
One Weird Trick to Stop Selfish Miners: Fresh
Bitcoins, A Solution for the Honest Miner.

Ethan Heilman
Boston University
heilman@bu.edu

Abstract—A recent result in Bitcoin is the selfish mining
strategy in which a selfish cartel withholds blocks they mine to
gain an advantage. This strategy is both incentive-compatible
and harmful to Bitcoin. In this paper we introduce a new
defense against selfish mining that improves on the previous
best result, we raise the threshold of mining power necessary to
profitably selfishly mine from 25% to 32% under all propagation
advantages. While the security of our system uses unforgeable
timestamps, it is robust to their compromise. Additionally, we
discuss the difficulty a mining conspiracy would face attempting
to keep the compromise of our scheme secret and we analyze
incentives for getting miners to adopt these changes.

I. INTRODUCTION

Bitcoin is a virtual currency [8], [3] that has rapidly in-
creased in user share and value. As of November 2013 it has
a market capitalization of 13 billion USD [6]. In the last year
it has undergone rapid commercial deployment in the online
retail [4] and international remittances sector [5].

In “Majority is not Enough: Bitcoin Mining is Vulnerable”,
Eyal and Sirer study a mining strategy called selfish mining
[14] (see Subsection II). Miners are members of the Bitcoin
network that securely process collections of transactions into
blocks in exchange for rewards (see Section II-A). This strat-
egy defeats the incentive system of Bitcoin, because a mining
pool which follows the selfish protocol can obtain a greater
share of mining rewards than those miners which follow the
Bitcoin protocol. Taken as a whole, selfish mining represents
a ‘tragedy of the commons’ in which selfish behavior is
incentivized over honest behavior, eventually causing most
actors to adopt the selfish behavior despite it not being in
the group’s global interest (see Subsection II-F).

The success of selfish mining depends on two parameters: α,
the mining power of the selfish cartel and γ, the ratio of honest
mining power that, during a block race, mines on a block
released by the selfish cartel. Mining power is the percentage
of computational power that a particular miner or mining pool
controls out of the total computational power of all the miners.
We can view the minimum value of α such that selfish mining
is successful as the security threshold for a particular γ. The
greater the value γ, the smaller α needs to be and vice versa.
Thus, as Eyal and Sirer show, if γ = 0, then selfish mining is
profitable at α ≥ 0.33 or 33%, whereas if γ = 0.99 then selfish
mining is profitable at α ≥ 0.009. Eyal and Sirer propose a
defense against selfish mining which fixes γ = 0.5. This raises
the threshold for a selfish cartel to be profitable to at least 25%
or α ≥ 0.25 (see Subsection II-G).

In Section III we present and analyze a novel defense,
called Freshness Preferred, which raises the security bound
to 32%. As selfish mining is based on strategic withholding
of blocks, Freshness Preferred decreases the profitability of
selfish mining by using unforgeable timestamps to penalize
miners that withhold blocks. Under our scheme γ depends on
α, therefore we are unable to fix γ for all α as was done by
Eyal and Sirer. Instead we show that for all α ≤ 0.32, γ is
low enough such that selfish mining does not win more than
its fair share.

The remainder of the paper is organised as follows. In
Subsection III-C we analyze the security of our scheme
under partial compromise. In Subsection III-F we look at the
incentizes of deploying Freshness Preferred and develop an
incentive compatible deployment plan. In Section IV we exam-
ine a necessary component of Freshness Preferred, unforgeable
timestamps.

II. SELFISH MINING BACKGROUND

A. Bitcoin

Bitcoin is collection of cryptographic protocols which al-
lows users to securely transact with each other.

These transactions are recorded in a distributed public
ledger known as the block chain. To ensure the irreversibility
of the public ledger, Bitcoin miners process transactions by
discovering new blocks to place at the head of the blockchain.
This act of block discovery is known as mining and is done by
performing a large number of simple but intense computations.

B. Block Races

When a block is discovered it is transmitted to neighbors
in a p2p overlay network. If this block extends a miner’s
blockchain, the miner will begin mining on the announced
block and retransmit the block to its neighbors.

A block race occurs when two blocks with the same parent
block are announced at roughly the same time. According to
the Bitcoin protocol, miners should always choose the block
they received first, and not retransmit the second block. Since
the blocks were announced at roughly the same time, some
miners will see one block first and other miners will see the
other block first. This causes the blockchain to fork into two
branches.

A block race continues until a miner discovers a block
which extends one of the competing branches. Because miners
that follow the Bitcoin protocol always prefer the longest

blockchain, the branch that was just extended becomes the
canonical branch for all miners.

C. A History of Selfish Mining Strategies

An adversarial mining strategy based on withholding blocks
was first proposed in 2010 by Bitcoin talk member RHorning
[12], further analysis was done by ByteCoin showing that, all
other things being equal, the attack is successful if the selfish
mining cartel controls 33% of the mining power [13]. This
33% threshold assumed that the cartel won half of all block
races.

In 2013 Eyal and Sirer published a deep and formal analysis
of the incentives of the selfish mining strategy. They show
two interesting results. First, if the selfish cartel can gain an
advantage in block races, then the selfish cartel would need
to control very little mining power to win more than its fair
share of mining rewards[14]. Second, that with control of 33%
of the mining power, or α = 0.33, a selfish cartel will win
more than its fair share of the mining rewards, even if honest
miners never mine on a selfish block during a block race (that
is, γ = 0).

D. Selfish Mining Assumptions

Eyal and Sirer’s selfish mining scenario assumes that there
are only two camps of miners: a single cartel of selfish
miners and the community of honest miners. The selfish cartel
functions as a single coordinated group, the honest community
is not coordinated and consists of many actors. The honest
community is assumed to represent over 50% of the Bitcoin
mining power.

This may not be an accurate description of how selfish
mining may play out, for instance there could be multiple self-
ish cartels competing with each other1, various miners could
play both sides or the honest community could coordinate a
response to selfish mining. We will use this set of assumptions
in our paper.

E. A Description of the Selfish-Mine Strategy

In the selfish mining strategy introduced by Eyal and
Sirer, the share of the mining resources (computing power)
controlled by the cartel is denoted by α and the share of the
resources owned by the honest miners is (1−α). This strategy
relies on creating an informational asymmetry between the
cartel’s private branch and the honest miners’ public branch.

Formally, the strategy Selfish-Mine is played according to
the following five rules:

Event: The Honest community discovers a block.

1: If the public branch of the blockchain is longer than
the private branch of the cartel, set the private branch
equal to the public branch.

1In simple incentive terms it would be in selfish miners interests to pool
their resources, but coordination and secrecy dynamics could lead to multiple
cartels.

2: If the private branch is zero or one block longer than
the public branch, publish the entire private branch2.

3: If the private branch is more than one block longer
than the public branch publish the first unpublished
block in the public chain.

Event: The Selfish cartel discovers a block.
4: Add the new block to the private branch.
5: If a block race is occurring between the cartel and

the honest miners, publish the private branch to win
the race.

Thus the cartel does not publish blocks from its private
branch except in reaction to the honest miners discovering a
block. The Selfish-Mine strategy is said to be successful when
the cartel wins more than its fair share of mining rewards.

This success depends on the parameters α and γ. During
a block race between the selfish cartel and an honest miner,
members of the honest community may learn about the block
mined by the selfish cartel before they learn about the block
mined by the honest miner, thus some percentage of the honest
mining community will be mining on the selfish cartels block.
γ is the percentage of honest mining power that mines on a
block released by the selfish cartel. Eyal and Sirer relate α
and γ using a formula they refer to as Observation 1[14]. The
observation is that “a pool of size α obtains a revenue larger
than its relative size for α in the following range”:

1− γ

3− 2γ
< α <

1

2
(1)

This observation shows that as γ increases, the mining
resource threshold for selfish mining decreases, but as γ
decreases, the threshold increases, raising the difficulty of
selfish mining.

F. Selfish Mining Is Harmful

Selfish mining, if put into practice, would be extremely
harmful for Bitcoin. As Eyal and Sirer[14] argue, if selfish
mining became a more profitable mining strategy, then increas-
ing numbers of miners would join the selfish cartel. This could
lead to a situation in which the cartel controls over 50% of
the mining resources and thereby centralizes Bitcoin (known
as the 51% attack) [17], [1].

Furthermore a selfish mining cartel with significant mining
resources would cause two negative effects. First, it would
increase transaction approval times, because transactions ap-
proved by the selfish private branch would not be public and,
due an increased number of block races, transactions approved
in blocks that lost a block race would need to be reapproved in
a later block. Second, it would make Bitcoin more vulnerable
to double spending, as both cartels and non-aligned users could
add mutually exclusive transactions to the private and public
branches [20].

2If there were more than one selfish cartel this would lead to a block “cook
off”, or chain reaction, as each cartel’s block publication would trigger a block
publication from the other cartels, until only the cartel with the longest private
branch had any private branches remaining. This suggests that selfish mining
might be unprofitable with many uncoordinated cartels.

G. The 25% Defense
Eyal and Sirer propose [14] changing the Bitcoin protocol

to raise threshold of the minimum successful mining resource
share to 25% for arbitrary propagation advantages. Their
proposed change is that when a miner learns of two branches
of equal length, as occurs during a block race, the miner should
retransmit both branches and randomly choose one branch to
mine on. They use Observation 1 to show that this raises the
threshold of the minimum successful mining resource share to
25% or α = 0.25.

III. FRESHNESS PREFERRED (FP) :THE 32% DEFENSE

In this section we present Freshness Preferred (FP), our new
mining strategy designed to defend against selfish mining. As
selfish mining is based on strategic withholding of blocks,
Freshness Preferred decreases the profitability of selfish min-
ing by using unforgeable timestamps to penalize miners that
withhold blocks. In Subsection III-B we develop our scheme
under the assumption that we have unforgeable timestamps. In
Subsection III-C we analyze our scheme when we don’t have
unforgeable timestamps.

We discuss the design of these unforgeable timestamps in
detail in Section IV. Finally in Subsection III-E, we show
that Freshness Preferred raises the threshold of the minimum
share of mining power necessary to profitably selfishly mine
from 25% to 32%. In Subsection III-F we develop a incentive-
compatible deployment plan for Freshness Preferred.

A. Description
A miner that plays the FP (Freshness Preferred) strategy

uses the following rules:

Event: FP miner receives two blocks within w seconds of
each other.

1: If the two blocks are come from branches of equal
length the miner accepts the block with the most
recent valid timestamp3 and rejects the other block. If
both blocks have equal timestamps the miner prefers
the block it received first.

2: Otherwise, the miner accepts the block from the
branch of greater length.

All Other Cases:
3: The miner behaves according to the Bitcoin protocol.
That is, we change the Bitcoin protocol so that, rather than a

miner preferring the block which arrives earliest, the FP-miner
prefers the block which has the most recent timestamp.

The intuition behind FP is if we ensure that block races are
won by the party that has the most recently created blocks,
then withholding blocks reduces the percentage of honest
miners that will mine on the withheld block. The percentage
of honest miners that mine on a selfish block during a block
race is denoted as, γ. Using Observation 1, made by Eyal and
Sirer and discussed in Subsection II-G, reducing γ increases
the threshold for selfish mining to be successful.

3The lack of a timestamp is treated as an invalid timestamp

B. Modeling a Block Race

We model a block race between a selfish block and an
honest block. We assume in this section that the entire honest
community has adopted the FP strategy. The selfish block, Bs,
is discovered at time Ds, at some later time, Dh, an honest
miner discovers the block Bh. The selfish cartel reacts to the
publication of Bh and releases Bs in response. We evaluate
this block race from the perspective of a FP miner who learns
about Bs at time Ls and Dh at time Lh.

Using the heuristic that the we should “overestimate the
attacker and underestimate the defender”, we assume the cartel
has no propagation delay, that it learns about the honest block
at discovery time Dh (this is, instantly), and that the honest
miner has a lengthy propagation delay of pdh. Furthermore,
we allow the cartel to win all timestamp ties.

Under these assumptions the FP-miner learns about Bs the
instant that Bh is discovered, but doesn’t learn about Bh until
sometime later due to the propagation delay.

Ls = Dh

Lh = Dh + pdh

A block race can only occur when both the blocks are
released in the same window of time. We formalize this notion
with the parameter w, the block race window. If two blocks are
released more than w seconds apart, the first block released,
regardless of timestamp, will always win the block race (this
is a direct result of our Freshness Preferred Strategy given in
Subsection III-A).

As justified in Subsection III-D, we assume that the block
race window, w, is larger than the propagation delay pdh. The
difference between the time a miner learns about Bh and Bs
will never be greater than w, or put another way, Lh < Ls +
w. Thus, regardless of when Bh happens, we will always be
within the block race window, w. Therefore, as described in
Subsection III-A, the FP-miner will decide which block to
accept based on the timestamps of the two competing blocks.
If the timestamp, Ts, for the selfish block is older than the
timestamp for the honest block, Th, then the FP-miner will
choose the honest block. On the other hand, if the timestamps
are equal, Ts = Th, then it will prefer the selfish block since
we allow the selfish miner to win all ties. By definition the
selfish block was discovered prior to the honest block, so the
selfish block can never have a more recent timestamp than the
honest block.

The probability that a particular selfish block is accepted by
the FP-miner is equal to the probability that a honest miner
discovers Bh within the same timestamp as Bs. This depends
on two factors: the increment of the timestamp in seconds
and the per second rate at which honest miners discover new
bitcoins.

We introduce Eq. 3, which gives us the probability, ph,
that the honest mining community discovers at least one
block during a period of t seconds. Eq. 3 is derived from
Eq. 2, which determines the probability of an exponentially

distributed event4 occurring during a time period t and at a
particular rate. In our case the rate is the block discovery rate
of the honest community. By adjusting the difficulty of mining,
Bitcoin maintains a total network rate of block discovery of
roughly 1 block every 10 minutes or 1

600 blocks per second [7].
Using the percentage of the mining power under the control
of the honest mining community, (1 − α), we get an honest
mining rate of (1−α)

600 .

Pr(event) = 1− e−rate×t (2)

ph = 1− e−
(1−α)
600 ×t (3)

Plugging in the the increment of the timestamp for t, gives
the probability that a honest miner will discover a block within
the increment. We call this probability ph. Therefore during a
block race, honest miners will only mine on selfish blocks if
the honest block was discovered within the increment of the
timestamp, in all other cases the honest miners will not mine
on the selfish block.

Thus, ph is the probability that each time a selfish miner
discovers a block that block will be mined on by the honest
community. That is, ph of the time γ = 1 and (1 − ph) of
the time γ = 0. Using ph we can compute the average γ as
γ = ph.

C. Forged Timestamps

Using the notation and methods from the previous section
we will examine the case in which our unforgeable timestamp
scheme is compromised and a selfish mining cartel is able to
forge timestamps from the future. We show that the FP strategy
is still robust to selfish mining because selfish miners must still
commit to a timestamp within the blocks they discover, even
if this timestamp is for a time which is in the future.

As before, we are concerned with a block race in which a
selfish miner is instantly reacting to the publication of Bh, but
in this case the cartel can choose a timestamp, Ts such that
Ts ≥ Ds, thereby allowing the case Ts > Th.

We assume that the cartel can predict the propagation delay
for the honest miner, pdh, and chooses Ts to maximise their
chance of winning a block race. That is, the cartel forges a
timestamp of Ts = Ds + w + pdh to ensure that any honest
block that reaches the FP-miner prior to Ts will be older than
Ts but still within the window w5.

To model the probability that a FP-miner accepts Bs over
Bh, we need to examine two time intervals.

Interval I: Ds ≤ Dh ≤ Ts The selfish cartel can release
Bs at anytime after Ts and still have a more recent timestamp
than any honest block discovered between the time Ds and Ts.
Due to the propagation delay, pdh, blocks that would normally
be outside the window of Bs are within w. Thus, all honest

4As is standard in Bitcoin mining analysis[1], [2], block discovery is
assumed to be exponential.

5To see why consider how the success probability for the cartel would
change if Ts deviated from Ts = Ds + w + pdh

Fig. 1. The value of α necessary for successful selfish mining using Eq. 3
and Observation 1.

miners will choose to mine on Bs if Bh is discovered during
this interval.

Interval II: Ts < Dh Any honest block discovered after
Ts will be preferred to Bs.

We calculate the probability that Bs is accepted by the FP-
miners as the probability that Dh is within Interval I using Eq.
3 and setting t = (w+pdh). As in the previous subsection, this
probability is also the value γ, as it determines the percentage
of honest miners, under Freshness Preferred, that will adopt
Bs

D. Choosing Parameters

Based on the timestamp increment used by the NIST Ran-
dom Beacon[18] (see Subsection IV-A) we adopt an increment
of s = 60 seconds.

In theory we can choose any value we please for the block
race window size w as it is merely used as a filter by FP miners
to discard competing blocks that arrive late, but our analysis
in Subsection III-C depends on the w being larger than the
propagation delay for most of the network. Within Bitcoin the
mean propagation time before a node sees a block is 12.6
seconds, and after 40 seconds 95% of the nodes have seen
the block[20]. We suggest a conservative value of w = 120
seconds.

E. Security of Freshness Preferred

Using these parameters we calculate the security threshold
Freshness Preferred offers. In both Subsection III-B and Sub-
section III-C, we derived γ by determining the appropriate
value t for Eq. 3. Combining γ with Observation 1, which we
borrow from the “Majority is not Enough: Bitcoin Mining is
Vulnerable.” (see Subsection II-E), we calculate the threshold
for successful selfish mining. In Figure 1 we graph the
relationship between t and the value of α necessary for the
selfish cartel to win more its fair share.

In Subsection III-B, we showed that, using Eq. 3, γ depends
on the timestamp increment s (this is, t = s).

γ = 1− e−
(1−α)
600 ×t

In Eq. 4, we plug the equation for γ into Observation 1 to
get an equation for the threshold needed for successful selfish
mining.

threshold needed =
1− (1− e−

(1−α)
600 ×t)

3− 2× (1− e−
(1−α)
600 ×t)

(4)

Note that the threshold depends on α but that if α <
’threshold needed’ the threshold is not met. Thus, we solve for
values where α ≥ ’threshold needed’ to arrive at the threshold
(the smallest α that which satifies the threshold needed for
the equation). The values of α and t such that they satify
the threshold at given in Figure 1. Supplying the timestamp
increment, t = s = 60, from Subsection III-D, we calculate
the threshold for successful selfish mining within FP when
s = 60 to be 32.5%. This improves on the 25% protection
threshold offered by Eyal and Sirer.

Next, we consider the threshold for successful selfish mining
within FP, assuming that the selfish cartel has gained the ability
to forge timestamps. In Subsection III-C, we showed that, γ
depended on the block race window, w, and the propagation
delay, pdh. That is, t = (w + pdh). Assuming a propagation
delay of pdh = 100 seconds, and the block race window w =
120, as chosen in Subsection III-D, using Eq. 4, we find that
the threshold for successful selfish mining with forgeries is
30%.

F. Incentives for Deploying Freshness Preferred

First we consider the incentives of adding timestamps to
blocks. Default miners ignore timestamps, and FP miners
prefer them. Adding timestamps is always incentivized as long
as some FP miners exist, since timestamps will always improve
the chance of winning a block race.

Now we consider the incentives of FP miners preferring
blocks with more recent timestamps when they are in the
minority. If the default miners significantly outnumber the FP
miners, FP miners are at a disadvantage because if there is
a block race between default miners and FP miners, the FP
miners will likely lose.

To see why, consider the cases of a block race between
a block with a recent timestamp and a block with an older
timestamp: (1). the more recent block has a higher γ, (2). the
older block has a higher γ, (3). both blocks have even γ. In
case (1) and (3) FP miners behave exactly the same as default
miners, but in case (2) FP miners behavior differs from default
miners. In the small chance that an FP miner discovers a block
at the same time as the default miners discover a block, the FP
miner will likely lose the ensuing block race as most miners
will mine on the block discovered by the default miners. Thus,
although the disincentive is small, FP miners are not incentive-
compatible until they reach over 50% of the honest mining
pool.

To solve the incentive problem for FP miners we propose
a system for coordinating FP mining only when it is in the
miners’ best interest. Freshness preferred miners initially use
the default block preference behavior (prefer the first block
you see), but they always add timestamps. When more than
half of the most recent blocks in the blockchain for 30 days in-
clude unforgeable timestamps, then FP-miners know that they

have reached majority resources with high probability6. At
which point they switch to FP since it has become incentive-
compatible.

G. Slothful Mining

In Subsection III-C we showed the FP mining was robust
to forgeable timestamps. This would suggest that perhaps we
only use timestamps, not unforgeable timestamps. Unfortu-
nately this is not the case, as timestamps alone, while resistant
to selfish mining, enable a new attack we call slothful mining.
A slothful miner exploits the fact that if (w = Ts) > Ds, that
is if the timestamp Ts is greater than the discovery time of the
slothful block, the miner can withhold the slothful block for
Ts −Ds seconds and still defeat any completing branches of
the same height discovered prior to time Ds + w = Ts. The
advantage of such an attack is constrained by the size of w,
but a slothful mining pool of any size wins slightly more than
its fair share of resources. We are in the process of analyzing
the scope of this attack, but it should not effect FP mining as
slothful mining is not possible under unforgeable timestamps.

IV. UNFORGEABLE TIMESTAMPS

As shown in Section III, our solution makes use of unforge-
able timestamps to ensure a particular block was generated no
later than the timestamp.

While the block specification already includes a
timestamp[9][10] it is subject to manipulation by network
peers performing Timejacking attacks[11]. To categorically
rule out any such problems and thereby simplify our analysis,
we will assume that the our timestamp is independent from
the block timestamp.

We propose a method whereby a miner can prove that a
block was mined recently.

Consider a publicly known and verifiable, periodically pub-
lished, source of random strings such as the NIST beacon [18].
Every s seconds it publishes a new random value R, such that
R is completely unpredictable prior to R’s publication. Given a
particular R and a timestamp T of when that R was published,
we have a tuple (R, T) which can be verified by anyone. If
a miner includes (R, T) as an input into a block, that miner
can prove that the block was mined no earlier than T . This
follows from the fact that R is completely unpredictable prior
to its publication. We refer to this (R, T) input block as the
provable timestamp of the block.

Such sources of randomness are known as random beacons
[15] and are well studied. We discuss possible random beacons
in Subsection IV-A.

Verifying a timestamp requires that the miner store the
output of the beacon for the last few minutes. A further benefit
of our scheme is that the random beacon removes many of the
attacks inherent in Network Time Protocol [21]. Any block
whose timestamp can’t be verified either due to the timestamp
being too old, or because it is incorrect, is treated as if it has
no timestamp.

6This is a result of the fact that percentage of blocks mined is a direct
function of mining power

Any block whose timestamp T is from the future is a sign
that the random beacon has been compromised by an attacker.
The verifier must immediately retransmit a hash of this block
to some trusted public forum that provides timestamping as
proof that the random beacon can no longer be trusted. The
miner can then prove to all concerned parties that appropriate
measures need be taken to fix and restore the beacon.

A. Random Beacons

Random beacons can provide unforgeable timestamps for
our scheme. To avoid single points of trust we can combine
n different beacons such that a timestamp is unforgeable as
long as at least one of the n beacons does not collude in an
attack.

One candidate is the NIST beacon [18]. The NIST beacon
is designed for very similar cryptographic applications and
satisfies both the property of unpredictability and public veri-
fiability. It generates 512-bit full entropy random strings every
60-seconds using physical randomness.

Another candidate would be to use publicly known, un-
predictable information as a source of entropy to an entropy
mixer such as a cryptographic hash function. It has been shown
that computations on public financial information, such as the
values of various stocks, are effective random beacons [16].

Various mining pools could deploy their own random bea-
cons. While each mining pool may have a incentive to behave
selfishly, they are unlikely to have a common interest in
cheating because they are competing with each other.

B. Compromised Random Beacon Discussion

Consider the incentives at play if a selfish mining cartel
has successfully compromised a random beacon and wishes to
exploit this advantage by strategically withholding blocks. The
cartel must keep the compromise secret but, as we will show,
it is very difficult to maintain the secrecy of the compromise
of the random beacon.

Any member of the cartel can provably and safely leak that
the cartel have compromised a beacon. The leaker just encrypts
a withheld block with a forged R′ and posts the encrypted
block to a public forum prior to time T ′. Now from any point
in the future, the leaker can post the decryption key and prove
that the block was created prior to time T ′.

This makes it extremely unlikely that members of a cartel
could work together since each member is able to provably and
anonymously blackmail the other dishonest miners, “give the
following Bitcoin address 50 bitcoins or I release the key”.
A honest miner need only post a reward for proof that the
beacon has been compromised. If any dishonest miner takes
the reward, all dishonest miners lose the long term advantage
of the compromised beacon. Therefore, as long as any member
of the cartels believes another member will defect, the rational
choice is to defect first and get the reward.

Once the Bitcoin community learns about a compromise of
the random beacon they can take actions to restore its security.

V. CONCLUSION

In this paper we introduced a new defense against selfish
mining that improves on the previous best result, raising
the minimum share of mining power necessary to profitably
selfishly mine from 25% to 32%. We show that while the
security of our system uses unforgeable timestamps, it is robust
to their compromise. Finally we showed the difficulty of selfish
miners cooperating against our defense due to incentives for
members of the selfish mining cartel to leak the fact they
have compromised part of the infrastructure our scheme rests
on, allowing the Bitcoin community to respond and fix the
damage.

As future work we could explore an alternative strategy to
Freshness Preferred (FP), called Freshness Required. Under
this strategy, the Bitcoin protocol is modified to treat as invalid,
any block without a timestamp or with a timestamp that is
older than w seconds. This does not prevent older blocks from
existing in the block chain, merely that any new blocks that
a miner receives are dropped if they too old. More work is
needed to quantify how much this strategy raises the mining
resource share, α, for selfish miners to be successful. We are
in the process of evaluating this strategy.

We have done some preliminary work to validate the FP
strategy using Bitcoin discrete event simulators. At this point
we are not convinced that existing discrete event simulators
offers the necessary fidelity to provide additional validation of
our arguments. We are working on a more accurate Bitcoin
simulator to fill this role.

VI. ACKNOWLEDGEMENTS

We thank Sharon Goldberg, Anna Krohn and Jen Rich for
comments and suggestions on drafts of this paper.

REFERENCES

[1] J. A,. Kroll, I. C. Davey, and E. W. Felten., The Economics of Bitcoin
Mining or Bitcoin in the Presence of Adversaries, WEIS, 2013 http://
www.weis2013.econinfosec.org/papers/KrollDaveyFeltenWEIS2013.pdff

[2] R, Meni., Analysis of Bitcoin Pooled Mining Reward Systems., arXiv
preprint arXiv:1112.4980, 2011 http://arxiv.org/abs/1112.4980

[3] D. Drainville., An Analysis of the Bitcoin Electronic Cash System,
2013 https://math.uwaterloo.ca/combinatorics-and-optimization/sites/
ca.combinatorics-and-optimization/files/uploads/files/Drainville,\%
20Danielle.pdf

[4] S. Perez., Over 400 Retailers Are Offering Deals On New Bitcoin Black
Friday Website, Tech Crunch, 2013 http://techcrunch.com/2013/11/28/
over-400-retailers-are-offering-deals-on-new-Bitcoin-black-friday-website/

[5] E. Ombok., Bitcoin Service Targets Kenya Remittances With Cut-Rate
Fees, Bloomberg, 2013 http://www.bloomberg.com/news/2013-11-28/
Bitcoin-service-targets-kenya-remittances-with-cut-rate-fees-1-.html

[6] Bitcoin Market Capitalization, The Bitcoin Wiki, 2013 https://blockchain.
info/charts/market-cap

[7] Bitcoin Mining Reward, The Bitcoin Wiki, 2013 https://en.Bitcoin.it/wiki/
Mining#Reward

[8] S. Nakamoto., Bitcoin: A Peer-to-Peer Electronic Cash System, The
Cryptography Mailing List, 2008 http://Bitcoin.org/Bitcoin.pdf

[9] Block timestamp, The Bitcoin Wiki, 2013 https://en.Bitcoin.it/wiki/Block
timestamp

[10] Bitcoin Protocol specification, The Bitcoin Wiki, 2013 https://en.Bitcoin.
it/wiki/Protocol specification#block

[11] Culubas., Timejacking & Bitcoin: The Global Time Agreement
Puzzle, Culubas Blog, 2011 http://culubas.blogspot.ca/2011/05/
timejacking-Bitcoin 802.html

[12] R. Horning., Mining Cartel Attack., Bitcoin Talk, 2010 https://
Bitcointalk.org/index.php?topic=2227.0

[13] ByteCoin., Re: Mining Cartel Attack., Bitcoin Talk, 2010, https://
Bitcointalk.org/index.php?topic=2227.msg30083#msg30083

[14] I. Eyal, E. G. Sirer., Majority is not Enough: Bitcoin Mining is Vulnera-
ble., arXivpreprintarXiv:1311.0243, 2013, http://arxiv.org/abs/1311.0243

[15] M. Rabin., Transaction protection by beacons., Journal of Computer and
System Sciences, 27(2), 1983.

[16] C. Jeremy, and U. Hengartner, On the Use of Financial Data as a
Random Beacon., In Proceedings of the 2010 international conference
on Electronic voting technology/workshop on trustworthy elections, pp.
1-8. USENIX Association, 2010. http://eprint.iacr.org/2010/361.pdf

[17] G. Andresen, Neutralizing a 51% attack., Galvin-Tech 2012 http://
gavintech.blogspot.com/2012/05/neutralizing-51-attack.html

[18] M. Iorga, NIST, NIST Randomness Beacon, http://www.nist.gov/itl/csd/
ct/nist beacon.cfm, 2013

[19] I. Eyal, E. G. Sirer., Some Frequently Asked Questions on Selfish
Mining, Hacking Distributed, 2013, http://hackingdistributed.com/2013/
11/05/faq-selfish-mining/

[20] C. Decker, R. Wattenhofer., Information propagation in the
Bitcoin network., IEEE P2P., 2013, http://www.tik.ee.ethz.ch/file/
49318d3f56c1d525aabf7fda78b23fc0/P2P2013 041.pdf

[21] M. Bishop., A security analysis of the NTP protocol version 2.,
Computer Security Applications Conference, 1990., Proceedings of the
Sixth Annual. IEEE, 1990. APA http://ieeexplore.ieee.org/xpls/abs all.
jsp?arnumber=143746

