left(T_{c}=T\right)$, then Decrypt $\left(C T_{I D_{c}, T_{c}}, D K_{I D, T}, P P\right)=M$.
- If $\left(I D_{c} \neq I D\right) \vee\left(T_{c} \neq T\right)$, then $\operatorname{Decrypt}\left(C T_{I D, T}, D K_{I D, T}, P P\right)=\perp$ with all but negligible probability.

The security property of RIBE was formally defined by Boldyreva, Goyal, and Kumar [3]. Recently Seo and Emura [33] refined the security model of RIBE by considering decryption key exposure attacks. In this paper, we consider the selective revocation list security model of the refined security model. In the selective revocation list security game, an adversary initially submits a challenge identity $I D^{*}$, a challenge time T^{*}, and a revoked identity set R^{*} on the time T^{*}, and then he can adaptively request private key, update key, and decryption key queries with restrictions. In the challenge step, the adversary submits two challenge messages M_{0}^{*}, M_{1}^{*}, and then he receives a challenge ciphertext $C T^{*}$ that is an encryption of M_{b}^{*} where b is a random coin used to create the ciphertext. The adversary may continue to request private key, update key,
and decryption key queries. Finally, the adversary outputs a guess for the random coin b. If the queries of the adversary satisfy the non-trivial conditions and the guess is correct, then the adversary wins the game. The following is the formal definition of the selective revocation security.

Definition 2.2 (Selective Revocation List Security). The selective revocation list security property of RIBE under chosen plaintext attacks is defined in terms of the following experiment between a challenger \mathcal{C} and a PPT adversary \mathcal{A} :

1. Init: \mathcal{A} initially submits a challenge identity $I D^{*} \in \mathcal{I}$, a challenge time $T^{*} \in \mathcal{T}$, and a revoked identity set $R^{*} \subseteq \mathcal{I}$ on the time T^{*}.
2. Setup: \mathcal{C} generates a master key $M K$, a revocation list $R L$, a state $S T$, and public parameters $P P$ by running Setup $\left(1^{\lambda}, N\right)$. It keeps $M K, R L, S T$ to itself and gives PP to \mathcal{A}.
3. Phase 1: \mathcal{A} adaptively request a polynomial number of queries. These queries are processed as follows:

- If this is a private key query for an identity $I D$, then it gives the corresponding private key $S K_{I D}$ to \mathcal{A} by running GenKey $(I D, M K, S T, P P)$ with the restriction: If $I D=I D^{*}$, then the revocation query for $I D^{*}$ and T must be queried for some $T \leq T^{*}$.
- If this is an update key query for a time T, then it gives the corresponding update key $U K_{T, R}$ to \mathcal{A} by running UpdateKey $(T, R L, M K, S T, P P)$ with the restriction: If $T=T^{*}$, then the revoked identity set of RL on the time T^{*} should be equal to R^{*}.
- If this is a decryption key query for an identity ID and a time T, then it gives the corresponding decryption key $D K_{I D, T}$ to \mathcal{A} by running DeriveKey $\left(S K_{I D}, U K_{T, R}, P P\right)$ with the restriction: The decryption key query for $I D^{*}$ and T^{*} cannot be queried.
- If this is a revocation query for an identity ID and a revocation time T, then it updates the revocation list RL by running Revoke (ID,T,RL,ST) with the restriction: The revocation query for a time T cannot be queried if the update key query for the time T was already requested.

Note that \mathcal{A} is allowed to request the update key query and the revocation query in non-decreasing order of time, and an update key $U K_{T, R}$ implicitly includes a revoked identity set R derived from $R L$.
4. Challenge: \mathcal{A} submits two challenge messages $M_{0}^{*}, M_{1}^{*} \in \mathcal{M}$ with equal length. \mathcal{C} flips a random coin $b \in\{0,1\}$ and gives the challenge ciphertext $C T^{*}$ to \mathcal{A} by running Encrypt $\left(I D^{*}, T^{*}, M_{b}^{*}, P P\right)$.
5. Phase 2: \mathcal{A} may continue to request a polynomial number of private keys, update keys, and decryption keys subject to the same restrictions as before.
6. Guess: Finally, \mathcal{A} outputs a guess $b^{\prime} \in\{0,1\}$, and wins the game if $b=b^{\prime}$.

The advantage of \mathcal{A} is defined as $\boldsymbol{A d v} \boldsymbol{v}_{\text {RIBE, } \mathcal{A}}^{I N D-s R A}(\lambda)=\left|\operatorname{Pr}\left[b=b^{\prime}\right]-\frac{1}{2}\right|$ where the probability is taken over all the randomness of the experiment. A RIBE scheme is secure in the selective revocation list model under chosen plaintext attacks iffor all PPT adversary \mathcal{A}, the advantage of \mathcal{A} in the above experiment is negligible in the security parameter λ.

Remark 2.3. The selective revocation list security model is weaker than the well-known selective security model since the adversary additionally submits the revoked identity set R^{*} in advance. However, this weaker model was already introduced by Boldyreva et al. [3] to prove the security of their revocable ABE scheme.

2.2 Leveled Multilinear Maps

We define generic leveled multilinear maps that are the leveled version of the cryptographic multilinear maps introduced by Boneh and Silverberg [9].

Definition 2.4 (Leveled Multilinear Maps). We assume the existence of a group generator G, which takes as input a security parameter λ and a positive integer k. Let $\overrightarrow{\mathbb{G}}=\left(\mathbb{G}_{1}, \ldots, \mathbb{G}_{k}\right)$ be a sequence of groups of large prime order $p>2^{\lambda}$. In addition, we let g_{i} be a canonical generator of \mathbb{G}_{i}. We assume the existence of a set of bilinear maps $\left\{e_{i, j}: \mathbb{G}_{i} \times \mathbb{G}_{j} \rightarrow \mathbb{G}_{i+j} \mid i, j \geq 1 ; i+j \leq k\right\}$ that have the following properties:

- Bilinearity: The map $e_{i, j}$ satisfies the following relation: $e_{i, j}\left(g_{i}^{a}, g_{j}^{b}\right)=g_{i+j}^{a b}: \forall a, b \in \mathbb{Z}_{p}$
- Non-degeneracy: We have that $e_{i, j}\left(g_{i}, g_{j}\right)=g_{i+j}$ for each valid i, j.

We say that $\overrightarrow{\mathbb{G}}$ is a multilinear group if the group operations in $\overrightarrow{\mathbb{G}}$ as well as all bilinear maps are efficiently computable.

Definition 2.5 (3-Leveled Multilinear Maps). Let $\overrightarrow{\mathbb{G}}=\left(\mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{3}\right)$ be a sequence of groups of large prime order $p>2^{\lambda}$. In addition, we let g_{i} be a canonical generator of \mathbb{G}_{i}. We assume the existence of a set of bilinear maps $\left\{e_{i, j}: \mathbb{G}_{i} \times \mathbb{G}_{j} \rightarrow \mathbb{G}_{i+j} \mid i, j \geq 1 ; i+j \leq 3\right\}$ that have the following properties:

- Bilinearity: The map $e_{i, j}$ satisfies the following relation: $e_{1,1}\left(g_{1}^{a}, g_{1}^{b}\right)=g_{2}^{a b}: \forall a, b \in \mathbb{Z}_{p}$ and $e_{1,2}\left(g_{1}^{a}, g_{2}^{b}\right)=$ $e_{2,1}\left(g_{2}^{a}, g_{1}^{b}\right)=g_{3}^{a b}: \forall a, b \in \mathbb{Z}_{p}$.
- Non-degeneracy: We have that $e_{1,1}\left(g_{1}, g_{1}\right)=g_{2}$ and $e_{1,2}\left(g_{1}, g_{2}\right)=e_{2,1}\left(g_{2}, g_{1}\right)=g_{3}$.

We say that $\overrightarrow{\mathbb{G}}$ is a multilinear group if the group operations in $\overrightarrow{\mathbb{G}}$ as well as all bilinear maps are efficiently computable.

2.3 Complexity Assumptions

We introduce a new complexity assumption named Multilinear Diffie-Hellman Exponent (MDHE). This new assumption is the multilinear version of the well-known Bilinear Diffie-Hellman Exponent (BDHE) assumption of Boneh, Gentry, and Waters [7].

Assumption 2.6 (Decisional Multilinear Diffie-Hellman Exponent, (k, l)-MDHE). Let ($p, \overrightarrow{\mathbb{G}},\left\{e_{i, j} \mid i, j \geq\right.$ $1 ; i+j \leq k\}$) be the description of k-leveled multilinear groups of order p. Let g_{i} be a generator of \mathbb{G}_{i}. The decisional (k, l)-MDHE assumption is that if the challenge tuple

$$
D=\left(g_{1}, g_{1}^{a}, g_{1}^{a^{2}}, \ldots, g_{1}^{a^{l}}, g_{1}^{a^{l+2}}, \ldots, g_{1}^{a^{2 l}}, g_{1}^{c_{1}}, \ldots, g_{1}^{c_{k-1}}\right) \text { and } Z
$$

are given, no PPT algorithm \mathcal{A} can distinguish $Z=Z_{0}=g_{k}^{a_{k}^{l+1} \prod_{i=1}^{k-1} c_{i}}$ from $Z=Z_{1}=g_{k}^{d}$ with more than a negligible advantage. The advantage of \mathcal{A} is defined as $\boldsymbol{A d v} v_{\mathcal{A}}^{(k, l)-M D H E}(\lambda)=\mid \operatorname{Pr}\left[\mathcal{A}\left(D, Z_{0}\right)=0\right]-\operatorname{Pr}\left[\mathcal{A}\left(D, Z_{1}\right)=\right.$ $0] \mid$ where the probability is taken over random choices of $a, c_{1}, \ldots, c_{k-1}, d \in \mathbb{Z}_{p}$.

For the security proof of our RIBE scheme, we define 3-leveled MDHE assumption that is a special type of the MDHE assumption since our scheme is built on the 3-leveled multilinear maps.

Assumption 2.7 (Decisional 3-Leveled Multilinear Diffie-Hellman Exponent, (3,l)-MDHE). Let ($p, \overrightarrow{\mathbb{G}}, e_{1,1}$, $\left.e_{1,2}, e_{2,1}\right)$ be the description of 3-leveled multilinear groups of order p. Let g_{i} be a generator of \mathbb{G}_{i}. The decisional ($3, l$)-MDHE assumption is that if the challenge tuple

$$
D=\left(g_{1}, g_{1}^{a}, g_{1}^{a^{2}}, \ldots, g_{1}^{a^{l}}, g_{1}^{a^{l+2}}, \ldots, g_{1}^{a^{2 l}}, g_{1}^{b}, g_{1}^{c}\right) \text { and } Z
$$

are given, no PPT algorithm \mathcal{A} can distinguish $Z=Z_{0}=g_{3}^{a^{l+1} b c}$ from $Z=Z_{1}=g_{3}^{d}$ with more than a negligible advantage. The advantage of \mathcal{A} is defined as $\boldsymbol{A d v} \boldsymbol{\mathcal { A }}_{\mathcal{A}}^{(3, l)-M D H E}(\lambda)=\left|\operatorname{Pr}\left[\mathcal{A}\left(D, Z_{0}\right)=0\right]-\operatorname{Pr}\left[\mathcal{A}\left(D, Z_{1}\right)=0\right]\right|$ where the probability is taken over random choices of a,b,c,d \mathbb{Z}_{p}.

3 Revocable IBE with Shorter Keys

In this section, we propose an RIBE scheme with a constant number of private key elements and update key elements from 3-leveled multilinear maps, and prove its selective revocation list security.

3.1 Construction

Let $\mathcal{N}=\{1, \ldots, N\}, \mathcal{I}=\{0,1\}^{l_{1}}$, and $\mathcal{T}=\{0,1\}^{l_{2}}$. Our RIBE scheme from 3-leveled multilinear maps is described as follows:

RIBE.Setup $\left(1^{\lambda}, N\right)$: This algorithm takes as input a security parameter 1^{λ} and the maximum number N of users. It generates a 3-leveled multilinear group $\overrightarrow{\mathbb{G}}=\left(\mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{3}\right)$ of prime order p. Let g_{1}, g_{2}, g_{3} be generators of $\mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{3}$ respectively. Let $\left(p, \overrightarrow{\mathbb{G}}, e_{1,1}, e_{1,2}, e_{2,1}\right)$ be the description of a 3-leveled multilinear group.

1. It selects random elements $f_{1,0},\left\{f_{1, i, j}\right\}_{1 \leq i \leq l_{1}, j \in\{0,1\}}, h_{1,0},\left\{h_{1, i, j}\right\}_{1 \leq i \leq l_{2}, j \in\{0,1\}} \in \mathbb{G}_{1}$ and sets

$$
\begin{aligned}
& f_{2,0}=e_{1,1}\left(g_{1}, f_{1,0}\right),\left\{f_{2, i, j}=e_{1,1}\left(g_{1}, f_{1, i, j}\right)\right\}_{1 \leq i \leq l_{1}, j \in\{0,1\}} \\
& h_{2,0}=e_{1,1}\left(g_{1}, h_{1,0}\right),\left\{h_{2, i, j}=e_{1,1}\left(g_{1}, h_{1, i, j}\right)\right\}_{1 \leq i \leq l_{2}, j \in\{0,1\}} .
\end{aligned}
$$

It also sets $\vec{f}_{k}=\left(f_{k, 0},\left\{f_{k, i, j}\right\}_{1 \leq i \leq l_{1}, j \in\{0,1\}}\right)$ and $\vec{h}_{k}=\left(h_{k, 0},\left\{h_{k, i, j}\right\}_{1 \leq i \leq l_{2}, j \in\{0,1\}}\right)$ for $k \in\{1,2\}$. We define $F_{k}(I D)=f_{k, 0} \prod_{i=1}^{l_{1}} f_{k, i, I D[i]}$ and $H_{k}(T)=h_{k, 0} \prod_{i=1}^{l_{2}} h_{k, i, T[i]}$ where $I D[i]$ is a bit value at the position i and $T[i]$ is a bit value at the position i.
2. Next, it selects random exponents $\alpha, \beta, \gamma \in \mathbb{Z}_{p}$. It outputs a master key $M K=(\alpha, \beta, \gamma)$, an empty revocation list $R L$, an empty state $S T$, and public parameters as

$$
\begin{aligned}
P P= & \left(\left(p, \overrightarrow{\mathbb{G}}, e_{1,1}, e_{1,2}, e_{2,1}\right), g_{1},\left\{g_{1}^{\alpha^{j}}\right\}_{1 \leq j, j \neq N+1 \leq 2 N}, g_{1}^{\beta},\right. \\
& \left.\vec{f}_{1}, \vec{h}_{1}, \vec{f}_{2}, \vec{h}_{2}, g_{2}, \Omega=g_{3}^{\alpha^{N+1} \beta}\right) \in \mathbb{G}_{1}^{2 N+4 l_{1}+4 l_{2}+5} \times \mathbb{G}_{2} \times \mathbb{G}_{3} .
\end{aligned}
$$

RIBE.GenKey $(I D, M K, S T, P P)$: This algorithm takes as input an identity $I D \in \mathcal{I}$, the master key $M K$, the state $S T$, and public parameters $P P$. It first assigns an index $d \in \mathcal{N}$ that is not in $S T$ to the identity $I D$, and updates the state $S T$ by adding a tuple $(I D, d)$ to $S T$. Next, it selects a random exponent $r_{1} \in \mathbb{Z}_{p}$ and outputs a private key by implicitly including $I D$ and the index d as

$$
S K_{I D}=\left(K_{0}=g_{1}^{\alpha^{d} \gamma_{1}} F_{1}(I D)^{-r_{1}}, K_{1}=g_{1}^{-r_{1}}\right) \in \mathbb{G}_{1}^{2}
$$

RIBE.UpdateKey $(T, R L, M K, S T, P P)$: This algorithm takes as input a time T, the revocation list $R L$, the master key $M K$, the state $S T$, and public parameters $P P$.

1. It first defines the revoked set R of user identities on the time T from $R L$. That is, if there exists $\left(I D^{\prime}, T^{\prime}\right)$ such that $\left(I D^{\prime}, T^{\prime}\right) \in R L$ for any $T^{\prime} \leq T$, then $I D^{\prime} \in R$. Next, it defines the revoked index set $R I \subseteq \mathcal{N}$ of the revoked identity set R by using the state $S T$ since $S T$ contains (ID, d). It also defines the non-revoked index set $S I=\mathcal{N} \backslash R I$.
2. It selects a random exponent $r_{2} \in \mathbb{Z}_{p}$ and outputs an update key by implicitly including T, R, and the revoked index set $R I$ as

$$
U K_{T, R}=\left(U_{0}=\left(g_{1}^{\gamma} \prod_{j \in S I} g_{1}^{\alpha^{N+1-j}}\right)^{\beta} H_{1}(T)^{r_{2}}, U_{1}=g_{1}^{-r_{2}}\right) \in \mathbb{G}_{1}^{2}
$$

RIBE.DeriveKey $\left(S K_{I D}, U K_{T, R}, P P\right)$: This algorithm takes as input a private key $S K_{I D}=\left(K_{0}, K_{1}\right)$ for an identity $I D$, an update key $U K_{T, R}=\left(U_{0}, U_{1}\right)$ for a time T and a revoked set R of identities, and the public parameters $P P$. If $I D \in R$, then it outputs \perp since the identity $I D$ is revoked. Otherwise, it proceeds the following steps:

1. Let d be the index of $I D$ and $R I$ be the revoked index set of R. Note that these are implicitly included in $S K$ and $U K$ respectively. It sets a non-revoked index set $S I=\mathcal{N} \backslash R I$ and derives temporal components T_{0}, T_{1} and T_{2} as

$$
T_{0}=e_{1,1}\left(g_{1}^{\alpha^{d}}, U_{0}\right) \cdot e_{1,1}\left(g_{1}^{\beta}, K_{0} \prod_{j \in S I, j \neq d} g_{1}^{\alpha^{N+1-j+d}}\right)^{-1}, T_{1}=e_{1,1}\left(g_{1}^{\beta}, K_{1}\right), T_{2}=e_{1,1}\left(g_{1}^{\alpha^{d}}, U_{1}\right) .
$$

2. Next, it chooses random exponents $r_{1}^{\prime}, r_{2}^{\prime} \in \mathbb{Z}_{p}$ and re-randomizes the temporal components as $D_{0}=T_{0} \cdot F_{2}(I D)^{r_{1}^{\prime}} H_{2}(T)^{r_{2}^{\prime}}, D_{1}=T_{1} \cdot g_{2}^{-r_{1}^{\prime}}, D_{2}=T_{2} \cdot g_{2}^{-r_{2}^{\prime}}$. Note that the components of the decryption key are formed as $D_{0}=g_{2}^{\alpha^{N+1} \beta} F_{2}(I D)^{r_{1}^{\prime \prime}} H_{2}(T)^{r_{2}^{\prime \prime}}, D_{1}=g_{2}^{-r_{1}^{\prime \prime}}, D_{2}=g_{2}^{-r_{2}^{\prime \prime}}$ where $r_{1}^{\prime \prime}=$ $\beta r_{1}+r_{1}^{\prime}$ and $r_{2}^{\prime \prime}=\alpha^{d} r_{2}+r_{2}^{\prime}$. Finally, it outputs a decryption key by implicitly including $I D$ and T as $D K_{I D, T}=\left(D_{0}, D_{1}, D_{2}\right) \in \mathbb{G}_{2}^{3}$.

RIBE.Encrypt $(I D, T, M, P P)$: This algorithm takes as input an identity $I D$, a time T, a message M, and the public parameters $P P$. It first chooses a random exponent $s \in \mathbb{Z}_{p}$ and outputs a ciphertext by implicitly including $I D$ and T as

$$
C T_{I D, T}=\left(C=\Omega^{s} \cdot M, C_{0}=g_{1}^{s}, C_{1}=F_{1}(I D)^{s}, C_{2}=H_{1}(T)^{s}\right) \in \mathbb{G}_{3} \times \mathbb{G}_{1}^{3} .
$$

RIBE.Decrypt $\left(C T_{I D, T}, D K_{I D^{\prime}, T^{\prime}}, P P\right)$: This algorithm takes as input a ciphertext $C T_{I D, T}=\left(C, C_{0}, C_{1}, C_{2}\right)$, a decryption key $D K_{I D^{\prime}, T^{\prime}}=\left(D_{0}, D_{1}, D_{2}\right)$, and the public parameters $P P$. If $\left(I D=I D^{\prime}\right) \wedge\left(T=T^{\prime}\right)$, then it outputs the encrypted message M as $M=C \cdot\left(\prod_{i=0}^{2} e_{1,2}\left(C_{i}, D_{i}\right)\right)^{-1}$. Otherwise, it outputs \perp.

RIBE.Revoke($I D, T, R L, S T)$: This algorithm takes as input an identity $I D$, a revocation time T, the revocation list $R L$, and the state $S T$. If (ID,-) $\neq S T$, then it outputs \perp since the private key of $I D$ was not generated. Otherwise, it adds ($I D, T$) to $R L$. It outputs the updated revocation list $R L$.

3.2 Correctness

Let $S K_{I D}$ be a private key for an identity $I D$ that is associated with an index d, and $U K_{T, R}$ be an update key for a time T and a revoked identity set R. If $I D \notin R$, then the decryption key derivation algorithm first correctly derives temporal components as

$$
\begin{aligned}
T_{0} & =e_{1,1}\left(g_{1}^{\alpha^{d}}, U_{0}\right) \cdot e_{1,1}\left(g_{1}^{\beta}, K_{0} \prod_{j \in S I, j \neq d} g_{1}^{\alpha^{N+1-j+d}}\right)^{-1} \\
& =e_{1,1}\left(g_{1}^{\alpha^{d}},\left(g_{1}^{\gamma} \prod_{j \in S I} g_{1}^{\alpha^{N+1-j}}\right)^{\beta} H_{1}(T)^{r_{2}}\right) \cdot e_{1,1}\left(g_{1}^{\beta}, g_{1}^{\alpha^{d} \gamma} F_{1}(I D)^{-r_{1}} \cdot \prod_{j \in S I, j \neq d} g_{1}^{\alpha^{N+1-j+d}}\right)^{-1} \\
& =e_{1,1}\left(g_{1}^{\beta}, g_{1}^{\alpha^{N+1}}\right) \cdot e_{1,1}\left(g_{1}^{\beta}, F_{1}(I D)^{r_{1}}\right) \cdot e_{1,1}\left(g_{1}^{\alpha^{d}}, H_{1}(T)^{r_{2}}\right), \\
& =g_{2}^{\alpha^{N+1} \beta} F_{2}(I D)^{\beta r_{1}} H_{2}(T)^{\alpha^{d} r_{2}}, \\
T_{1} & =e_{1,1}\left(g_{1}^{\beta}, K_{1}\right)=e_{1,1}\left(g_{1}^{\beta}, g_{1}^{-r_{1}}\right)=g_{2}^{-\beta r_{1}}, \\
T_{2} & =e_{1,1}\left(g_{1}^{\alpha^{d}}, U_{1}\right)=e_{1,1}\left(g_{1}^{\alpha^{d}}, g_{1}^{-r_{2}}\right)=g_{2}^{-\alpha^{d} r_{2}}
\end{aligned}
$$

where $R I$ is the revoked index set of R and $S I=\mathcal{N} \backslash R I$. Next, a decryption key is correctly derived from the temporal components by performing re-randomization as

$$
\begin{aligned}
D_{0} & =T_{0} \cdot F_{2}(I D)^{r_{1}^{\prime}} H_{2}(T)^{r_{2}^{\prime}}=g_{2}^{\alpha^{N+1} \beta} F_{2}(I D)^{\beta r_{1}} H_{2}(T)^{\alpha^{d} r_{2}} \cdot F_{2}(I D)^{r_{1}^{\prime}} H_{2}(T)^{r_{2}^{\prime}} \\
& =g_{2}^{\alpha^{N+1} \beta} F_{2}(I D)^{\beta r_{1}+r_{1}^{\prime}} H_{2}(T)^{\alpha^{d} r_{2}+r_{2}^{\prime}}=g_{2}^{\alpha^{N+1} \beta} F_{2}(I D)^{r_{1}^{\prime \prime}} H_{2}(T)^{r_{2}^{\prime \prime}}, \\
D_{1} & =T_{1} \cdot g_{2}^{-r_{1}^{\prime}}=g_{2}^{-\beta r_{1}-r_{1}^{\prime}}=g_{2}^{-r_{1}^{\prime \prime}}, D_{2}=T_{2} \cdot g_{2}^{-r_{2}^{\prime}}=g_{2}^{-\alpha^{d} r_{2}-r_{2}^{\prime}}=g_{2}^{-r_{2}^{\prime \prime}}
\end{aligned}
$$

where $r_{1}^{\prime \prime}=\beta r_{1}+r_{1}^{\prime}$ and $r_{2}^{\prime \prime}=\alpha^{d} r_{2}+r_{2}^{\prime}$.
Let $C T_{I D, T}$ be a ciphertext for an identity $I D$ and a time T, and $D K_{I D^{\prime}, T^{\prime}}$ be a decryption key for an identity $I D^{\prime}$ and a time T^{\prime}. If $\left(I D=I D^{\prime}\right) \wedge\left(T=T^{\prime}\right)$, then the decryption algorithm correctly outputs an encrypted message by the following equation.

$$
\begin{aligned}
\prod_{i=0}^{2} e_{1,2}\left(C_{i}, D_{i}\right) & =e_{1,2}\left(g_{1}^{s}, g_{2}^{\alpha^{N+1} \beta} F_{2}(I D)^{r_{1}^{\prime \prime}} H_{2}(T)^{r_{2}^{\prime \prime}}\right) \cdot e_{1,2}\left(F_{1}(I D)^{s}, g_{2}^{-r_{1}^{\prime \prime}}\right) \cdot e_{1,2}\left(H_{1}(T)^{s}, g_{2}^{-r_{2}^{\prime \prime}}\right) \\
& =e_{1,2}\left(g_{1}^{s}, g_{2}^{\alpha^{N+1} \beta}\right) \cdot \frac{e_{1,2}\left(g_{1}^{s}, F_{2}(I D)^{r_{1}^{\prime \prime}} \cdot e_{1,2}\left(g_{1}^{s}, H_{2}(T)^{r_{2}^{\prime \prime}}\right)\right.}{e_{1,2}\left(F_{1}(I D)^{s}, g_{2}^{r_{1}^{\prime \prime}}\right) \cdot e_{1,2}\left(H_{1}(T)^{s}, g_{2}^{r_{2}^{\prime \prime}}\right)} \\
& =e_{1,2}\left(g_{1}^{s}, g_{2}^{\alpha^{N+1} \beta}\right)=\left(g_{3}^{\alpha^{N+1} \beta}\right)^{s}=\Omega^{s} .
\end{aligned}
$$

3.3 Security Analysis

To prove the security of our RIBE scheme, we carefully combine the partitioning methods of the PKBE scheme of Boneh, Gentry, and Waters [7] and the HIBE scheme of Boneh and Boyen [4].

Theorem 3.1. The above RIBE scheme is secure in the selective revocation list model under chosen plaintext attacks if the $(3, N)$-MDHE assumption holds where N is the maximum number of users in the system. That is, for any PPT adversary \mathcal{A}, we have that $\boldsymbol{\operatorname { A d v }} \boldsymbol{v}_{\text {RIBE, } \mathcal{A}}^{I N-C P A}(\lambda) \leq \boldsymbol{A} \boldsymbol{d} v_{\mathcal{B}}^{(3, N)-M D H E}(\lambda)$.

Proof. Suppose there exists an adversary \mathcal{A} that attacks the above RIBE scheme with a non-negligible advantage. A simulator \mathcal{B} that solves the MDHE assumption using \mathcal{A} is given: a challenge tuple $D=$
$\left(g_{1}, g_{1}^{a}, g_{1}^{a^{2}}, \ldots, g_{1}^{a^{N}}, g_{1}^{a^{N+2}}, \ldots, g_{1}^{a^{2 N}}, g_{1}^{b}, g_{1}^{c}\right)$ and Z where $Z=Z_{0}=g_{3}^{a^{N+1} b c}$ or $Z=Z_{1} \in_{R} \mathbb{G}_{3}$. Then \mathcal{B} that interacts with \mathcal{A} is described as follows:

Init: \mathcal{A} initially submits a challenge identity $I D^{*}$, a challenge time T^{*}, and a revoked identity set R^{*} on the time T^{*}. It first sets a state $S T$ and a revocation list $R L$ as empty one. For each $I D \in\left\{I D^{*}\right\} \cup R^{*}$, it selects an index $d \in \mathcal{N}$ such that $(-, d) \notin S T$ and adds $(I D, d)$ to $S T$. Let $R I^{*} \subseteq \mathcal{N}$ be the revoked index set of R^{*} on the time T^{*} and $S I^{*}$ be the non-revoked index set on the time T^{*} such that $S I^{*}=\mathcal{N} \backslash R I^{*}$.
Setup: \mathcal{B} first chooses random exponents $f_{0}^{\prime},\left\{f_{i, j}^{\prime}\right\}_{1 \leq i \leq l_{1}, j \in\{0,1\}}, h_{0}^{\prime},\left\{h_{i, j}^{\prime}\right\}_{1 \leq i \leq l_{2}, j \in\{0,1\}}, \boldsymbol{\theta} \in \mathbb{Z}_{p}$. It sets $g_{1}^{\gamma}=$ $g^{\theta} \prod_{j \in S I^{*}}\left(g^{a^{N+1-j}}\right)^{-1}$ by implicitly setting $\gamma=\theta-\sum_{j \in S I^{*}} a^{N+1-j}$ and publishes the public parameters $P P$ by implicitly setting $\alpha=a, \beta=b$ as

$$
\begin{aligned}
& g_{1},\left\{g_{1}^{\alpha^{i}}=g_{1}^{a^{i}}\right\}_{1 \leq i, i \neq N+1 \leq 2 N}, g_{1}^{\beta}=g_{1}^{b}, \\
& \vec{f}_{1}=\left(f_{1,0}=g_{1}^{f_{0}^{\prime}}\left(\prod_{i=1}^{l_{1}} f_{1, i, I D^{*}[i]}\right)^{-1},\left\{f_{1, i, j}=\left(g_{1}^{a^{N}}\right)^{f_{i, j}^{\prime}}\right\}_{1 \leq i \leq l_{1}, j \in\{0,1\}}\right), \\
& \vec{h}_{1}=\left(h_{1,0}=g_{1}^{h_{0}^{\prime}}\left(\prod_{i=1}^{l_{2}} h_{1, i, T^{*}[i]}\right)^{-1},\left\{h_{1, i, j}=\left(g_{1}^{b}\right)^{h_{i, j}^{\prime}}\right\}_{1 \leq i \leq l_{2}, j \in\{0,1\}}\right), \\
& \vec{f}_{2}=\left(f_{2,0}=e_{1,1}\left(g_{1}, f_{1,0}\right),\left\{f_{2, i, j}=e_{1,1}\left(g_{1}, f_{1, i, j}\right)\right\}_{1 \leq i \leq l_{1}, j \in\{0,1\}}\right), \\
& \vec{h}_{2}=\left(h_{2,0}=e_{1,1}\left(g_{1}, h_{1,0}\right),\left\{h_{2, i, j}=e_{1,1}\left(g_{1}, h_{1, i, j}\right)\right\}_{1 \leq i \leq l_{2}, j \in\{0,1\}}\right), \\
& g_{2}, \Omega=e_{2,1}\left(e_{1,1}\left(g_{1}^{\alpha}, g_{1}^{\alpha^{N}}\right), g_{1}^{b}\right)=g_{3}^{\alpha^{N+1} b} .
\end{aligned}
$$

For notational simplicity, we define $\Delta I D=\sum_{i=1}^{l_{1}}\left(f_{i, I D[i]}^{\prime}-f_{i, I D^{*}[i]}^{\prime}\right)$ and $\Delta T=\sum_{i=1}^{l_{2}}\left(h_{i, T[i]}^{\prime}-h_{i, T^{*}[i]}^{\prime}\right)$. We have $\Delta I D \not \equiv 0 \bmod p$ except with negligible probability if $I D \neq I D^{*}$ since there exists at least one index i such that $f_{i, I D[i]}^{\prime} \neq f_{i, I D^{*}[i]}^{\prime}$ and $\left\{f_{i, j}^{\prime}\right\}$ are randomly chosen. We also have $\Delta T \not \equiv 0 \bmod p$ except with negligible probability if $T \neq T^{*}$.
Phase 1: \mathcal{A} adaptively requests a polynomial number of private key, update key, and decryption key queries. If this is a private key query for an identity $I D$, then \mathcal{B} proceeds as follows:

- Case $I D \in R^{*}$: In this case, the simulator can use the partitioning method of Boneh et al. [7]. It first retrieves a tuple (ID,d) from $S T$ where the index d is associated with $I D$. Note that the tuple (ID, d) exists since all identities in R^{*} were added to $S T$ in the initialization step. Next, it selects a random exponent $r_{1} \in \mathbb{Z}_{p}$ and creates a private key $S K_{I D}$ as

$$
K_{0}=\left(g_{1}^{a^{d}}\right)^{\theta}\left(\prod_{j \in S I^{*}} g_{1}^{a^{N+1-j+d}}\right)^{-1} F_{1}(I D)^{-r_{1}}, K_{1}=g_{1}^{-r_{1}} .
$$

- Case $I D \notin R^{*}$: In this case, we have $I D \neq I D^{*}$ from the restriction of Definition 2.2 and the simulator can use the partitioning method of Boneh and Boyen [4]. It first selects an index $d \in \mathcal{N}$ such that $(-, d) \notin S T$ and adds $(I D, d)$ to $S T$. Next, it selects a random exponents $r_{1}^{\prime} \in \mathbb{Z}_{p}$ and creates a private key $S K_{I D}$ by implicitly setting $r_{1}=-a / \Delta I D+r_{1}^{\prime}$ as

$$
K_{0}=g_{1}^{a^{d} \theta} \prod_{j \in S I^{*} \backslash\{d\}} g_{1}^{-a^{N+1-j+d}}\left(g_{1}^{a}\right)^{f_{0}^{\prime} / \Delta I D} F_{1}(I D)^{-r_{1}^{\prime}}, K_{1}=\left(g_{1}^{a}\right)^{-1 / \Delta I D} g_{1}^{r_{1}^{\prime}} .
$$

If this is an update key query for a time T, then \mathcal{B} defines a revoked identity set R on the time T from $R L$ and proceeds as follows:

- Case $T \neq T^{*}$: In this case, the simulator can use the partitioning method of Boneh and Boyen [4]. It first sets a revoked index set $R I$ of R by using $S T$. It also sets $S I=\mathcal{N} \backslash R I$. Next, it selects a random exponent $r_{2}^{\prime} \in \mathbb{Z}_{p}$ and creates an update key $U K_{T, R}$ by implicitly setting $r_{2}=-\left(-\sum_{j \in S I^{*} \backslash S I} a^{N+1-j}+\right.$ $\left.\sum_{j \in S I \backslash S l^{*}} a^{N+1-j}\right) / \Delta T+r_{2}^{\prime}$ as

$$
\begin{aligned}
& U_{0}=\left(g_{1}^{b}\right)^{\theta}\left(\prod_{j \in S I^{*} \backslash S I} g_{1}^{-a^{N+1-j}} \prod_{j \in S I \backslash S I^{*}} g^{a^{N+1-j}}\right)^{-h_{0}^{\prime} / \Delta T} H_{1}(T)^{r_{2}^{\prime}}, \\
& U_{1}=\left(\prod_{j \in S I^{*} \star S I} g_{1}^{-a^{N+1-j}} \prod_{j \in S I \backslash S I^{*}} g_{1}^{a^{N+1-j}}\right)^{-1 / \Delta T} g^{r_{2}^{\prime}}
\end{aligned}
$$

- Case $T=T^{*}$: In this case, we have $R=R^{*}$ and the simulator can use the partitioning method of Boneh et al. [7]. For each $I D \in R^{*}$, it adds $\left(I D, T^{*}\right)$ to $R L$ if $\left(I D, T^{\prime}\right) \notin R L$ for any $T^{\prime} \leq T^{*}$. Next, it selects a random exponent $r_{2} \in \mathbb{Z}_{p}$ and creates an update key $U K_{T, R}$ as

$$
U_{0}=\left(g_{1}^{b}\right)^{\theta} H_{1}\left(T^{*}\right)^{r_{2}}, U_{1}=g_{1}^{-r_{2}} .
$$

If this is a decryption key query for an identity $I D$ and a time T, then \mathcal{B} proceeds as follows:

- Case $I D \neq I D^{*}$: In this case, the simulator can use the partitioning method of Boneh and Boyen [4]. If $(I D,-) \notin S T$, then it selects an index $d \in \mathcal{N}$ such that $(-, d) \notin S T$ and adds (ID, d) to $S T$. Next, it selects random exponents $r_{1}^{\prime}, r_{2} \in \mathbb{Z}_{p}$ and creates a decryption key $D K_{I D, T}$ by implicitly setting $r_{1}=\left(-a / \Delta I D+r_{1}^{\prime}\right) b$ as

$$
D_{0}=e_{1,1}\left(\left(g_{1}^{a}\right)^{-f_{0}^{\prime} / \Delta I D} F_{1}(I D)^{r_{1}^{\prime}}, g_{1}^{b}\right) H_{2}(T)^{r_{2}}, D_{1}=e_{1,1}\left(\left(g_{1}^{a}\right)^{-1 / \Delta I D} g_{1}^{r_{1}^{\prime}}, g^{b}\right), D_{2}=g_{2}^{r_{2}}
$$

- Case $I D=I D^{*}$: In this case, we have $T \neq T^{*}$ from the restriction of Definition 2.2, and the simulator can use the partitioning method of Boneh and Boyen [4]. It selects random exponents $r_{1}, r_{2}^{\prime} \in \mathbb{Z}_{p}$ and creates a decryption key $D K_{I D, T}$ by implicitly setting $r_{2}=\left(-a / \Delta T+r_{2}^{\prime}\right) a^{N}$ as

$$
D_{0}=e_{1,1}\left(\left(g_{1}^{a}\right)^{-h_{0}^{\prime} / \Delta T} H_{1}(T)^{r_{2}^{\prime}}, g_{1}^{a^{N}}\right) \cdot F_{2}(I D)^{r_{1}}, D_{1}=g_{2}^{r_{1}}, D_{2}=e_{1,1}\left(\left(g_{1}^{a}\right)^{-1 / \Delta T} g_{1}^{r_{2}^{\prime}}, g_{1}^{a^{N}}\right)
$$

Challenge: \mathcal{A} submits two challenge messages $M_{0}^{*}, M_{1}^{*} . \mathcal{B}$ chooses a random bit $\delta \in\{0,1\}$ and creates the challenge ciphertext $C T^{*}$ by implicitly setting $s=c$ as

$$
C=Z \cdot M_{\delta}^{*}, C_{0}=g_{1}^{c}, C_{1}=\left(g_{1}^{c}\right)^{f_{0}^{\prime}}, C_{2}=\left(g_{1}^{c}\right)^{h_{0}^{\prime}} .
$$

Phase 2: Same as Phase 1.
Guess: Finally, \mathcal{A} outputs a guess $\delta^{\prime} \in\{0,1\}$. \mathcal{B} outputs 0 if $\delta=\delta^{\prime}$ or 1 otherwise.
To finish the proof, we first show that the distribution of the simulation is correct from Lemma 3.2. Let η be a random bit for Z_{η}. From the above simulation, we have $\operatorname{Pr}\left[\boldsymbol{\delta}=\delta^{\prime} \mid \eta=0\right]=\frac{1}{2}+\operatorname{Adv}_{R I B E, \mathcal{A}}^{I N D-s R L-C P A}(\lambda)$ since the distribution of the simulation is correct, and we also have $\operatorname{Pr}\left[\delta=\delta^{\prime} \mid \eta=1\right]=\frac{1}{2}$ since δ is completely hidden to \mathcal{A}. Therefore we can obtain the following equation

$$
\begin{aligned}
& \operatorname{Adv}_{\mathcal{B}}^{(3, N)-M D H E}(\boldsymbol{\lambda}) \\
& =\left|\operatorname{Pr}\left[\mathcal{B}\left(D, Z_{0}\right)=0\right]-\operatorname{Pr}\left[\mathcal{B}\left(D, Z_{1}\right)=0\right]\right| \geq\left|\operatorname{Pr}\left[\delta=\delta^{\prime} \mid \eta=0\right]\right|-\left|\operatorname{Pr}\left[\delta=\delta^{\prime} \mid \eta=1\right]\right| \\
& =\frac{1}{2}+\operatorname{Adv}_{R I B E, \mathcal{A}}^{I N D-S R L-C P A}(\boldsymbol{\lambda})-\frac{1}{2}=\operatorname{Adv}_{R I B E, \mathcal{A}}^{I N D-s R L-C P A}(\boldsymbol{\lambda}) .
\end{aligned}
$$

This completes our proof.

Lemma 3.2. The distribution of the above simulation is correct if $Z=Z_{0}$, and the challenge ciphertext is independent of δ in the adversary's view if $Z=Z_{1}$.

Proof. The distribution of public parameters is correct since random exponents $f_{0}^{\prime},\left\{f_{i, j}^{\prime}\right\}, h_{0}^{\prime},\left\{h_{i, j}^{\prime}\right\}, \theta \in \mathbb{Z}_{p}$ are chosen.

We show that the distribution of private keys is correct. In case of $I D \in R^{*}$, we have that the private key is correctly distributed from the setting $\gamma=\theta-\sum_{j \in S I^{*}} a^{N+1-j}$ as the following equation

$$
K_{0}=g_{1}^{\alpha^{d} \gamma} F_{1}(I D)^{-r_{1}}=g_{1}^{a^{d}\left(\theta-\sum_{j \in S I^{*}} a^{N+1-j}\right)} F_{1}(I D)^{-r_{1}}=g_{1}^{a^{d} \theta}\left(\prod_{j \in S I^{*}} g_{1}^{a^{N+1-j+d}}\right)^{-1} F_{1}(I D)^{-r_{1}} .
$$

In case of $I D \notin R^{*}$, we have that the private key is correctly distributed from the setting $\gamma=\theta-\sum_{j \in S I^{*}} a^{N+1-j}$ and $r_{1}=-a / \Delta I D+r_{1}^{\prime}$ as the following equation

$$
\begin{aligned}
K_{0} & =g_{1}^{\alpha^{d} \gamma} F_{1}(I D)^{-r_{1}}=g_{1}^{a^{d} \theta} \prod_{j \in S I^{*}} g^{-a^{N+1-j+d}}\left(f_{1,0} \prod_{i=1}^{l} f_{1, i, I D[i]}\right)^{-r_{1}} \\
& =g_{1}^{a^{d} \theta} \prod_{j \in S I^{*} \backslash\{d\}} g_{1}^{-a^{N+1-j+d}} \cdot g_{1}^{-a^{N+1}}\left(g_{1}^{f_{0}^{\prime}} g_{1}^{a^{N} \Delta I D}\right)^{a / \Delta I D-r_{1}^{\prime}} \\
& =g_{1}^{a^{d} \theta} \prod_{j \in S I^{*} \backslash\{d\}} g_{1}^{-a^{N+1-j+d}}\left(g_{1}^{a}\right)^{f_{0}^{\prime} / \Delta I D} F_{1}(I D)^{-r_{1}^{\prime}}, \\
K_{1} & =g_{1}^{r_{1}}=\left(g_{1}^{a}\right)^{-1 / \Delta I D} g_{1}^{r_{1}^{\prime}} .
\end{aligned}
$$

Next, we show that the distribution of update keys is correct. In case of $T \neq T^{*}$, we have that the update key is correctly distributed from the setting $\gamma=\theta-\sum_{j \in S I^{*}} a^{N+1-j}$ and $r_{2}=-\left(-\sum_{j \in S I^{*} \backslash S I} a^{N+1-j}+\right.$ $\left.\sum_{j \in S I \backslash S I^{*}} a^{N+1-j}\right) / \Delta T+r_{2}^{\prime}$ as the following equation

$$
\begin{aligned}
U_{0} & =\left(g_{1}^{\gamma} \prod_{j \in S I} g_{1}^{\alpha^{N+1-j}}\right)^{\beta} H_{1}(T)^{r_{2}}=\left(g_{1}^{\theta}\left(\prod_{j \in S I^{*}} g_{1}^{a^{N+1-j}}\right)^{-1} \prod_{j \in S I} g_{1}^{a^{N+1-j}}\right)^{b}\left(h_{1,0} \prod_{i=1}^{t} h_{1, i, T[i]}\right)^{r_{2}} \\
& =\left(g_{1}^{b}\right)^{\theta}\left(\prod_{j \in S I^{*} \backslash S I} g_{1}^{-a^{N+1-j}} \prod_{j \in S I \backslash S I^{*}} g_{1}^{a^{N+1-j}}\right)^{b}\left(g_{1}^{h_{0}^{\prime}} g_{1}^{b \Delta T}\right)^{-\left(-\sum_{j \in S I^{*} \mid S I} a^{N+1-j}+\sum_{j \in S I} \mid S I^{*} a^{N+1-j}\right) / \Delta T+r_{2}^{\prime}} \\
& =\left(g_{1}^{b}\right)^{\theta}\left(\prod_{j \in S S^{*} \backslash S I} g_{1}^{-a^{N+1-j}} \prod_{j \in S I \backslash S I^{*}} g^{a^{N+1-j}}\right)^{-h_{0}^{\prime} / \Delta T} H_{1}(T)^{r_{2}^{\prime}}, \\
U_{1} & =g_{1}^{r_{2}}=\left(\prod_{j \in S I^{*} \backslash S I} g_{1}^{-a^{N+1-j}} \prod_{j \in S I \backslash S I^{*}} g_{1}^{a^{N+1-j}}\right)^{-1 / \Delta T} g^{r_{2}^{\prime}} .
\end{aligned}
$$

In case of $T=T^{*}$, we have that the update key is correctly distributed from the setting $\gamma=\theta-\sum_{j \in S I^{*}} a^{N+1-j}$ as the following equation

$$
U_{0}=\left(g_{1}^{\gamma} \prod_{j \in S I^{*}} g_{1}^{\alpha^{N+1-j}}\right)^{\beta} H_{1}\left(T^{*}\right)^{r_{2}}=\left(g_{1}^{\theta}\left(\prod_{j \in S I^{*}} g_{1}^{a^{N+1-j}}\right)^{-1} \cdot \prod_{j \in S I^{*}} g_{1}^{a^{N+1-j}}\right)^{b} H_{1}\left(T^{*}\right)^{r_{2}}=\left(g_{1}^{b}\right)^{\theta} H_{1}\left(T^{*}\right)^{r_{2}} .
$$

We show that the distribution of decryption keys is correct. In case of $I D \neq I D^{*}$, the decryption key is correctly distributed from the setting $\log _{g_{2}} F_{2}(I D)=\alpha^{N} \Delta I D$ and $r_{1}=\left(-\alpha / \Delta I D+r_{1}^{\prime}\right) b$ as the following
equation

$$
\begin{aligned}
D_{0} & =g_{2}^{\alpha^{N+1} \beta} F_{2}(I D)^{r_{1}} H_{2}(T)^{r_{2}}=g_{2}^{a^{N+1} b}\left(f_{2,0} \prod_{i=1}^{l} f_{2, i, I D[i]}\right)^{\left(-a / \Delta I D+r_{1}^{\prime}\right) b} H_{2}(T)^{r_{2}} \\
& =e_{1,1}\left(g_{1}^{a^{N+1}}\left(g_{1}^{f_{0}^{\prime}} g_{1}^{a^{N} \Delta I D}\right)^{-a / \Delta I D+r_{1}^{\prime}}, g_{1}^{b}\right) H_{2}(T)^{r_{2}}=e_{1,1}\left(\left(g_{1}^{a}\right)^{-f_{0}^{\prime} / \Delta I D} F_{1}(I D)^{r_{1}^{\prime}}, g_{1}^{b}\right) H_{2}(T)^{r_{2}}, \\
D_{1} & =g_{2}^{r_{1}}=e_{1,1}\left(g_{1}, g_{1}\right)^{(-a / \Delta I D) b}=e_{1,1}\left(\left(g_{1}^{a}\right)^{-1 / \Delta I D} g_{1}^{r_{1}}, g_{1}^{b}\right) .
\end{aligned}
$$

In case of $I D=I D^{*}$ ，the decryption key is correctly distributed from the setting $\log _{g_{2}} H_{2}(T)=b \Delta T$ and $r_{2}=\left(-a / \Delta T+r_{2}^{\prime}\right) a^{N}$ as the following equation

$$
\begin{aligned}
D_{0} & =g_{2}^{a^{N+1} \beta} F_{2}(I D)^{r_{1}} H_{2}(T)^{r_{2}}=g_{2}^{a^{N+1} b} F_{2}(I D)^{r_{1}}\left(u_{2,2}^{T} h_{2,2}\right)^{\left(-a / \Delta T+r_{2}^{\prime}\right) a^{N}} \\
& =e_{1,1}\left(g_{1}^{a b}\left(g_{1}^{b T} g_{1}^{h_{2}^{\prime}}\right)^{-a / \Delta T+r_{2}^{\prime}}, g_{1}^{a^{N}}\right) F_{2}(I D)^{r_{1}}=e_{1,1}\left(\left(g_{1}^{a}\right)^{-h_{0}^{\prime} / \Delta T} H_{1}(T)^{r_{2}^{\prime}}, g_{1}^{a^{N}}\right) F_{2}(I D)^{r_{1}}, \\
D_{2} & =g_{2}^{r_{2}}=e_{1,1}\left(g_{1}, g_{1}\right)^{\left(-a / \Delta T+r_{2}^{\prime}\right) a^{N}}=e_{1,1}\left(\left(g_{1}^{a}\right)^{-1 / \Delta T} g_{1}^{\prime_{2}^{\prime}}, g_{1}^{a^{N}}\right) .
\end{aligned}
$$

Finally，we show that the distribution of the challenge ciphertext is correct．If $Z=Z_{0}=g_{3}^{a^{N+1}} b c$ is given， then the challenge ciphertext is correctly distributed as the following equation

$$
\left.\begin{array}{l}
C=\Omega^{s} \cdot M_{\delta}^{*}=g_{3}^{a^{N+1} b s} \cdot M_{\delta}^{*}=Z_{0} \cdot M_{\delta}^{*}, C_{0}=g_{1}^{s}=g_{1}^{c}, \\
C_{1}=\left(g_{1}^{f_{0}^{\prime}} \prod_{i=1}^{l} f_{1, i, I D^{*}[i]} f_{1, i, I D^{*}[i]}^{-1}\right)^{c}=\left(g_{1}^{c}\right)^{f_{0}^{\prime}}, C_{2}=\left(g_{1}^{h_{0}^{\prime}} \prod_{i=1}^{t} h_{1, i, T^{*}[i]} h_{1, i, T ⿱ 乛 ⿻ 上 丨 又 ~}^{-1}[i]\right.
\end{array}\right)^{c}=\left(g_{1}^{c}\right)^{h_{0}^{\prime}} . ~ l
$$

Otherwise，the component C of the challenge ciphertext is independent of δ in the \mathcal{A}＇s view since Z_{1} is a random element in \mathbb{G}_{3} ．This completes our proof．

3．4 Discussions

Graded Encoding Systems．The candidate multilinear maps of Garg，Gentry，and Halevi［13］is different with the leveled multilinear maps in Section 2．2．The main difference is that the encoding of a group element is randomized in the GGH framework whereas the encoding is deterministic in the leveled multilinear maps． This means that it is not trivial to check whether two strings encode the same element or not．Thus additional procedures for this checking are essentially required in the GGH framework．In Appendix A，we define the graded encoding system of Garg et al．［13］and translate our RIBE scheme into the graded encoding system．
Reducing Public Parameters．In our RIBE scheme，the number of group elements in public parameters is proportional to the maximum number of users N and the security parameter λ ．To reduce the size of public parameters，we can use the parallel construction technique of PKBE［7］．Additionally，we reduce the public parameters further since some elements in public parameters can be moved into an update key．The general RIBE scheme is described in Section 4 ，

Chosen－Ciphertext Security．The security against chosen－ciphertext attacks（CCA）is similar to the se－ curity against chosen－plaintext attacks（CPA）except that an adversary can request a ciphertext decryption query．To provide chosen－ciphertext security，we can use the general transformation of Canetti，Halevi， and Katz［11］since the structure of our RIBE scheme is similar to that of the HIBE scheme of Boneh and Boyen［4］．That is，we can modify our RIBE scheme to support three－level by providing additional elements， and then the modified RIBE scheme easily converted to a CCA－secure RIBE scheme since a tree－level HIBE scheme with CPA security converted to a two－level HIBE scheme with CCA security．

Achieving Full Security. Our RIBE scheme is only secure in the selective revocation list model since the underlying PKBE scheme of Boneh et al. [7] only provides the static security. If we are willing to use complexity leveraging arguments, then it can be adaptively secure with loosing an exponential factor in the security reduction. Alternatively, we may try to use other PKBE schemes that are adaptively secure [18, 24], but it is not yet clear to combine the schemes and prove their security in multilinear maps.

4 Revocable IBE with Shorter Public Parameters

In this section, we propose another RIBE scheme such that the number of public parameters is reduced from $O(N+\lambda)$ to $O(\lambda)$ group elements and prove its security in the selective revocation list model. The basic idea of our general construction is to use the parallel construction technique of PKBE that reduces the size of public parameters and ciphertexts [7]. Additionally, we can reduce the size of public parameters further in our scheme since an authorized authority in RIBE only can broadcast an update key. That is, we can safely move some elements in public parameters that are used for broadcasting into an update key.

4.1 Construction

Let N be the maximum number of users and $m=\lceil\sqrt{N}\rceil$. An index $d \in\{1, \ldots, N\}$ is represented as a position $\left(d_{x}, d_{y}\right)$ in a $m \times m$ matrix where $d=\left(d_{y}-1\right) m+d_{x}$ for some $1 \leq d_{y} \leq m$ and $1 \leq d_{x} \leq m$. Let $S I$ be a subset of $\{1, \ldots, N\}$, and define $S I_{k}^{\prime}=S I \cap\{(k-1) m+1, \ldots,(k-1) m+m\}$ and $S I_{k}=\left\{x-(k-1) m \mid x \in S I_{k}^{\prime}\right\} \subseteq$ $\{1, \ldots, m\}$. A subset $S I$ is divided to subsets $S I_{1}, \ldots, S I_{m}$. Let $\mathcal{N}=\{1, \ldots, N\}, \mathcal{I}=\{0,1\}^{l_{1}}$, and $\mathcal{T}=\{0,1\}^{l_{2}}$. Our RIBE scheme with shorter public parameters in 3-leveled multilinear maps is described as follows:

RIBE.Setup $\left(1^{\lambda}, N\right)$: This algorithm takes as input a security parameter 1^{λ} and the maximum number N of users. It generates a 3-leveled multilinear group $\overrightarrow{\mathbb{G}}=\left(\mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{3}\right)$ of prime order p. Let g_{1}, g_{2}, g_{3} be canonical generators of $\mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{3}$ respectively. Let $\left(p, \overrightarrow{\mathbb{G}}, e_{1,1}, e_{1,2}, e_{2,1}\right)$ be the description of a 3-leveled multilinear group.

1. It selects random elements $f_{1,0},\left\{f_{1, i, j}\right\}_{1 \leq i \leq l_{1}, j \in\{0,1\}}, h_{1,0},\left\{h_{1, i, j}\right\}_{1 \leq i \leq l_{2}, j \in\{0,1\}} \in \mathbb{G}_{1}$ and sets

$$
\begin{aligned}
& f_{2,0}=e_{1,1}\left(g_{1}, f_{1,0}\right),\left\{f_{2, i, j}=e_{1,1}\left(g_{1}, f_{1, i, j}\right)\right\}_{1 \leq i \leq l_{1}, j \in\{0,1\}}, \\
& h_{2,0}=e_{1,1}\left(g_{1}, h_{1,0}\right),\left\{h_{2, i, j}=e_{1,1}\left(g_{1}, h_{1, i, j}\right)\right\}_{1 \leq i \leq l_{2}, j \in\{0,1\}} .
\end{aligned}
$$

It also sets $\vec{f}_{k}=\left(f_{k, 0},\left\{f_{k, i, j}\right\}_{1 \leq i \leq l_{1}, j \in\{0,1\}}\right)$ and $\vec{h}_{k}=\left(h_{k, 0},\left\{h_{k, i, j}\right\}_{1 \leq i \leq l, j, j \in\{0,1\}}\right)$ for $k \in\{1,2\}$. We define $F_{k}(I D)=f_{k, 0} \prod_{i=1}^{l_{1}} f_{k, i, I D[i]}$ and $H_{k}(T)=h_{k, 0} \prod_{i=1}^{l_{2}} h_{k, i, T[i]}$ where $I D[i]$ is a bit value at the position i and $T[i]$ is a bit value at the position i.
2. Next, it selects random exponents $\alpha, \beta, \gamma_{1}, \ldots, \gamma_{m} \in \mathbb{Z}_{p}$. It outputs a master key $M K=\left(\alpha, \beta,\left\{\gamma_{j}\right\}_{1 \leq j \leq m}\right.$, $\left.\left\{g_{1}^{\alpha j}\right\}_{1 \leq j, j \neq m+1 \leq 2 m}, g_{1}^{\beta},\left\{g_{1}^{\gamma_{k}}\right\}_{1 \leq k \leq m}\right)$, an empty revocation list $R L$, an empty state $S T$, and public parameters as

$$
P P=\left(\left(p, \overrightarrow{\mathbb{G}}, e_{1,1}, e_{1,2}, e_{2,1}\right), g_{1}, \vec{f}_{1}, \vec{h}_{1}, \vec{f}_{2}, \vec{h}_{2}, g_{2}, \Omega=g_{3}^{\alpha^{m+1} \beta}\right) .
$$

RIBE.GenKey $(I D, M K, S T, P P)$: This algorithm takes as input an identity $I D \in \mathcal{I}$, the master key $M K$, the state $S T$, and public parameters $P P$. It first assigns an index $d \in \mathcal{N}$ that is not in $S T$ to the identity $I D$, and updates the state $S T$ by adding a tuple ($I D, d$) to $S T$. Note that we can represent d as $\left(d_{x}, d_{y}\right)$.

Next, it selects a random exponent $r_{1} \in \mathbb{Z}_{p}$ and outputs a private key by implicitly including $I D$ and the index d as

$$
S K_{I D}=\left(K_{0}=g_{1}^{\alpha_{x}^{d_{x}} \gamma_{d_{y}}} F_{1}(I D)^{-r_{1}}, K_{1}=g_{1}^{-r_{1}}\right) .
$$

RIBE.UpdateKey $(T, R L, M K, S T, P P)$: This algorithm takes as input a time T, the revocation list $R L$, the master key $M K$, the state $S T$, and public parameters $P P$.

1. It first defines the revoked set R of user identities on the time T from $R L$. That is, if there exists $\left(I D^{\prime}, T^{\prime}\right)$ such that $\left(I D^{\prime}, T^{\prime}\right) \in R L$ for any $T^{\prime} \leq T$, then $I D^{\prime} \in R$. Next, it defines the revoked index set $R I \subseteq \mathcal{N}$ of the revoked identity set R by using the state $S T$ since $S T$ contains (ID, d). It also defines the non-revoked index set $S I=\mathcal{N} \backslash R I$ such that $S I=S I_{1} \cup \cdots \cup S I_{m}$.
2. It selects a random exponent $r_{2,1}, \ldots, r_{2, m} \in \mathbb{Z}_{p}$ and outputs an update key by implicitly including T, R, and the revoked index set $R I$ as

$$
U K_{T, R}=\left(\left\{g_{1}^{\alpha^{j}}\right\}_{1 \leq j, j \neq m+1 \leq 2 m}, g_{1}^{\beta},\left\{U_{k, 0}=\left(g_{1}^{\gamma_{k}} \prod_{j \in S I_{k}} g_{1}^{\alpha^{m+1-j}}\right)^{\beta} H_{1}(T)^{r_{2, k}}, U_{k, 1}=g_{1}^{-r_{2, k}}\right\}_{1 \leq k \leq m}\right) .
$$

RIBE.DeriveKey $\left(S K_{I D}, U K_{T, R}, P P\right)$: This algorithm takes as input a private key $S K_{I D}=\left(K_{0}, K_{1}\right)$ for an identity $I D$, an update key $U K_{T, R}=\left(\left\{g_{1}^{\alpha^{j}}\right\}, g_{1}^{\beta},\left\{U_{k, 0}, U_{k, 1}\right\}\right)$ for a time T and a revoked set R of identities, and the public parameters $P P$. If $I D \in R$, then it outputs \perp since the identity $I D$ is revoked. Otherwise, it proceeds the following steps:

1. Let $d=\left(d_{x}, d_{y}\right)$ be the index of $I D$ and $R I$ be the revoked index set of R. Note that these are implicitly included in $S K$ and $U K$ respectively. It sets a non-revoked index set $S I=\mathcal{N} \backslash R I$ such that $S I=S I_{1} \cup \cdots \cup S I_{m}$ and derives temporal components T_{0}, T_{1} and T_{2} as

$$
\begin{aligned}
& T_{0}=e_{1,1}\left(g_{1}^{\alpha_{x}}, U_{d_{y}, 0}\right) \cdot e_{1,1}\left(g_{1}^{\beta}, K_{0} \prod_{j \in S I_{d_{y}}, j \neq d_{x}} g_{1}^{\alpha^{m+1-j+d_{x}}}\right)^{-1}, \\
& T_{1}=e_{1,1}\left(g_{1}^{\beta}, K_{1}\right), T_{2}=e_{1,1}\left(g_{1}^{\alpha^{d_{x}}}, U_{d_{y}, 1}\right) .
\end{aligned}
$$

2. Next, it chooses random exponents $r_{1}^{\prime}, r_{2}^{\prime} \in \mathbb{Z}_{p}$ and re-randomizes the temporal components as $D_{0}=T_{0} \cdot F_{2}(I D)^{r_{1}^{\prime}} H_{2}(T)^{r_{2}^{\prime}}, D_{1}=T_{1} \cdot g_{2}^{-r_{1}^{\prime}}, D_{2}=T_{2} \cdot g_{2}^{-r_{2}^{\prime}}$. Finally, it outputs a decryption key by implicitly including $I D$ and T as $D K_{I D, T}=\left(D_{0}, D_{1}, D_{2}\right)$.

RIBE.Encrypt($I D, T, M, P P$): This algorithm is the same as that of Section 3.1.
RIBE.Decrypt $\left(C T_{I D, T}, D K_{I D^{\prime}, T^{\prime}}, P P\right)$: This algorithm is the same as that of Section 3.1 .
RIBE.Revoke($I D, T, R L, S T)$: This algorithm is the same as that of Section 3.1.

4.2 Security Analysis

Theorem 4.1. The above RIBE scheme is secure in the selective revocation list model under chosen plaintext attacks if the $(3, m)$-MDHE assumption holds where N is the maximum number of users and $m=\sqrt{N}$. That $i s$, for any PPT adversary \mathcal{A}, we have that $\boldsymbol{A d} \boldsymbol{v}_{R I B E, \mathcal{A}}^{I N D-\text {-CPA }} \leq \boldsymbol{A} \boldsymbol{d} \boldsymbol{v}_{\mathcal{B}}^{(3, m)-M D H E}$.

Proof. Suppose there exists an adversary \mathcal{A} that attacks the above RIBE scheme with a non-negligible advantage. A simulator \mathcal{B} that solves the MDHE assumption using \mathcal{A} is given: a challenge tuple $D=$ $\left(g_{1}, g_{1}^{a}, g_{1}^{a^{2}}, \ldots, g_{1}^{a^{m}}, g_{1}^{a^{m+2}}, \ldots, g_{1}^{a^{2 m}}, g_{1}^{b}, g_{1}^{c}\right)$ and Z where $Z=Z_{0}=g_{3}^{a^{m+1} b c}$ or $Z=Z_{1} \in_{R} \mathbb{G}_{3}$. Then \mathcal{B} that interacts with \mathcal{A} is described as follows:

Init: \mathcal{A} initially submits a challenge identity $I D^{*}$, a challenge time T^{*}, and a revoked identity set R^{*} on the time T^{*}. It first sets a state $S T$ and a revocation list $R L$ as empty one. For each $I D \in\left\{I D^{*}\right\} \cup R^{*}$, it selects an index $d \in \mathcal{N}$ such that $(-, d) \notin S T$ and adds $(I D, d)$ to $S T$. Let $R I^{*} \subseteq \mathcal{N}$ be the revoked index set of R^{*} on the time T^{*} and $S I^{*}$ be the non-revoked index set on the time T^{*} such that $S I^{*}=\mathcal{N} \backslash R I^{*}$. Note that $S I^{*}$ is divided to subsets $S I_{1}^{*}, \ldots, S I_{m}^{*}$.
Setup: \mathcal{B} first chooses random exponents $\theta_{1}, \ldots, \theta_{m} \in \mathbb{Z}_{p}$ and sets master key elements by implicitly setting $\alpha=a, \beta=b,\left\{\gamma_{k}=\theta_{k}-\sum_{j \in S_{k}^{*}} a^{m+1-j}\right\}$ as

$$
\left\{g_{1}^{\alpha^{j}}=g_{1}^{a^{j}}\right\}_{1 \leq j, j \neq m+1 \leq 2 m}, g_{1}^{\beta}=g_{1}^{b},\left\{g_{1}^{\gamma_{k}}=g_{1}^{\theta_{k}} \prod_{j \in S I_{k}^{*}}\left(g^{a^{m+1-j}}\right)^{-1}\right\}_{1 \leq k \leq m} .
$$

Next, it selects random exponents $f_{0}^{\prime},\left\{f_{i, j}^{\prime}\right\}_{1 \leq i \leq l_{1}, j \in\{0,1\}}, h_{0}^{\prime},\left\{h_{i, j}^{\prime}\right\}_{1 \leq i \leq l_{2}, j \in\{0,1\}} \in \mathbb{Z}_{p}$ and publishes the public parameters $P P$ as

$$
\begin{aligned}
& g_{1}, \vec{f}_{1}=\left(f_{1,0}=g_{1}^{f_{0}^{\prime}}\left(\prod_{i=1}^{l_{1}} f_{1, i, I D^{*}[i]}\right)^{-1},\left\{f_{1, i, j}=\left(g_{1}^{a^{N}}\right)^{f_{i, j}^{\prime}}\right\}_{1 \leq i \leq l_{1}, j \in\{0,1\}}\right), \\
& \vec{h}_{1}=\left(h_{1,0}=g_{1}^{h_{0}^{\prime}}\left(\prod_{i=1}^{l_{2}} h_{1, i, T^{*}[i]}\right)^{-1},\left\{h_{1, i, j}=\left(g_{1}^{b}\right)^{h_{i, j}^{\prime}}\right\}_{1 \leq i \leq l_{2}, j \in\{0,1\}}\right), \\
& \vec{f}_{2}=\left(f_{2,0}=e_{1,1}\left(g_{1}, f_{1,0}\right),\left\{f_{2, i, j}=e_{1,1}\left(g_{1}, f_{1, i, j}\right)\right\}_{1 \leq i \leq l_{1}, j \in\{0,1\}}\right), \\
& \vec{h}_{2}=\left(h_{2,0}=e_{1,1}\left(g_{1}, h_{1,0}\right),\left\{h_{2, i, j}=e_{1,1}\left(g_{1}, h_{1, i, j}\right)\right\}_{1 \leq i \leq l_{2}, j \in\{0,1\}}\right), \\
& g_{2}, \Omega=e_{2,1}\left(e_{1,1}\left(g_{1}^{a}, g_{1}^{a^{m}}\right), g_{1}^{b}\right)=g_{3}^{a^{m+1} b} .
\end{aligned}
$$

For notational simplicity, we define $\Delta I D=\sum_{i=1}^{l_{1}}\left(f_{i, I D[i]}^{\prime}-f_{i, I D^{*}[i]}^{\prime}\right)$ and $\Delta T=\sum_{i=1}^{l_{2}}\left(h_{i, T[i]}^{\prime}-h_{i, T^{*}[i]}^{\prime}\right)$.
Phase 1: \mathcal{A} adaptively requests a polynomial number of private key, update key, and decryption key queries. If this is a private key query for an identity $I D$, then \mathcal{B} proceeds as follows:

- Case $I D \in R^{*}$: In this case, the simulator can use the partitioning method of Boneh et al. [7]. It first retrieves a tuple (ID, d) from $S T$ where the index $d=\left(d_{x}, d_{y}\right)$ is associated with $I D$. Note that the tuple (ID, d) exists since all identities in R^{*} were added to $S T$ in the initialization step. Next, it selects a random exponent $r_{1} \in \mathbb{Z}_{p}$ and creates a private key $S K_{I D}$ as

$$
K_{0}=\left(g_{1}^{a_{x}^{d_{x}}}\right)^{\theta_{d_{y}}}\left(\prod_{j \in S I_{d_{y}}^{*}} g_{1}^{a_{1}^{m+1-j+d_{x}}}\right)^{-1} F_{1}(I D)^{-r_{1}}, K_{1}=g_{1}^{-r_{1}} .
$$

- Case $I D \notin R^{*}$: In this case, we have $I D \neq I D^{*}$ from the restriction of Definition 2.2 and the simulator can use the partitioning method of Boneh and Boyen [4]. It first selects an index $d \in \mathcal{N}$ such that $(-, d) \notin S T$ and adds $(I D, d)$ to $S T$. Note that the index d can be represented as $\left(d_{x}, d_{y}\right)$. It selects a random exponents $r_{1}^{\prime} \in \mathbb{Z}_{p}$ and creates a private key $S K_{I D}$ by implicitly setting $r_{1}=-a / \Delta I D+r_{1}^{\prime}$ as

$$
K_{0}=\left(g_{1}^{a_{1}^{d x}}\right)^{\theta_{d y}} \prod_{j \in S S_{d_{y}}^{*} \backslash\left\{d_{x}\right\}} g_{1}^{-a^{m+1-j+d_{x}}}\left(g_{1}^{a}\right)^{f_{0}^{\prime} / \Delta I D} F_{1}(I D)^{-r_{1}^{\prime}}, K_{1}=\left(g_{1}^{a}\right)^{-1 / \Delta I D} g_{1}^{r_{1}^{\prime}} .
$$

If this is an update key query for a time T, then \mathcal{B} defines a revoked identity set R on the time T from $R L$ and proceeds as follows:

- Case $T \neq T^{*}$: In this case, the simulator can use the partitioning method of Boneh and Boyen [4]. It first sets a revoked index set $R I$ of R by using $S T$. It also sets $S I=\mathcal{N} \backslash R I$. Note that $S I$ is divided to $S I_{1}, \ldots, S I_{m}$. Next, it selects random exponents $r_{2,1}^{\prime}, \ldots, r_{2, m}^{\prime} \in \mathbb{Z}_{p}$ and creates an update key $U K_{T, R}$ by implicitly setting $\left\{r_{2, k}=-\left(-\sum_{j \in S K_{k}^{*} \backslash S S_{k}} a^{m+1-j}+\sum_{j \in S I_{k} \backslash S_{k}^{*}} a^{m+1-j}\right) / \Delta T+r_{2, k}^{\prime}\right\}$ as

$$
\begin{aligned}
& \left\{g_{1}^{\alpha_{j}}\right\}_{1 \leq j, j \neq m+1 \leq 2 m}, g_{1}^{\beta}, \\
& \left\{U_{k, 0}=\left(g_{1}^{b}\right)^{\theta_{k}}\left(\prod_{j \in S I_{k}^{k} \backslash S_{k}} g_{1}^{-a^{m+1-j}} \prod_{j \in S S_{k} \backslash S S_{k}^{*}} g^{a^{m+1-j}}\right)^{-h_{0}^{\prime} / \Delta T} H_{1}(T)^{r_{2, k}^{\prime},}\right. \\
& \left.U_{k, 1}=\left(\prod_{j \in S I_{k}^{*} t S I_{k}} g_{1}^{-a^{m+1-j}} \prod_{j \in S I_{k} \backslash S S_{k}^{*}} g_{1}^{a^{m+1-j}}\right)^{-1 / \Delta T} g^{r_{2, k}^{\prime}}\right\}_{1 \leq k \leq m} .
\end{aligned}
$$

- Case $T=T^{*}$: In this case, we have $R=R^{*}$ and the simulator can use the partitioning method of Boneh et al. [7]. For each $I D \in R^{*}$, it adds ($I D, T^{*}$) to $R L$ if $\left(I D, T^{\prime}\right) \notin R L$ for any $T^{\prime} \leq T^{*}$. It selects random exponents $r_{2,1}, \ldots, r_{2, m} \in \mathbb{Z}_{p}$ and creates an update key $U K_{T, R}$ as

$$
\left\{g_{1}^{\alpha_{j}}\right\}_{1 \leq j, j \neq m+1 \leq 2 m}, g_{1}^{\beta},\left\{U_{k, 0}=\left(g_{1}^{b}\right)^{\theta_{k}} H_{1}\left(T^{*}\right)^{r_{2, k}}, U_{k, 1}=g_{1}^{-r_{2, k}}\right\}_{1 \leq k \leq m}
$$

If this is a decryption key query for an identity $I D$ and a time T, then \mathcal{B} proceeds as follows:

- Case $I D \neq I D^{*}:$ In this case, the simulator can use the partitioning method of Boneh and Boyen [4]. If $(I D,-) \notin S T$, then it selects an index $d \in \mathcal{N}$ such that $(-, d) \notin S T$ and adds $(I D, d)$ to $S T$. It selects random exponents $r_{1}^{\prime}, r_{2} \in \mathbb{Z}_{p}$ and creates a decryption key $D K_{I D, T}$ by implicitly setting $r_{1}=\left(-a / \Delta I D+r_{1}^{\prime}\right) b$ as

$$
D_{0}=e_{1,1}\left(\left(g_{1}^{a}\right)^{-f_{0}^{\prime} / \Delta I D} F_{1}(I D)^{r_{1}^{\prime}}, g_{1}^{b}\right) H_{2}(T)^{r_{2}}, D_{1}=e_{1,1}\left(\left(g_{1}^{a}\right)^{-1 / \Delta I D} g_{1}^{r_{1}^{\prime}}, g^{b}\right), D_{2}=g_{2}^{r_{2}}
$$

- Case $I D=I D^{*}$: In this case, we have $T \neq T^{*}$ from the restriction of Definition 2.2, and the simulator can use the partitioning method of Boneh and Boyen [4]. It selects random exponents $r_{1}, r_{2}^{\prime} \in \mathbb{Z}_{p}$ and creates a decryption key $D K_{I D, T}$ by implicitly setting $r_{2}=\left(-a / \Delta T+r_{2}^{\prime}\right) a^{m}$ as

$$
D_{0}=e_{1,1}\left(\left(g_{1}^{a}\right)^{-h_{0}^{\prime} / \Delta T} H_{1}(T)^{r_{2}^{\prime}}, g_{1}^{a^{m}}\right) F_{2}(I D)^{r_{1}}, D_{1}=g_{2}^{r_{1}}, D_{2}=e_{1,1}\left(\left(g_{1}^{a}\right)^{-1 / \Delta T} g_{1}^{r_{2}^{\prime}}, g_{1}^{a^{m}}\right) .
$$

Challenge: \mathcal{A} submits two challenge messages $M_{0}^{*}, M_{1}^{*} . \mathcal{B}$ chooses a random bit $\delta \in\{0,1\}$ and creates the challenge ciphertext $C T^{*}$ by implicitly setting $s=c$ as

$$
C=Z \cdot M_{\delta}^{*}, C_{0}=g_{1}^{c}, C_{1}=\left(g_{1}^{c}\right)^{f_{0}^{\prime}}, C_{2}=\left(g_{1}^{c}\right)^{h_{0}^{\prime}} .
$$

Phase 2: Same as Phase 1.
Guess: Finally, \mathcal{A} outputs a guess $\delta^{\prime} \in\{0,1\}$. \mathcal{B} outputs 0 if $\delta=\delta^{\prime}$ or 1 otherwise.
To finish the proof, we should show that the distribution of the simulation is correct. The distribution of private keys, update keys, and decryption keys is correct since the simulation of these keys is almost the same as that of Theorem 3.1 except that it uses a matrix to represent an identity. The distribution of the challenge ciphertext is correct since it is also the same as that of Theorem 3.1. This completes our proof.

5 Conclusion

In this paper, we devised a new technique for RIBE that uses multilinear maps to combine an IBE scheme with a PKBE scheme. Following our technique, we first proposed an RIBE scheme with a constant number of private key elements and update key elements by combining the HIBE scheme of Boneh and Boyen [4] and the PKBE scheme of Boneh, Gentry, and Waters [7], and then we proved its security in the selective revocation list model. Next, we proposed another RIBE scheme that reduces the number of public parameters from $O(N+\lambda)$ to $O(\lambda)$ group elements whereas the number of update key elements increases from $O(1)$ to $O(\sqrt{N})$ where N is the maximum number of users. We expect that our technique will open a new direction to build an efficient RIBE scheme and their extensions.

There are many interesting open problems in RIBE. The first one is to construct an RIBE scheme with a constant number of private key elements and update key elements that is secure in the adaptive security model instead of the selective revocation list model. The second one is to construct a revocable HIBE (RHIBE) scheme with better parameters. RHIBE provides the private key delegation functionality and the revocation functionality for each user. The RHIBE scheme of Seo and Emura [33] has $O\left(l^{2} \log N\right)$ number of private key elements and $O(r \log (N / r))$ number of update key elements where l is the depth of hierarchy, N is the maximum number of users, and r is the maximum number of revoked users. The third one is to build an RIBE scheme with a constant number of private key elements and update key elements that can handle exponential number of users in the system.

Acknowledgements

The first two authors (Seunghwan Park and Kwangsu Lee) contributed equally to this work.

References

[1] William Aiello, Sachin Lodha, and Rafail Ostrovsky. Fast digital identity revocation (extended abstract). In Hugo Krawczyk, editor, CRYPTO '98, volume 1462 of Lecture Notes in Computer Science, pages 137-152. Springer, 1998.
[2] Nuttapong Attrapadung and Hideki Imai. Conjunctive broadcast and attribute-based encryption. In Hovav Shacham and Brent Waters, editors, Pairing 2009, volume 5671 of Lecture Notes in Computer Science, pages 248-265. Springer, 2009.
[3] Alexandra Boldyreva, Vipul Goyal, and Virendra Kumar. Identity-based encryption with efficient revocation. In Peng Ning, Paul F. Syverson, and Somesh Jha, editors, ACM Conference on Computer and Communications Security, pages 417-426. ACM, 2008.
[4] Dan Boneh and Xavier Boyen. Efficient selective-id secure identity-based encryption without random oracles. In Christian Cachin and Jan Camenisch, editors, EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer Science, pages 223-238. Springer, 2004.
[5] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based encryption with constant size ciphertext. In Ronald Cramer, editor, EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer Science, pages 440-456. Springer, 2005.
[6] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the weil pairing. In Joe Kilian, editor, CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science, pages 213-229. Springer, 2001.
[7] Dan Boneh, Craig Gentry, and Brent Waters. Collusion resistant broadcast encryption with short ciphertexts and private keys. In Victor Shoup, editor, CRYPTO 2005, volume 3621 of Lecture Notes in Computer Science, pages 258-275. Springer, 2005.
[8] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and challenges. In Yuval Ishai, editor, TCC 2011, volume 6597 of Lecture Notes in Computer Science, pages 253-273. Springer, 2011.
[9] Dan Boneh and Alice Silverberg. Applications of multilinear forms to cryptography. Contemporary Mathematics, 324:71-90, 2003.
[10] Dan Boneh and Brent Waters. Conjunctive, subset, and range queries on encrypted data. In Salil P. Vadhan, editor, TCC 2007, volume 4392 of Lecture Notes in Computer Science, pages 535-554. Springer, 2007.
[11] Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from identity-based encryption. In Christian Cachin and Jan Camenisch, editors, EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer Science, pages 207-222. Springer, 2004.
[12] Clifford Cocks. An identity based encryption scheme based on quadratic residues. In Bahram Honary, editor, IMA Int. Conf., volume 2260 of Lecture Notes in Computer Science, pages 360-363. Springer, 2001.
[13] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal lattices. In Thomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of Lecture Notes in Computer Science, pages 1-17. Springer, 2013.
[14] Craig Gentry. Certificate-based encryption and the certificate revocation problem. In Eli Biham, editor, EUROCRYPT 2003, volume 2656 of Lecture Notes in Computer Science, pages 272-293. Springer, 2003.
[15] Craig Gentry. Practical identity-based encryption without random oracles. In Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004 of Lecture Notes in Computer Science, pages 445-464. Springer, 2006.
[16] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new cryptographic constructions. In Cynthia Dwork, editor, STOC, pages 197-206. ACM, 2008.
[17] Craig Gentry and Alice Silverberg. Hierarchical id-based cryptography. In Yuliang Zheng, editor, ASIACRYPT 2002, volume 2501 of Lecture Notes in Computer Science, pages 548-566. Springer, 2002.
[18] Craig Gentry and Brent Waters. Adaptive security in broadcast encryption systems (with short ciphertexts). In Antoine Joux, editor, EUROCRYPT 2009, volume 5479 of Lecture Notes in Computer Science, pages 171-188. Springer, 2009.
[19] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption with bounded collusions via multi-party computation. In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417 of Lecture Notes in Computer Science, pages 162-179. Springer, 2012.
[20] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for finegrained access control of encrypted data. In Ari Juels, Rebecca N. Wright, and Sabrina De Capitani di Vimercati, editors, ACM Conference on Computer and Communications Security, pages 89-98. ACM, 2006.
[21] Jeremy Horwitz and Ben Lynn. Toward hierarchical identity-based encryption. In Lars R. Knudsen, editor, EUROCRYPT 2002, volume 2332 of Lecture Notes in Computer Science, pages 466-481. Springer, 2002.
[22] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting disjunctions, polynomial equations, and inner products. In Nigel P. Smart, editor, EUROCRYPT 2008, volume 4965 of Lecture Notes in Computer Science, pages 146-162. Springer, 2008.
[23] Kwangsu Lee, Seung Geol Choi, Dong Hoon Lee, Jong Hwan Park, and Moti Yung. Self-updatable encryption: Time constrained access control with hidden attributes and better efficiency. In Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013, volume 8269 of Lecture Notes in Computer Science, pages 235-254. Springer, 2013.
[24] Kwangsu Lee and Dong Hoon Lee. Adaptively secure broadcast encryption under standard assumptions with better efficiency. Cryptology ePrint Archive, Report 2013/488, 2013. http: //eprint.iacr.org/2013/488.
[25] Allison B. Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and Brent Waters. Fully secure functional encryption: Attribute-based encryption and (hierarchical) inner product encryption. In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of Lecture Notes in Computer Science, pages 62-91. Springer, 2010.
[26] Benoît Libert and Damien Vergnaud. Adaptive-id secure revocable identity-based encryption. In Marc Fischlin, editor, CT-RSA 2009, volume 5473 of Lecture Notes in Computer Science, pages 1-15. Springer, 2009.
[27] Silvio Micali. Efficient certificate revocation. Technical Report MIT/LCS/TM-542b, 1996.
[28] Dalit Naor, Moni Naor, and Jeffery Lotspiech. Revocation and tracing schemes for stateless receivers. In Joe Kilian, editor, CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science, pages 41-62. Springer, 2001.
[29] Moni Naor and Kobbi Nissim. Certificate revocation and certificate update. IEEE Journal on Selected Areas in Communications, 18(4):561-570, 2000.
[30] Amit Sahai, Hakan Seyalioglu, and Brent Waters. Dynamic credentials and ciphertext delegation for attribute-based encryption. In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417 of Lecture Notes in Computer Science, pages 199-217. Springer, 2012.
[31] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In Ronald Cramer, editor, EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer Science, pages 457-473. Springer, 2005.
[32] Jae Hong Seo and Keita Emura. Efficient delegation of key generation and revocation functionalities in identity-based encryption. In Ed Dawson, editor, CT-RSA 2013, volume 7779 of Lecture Notes in Computer Science, pages 343-358. Springer, 2013.
[33] Jae Hong Seo and Keita Emura. Revocable identity-based encryption revisited: Security model and construction. In Kaoru Kurosawa and Goichiro Hanaoka, editors, PKC 2013, volume 7778 of Lecture Notes in Computer Science, pages 216-234. Springer, 2013.
[34] Adi Shamir. Identity-based cryptosystems and signature schemes. In G. R. Blakley and David Chaum, editors, CRYPTO '84, volume 196 of Lecture Notes in Computer Science, pages 47-53. Springer, 1984.
[35] Brent Waters. Efficient identity-based encryption without random oracles. In Ronald Cramer, editor, EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer Science, pages 114-127. Springer, 2005.
[36] Brent Waters. Dual system encryption: Realizing fully secure ibe and hibe under simple assumptions. In Shai Halevi, editor, CRYPTO 2009, volume 5677 of Lecture Notes in Computer Science, pages 619-636. Springer, 2009.

A Revocable IBE in Graded Encoding Systems

In this section, we translate our RIBE scheme in Section 3 into the graded encoding system of Garg, Gentry, and Halevi [13].

A. 1 Graded Encoding Systems

We recall the formal definition of a k-graded encoding system and the procedures for the manipulation of this encoding in [13].

Definition A. 1 (k-Graded Encoding System [13]). A k-Graded Encoding System for a ring R is a system of sets $\mathcal{S}=\left\{S_{i}^{(\alpha)} \subset\{0,1\}^{*}: i \in[0, k], \alpha \in R\right\}$, with the following properties:

1. For every $i \in[0, k]$, the sets $\left\{S_{i}^{(\alpha)}: \alpha \in R\right\}$ are disjoint .
2. There are binary operations + and $-\left(\right.$ on $\left.\{0,1\}^{*}\right)$ such that for every $\alpha_{1}, \alpha_{2} \in R$, every $i \in[0, k]$, and every $u_{1} \in S_{i}^{\left(\alpha_{1}\right)}$ and $u_{2} \in S_{i}^{\left(\alpha_{2}\right)}$, it holds that $u_{1}+u_{2} \in S_{i}^{\left(\alpha_{1}+\alpha_{2}\right)}$ and $u_{1}-u_{2} \in S_{i}^{\left(\alpha_{1}-\alpha_{2}\right)}$ where $\alpha_{1}+\alpha_{2}$ and $\alpha_{1}-\alpha_{2}$ are addition and subtraction in R.
3. There is an associative binary operation $\times\left(\right.$ on $\left.\{0,1\}^{*}\right)$ such that for every $\alpha_{1}, \alpha_{2} \in R$, every i_{1}, i_{2} with $0 \leq i_{1}+i_{2} \leq k$, and every $u_{1} \in S_{i_{1}}^{\left(\alpha_{1}\right)}$ and $u_{2} \in S_{i_{2}}^{\left(\alpha_{2}\right)}$, it holds that $u_{1} \times u_{2} \in S_{i_{1}+i_{2}}^{\left(\alpha_{1} \cdot \alpha_{2}\right)}$ where $\alpha_{1} \cdot \alpha_{2}$ is multiplication in R.

The k-graded encoding system for a ring R includes a system for sets $\mathcal{S}=\left\{S_{i}^{(\alpha)} \subset\{0,1\}^{*}: i \in[0, k], \alpha \in\right.$ $R\}$. The set $S_{i}^{(\alpha)}$ consists of the "level- i encodings of α ". Moreover, the system is equipped with efficient procedures.

Definition A. 2 (Efficient Procedures for a k-Graded Encoding System [13]). A k-Graded Encoding System (see above) consists of the following efficient procedures:

Instance Generation. The randomized InstGen $\left(1^{\lambda}, 1^{k}\right)$ takes as inputs the parameters λ and k, and outputs (params, $p_{z t}$), where params is a description of a k-Graded Encoding System as above, and $p_{z t}$ is a zero-test parameter.
Ring Sampler. The randomized samp(params) outputs a "level-zero encoding" $a \in S_{0}^{(\alpha)}$ for a nearly uniform element $\alpha \in_{R} R$. Note that the encoding a does not need to be uniform in $S_{0}^{(\alpha)}$.

Encoding. The (possibly randomized) enc(params, a) takes as input a level-zero encoding $a \in S_{0}^{(\alpha)}$ for some $\alpha \in R$, and outputs the level-one encoding $u \in S_{1}^{(\alpha)}$ for the same α.

Re-Randomization. The randomized rerand(params, i, u) re-randomizes encodings relative to the same level i, Specifically, given an encoding $u \in S_{i}^{(\alpha)}$, it outputs another encoding $u^{\prime} \in S_{i}^{(\alpha)}$. Moreover for any two $u_{1}, u_{2} \in S_{i}^{(\alpha)}$, the output distributions of rerand(params, $\left.i, u_{1}\right)$ and rerand(params, i, u_{2}) are nearly the same.

Addition and negation. Given params and two encodings relative to the same level, $u_{1} \in S_{i}^{\left(\alpha_{1}\right)}$ and $u_{2} \in$ $S_{i}^{\left(\alpha_{2}\right)}$, we have add $\left(\right.$ params $\left., u_{1}, u_{2}\right) \in S_{i}^{\left(\alpha_{1}+\alpha_{2}\right)}$ and $\boldsymbol{n e g}\left(\right.$ params,$\left.u_{1}\right) \in S_{i}^{\left(-\alpha_{1}\right)}$. Below we write $u_{1}+u_{2}$ and $-u_{1}$ as a shorthand for applying these procedures.

Multiplication. For $u_{1} \in S_{i}^{\left(\alpha_{1}\right)}$ and $u_{2} \in S_{j}^{\left(\alpha_{2}\right)}$, we have mul(params, $\left.u_{1}, u_{2}\right) \in S_{i+j}^{\left(\alpha_{1} \cdot \alpha_{2}\right)}$. Below we write $u_{1} \cdot u_{2}$ as a shorthand for applying this procedure.

Zero-test. The procedure isZero(params, $\left.p_{z t}, u\right)$ outputs 1 if $u \in S_{k}^{(\alpha)}$ and 0 otherwise.
Extraction. The procedure extracts a random function of ring elements from their level-k encoding. Namely ext(params, $\left.p_{z t}, u\right)$ outputs $s \in\{0,1\}^{\lambda}$, such that:

1. For any $\alpha \in R$ and two $u_{1}, u_{2} \in S_{k}^{(\alpha)}$, ext(params, $\left.p_{z t}, u_{1}\right)=\boldsymbol{e x t}\left(\right.$ params, $\left.p_{z t}, u_{2}\right)$.
2. The distribution $\left\{\boldsymbol{\operatorname { e x t }}\left(\boldsymbol{p a r a m s}, p_{z t}, u\right): \alpha \in_{R} R, u \in S_{\kappa}^{(\alpha)}\right\}$ is nearly uniform over $\{0,1\}^{\lambda}$.

For notational simplicity, we omit the repeated params arguments that are passed to input arguments in all algorithms. For instance, we write $a=\boldsymbol{\operatorname { s a m p }}()$ instead of $a=\boldsymbol{\operatorname { s a m p }}($ params $)$.

A. 2 Construction

Let $\mathcal{N}=\{1, \ldots, N\}, \mathcal{I}=\{0,1\}^{l_{1}}$, and $\mathcal{T}=\{0,1\}^{l_{2}}$. Our RIBE scheme in the 3-graded encoding system is described as follows:

RIBE.Setup $\left(1^{\lambda}, N\right)$: This algorithm obtains (params, $\left.p_{z t}\right)$ by running $\operatorname{InstGen}\left(1^{\lambda}, 1^{3}\right)$. Note that params includes a level 1 encoding of 1 , which is denoted as g_{1}. It chooses random encodings $f_{0}^{\prime},\left\{f_{i, j}^{\prime}\right\}_{1 \leq i \leq l_{1}, j \in\{0,1\}}$, $h_{0}^{\prime},\left\{h_{i, j}^{\prime}\right\}_{1 \leq i \leq l_{2}, j \in\{0,1\}}$ by freshly calling $\operatorname{samp}()$ and sets

$$
\begin{aligned}
& f_{1,0}=\operatorname{rerand}\left(1, \operatorname{enc}\left(1, f_{0}^{\prime}\right)\right),\left\{f_{1, i, j}=\operatorname{rerand}\left(1, \operatorname{enc}\left(1, f_{i, j}^{\prime}\right)\right)\right\}_{1 \leq i \leq l_{1}, j \in\{0,1\}}, \\
& h_{1,0}=\operatorname{rerand}\left(1, \operatorname{enc}\left(1, h_{0}^{\prime}\right)\right),\left\{h_{1, i, j}=\operatorname{rerand}\left(1, \operatorname{enc}\left(1, h_{i, j}^{\prime}\right)\right)\right\}_{1 \leq i \leq l_{2}, j \in\{0,1\}}, \\
& f_{2,0}=\operatorname{rerand}\left(2, g_{1} \cdot f_{1,0}\right),\left\{f_{2, i, j}=\operatorname{rerand}\left(2, g_{1} \cdot f_{1, i, j}\right)\right\}_{1 \leq i \leq l_{1}, j \in\{0,1\}}, \\
& h_{2,0}=\operatorname{rerand}\left(2, g_{1} \cdot h_{1,0}\right),\left\{h_{2, i, j}=\operatorname{rerand}\left(2, g_{1} \cdot h_{1, i, j}\right)\right\}_{1 \leq i \leq l_{2}, j \in\{0,1\}} .
\end{aligned}
$$

It also sets $\vec{f}_{k}=\left(f_{k, 0},\left\{f_{k, i, j}\right\}_{1 \leq i \leq l_{1}, j \in\{0,1\}}\right)$ and $\vec{h}_{k}=\left(h_{k, 0},\left\{h_{k, i, j}\right\}_{1 \leq i \leq l_{2}, j \in\{0,1\}}\right)$ for $k \in\{1,2\}$. Next, it chooses random encodings α, β, γ by freshly calling $\operatorname{samp}()$. It outputs a master key $M K=(\alpha, \beta, \gamma)$, an empty revocation list $R L$, an empty state $S T$, and public parameters as

$$
\begin{aligned}
P P= & \left(\left(\operatorname{params}, p_{z t}\right),\left\{A_{j}=\operatorname{rerand}\left(1, \operatorname{enc}\left(1, \alpha^{j}\right)\right)\right\}_{1 \leq j, j \neq N+1 \leq 2 N}, B=\operatorname{rerand}(1, \operatorname{enc}(1, \beta)),\right. \\
& \left.\vec{f}_{1}, \vec{h}_{1}, \vec{f}_{2}, \vec{h}_{2}, \Omega=\operatorname{rerand}\left(3, \operatorname{enc}\left(3, \alpha^{N+1} \beta\right)\right)\right) .
\end{aligned}
$$

RIBE.GenKey(ID,MK, $S T, P P)$: This algorithm first assigns an index $d \in \mathcal{N}$ that is not in $S T$ to the identity $I D$, and updates the state $S T$ by adding a tuple (ID, d) to $S T$. Next, it chooses a random encoding r_{1} by calling $\operatorname{samp}()$ and outputs a private key by implicitly including $I D$ and d as
$S K_{I D}=\left(K_{0}=\operatorname{rerand}\left(1, \operatorname{enc}\left(1, \alpha^{d} \cdot \gamma\right)+\left(f_{1,0}+\sum_{i=1}^{l_{1}} f_{1, i, I D[i]}\right) \cdot\left(-r_{1}\right)\right), K_{1}=\operatorname{rerand}\left(1, \operatorname{enc}\left(1,-r_{1}\right)\right)\right)$.
RIBE.UpdateKey $(T, R L, M K, S T, P P)$: This algorithm defines the revoked set R, the revoked index set $R I$, and the non-revoked index set $S I$ as the same as in Section 3.1. It chooses a random encoding r_{2} by calling $\operatorname{samp}()$ and outputs an update key by implicitly including T, R, and $R I$ as

$$
\begin{aligned}
U K_{T, R}=\left(U_{0}\right. & \left.=\operatorname{rerand}\left(1, \operatorname{enc}\left(1,\left(\gamma+\sum_{j \in S I} \alpha^{N+1-j}\right) \cdot \beta\right)+\left(h_{1,0}+\sum_{i=1}^{l_{2}} h_{1, i, T[i]}\right) \cdot r_{2}\right)\right), \\
U_{1} & \left.=\operatorname{rerand}\left(1, \operatorname{enc}\left(1,-r_{2}\right)\right)\right) .
\end{aligned}
$$

RIBE.DeriveKey $\left(S K_{I D}, U K_{T, R}, P P\right)$: Let $S K_{I D}=\left(K_{0}, K_{1}\right)$ and $U K_{T, R}=\left(U_{0}, U_{1}\right)$. If $I D \in R$, then it outputs \perp. Otherwise, it proceeds the following steps: Let d be the index of $I D$ and $R I$ be the revoked index set of R. It sets a non-revoked index set $S I=\mathcal{N} \backslash R I$ and derives components T_{0}, T_{1} and T_{2} as

$$
\begin{aligned}
& T_{0}=\operatorname{rerand}\left(2,\left(A_{d} \cdot U_{0}-B \cdot\left(K_{0}+\prod_{j \in S, j \neq d} A_{N+1-j+d}\right)\right)\right), \\
& T_{1}=\operatorname{rerand}\left(2, B \cdot K_{1}\right), T_{2}=\operatorname{rerand}\left(2, A_{d} \cdot U_{1}\right) .
\end{aligned}
$$

Next, it selects random encodings $r_{1}^{\prime}, r_{2}^{\prime}$ by freshly calling $\operatorname{samp}()$ and re-randomizes the temporal components as

$$
\begin{aligned}
& D_{0}=\operatorname{rerand}\left(2, T_{0}+\left(f_{2,0}+\sum_{i=1}^{l_{1}} f_{2, i, I D[i]}\right) \cdot r_{1}^{\prime}+\left(h_{2,0}+\sum_{i=1}^{l_{2}} h_{2, i, T[i]}\right) \cdot r_{2}^{\prime}\right), \\
& D_{1}=\operatorname{rerand}\left(2, T_{1}+\mathbf{e n c}\left(2,-r_{1}^{\prime}\right)\right), D_{2}=\operatorname{rerand}\left(2, T_{2}+\mathbf{e n c}\left(2,-r_{2}^{\prime}\right)\right) .
\end{aligned}
$$

Finally, it outputs a decryption key by implicitly including $I D$ and T as $D K_{I D, T}=\left(D_{0}, D_{1}, D_{2}\right)$.
RIBE.Encrypt $(I D, T, M, P P)$: This algorithm first chooses a random encoding s by calling samp(). If $M=0$, it sets $C=\operatorname{rerand}(3, \Omega \cdot s)$. Otherwise, it sets $C=\operatorname{rerand}(3, \operatorname{enc}(3, \operatorname{samp}()))$. It outputs a ciphertext by implicitly including $I D$ and T as

$$
\begin{aligned}
C T_{I D, T}= & \left(C, C_{0}=\operatorname{rerand}(1, \operatorname{enc}(1, s)), C_{1}=\operatorname{rerand}\left(1,\left(f_{1,0}+\sum_{i=1}^{l_{1}} f_{1, i, I D[i]}\right) \cdot s\right),\right. \\
& \left.C_{2}=\operatorname{rerand}\left(1,\left(h_{1,0}+\sum_{i=1}^{l_{2}} h_{1, i, T[i]}\right) \cdot s\right)\right)
\end{aligned}
$$

RIBE.Decrypt $\left(C T_{I D, T}, D K_{I D^{\prime}, T^{\prime}}, P P\right)$: Let $C T_{I D, T}=\left(C, C_{0}, C_{1}, C_{2}\right)$ and $D K_{I D^{\prime}, T^{\prime}}=\left(D_{0}, D_{1}, D_{2}\right)$. If $(I D=$ $\left.I D^{\prime}\right) \wedge\left(T=T^{\prime}\right)$, then it computes $C^{\prime}=C_{1} \cdot D_{1}+C_{2} \cdot D_{2}$ and outputs $M=1$ if $C=C^{\prime}$ by using isZero $\left(p_{z t}, C-C^{\prime}\right)$ and $M=0$ otherwise. Otherwise, it outputs \perp.

RIBE.Revoke(ID, $T, R L, S T)$: This algorithm is the same as that of Section 3.1.
Remark A.3. Although we can translate our RIBE scheme in Section 3into the GGH framework, we cannot directly translate the security proof in Section 3 into the GGH framework since a level-zero encoding is defined for a ring R in the GGH framework instead of \mathbb{Z}_{p}. In Section \mathbb{C}, we show that an RIBE scheme for small universe can be proven in the GGH framework.

B Revocable IBE for Small Universe

In this section, we propose an RIBE scheme form small universe and prove its selective revocation list security.

B. 1 Construction

Let $\mathcal{N}=\{1, \ldots, N\}, \mathcal{I}=\left\{I D_{1}, \ldots, I D_{n_{1}}\right\}$, and $\mathcal{T}=\left\{T_{1}, \ldots, T_{n_{2}}\right\}$. Let ρ_{1} be a mapping from identity space \mathcal{I} to integers $\left\{1, \ldots, n_{1}\right\}$ and ρ_{2} be a mapping from time space \mathcal{T} to integers $\left\{1, \ldots, n_{2}\right\}$. Our RIBE scheme for small universe is described as follows:

RIBE.Setup $\left(1^{\lambda}, N\right)$: Let $\left(p, \overrightarrow{\mathbb{G}}, e_{1,1}, e_{1,2}, e_{2,1}\right)$ be the description of a 3-leveled multilinear group of prime order p. Let g_{1}, g_{2}, g_{3} be generators of $\mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{3}$ respectively. It selects random elements $v_{1},\left\{f_{1, i}\right\}_{1 \leq i \leq n_{1}}$, $\left\{h_{1, i}\right\}_{1 \leq i \leq n_{2}} \in \mathbb{G}_{1}$ and sets $v_{3}=e_{2,1}\left(g_{2}, v_{1}\right),\left\{f_{2, i}=e_{1,1}\left(g_{1}, f_{1, i}\right)\right\}_{1 \leq i \leq n_{1}},\left\{h_{2, i}=e_{1,1}\left(g_{1}, h_{1, i}\right)\right\}_{1 \leq i \leq n_{2}}$. Next, it selects random exponents $\alpha, \beta, \gamma \in \mathbb{Z}_{p}$. It outputs a master key $M K=(\alpha, \beta, \gamma)$, an empty revocation list $R L$, an empty state $S T$, and public parameters as

$$
\begin{aligned}
P P= & \left(p, \overrightarrow{\mathbb{G}}, e_{1,1}, e_{1,2}, e_{2,1}\right), g_{1},\left\{g_{1}^{\alpha^{j}}\right\}_{1 \leq j, j \neq N+1 \leq 2 N}, v_{1},\left\{v_{1}^{\alpha^{j}}\right\}_{1 \leq j, j \neq N+1 \leq 2 N}, g_{1}^{\beta}, \\
& \left.\vec{f}_{1}, \vec{h}_{1}, g_{2}, \vec{f}_{2}, \vec{h}_{2}, \Omega=v_{3}^{\alpha^{N+1} \beta}\right) .
\end{aligned}
$$

RIBE.GenKey (ID, $M K, S T, P P)$: Let d be an index of $I D$ as the same as in Section 3.1. It selects a random exponent $r_{1} \in \mathbb{Z}_{p}$ and outputs a private key by implicitly including $I D$ and d as

$$
S K_{I D}=\left(K_{0}=v_{1}^{\alpha^{d} \gamma} f_{1, \rho_{1}(I D)}^{-r_{1}}, K_{1}=g_{1}^{-r_{1}}\right) .
$$

RIBE.UpdateKey $(T, R L, M K, S T, P P)$: This algorithm defines the revoked set R, the revoked index set $R I$, and the non-revoked index set $S I$ as the same as in Section 3.1. It selects a random exponent $r_{2} \in \mathbb{Z}_{p}$ and outputs an update key by implicitly including T, R, and the revoked index set $R I$ as

$$
U K_{T, R}=\left(U_{0}=\left(v_{1}^{\gamma} \prod_{j \in S I} v_{1}^{\alpha^{N+1-j}}\right)^{\beta} h_{1, \rho_{2}(T)}^{r_{2}}, U_{1}=g_{1}^{-r_{2}}\right) .
$$

RIBE.DeriveKey $\left(S K_{I D}, U K_{T, R}, P P\right)$: Let $S K_{I D}=\left(K_{0}, K_{1}\right)$ and $U K_{T, R}=\left(U_{0}, U_{1}\right)$. If $I D \in R$, then it outputs \perp. Otherwise, it proceeds the following steps: Let d be the index of $I D$ and $R I$ be the revoked index set of R. It sets a non-revoked index set $S I=\mathcal{N} \backslash R I$ and derives components T_{0}, T_{1} and T_{2} as

$$
T_{0}=e_{1,1}\left(g_{1}^{\alpha^{d}}, U_{0}\right) \cdot e_{1,1}\left(g_{1}^{\beta}, K_{0} \prod_{j \in S I, j \neq d} v_{1}^{\alpha^{N+1-j+d}}\right)^{-1}, T_{1}=e_{1,1}\left(g_{1}^{\beta}, K_{1}\right), T_{2}=e_{1,1}\left(g_{1}^{\alpha^{d}}, U_{1}\right) .
$$

Next, it chooses random exponents $r_{1}^{\prime}, r_{2}^{\prime} \in \mathbb{Z}_{p}$ and re-randomizes the temporal components as $D_{0}=$ $T_{0} \cdot f_{2, \rho_{1}(I D)}^{r_{1}^{\prime}} h_{2, \rho_{2}(T)}^{r_{2}^{\prime}}, D_{1}=T_{1} \cdot g_{2}^{-r_{1}^{\prime}}, D_{2}=T_{2} \cdot g_{2}^{-r_{2}^{\prime}}$. Finally, it outputs a decryption key $D K_{I D, T}=$ $\left(D_{0}, D_{1}, D_{2}\right)$.

RIBE.Encrypt(ID, $T, M, P P)$: This algorithm chooses a random exponent $s \in \mathbb{Z}_{p}$ and outputs a ciphertext by implicitly including $I D$ and T as

$$
C T_{I D, T}=\left(C=\Omega^{s} \cdot M, C_{0}=g_{1}^{s}, C_{1}=f_{1, \rho_{1}(I D)}^{s}, C_{2}=h_{1, \rho_{2}(T)}^{s}\right) .
$$

RIBE.Decrypt $\left(C T_{I D, T}, D K_{I D^{\prime}, T^{\prime}}, P P\right)$: It is the same as that of Section 3.1.
RIBE.Revoke($I D, T, R L, S T)$: It is the same as that of Section 3.1.

B. 2 Security Analysis

Theorem B.1. The above RIBE scheme for small universe is secure in the selective revocation list model under chosen plaintext attacks if the $(3, N)$-MDHE assumption holds where N is the maximum number of users in the system.

Proof. Suppose there exists an adversary \mathcal{A} that attacks the above RIBE scheme with a non-negligible advantage. A simulator \mathcal{B} that solves the MDHE assumption using \mathcal{A} is given: a challenge tuple $D=$ $\left(g_{1}, g_{1}^{a}, g_{1}^{a^{2}}, \ldots, g_{1}^{a^{N}}, g_{1}^{a^{N+2}}, \ldots, g_{1}^{a^{2 N}}, g_{1}^{b}, g_{1}^{c}\right)$ and Z where $Z=Z_{0}=g_{3}^{a^{N+1} b c}$ or $Z=Z_{1} \in_{R} \mathbb{G}_{3}$. Then \mathcal{B} that interacts with \mathcal{A} is described as follows:

Init: \mathcal{A} initially submits a challenge identity $I D^{*}$, a challenge time T^{*}, and a revoked identity set R^{*} on the time T^{*}. It first sets a state $S T$ and a revocation list $R L$ as empty one. For each $I D \in\left\{I D^{*}\right\} \cup R^{*}$, it selects an index $d \in \mathcal{N}$ such that $(-, d) \notin S T$ and adds $(I D, d)$ to $S T$. Let $R I^{*} \subseteq \mathcal{N}$ be the revoked index set of R^{*} on the time T^{*} and $S I^{*}$ be the non-revoked index set on the time T^{*} such that $S I^{*}=\mathcal{N} \backslash R I^{*}$.
Setup: \mathcal{B} first chooses random exponents $v_{1}^{\prime},\left\{f_{i}^{\prime}\right\}_{1 \leq i \leq n_{1}},\left\{h_{i}^{\prime}\right\}_{1 \leq i \leq n_{2}}, \theta \in \mathbb{Z}_{p}$. For notational simplicity, we use $\Pi f_{j}^{\prime}=\prod_{j=1}^{n_{1}} f_{j}^{\prime}$, $\Pi_{j \neq k} f_{j}^{\prime}=\prod_{1 \leq j \leq n_{1}, j \neq k} f_{j}^{\prime}, \prod_{j}^{\prime}=\prod_{j=1}^{n_{2}} h_{j}^{\prime}$, and $\prod_{j \neq k} h_{j}^{\prime}=\prod_{1 \leq j \leq n_{2}, j \neq k} h_{j}^{\prime}$. It sets $v_{1}^{\gamma}=$ $v_{1}^{\theta} \Pi_{j \in S I^{*}}\left(v_{1}^{a+1-j}\right)^{-1}$ by implicitly setting $\gamma=\theta-\sum_{j \in S I^{*}} a^{N+1-j}$ and publishes the public parameters $P P$ by implicitly setting $\alpha=a, \beta=b \prod h_{j}^{\prime}$ as

$$
\begin{aligned}
& g_{1}, v_{1}=g_{1}^{v_{1}^{\prime} \Pi f_{j}^{\prime}},\left\{g_{1}^{\alpha^{i}}=g_{1}^{a^{i}}\right\}_{1 \leq i, i \neq N+1 \leq 2 N},\left\{v_{1}^{\alpha^{i}}=\left(g_{1}^{a^{i}}\right)^{v_{1}^{\prime} \Pi f_{j}^{\prime}}\right\}_{1 \leq i, i \neq N+1 \leq 2 N}, g_{1}^{\beta}=g_{1}^{b \Pi h_{i}^{\prime}}, \\
& \left\{f_{1, i}=\left(g_{1}^{a^{N}}\right)^{\Pi_{j \neq \rho_{1}\left(I D_{i}\right)} f_{j}^{\prime}},\right\}_{1 \leq i \leq n_{1}, i \neq \rho_{1}\left(I D^{*}\right)}, f_{1, \rho\left(I D^{*}\right)}=g_{1}^{\Pi_{j \neq \rho_{1}\left(I D^{*}\right)} f_{j}^{\prime}},\left\{f_{2, i}=e_{1,1}\left(g_{1}, f_{1, i}\right)\right\}_{1 \leq i \leq n_{1}}, \\
& \left\{h_{1, i}=\left(g_{1}^{b}\right)^{\Pi_{j \neq \rho_{2}\left(T_{i}\right)} h_{j}^{\prime}},\right\}_{1 \leq i \leq n_{2}, i \neq \rho_{2}\left(T^{*}\right)}, h_{1, \rho\left(T^{*}\right)}=g_{1}^{\prod_{j \neq \rho_{2}\left(T^{*}\right)} h_{j}^{\prime}},\left\{h_{2, i}=e_{1,1}\left(g_{1}, h_{1, i}\right)\right\}_{1 \leq i \leq n_{2}}, \\
& g_{2}, \Omega=e_{2,1}\left(e_{1,1}\left(g_{1}^{\alpha}, g_{1}^{\alpha^{N}}\right), g_{1}^{b}\right)^{\Pi f_{j}^{\prime} \Pi h_{j}^{\prime}}=g_{3}^{\alpha^{N+1} b \Pi f_{j}^{\prime} \Pi h_{j}^{\prime}} .
\end{aligned}
$$

Phase 1: \mathcal{A} adaptively requests a polynomial number of private key, update key, and decryption key queries. If this is a private key query for an identity $I D$, then \mathcal{B} proceeds as follows:

- Case $I D \in R^{*}$: It first retrieves a tuple $(I D, d)$ from $S T$ where the index d is associated with $I D$. Next, it selects a random exponent $r_{1} \in \mathbb{Z}_{p}$ and creates a private key $S K_{I D}$ as

$$
K_{0}=\left(v_{1}^{a^{d}}\right)^{\theta}\left(\prod_{j \in S I^{*}} v_{1}^{a^{N+1-j+d}}\right)^{-1} f_{1, \rho_{1}(I D)}^{-r_{1}}, K_{1}=g_{1}^{-r_{1}} .
$$

- Case $I D \notin R^{*}$: In this case, we have $I D \neq I D^{*}$ from the restriction of Definition 2.2. It first selects an index $d \in \mathcal{N}$ such that $(-, d) \notin S T$ and adds (ID, $d)$ to $S T$. Next, it selects a random exponents $r_{1}^{\prime} \in \mathbb{Z}_{p}$ and creates a private key $S K_{I D}$ by implicitly setting $r_{1}=-a f_{\rho_{1}(I D)}^{\prime}+r_{1}^{\prime}$ as

$$
K_{0}=v_{1}^{a^{d} \theta} \prod_{j \in S I^{*} \backslash\{d\}} v_{1}^{-a^{N+1-j+d}} f_{1, \rho_{1}(I D)}^{r_{1}^{\prime}}, K_{1}=\left(g_{1}^{a}\right)^{f_{\rho_{1}(I D)}^{\prime}} g_{1}^{-r_{1}^{\prime}} .
$$

If this is an update key query for a time T, then \mathcal{B} defines a revoked identity set R on the time T from $R L$ and proceeds as follows:

- Case $T \neq T^{*}$: It first sets a revoked index set $R I$ of R by using $S T$. It also sets $S I=\mathcal{N} \backslash R I$. Next, it selects a random exponent $r_{2}^{\prime} \in \mathbb{Z}_{p}$ and creates an update key $U K_{T, R}$ by implicitly setting $r_{2}=$ $-\left(-\sum_{j \in S I^{*} \backslash S I} a^{N+1-j}+\sum_{j \in S \backslash \backslash I^{*}} a^{N+1-j}\right) h_{1, \rho_{2}(T)}^{\prime} \Pi f_{j}^{\prime}+r_{2}^{\prime}$ as

$$
U_{0}=\left(g_{1}^{b}\right)^{\theta} \Pi f_{j}^{\prime} h_{1, \rho_{1}(T)}^{r_{2}^{\prime}}, U_{1}=\left(\prod_{j \in S I^{*} \cup S I} g_{1}^{-a^{N+1-j}} \prod_{j \in S I \backslash S I^{*}} g_{1}^{a^{N+1-j}}\right)^{-h_{1, \rho_{2}(T)}^{\prime} \Pi f_{j}^{\prime}} g^{-r_{2}^{\prime}}
$$

- Case $T=T^{*}$: In this case, we have $R=R^{*}$. For each $I D \in R^{*}$, it adds ($I D, T^{*}$) to $R L$ if $\left(I D, T^{\prime}\right) \notin R L$ for any $T^{\prime} \leq T^{*}$. Next, it selects a random exponent $r_{2} \in \mathbb{Z}_{p}$ and creates an update key $U K_{T, R}$ as

$$
U_{0}=\left(g_{1}^{b}\right)^{\theta} \Pi f_{j}^{\prime} h_{1, \rho_{1}\left(T^{*}\right)}^{r_{2}}, U_{1}=g_{1}^{-r_{2}} .
$$

If this is a decryption key query for an identity $I D$ and a time T, then \mathcal{B} proceeds as follows:

- Case $I D \neq I D^{*}$: If $(I D,-) \notin S T$, then it selects an index $d \in \mathcal{N}$ such that $(-, d) \notin S T$ and adds $(I D, d)$ to $S T$. Next, it selects random exponents $r_{1}^{\prime}, r_{2} \in \mathbb{Z}_{p}$ and creates a decryption key $D K_{I D, T}$ by implicitly setting $r_{1}=\left(-a f_{\rho_{1}(I D)}^{\prime}+r_{1}^{\prime}\right) b$ as

$$
D_{0}=e_{1,1}\left(\left(g_{1}^{a^{N} \Pi_{j \neq \rho_{1}(I D)} f_{j}^{\prime}}\right)^{r_{1}^{\prime}}, g_{1}^{b \Pi h_{j}^{\prime}}\right) h_{2, \rho_{2}(T)}^{r_{2}}, D_{1}=e_{1,1}\left(\left(g_{1}^{a}\right)^{f_{\rho_{1}(I D)}^{\prime}} g_{1}^{-r_{1}^{\prime}}, g^{b}\right), D_{2}=g_{2}^{-r_{2}}
$$

- Case $I D=I D^{*}$: In this case, we have $T \neq T^{*}$ from the restriction of Definition 2.2. It selects random exponents $r_{1}, r_{2}^{\prime} \in \mathbb{Z}_{p}$ and creates a decryption key $D K_{I D, T}$ by implicitly setting $r_{2}=\left(-a h_{\rho_{1}(T)}^{\prime}+r_{2}^{\prime}\right) a^{N}$ as

$$
D_{0}=e_{1,1}\left(\left(g_{1}^{b \Pi_{j \neq \rho_{2}(T)} h_{j}^{\prime}}\right)^{r_{2}^{\prime}}, g_{1}^{a^{N}} \Pi f_{j}^{\prime}\right) \cdot f_{2, \rho_{1}(I D)}^{r_{1}}, D_{1}=g_{2}^{-r_{1}}, D_{2}=e_{1,1}\left(\left(g_{1}^{a}\right)^{h_{\rho_{2}(T)}^{\prime}} g_{1}^{-r_{2}^{\prime}}, g_{1}^{a^{N}}\right)
$$

Challenge: \mathcal{A} submits two challenge messages $M_{0}^{*}, M_{1}^{*} . \mathcal{B}$ chooses a random bit $\delta \in\{0,1\}$ and creates the challenge ciphertext $C T^{*}$ by implicitly setting $s=c$ as

$$
C=Z^{\Pi f_{j}^{\prime} \Pi h_{j}^{\prime}} \cdot M_{\delta}^{*}, C_{0}=g_{1}^{c}, C_{1}=\left(g_{1}^{c}\right)^{\left.\Pi_{j \neq \rho_{1}\left(D^{*}\right)}\right) f_{j}^{\prime}}, C_{2}=\left(g_{1}^{c}\right)^{\Pi_{j \neq \rho_{2}\left(T^{*}\right)} h_{j}^{\prime}} .
$$

Phase 2: Same as Phase 1.
Guess: Finally, \mathcal{A} outputs a guess $\delta^{\prime} \in\{0,1\}$. \mathcal{B} outputs 0 if $\delta=\delta^{\prime}$ or 1 otherwise.
This completes our proof.

C RIBE for Small Universe in the GGH Framework

In this section, we translate the RIBE scheme for small universe into the GGH framework and prove its security in the selective revocation list model.

C. 1 Construction

Let $\mathcal{N}=\{1, \ldots, N\}, \mathcal{I}=\left\{I D_{1}, \ldots, I D_{n_{1}}\right\}$, and $\mathcal{T}=\left\{T_{1}, \ldots, T_{n_{2}}\right\}$. Our RIBE scheme for small universe in the 3 -graded encoding system is described as follows:

RIBE.Setup $\left(1^{\lambda}, N\right)$: This algorithm obtains (params, $p_{z t}$) by running $\operatorname{InstGen}\left(1^{\lambda}, 1^{3}\right)$. Note that params includes a level 1 encoding of 1 , which is denoted as g_{1}. It chooses random encodings $v_{1}^{\prime},\left\{f_{i}^{\prime}\right\}_{1 \leq i \leq n_{1}}$, $\left\{h_{i}^{\prime}\right\}_{1 \leq i \leq n_{2}}$ by freshly calling samp() and sets

$$
\begin{aligned}
& \left\{f_{1, i}=\operatorname{rerand}\left(1, \operatorname{enc}\left(1, f_{i}^{\prime}\right)\right), f_{2, i}=\operatorname{rerand}\left(2, g_{1} \cdot f_{1, i}\right)\right\}_{1 \leq i \leq n_{1}}, \\
& \left\{h_{1, i}=\operatorname{rerand}\left(1, \operatorname{enc}\left(1, h_{i}^{\prime}\right)\right), h_{2, i}=\operatorname{rerand}\left(2, g_{1} \cdot h_{1, i}\right)\right\}_{1 \leq i \leq n_{2}} .
\end{aligned}
$$

Next, it chooses random encodings α, β, γ by freshly calling $\operatorname{samp}()$. It outputs a master key $M K=$ (α, β, γ), an empty revocation list $R L$, an empty state $S T$, and public parameters as

$$
\begin{aligned}
& P P=\left(\left(\boldsymbol{p a r a m s}, p_{z t}\right),\left\{A_{j}=\operatorname{rerand}\left(1, \operatorname{enc}\left(1, v_{1} \cdot \alpha^{j}\right)\right)\right\}_{1 \leq j, j \neq N+1 \leq 2 N}, B=\operatorname{rerand}\left(1, \operatorname{enc}\left(1, v_{1} \cdot \beta\right)\right),\right. \\
& \left.v_{1}, \vec{f}_{1}, \vec{h}_{1}, \vec{f}_{2}, \vec{h}_{2}, \Omega=\operatorname{rerand}\left(3, \operatorname{enc}\left(3, v_{1} \cdot \alpha^{N+1} \beta\right)\right)\right) \text {. }
\end{aligned}
$$

RIBE.GenKey (ID,MK,ST,PP): Let $d \in \mathcal{N}$ be an index for $I D$. It chooses a random encoding r_{1} by calling $\boldsymbol{\operatorname { s a m p }}()$ and outputs a private key by implicitly including $I D$ and d as

$$
S K_{I D}=\left(K_{0}=\operatorname{rerand}\left(1, \operatorname{enc}\left(1, v_{1} \cdot \alpha^{d} \cdot \gamma\right)+\left(f_{1, \rho_{1}(I D)}\right) \cdot\left(-r_{1}\right)\right), K_{1}=\operatorname{rerand}\left(1, \operatorname{enc}\left(1,-r_{1}\right)\right)\right) .
$$

RIBE.UpdateKey $(T, R L, M K, S T, P P)$: It first defines the revoked set R, the revoked index set $R I$, and the non-revoked index set $S I$ as the same as in Section A.2. It chooses a random encoding r_{2} by calling $\boldsymbol{\operatorname { s a m p }}()$ and outputs an update key by implicitly including T, R, and the revoked index set $R I$ as

$$
\begin{aligned}
U K_{T, R}=\left(U_{0}\right. & \left.=\operatorname{rerand}\left(1, \operatorname{enc}\left(1,\left(v_{1} \cdot \gamma+v_{1} \cdot \sum_{j \in S I} \alpha^{N+1-j}\right) \cdot \beta\right)+\left(h_{1, \rho_{2}(T)}\right) \cdot r_{2}\right)\right), \\
U_{1} & \left.=\operatorname{rerand}\left(1, \operatorname{enc}\left(1,-r_{2}\right)\right)\right) .
\end{aligned}
$$

RIBE.DeriveKey $\left(S K_{I D}, U K_{T, R}, P P\right)$: Let $S K_{I D}=\left(K_{0}, K_{1}\right)$ and $U K_{T, R}=\left(U_{0}, U_{1}\right)$. If $I D \in R$, then it outputs \perp. Otherwise, it proceeds the following steps: Let d be the index of $I D$ and $R I$ be the revoked index set of R. It sets a non-revoked index set $S I=\mathcal{N} \backslash R I$ and derives components T_{0}, T_{1} and T_{2} as

$$
\begin{aligned}
& T_{0}=\operatorname{rerand}\left(2,\left(A_{d} \cdot U_{0}-B \cdot\left(K_{0}+\prod_{j \in S, j \neq d} A_{N+1-j+d}\right)\right)\right), \\
& T_{1}=\operatorname{rerand}\left(2, B \cdot K_{1}\right), T_{2}=\operatorname{rerand}\left(2, A_{d} \cdot U_{1}\right) .
\end{aligned}
$$

Next, it selects random encodings $r_{1}^{\prime}, r_{2}^{\prime}$ by freshly calling $\operatorname{samp}()$ and re-randomizes the temporal components as

$$
\begin{aligned}
& D_{0}=\operatorname{rerand}\left(2, T_{0}+\left(f_{2, \rho_{1}(I D)}\right) \cdot r_{1}^{\prime}+\left(h_{2, \rho_{2}(T)}\right) \cdot r_{2}^{\prime}\right), \\
& D_{1}=\operatorname{rerand}\left(2, T_{1}+\operatorname{enc}\left(2,-r_{1}^{\prime}\right)\right), D_{2}=\operatorname{rerand}\left(2, T_{2}+\operatorname{enc}\left(2,-r_{2}^{\prime}\right)\right) .
\end{aligned}
$$

Finally, it outputs a decryption key $D K_{I D, T}=\left(D_{0}, D_{1}, D_{2}\right)$.
RIBE.Encrypt $(I D, T, M, P P)$: It first chooses a random encoding s by calling samp(). If $M=0$, it sets $C=\operatorname{rerand}(3, \Omega \cdot s)$. Otherwise, it sets $C=\operatorname{rerand}(3, \operatorname{enc}(3, \operatorname{samp}()))$. It outputs a ciphertext by implicitly including $I D$ and T as

$$
\begin{gathered}
C T_{I D, T}=\left(C, C_{0}=\operatorname{rerand}(1, \operatorname{enc}(1, s)), C_{1}=\operatorname{rerand}\left(1,\left(f_{1, \rho_{1}(I D)}\right) \cdot s\right),\right. \\
\left.C_{2}=\operatorname{rerand}\left(1,\left(h_{1, \rho_{2}(T)}\right) \cdot s\right)\right) .
\end{gathered}
$$

RIBE.Decrypt $\left(C T_{I D, T}, D K_{I D^{\prime}, T^{\prime}}, P P\right)$: This algorithm is the same as that of Section A.2.
RIBE.Revoke($I D, T, R L, S T)$: This algorithm is the same as that of Section A. 2 ,

C. 2 Security Analysis

We translate the MDHE assumption in Section 2.3 into the graded encoding system version in the GGH framework.

Assumption C. 1 (GGH analogue of Decisional Multilinear Diffie-Hellman Exponent, GGH (k, l)-MDHE). A challenger obtains (params, $p_{z t}$) by running InstGen $\left(1^{\lambda}, 1^{k}\right)$ and chooses random encodings $a, c_{1}, \ldots, c_{k-1}$ by calling samp () . The GGH analogue of decisional ($k, l)$-MDHE assumption is that if the challenge tuple

$$
D=\left(\left(\boldsymbol{\operatorname { p a r a m s }}, p_{z t}\right),\left\{\boldsymbol{\operatorname { r e r a n d }}\left(1, \boldsymbol{\operatorname { e n c }}\left(1, a^{j}\right)\right)\right\}_{1 \leq j, j \neq l+1 \leq 2 l},\left\{\boldsymbol{\operatorname { r e r a n d }}\left(1, \boldsymbol{\operatorname { e n c }}\left(1, c_{i}\right)\right)\right\}_{1 \leq i \leq k-1}\right) \text { and } Z
$$

are given, no PPT algorithm \mathcal{A} can distinguish $Z=Z_{0}=\boldsymbol{\operatorname { r e r a n d }}\left(k, \boldsymbol{\operatorname { e n c }}\left(k, a^{l+1} \prod_{i=1}^{k-1} c_{i}\right)\right)$ from $Z=Z_{1}=$ rerand $(k, \boldsymbol{e n c}(k, \boldsymbol{\operatorname { s a m p }}()))$ with more than a negligible advantage. The advantage of \mathcal{A} is defined as $\boldsymbol{A} \boldsymbol{d} \boldsymbol{v}_{\mathcal{A}}^{G G H}(k, l)-M D H E \quad(\lambda)=\left|\operatorname{Pr}\left[\mathcal{A}\left(D, Z_{0}\right)=0\right]-\operatorname{Pr}\left[\mathcal{A}\left(D, Z_{1}\right)=0\right]\right|$.

Assumption C. 2 (GGH analogue of Decisional 3-Leveled Multilinear Diffie-Hellman Exponent, GGH (3,l)-MDHE). A challenger obtains (params, $p_{z t}$) by running InstGen $\left(1^{\lambda}, 1^{3}\right)$ and chooses random encodings a, b, c by calling samp () . The GGH analogue of decisional $(3, l)$-MDHE assumption is that if the challenge tuple

$$
\begin{aligned}
D= & \left(\left(\boldsymbol{\operatorname { p a r a m s }}, p_{z t}\right),\left\{\boldsymbol{\operatorname { r e r a n d }}\left(1, \boldsymbol{\operatorname { e n c }}\left(1, a^{j}\right)\right)\right\}_{1 \leq j, j \neq l+1 \leq 2 l}, \boldsymbol{\operatorname { r e r a n d }}(1, \boldsymbol{\operatorname { e n c }}(1, b)),\right. \\
& \boldsymbol{\operatorname { r e r a n d }}(1, \boldsymbol{\operatorname { e n c }}(1, c))) \text { and } Z
\end{aligned}
$$

are given, no PPT algorithm \mathcal{A} can distinguish $Z=Z_{0}=\boldsymbol{\operatorname { r e r a n d }}\left(3, \boldsymbol{\operatorname { e n c }}\left(3, a^{l+1} b c\right)\right)$ from $Z=Z_{1}=\boldsymbol{\operatorname { r e r a n d }}(3$, enc $(3, \operatorname{samp}()))$ with more than a negligible advantage. The advantage of \mathcal{A} is defined as $\boldsymbol{A d v} \boldsymbol{v}_{\mathcal{A}}^{\text {GGH }(3, l)-M D H E}$ $(\lambda)=\left|\operatorname{Pr}\left[\mathcal{A}\left(D, Z_{0}\right)=0\right]-\operatorname{Pr}\left[\mathcal{A}\left(D, Z_{1}\right)=0\right]\right|$.

Theorem C.3. The above RIBE scheme for small universe in graded encoding systems is secure in the selective revocation list model under chosen plaintext attacks if the GGH analogue of $(3, N)$-MDHE assumption holds where N is the maximum number of users in the system.

Proof. Suppose there exists an adversary \mathcal{A} that attacks the above RIBE scheme in graded encoding systems with a non-negligible advantage. A simulator \mathcal{B} that solves the GGH MDHE assumption using \mathcal{A} is given: a challenge tuple $D=\left(\left(\boldsymbol{p a r a m s}, p_{z t}\right),\left\{\operatorname{rerand}\left(1, \operatorname{enc}\left(1, a^{j}\right)\right)\right\}_{1 \leq j, j \neq N+1 \leq 2 N}, \operatorname{rerand}(1, \operatorname{enc}(1, b)), \operatorname{rerand}(1\right.$, $\mathbf{e n c}(1, c))$) and Z where $Z=Z_{0}=\operatorname{rerand}\left(3, \mathbf{e n c}\left(3, a^{N+1} b c\right)\right)$ or $Z=Z_{1}=\boldsymbol{\operatorname { r e r a n d }}(3, \mathbf{e n c}(3, \operatorname{samp}()))$. Then \mathcal{B} that interacts with \mathcal{A} is described as follows:

Init: \mathcal{A} initially submits a challenge identity $I D^{*}$, a challenge time T^{*}, and a revoked identity set R^{*} on the time T^{*}. It first sets a state $S T$ and a revocation list $R L$ as empty one. For each $I D \in\left\{I D^{*}\right\} \cup R^{*}$, it selects an index $d \in \mathcal{N}$ such that $(-, d) \notin S T$ and adds $(I D, d)$ to $S T$. Let $R I^{*} \subseteq \mathcal{N}$ be the revoked index set of R^{*} on the time T^{*} and $S I^{*}$ be the non-revoked index set on the time T^{*} such that $S I^{*}=\mathcal{N} \backslash R I^{*}$.
Setup: \mathcal{B} first chooses random encodings $\left\{f_{i}^{\prime}\right\}_{1 \leq i \leq n_{1}},\left\{h_{i}^{\prime}\right\}_{1 \leq i \leq n_{2}}, \theta$ by freshly calling samp(). It sets $\Gamma=$ $\operatorname{rerand}\left(1, \mathbf{e n c}\left(1,\left(\theta-\sum_{j \in S I^{*}}\left(a^{N+1-j}\right)\right)\right)\right.$ by implicitly setting $\gamma=\theta-\sum_{j \in S l^{*}} a^{N+1-j}$ and publishes the public parameters $P P$ by implicitly setting $\alpha=a, \beta=b \prod h_{i}^{\prime}$ as

$$
\begin{aligned}
& \left(\text { params }, p_{z t}\right), v_{1}=\operatorname{rerand}\left(1, \operatorname{enc}\left(1, \prod f_{i}^{\prime}\right)\right), \\
& \left\{A_{j}=\operatorname{rerand}\left(1, \operatorname{enc}\left(1, a^{j} \cdot \prod f_{i}^{\prime}\right)\right)\right\}_{1 \leq j, j \neq N+1 \leq 2 N}, B=\operatorname{rerand}\left(1, \operatorname{enc}\left(1, b \cdot \prod f_{i}^{\prime} \cdot \prod h_{i}^{\prime}\right)\right), \\
& \left\{f_{1, i}=\operatorname{rerand}\left(1, A_{N} \cdot \prod_{i \neq \rho_{1}(I D)} f_{i}^{\prime}\right)\right\}_{1 \leq i \leq n_{1}, i \neq \rho_{1}\left(I D^{*}\right)}, f_{1, \rho\left(I D^{*}\right)}=\operatorname{rerand}\left(1, \prod_{i \neq \rho_{1}(I D)} f_{i}^{\prime}\right), \\
& \left\{h_{1, i}=\operatorname{rerand}\left(1, B \cdot \prod_{i \neq \rho_{2}(T)} h_{i}^{\prime}\right),\right\}_{1 \leq i \leq n_{2}, i \neq \rho_{1}\left(T^{*}\right)}, h_{1, \rho\left(T^{*}\right)}=\operatorname{rerand}\left(1, \prod_{i \neq \rho_{2}(T)} h_{i}^{\prime}\right), \\
& \left\{f_{2, i}=\operatorname{rerand}\left(2, g_{1} \cdot f_{1, i}\right)\right\}_{1 \leq i \leq n_{1}},\left\{h_{2, i}=\operatorname{rerand}\left(2, g_{1} \cdot h_{1, i}\right)\right\}_{1 \leq i \leq n_{2}}, \\
& \Omega=\operatorname{rerand}\left(3, A_{1} \cdot A_{N} \cdot B \cdot \prod f_{i}^{\prime} \cdot \prod h_{i}^{\prime}\right) .
\end{aligned}
$$

Phase 1: \mathcal{A} adaptively requests a polynomial number of private key, update key, and decryption key queries. If this is a private key query for an identity $I D$, then \mathcal{B} proceeds as follows:

- Case $I D \in R^{*}$: It first retrieves a tuple ($I D, d$) from $S T$ where the index d is associated with $I D$. Next, it selects a random encoding r_{1} by calling $\operatorname{samp}()$ and creates a private key $S K_{I D}$ as

$$
\begin{aligned}
& K_{0}=\operatorname{rerand}\left(1, A_{d} \cdot \prod f_{i}^{\prime} \cdot \theta-\sum_{j \in S I^{*}} A_{N+1-j+d} \cdot \prod f_{i}^{\prime}+f_{1, \rho_{1}(I D)} \cdot\left(-r_{1}\right),\right. \\
& K_{1}=\operatorname{rerand}\left(1, \mathbf{e n c}\left(1,-r_{1}\right)\right) .
\end{aligned}
$$

- Case $I D \notin R^{*}$: In this case, we have $I D \neq I D^{*}$ from the restriction of Definition 2.2. It first selects an index $d \in \mathcal{N}$ such that $(-, d) \notin S T$ and adds $(I D, d)$ to $S T$. Next, it selects a random encoding r_{1}^{\prime} by calling $\operatorname{samp}()$ and creates a private key $S K_{I D}$ by implicitly setting $r_{1}=-a f_{1, \rho_{1}(I D)}^{\prime}+r_{1}^{\prime}$ as

$$
\begin{aligned}
& K_{0}=\operatorname{rerand}\left(1, A_{d} \cdot \prod f_{i}^{\prime} \cdot \theta-\sum_{j \in S I^{*} \backslash\{d\}} A_{N+1-j+d} \cdot \prod f_{i}^{\prime}+f_{1, \rho_{1}(I D)} \cdot r_{1}^{\prime},\right. \\
& K_{1}=\operatorname{rerand}\left(1, A_{1} \cdot\left(f_{1, \rho_{1}(I D)}^{\prime}\right)+\mathbf{e n c}\left(1,-r_{1}^{\prime}\right)\right) .
\end{aligned}
$$

If this is an update key query for a time T, then \mathcal{B} defines a revoked identity set R on the time T from $R L$ and proceeds as follows:

- Case $T \neq T^{*}$: It first sets a revoked index set $R I$ of R by using $S T$. It also sets $S I=\mathcal{N} \backslash R I$. Next, it selects a random encoding r_{2}^{\prime} by calling $\operatorname{samp}()$ and creates an update key $U K_{T, R}$ by implicitly setting $r_{2}=-\left(-\sum_{j \in S I^{*} \backslash S I} a^{N+1-j}+\sum_{j \in S I \backslash S I^{*}} a^{N+1-j}\right) h_{1, \rho_{2}(T)}^{\prime} \Pi f_{i}^{\prime}+r_{2}^{\prime}$ as

$$
\begin{aligned}
& U_{0}=\operatorname{rerand}\left(1, B \cdot \theta \cdot \prod f_{i}^{\prime}++h_{1, \rho_{2}(T)} \cdot r_{2}^{\prime}\right), \\
& U_{1}=\operatorname{rerand}\left(1,\left(-\sum_{j \in S I^{*} \backslash S I} A_{N+1-j}+\sum_{j \in S \backslash S I^{*}} A_{N+1-j}\right) \cdot\left(-h_{1, \rho_{2}(T)}^{\prime} \prod f_{i}^{\prime}\right)+\mathbf{e n c}\left(1,-r_{2}^{\prime}\right)\right) .
\end{aligned}
$$

- Case $T=T^{*}$: In this case, we have $R=R^{*}$. For each $I D \in R^{*}$, it adds ($I D, T^{*}$) to $R L$ if $\left(I D, T^{\prime}\right) \notin R L$ for any $T^{\prime} \leq T^{*}$. Next, it selects a random encoding r_{2} by calling $\operatorname{samp}()$ and creates an update key $U K_{T, R}$ as

$$
U_{0}=\operatorname{rerand}\left(1, B \cdot \theta \cdot \prod f_{i}^{\prime}++h_{1, \rho_{2}\left(T^{*}\right)} \cdot r_{2}\right), U_{1}=\operatorname{rerand}\left(1, \operatorname{enc}\left(1,-r_{2}\right)\right)
$$

If this is a decryption key query for an identity $I D$ and a time T, then \mathcal{B} proceeds as follows:

- Case $I D \neq I D^{*}:$ If $(I D,-) \notin S T$, then it selects an index $d \in \mathcal{N}$ such that $(-, d) \notin S T$ and adds $(I D, d)$ to $S T$. Next, it selects random encodings r_{1}^{\prime}, r_{2} by freshly calling $\operatorname{samp}()$ and creates a decryption key $D K_{I D, T}$ by implicitly setting $r_{1}=\left(-a f_{1, \rho_{1}(I D)}^{\prime}+r_{1}^{\prime}\right) b$ as

$$
\begin{aligned}
& D_{0}=\operatorname{rerand}\left(2,\left(A_{N} \cdot \prod_{i \neq \rho_{1}(I D)} f_{i}^{\prime} \cdot r_{1}^{\prime}\right) \cdot B \cdot \prod h_{i}^{\prime}+h_{2, \rho_{2}(T)} \cdot r_{2}\right), \\
& D_{1}=\operatorname{rerand}\left(2,\left(A_{1} \cdot\left(f_{1, \rho_{1}(I D)}^{\prime}\right)+\mathbf{e n c}\left(1,-r_{1}^{\prime}\right)\right) \cdot B\right), D_{2}=\operatorname{rerand}\left(2, \operatorname{enc}\left(2,-r_{2}\right)\right) .
\end{aligned}
$$

- Case $I D=I D^{*}$: In this case, we have $T \neq T^{*}$ from the restriction of Definition 2.2. It selects random encodings r_{1}, r_{2}^{\prime} by freshly calling $\operatorname{samp}()$ and creates a decryption key $D K_{I D, T}$ by implicitly setting $r_{2}=\left(-a h_{1, \rho_{2}(T)}^{\prime}+r_{2}^{\prime}\right) a^{N}$ as

$$
\begin{aligned}
& D_{0}=\operatorname{rerand}\left(2,\left(B \cdot \prod_{i \neq \rho_{2}(T)} h_{i}^{\prime} \cdot r_{2}^{\prime}\right) \cdot A_{N} \cdot \prod f_{i}^{\prime}+f_{2, \rho_{1}(I D)} \cdot r_{1}\right), \\
& D_{1}=\operatorname{rerand}\left(2, \operatorname{enc}\left(2,-r_{1}\right)\right), D_{2}=\operatorname{rerand}\left(2,\left(A_{1} \cdot\left(h_{1, \rho_{2}(T)}^{\prime}\right)+\operatorname{enc}\left(1,-r_{2}^{\prime}\right)\right) \cdot A_{N}\right) .
\end{aligned}
$$

Challenge: \mathcal{B} creates the challenge ciphertext $C T^{*}$ by implicitly setting $s=c$ as

$$
\begin{aligned}
C & =\operatorname{rerand}\left(1, Z \cdot \prod f_{i}^{\prime} \prod h_{i}^{\prime}\right), C_{0}=\operatorname{rerand}(1, \operatorname{enc}(1, c)), \\
C_{1} & =\operatorname{rerand}\left(1, C_{0} \cdot \prod_{i \neq \rho_{1}\left(I D^{*}\right)} f_{i}^{\prime}\right), C_{2}=\operatorname{rerand}\left(1, C_{0} \cdot \prod_{i \neq \rho_{2}\left(T^{*}\right)} h_{i}^{\prime}\right) .
\end{aligned}
$$

If $Z=Z_{0}$ then this is an encryption of 0 ; Otherwise $\left(Z=Z_{1}\right)$ then it is an encryption of 1 .
Phase 2: Same as Phase 1.
Guess: Finally, \mathcal{A} outputs a guess $\delta \in\{0,1\}$. \mathcal{B} outputs 0 if $\delta=0$ or 1 otherwise.
This completes our proof.

[^0]: *Korea University, Seoul, Korea. Email: sgusa@korea. ac. kr.
 ${ }^{\dagger}$ Korea University, Seoul, Korea. Email: guspin@korea. ac.kr.
 ${ }^{\dagger}$ Korea University, Seoul, Korea. Email: donghlee@korea.ac.kr.

