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Abstract. In this paper, we carry out a detailed mathematical study of
two theoretical distinguishers based on the Kolmogorov-Smirnov (KS)
distance. This includes a proof of soundness and the derivation of closed-
form expressions, which can be split into two factors: one depending only
on the noise and the other on the confusion coefficient of Fei, Luo and
Ding. This allows one to have a deeper understanding of the relative
influences of the signal-to-noise ratio and the confusion coefficient on the
distinguisher’s performance. Moreover, one is able to directly compare
distinguishers based on their closed-form expressions instead of using
evaluation metric that might obscure the actual performance and favor
one distinguisher over the other. Furthermore, we formalize the link
between the confusion coefficient and differential cryptanalysis, which
shows that the stronger an S-box is resistant to differential attacks the
weaker it is against side-channel attacks, and vice versa.

Keywords: Side-channel distinguisher, Confusion coefficient, Kolmogorov-
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1 Introduction

Side-channel attacks consist in exploiting leakages in order to extract secrets from
any kind of cryptographic devices. Studies of side-channel distinguishers have
been initially empirical: they were carried out on real traces, whose characteristics
in terms of signal and noise were not exactly known. This allows to compare
attacks on a fair setting especially their optimizations, like for instance using
the DPA contests measurements [21]. Unfortunately, this does not allow one to
understand the role of the different parameters at hand (like the signal-to-noise
ratio (SNR) and the impact of the leakage model) and derive conclusions for any
kind of data.

For this reason, another approach consists in generating traces by simulations,
according to some archetype leakage signal and noise. The question that now
? Annelie Heuser is Google European fellow in the field of privacy and is partially
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arises is how to compare attacks. Guidelines were given by Standaert et al.
in [19], and a formal evaluation framework was presented in [20]. Two metrics
were introduced to quantify the efficiency of attacks: success rate and guessing
entropy. In [10] Maghrebi et al. introduced error bars on the success rate in
order to determine a reliable decision whether one distinguisher is better than
another. Another strategy proposed by Whitnall and Oswald in [25] consists in
computing various kinds of metrics evaluating theoretical distinguishers, such
as the relative distinguishing margin. Yet another approach consists in deriving
closed-form expressions of the theoretical success rate of distinguishers. Recently,
Fei et al. [7] derived a closed-form expression of the theoretical success rate for
DPA (difference of means). In order to achieve this they introduced the confusion
coefficient, which determines the relationship between the sensitive variable of
the correct key and any other key hypotheses. Thanks to this concept, Thillard et
al. re-derived in [23] the computation of the success rate of CPA given by Rivain
in [17] in terms of the confusion coefficient.

Our Contribution In this paper, we conduct a mathematical study on the
Kolmogorov-Smirnov (KS) distinguishers, namely KSA (KS Analysis) and iKSA
(interclass KSA). Following the empirical results in [10], we investigate the stan-
dard Kolmogorov-Smirnov distinguisher (i.e., KSA), and the interclass KS dis-
tinguisher (i.e., iKSA) as it was shown that iKSA outperforms KSA in simulated
data using the Hamming weight leakage model [10]. In particular, our study
includes the derivation of closed-form expressions as well as a proof of soundness
for both KS distinguishers, where we had to focus on the one-bit leakage scenario
(as for DPA).

We show that the closed-form expressions of KSA and iKSA depend on two
factors: one that is a function only of the noise and another one that is a
function only of the confusion coefficient. A closed-form expression having also
an independent noise factor has been observed for CPA (and thus also for DPA)
by Mangard et al. in [11]. Remarkably, a re-formulation of the formula in [11] in
terms of the confusion coefficient shows that the closed-forms of DPA and KSA/
iKSA (in short (i)KSA) only differ in the factor of the noise. As a consequence
we show that, in contrast to other distinguishers like mutual information, the
relative distinguishing margin of one-bit (i)KSA and DPA does not depend on the
noise, but only on the confusion coefficients. This behavior for DPA has partially
also been observed in [25].

These results highlight the relevance of a theoretical study of distinguishers and
the derivation of closed-form expressions, since one is able to exactly determine
the impacts of the noise and of the choice of the leakage model (e.g. S-boxes).
Moreover, this allows to compare distinguishers among themselves by means of
closed-form expressions, instead of using evaluation metrics obscuring relevant
factors.

Finally, assuming that the leakage model depends on a substitution box
(S-box), we formalize the link between the confusion coefficient and differential
cryptanalysis [1] through the cryptanalytic metric called differential uniformity.



We demonstrate that the stronger the differential resistance, the weaker the
side-channel resistance and vice versa. This was only implicitly known so far
(e.g., results of Prouff in [15]). Furthermore, we show that this behavior is not a
direct consequence of the non-linearity of the S-box, as it is commonly believed,
but rather of its resistance against differential cryptanalysis.

2 Preliminaries

2.1 Notations

Calligraphic letters (e.g., X ) denote finite sets, capital letters (e.g., X) denote ran-
dom variables taking values in these sets, and the corresponding lowercase letters
(e.g., x) denote their realizations. We write P{X = x} or p(x) for the probability
that X = x and p(x|y) = P{X = x

∣∣Y = y} for conditional probabilities.
Let k? denote the secret cryptographic key, k any possible key hypothesis

from the keyspace K, and let T be the input or cipher text of the cryptographic
algorithm. The mapping g : (T ,K) → I maps the input or cipher text and a
key hypothesis k ∈ K to an internally processed variable in some space I that is
assumed to relate to the leakage X. Usually, T ,K, I are taken as Fn2 , where n is
the number of bits (for AES n = 8).

Generally it is assumed that g is known to the attacker. A common consider-
ation is g(T, k) = Sbox[T ⊕ k] where Sbox is a substitution box. The measured
leakage X can then be written as

X = ψ(g(T, k?)) +N, (1)

where N denotes an independent additive noise. The device-specific deterministic
function ψ is normally unknown to the attacker, which for this reason is assuming
some other function ψ′ modeling an exploitable part of ψ. For any key guess
k ∈ K the attacker computes the sensitive variable

Y (k) = ψ′(g(T, k)). (2)

Without loss of generality we may assume that Y is centered and normalized,
i.e., E{Y } = 0 and Var{Y } = 1, and that the values in Y are regularly spaced
with step ∆y. For ease of notation, we let Y ? = Y (k?) and Y = Y (k).

2.2 Conditions

First, we assume a basic condition that when looking directly at the leakage
distribution (not knowing the message or cipher) we cannot infer any secret.

Condition 1 (Secrecy condition). The probability distribution of the leakage
(see Eq. (1)) does not depend on the actual value of the secret key.



In other words, the Y (k)’s are identically distributed (i.d.) for all k ∈ K.
Second, similarly (but not equivalently) as in [16,27] we require the following
condition on the relationship between Y ? and Y to be able to distinguish between
different keys k ∈ K. This confusion condition will be related to the confusion
coefficient later in Prop. 4.

Condition 2 (Confusion condition). For any k 6= k?, the correspondence from
Y (k) to Y (k?) is non-injective, i.e., there does not exist an injective (that is
one-to-one) function ξ : Y → Y such that Y (k?) = ξ

(
Y (k)

)
with probability one.

Lemma 1. The confusion condition is equivalent to the condition that for all
k 6= k? there exist y, y? ∈ Y such that

p(y?|y) is neither 0 nor 1. (3)

Proof. Negating the confusion condition, there is a k 6= k? such that P
{
Y (k?) =

ξ(Y (k))
}

= 1 where ξ is some one-to-one function. This is equivalent to P
{
Y (k?) =

ξ(y)
∣∣Y (k) = y

}
= 1 for all y ∈ Y, that is, p(y?|y) = 1 when y? = ξ(y) and

p(y?|y) = 0 otherwise.

Thus, the confusion condition amounts to saying that knowing Y (k) = y
(for that particular value y satisfying the condition) does not always permit to
conclude for sure about the value of Y (k?), which depends on the secret: there is
still a nonzero probability that Y (k?) has several possible values.

2.3 Multi-bit vs One-bit Leakage Models

The existing literature on KS distinguishers [24,26,28,10] deals with multi-bit
leakage models. However, a precise mathematical derivation is very much intricate
in the multi-bit case. We therefore present hereafter the scenario where the
sensitive variable Y is a binary variable, i.e., ψ′ : I → F2.

Note that, we do not make the same restrictions on ψ, for example, let us
consider the most common cases for ψ in practice, that have also been investigated
in [25]: the Hamming weight (HW) or more generally the (unequal) weighted
sum of n bits:

X =
n∑
i=1

ωi[g(T, k?)]i +N, (4)

with [·]i : Fn2 → F2 being the projection onto the ith bit, ωi ∈ R and in case of a
HW leakage ω1 = ω2 = . . . = ωn = 1.

Let us assume in the following that [g(T, k?)]1, . . . , [g(T, k?)]n are independent
and uniformly distributed, which is implied when considering a bijective S-box
as for example in AES and randomly chosen plaintexts T . Consider that we



concentrate on bit b ∈ {1, . . . , n}, so ψ′(·) = [·]b, then we express X in terms of
the sensitive variable Y ? = [g(T, k?)]b as

X = ωbY
? + Z +N︸ ︷︷ ︸

N ′

with Z =
∑
i 6=b

ωi[g(T, k?)]i. (5)

Remark 1. Note that, when ψ is the HW function (ωi = 1) Z follows a binomial
law of length n− 1 and probability p = 1

2 .
In our further analysis, we assume that N ′ = Z +N is unimodal distributed

in the sense of the following definition:
Definition 1 (Unimodal distribution). A distribution f is called unimodal
if there exists a mode m such that f(x) is increasing for x ≤ m and decreasing
for x ≥ m.

To verify this assumption empirically, we perform simulations with N ∼
N (0, σ2) for several σ2, 10000 realisations, and g(T, k?) = Sbox[T ⊕ k?] being
the result of the AES Sbox (SubBytes) operation. Figure 1 shows the conditional
distributions of {X|Y ? = y0} and {X|Y ? = y1} for (a) the HW model and (b)
using weights ω. One can see in Fig. 1(a) that for σ2 = 0.04, N ′ is clearly not
unimodal distributed1, but when σ2 ≥ 0.36 the unimodality holds. Figure 1(b)
illustrates that N ′ is unimodal distributed for all tested σ2’s. Of course, the
bigger σ2 the closer the distribution of N ′ will be to N . Note that, observing
σ2 < 1 is very unrealistic in practice. Moreover, when using an ATMega 163
microcontroller as used in the DPA contest v4 [22], where the signal-to-noise ratio
is very high (it is not a security product), the condition of unimodality is fulfilled
(see Fig. 2), which has also been illustrated for measurements of a microcontroller
in [11] (Fig. 4.6). In the rest of the paper, to simplify the notations, we will
simply denote by N ∼ N (0, σ2) the noise (sum of algorithmic and measurement
noises).

3 Study of Theoretical KS Distinguishers

3.1 A Note on DPA / CPA
In [11] Mangard et al. showed that the theoretical CPA can be expressed as

ρ(X,Y ) = ρ(Y ?, Y )√
1 + 1

SNR

, (6)

where ρ is the absolute value of the Pearson correlation coefficient. Thus, ρ(X,Y )
can be factored into one part only depending on the leakage model and one
depending on the SNR. Note that, CPA using one-bit models is equivalent to
DPA [6] (when assuming normalized Y ’s), thus Eq. (6) also holds for DPA. The
next proposition shows that in fact the part depending on the leakage model can
be directly expressed in terms of the confusion coefficient [7], which describes the
relationship between Y (k?) and any Y (k) with k ∈ K that is defined as follows.
1 This visual interpretation agrees with several statistical unimodality tests.



(a) ∀i ωi = 1

(b) ω = [0.05, 0.2, 0.1, 0.15, 0.05, 0.05, 0.3, 0.1] and b = 4

Fig. 1: Estimated conditional distributions {X|Y ? = y0} and {X|Y ? = y1} using
a noise level of σ2 = {0.04, 0.16, 0.36, 0.64, 1}.

Fig. 2: Estimated conditional leakage distributions {X|Y ? = y0} and {X|Y ? =
y1} of measurements from ATMega 163, 2nd AES S-box, 4th bit.

Definition 2 (Confusion coefficient [7]). Let k? denote the correct key and
k any key hypothesis in K, then the confusion coefficient is defined as

κ(k?, k) = P{Y (k?) 6= Y (k)}. (7)

Proposition 1. For binary and normalized equiprobable Y ’s

ρ(X,Y ) = |1− 2κ(k?, k)|√
1 + 1

SNR

= d ·
∣∣∣∣κ(k?, k)− 1

2

∣∣∣∣ , (8)

with d = 2√
1+1/SNR

.

Proof. As Y is normalized (i.e., E(Y ) = 0 and Var(Y ) = 1) we re-formulate

ρ(Y ?, Y ) = |Cov(Y ?, Y )|√
Var(Y ?) Var(Y )

(9)

= |1− 2κ(k?, k)|, (10)



since Cov(Y ?, Y ) = E{Y ? · Y } = 1− 2P{Y (k?) 6= Y (k)} = 1− 2κ(k?, k).

3.2 KS Side-Channel Distinguishers

In this subsection we briefly sketch KS distinguishers named after Kolmogorov
and Smirnov [9,18]. For more detailed information on their use in the area of
side-channel analysis we refer to [24,26] for an evaluation of KS and to [10] for
the comparison between KSA and iKSA, which shows that the estimated iKSA is
superior to the estimated KSA using simulations for a HW leakage model.

Definition 3 (KS distinguishers). The (standard) Kolmogorov-Smirnov dis-
tinguisher [24] is defined by

KSA(k) = DKSA(X,Y ) = EY
{
‖F (x|Y )− F (x)‖∞

}
, (11)

where the expectation is taken over Y ’s distribution, ‖ · ‖∞ is the L∞ norm:
‖Ψ(x)‖∞ = supx∈R |Ψ(x)|, and F (x) = FX(x), F (x|y) = FX|Y=y(x) denote the
cumulative distribution functions of X and X given Y (k) = y, respectively.

The inter-class Kolmogorov-Smirnov distinguisher [10] is defined by

iKSA(k) = DiKSA(X,Y (k)) = 1
2 EY,Y ′

{
‖F (x|Y )− F (x|Y ′)‖∞

}
, (12)

where Y ′ is an independent copy of Y , and the expectation is taken over the joint
distribution of Y and Y ′. The 1/2 factor makes up for double counts ((Y, Y ′)↔
(Y ′, Y )).

We need the following lemma.

Lemma 2. With the above notations and assumptions on the leakage model,

KSA(k) =
∑
y∈Y

p(y) sup
x∈R

∣∣∣ ∑
y?∈Y

(
p(y?|y)− p(y?)

)
· Φ
(x− y?

σ

)∣∣∣ and (13)

iKSA(k) = 1
2
∑
y,y′∈Y
y 6=y′

p(y)p(y′) sup
x∈R

∣∣∣ ∑
y?∈Y

(
p(y?|y)− p(y?|y′)

)
· Φ
(x− y?

σ

)∣∣∣, (14)

where Φ(x) is the c.d.f. of the standard noise N/σ (of zero mean and unit
variance).

Proof. From model Eq. (1), X given Y (k?) = y? has c.d.f.

P
{
X ≤ x

∣∣Y (k?) = y?
}

= ΦN (x− y?) = Φ
(x− y?

σ

)
, (15)

where ΦN (ν) = P{N ≤ ν} = Φ(ν/σ) is the c.d.f. of the noise N . Indeed, we recall
our notation: X = Y (k?) +N . Averaging over Y (k?) gives

F (x) = P
{
X ≤ x

}
=
∑
y?∈Y

p(y?)Φ
(x− y?

σ

)
. (16)



Now from Eq. (15) and the formula of total probability, X given Y (k) = y is
distributed according to the c.d.f.

F (x|y) = P
{
X ≤ x

∣∣Y (k) = y
}

(17)

=
∑
y?∈Y

p(y?|y) · P
{
X ≤ x

∣∣Y (k?) = y?, Y (k) = y
}

(18)

=
∑
y?∈Y

p(y?|y) · P
{
X ≤ x

∣∣Y (k?) = y?
}

(19)

=
∑
y?∈Y

p(y?|y) · Φ
(x− y?

σ

)
. (20)

Plugging Eq. (16) and Eq. (20) into Eq. (11) gives Eq. (13); plugging Eq. (20)
into Eq. (12) gives Eq. (14) where it should be noted that the terms for which
y = y′ vanish.

Remark 2. When the noise is assumed Gaussian, Eq. (20) is the equivalent of
the well-known “mixture of Gaussian” as studied in [16].

3.3 Noise Factorization

In the following we consider the scenario highlighted in Subsect. 2.3 where Y
is binary and the noise follows a unimodal distribution. The next proposition
shows that both KS distinguishers can be factorized as a product of one factor
depending only on the noise distribution and another depending only on the
sensitive variables, which has also been observed for DPA in [11] (see Subsect. 3.1),
but not for any other distinguisher so far.

Proposition 2 (Noise factorization). One has

KSA(k) = c
∑
y∈Y

p(y)
∣∣p(y?|y)− p(y?)

∣∣ (21)

iKSA(k) = c

2
∑
y,y′∈Y
y 6=y′

p(y)p(y′)
∣∣p(y?|y)− p(y?|y′)

∣∣ , (22)

where y? denotes any of the two possible values in Y and where

c = 2Φ
(∆y

2σ

)
− 1 > 0 . (23)

Proof. Since
∑
y?∈Y

(
p(y?|y)−p(y?)

)
= 1−1 = 0, the two coefficients in the inner

sum of Eq. (13) are opposite equal. Similarly
∑
y?

(
p(y?|y)−p(y?|y′)

)
= 1−1 = 0

and the two coefficients in the inner sum of Eq. (14) are opposite equal. It follows
that Eq. (21) and Eq. (22) hold with

c = sup
x∈R

∣∣∣Φ(x− y?
σ

)
− Φ

(x− ỹ?
σ

)∣∣∣ , (24)



where y? denotes any of the two possible values in Y and ỹ? denotes the other
one. The conclusion now follows from the following lemma.

Lemma 3. Let Φ(x) be the c.d.f. of random variable N/σ having even and
unimodal distribution of unit variance. Then for every y? 6= ỹ? with ∆y = |ỹ?−y?|,

sup
x∈R

∣∣∣Φ(x− y?
σ

)
− Φ

(x− ỹ?
σ

)∣∣∣ = 2Φ
(∆y

2σ

)
− 1. (25)

Proof. Assume, without loss of generality, that y? < ỹ? so that ∆y = ỹ? − y?.
Since Φ is continuous and nondecreasing, the above supremum is the maximum of
Φ
(
x−y?

σ

)
− Φ

(
x−ỹ?

σ

)
. Since N has even and unimodal density f , the derivative

of the latter expression is f(x− y?)− f(x− ỹ?) which is = 0 when x = y?+ỹ?

2
because f is even, and which is > 0 when |x − y?| < |x − ỹ?| and < 0 when
|x − y?| > |x − ỹ?| because f is unimodal. It follows that the maximum is
unique and attained when x = y?+ỹ?

2 . Therefore, the desired maximum equals
Φ
(
ỹ?−y?

2σ

)
−Φ

(
y?−ỹ?

2σ

)
= Φ

(
∆y
2σ

)
−Φ

(
−∆y2σ

)
= 2Φ

(
∆y
2σ

)
− 1. The latter equality

holds since f being even, one has Φ(−x) = 1− Φ(x).

As we shall see, due to this noise factorization, also KS distinguishers are
very appealing theoretical objects for formal studies. The quantity ∆y

2σ receives a
simple interpretation: since E{Y (k)2} = (∆y/2)2, the square of ∆y2σ is simply the
leakage signal-to-noise ratio (SNR) and we can write c = 2Φ

(√
SNR

)
− 1. For

Gaussian noise2, this reduces to

c = erf
(√

SNR/2
)
, (26)

where erf : x 7→ 2√
π

∫ x
−∞ exp

(
−t2

)
dt is the standard error function.

3.4 Proof of Soundness

Definition 4 (Soundness). An attack based on maximizing the values of the
distinguisher D(X,Y (k)) over k is sound if

D(X,Y (k?)) > D(X,Y (k)) (∀k 6= k?). (27)

Several theoretical distinguishers have already been proven sound: DPA, CPA,
MIA [13,16]. For KSA and iKSA the soundness conditions read

KSA(k?) > KSA(k) (∀k 6= k?) (28)
iKSA(k?) > iKSA(k) (∀k 6= k?), (29)

respectively. Recall that we assume the secrecy condition (Subsect. 2.2) which
amounts to saying that the Y (k)’s are identically distributed (i.d.).
2 This assumption holds for sufficiently large values of σ2 as discussed in Subsect. 2.3,
which reflects a practical scenario as illustrated e.g. in Fig. 4.6 of [11].



Proposition 3 (Soundness, i.d. case). For binary and i.d. Y (k)’s, the KSA
and iKSA are sound if and only if the confusion condition holds.

Proof. Since the Y (k)’s are i.d., p(y) does not depend on k. Let y 6= y′ be elements
of Y. The confusion condition Eq. (3) is equivalent to the strict inequality

|p(y?|y)− p(y?|y′)| < 1 (∀k 6= k?). (30)

Now for k = k?, p(y?|y) is 0 or 1 depending on whether y = y? or y 6= y?, and
therefore |p(y?|y) − p(y?|y′)| = 1. From Eq. (22) it follows upon multiplying
|p(y?|y) − p(y?|y′)| by p(y)p(y′) and summing that Eq. (30) is equivalent to
Eq. (29), i.e. the soundness of iKSA.

Proving that the KSA is sound is more intricate. Again let y 6= y′ be elements
of Y. One has p(y?) = p(y)p(y?|y) + p(y′)p(y?|y′) where p(y) + p(y′) = 1. It
follows that p(y?) lies between p(y?|y) and p(y?|y′). Suppose without loss of
generality that p(y?|y) ≤ p(y?) ≤ p(y?|y′).

The confusion condition of Eq. (3) states that for any k 6= k?, one has either

|p(y?|y)− p(y?)| < p(y?) or |p(y?|y′)− p(y?)| < 1− p(y?). (31)

the corresponding non-strict inequalities being always satisfied. It follows from
Eq. (21) that this is equivalent to the single strict inequality KSA(k) < c ·(
p(y)p(y?)+p(y′)(1−p(y?))

)
= c·

(
p(y)p(y?)+(1−p(y))(1−p(y?))

)
= 2c·p(y)p(y?).

Since the expression for KSA(k) does not depend on the particular value of y?,
the latter upper bound should not either. There are two possibilities:

1. either y 6= y? and KSA(k) < 2c · (1− p(y?))p(y?),
2. or y = y? and KSA(k) should be both < 2c · p(y?)2 and < 2c · (1− p(y?))2.

But since min(a, b) ≤
√
ab we obtain KSA(k) < 2c · (1− p(y?))p(y?) in both

cases.

Now for k = k?, equalities hold: |p(y?|y′)− p(y?)| = 1− p(y?) and |p(y?|y)−
p(y?)| = p(y?) (since, necessarily, y 6= y? and y′ = y?); hence KSA(k?) =
2c · (1− p(y?))p(y?). This shows that Eq. (31) is equivalent to Eq. (28).

As a consequence, provided that the conditions on the sensitive variable in
Subsect. 2.2 and 2.3 are met, KSA and iKSA are able to reveal the secret key with
arbitrarily high probability as the number of measurements increases indefinitely.

3.5 Simple Closed-Form Expression

In this subsection, we study KSA and iKSA under the assumption introduced by
Fei et al. in Theorem 1 of [7], which states that for a perfectly secret encryption
algorithm, each sensitive variable is equiprobable, i.e., p(y) = p(y?) = 1/2. This
requirement is stronger than our secrecy condition (Condition 1). Remarkably,
the following proposition shows that the closed-form expressions for DPA and
(i)KSA only differ in the part of the noise.



Proposition 4. For binary and equiprobable Y ’s, the confusion condition in
Eq. (3) reduces to the condition that

κ(k?, k) is neither 0 nor 1 (∀k 6= k?). (32)

Also KSA and iKSA are completely equivalent in this case, with the following
closed-form expression

KSA(k) = 2 iKSA(k) = c ·
∣∣κ(k?, k)− 1

2
∣∣. (33)

Proof. Since the Y (k)’s are binary equiprobable, the joint distribution P
{
Y (k?) =

y?, Y (k) = y
}
should be symmetric in (y?, y) and, therefore,

p(y?|y) = P
{
Y (k?) = y?

∣∣Y (k) = y
}

= 2P
{
Y (k?) = y?, Y (k) = y

}
=
{
κ(k?, k) if y 6= y?,
1− κ(k?, k) if y = y?.

This proves Eq. (32). Also, |p(y?|y)−p(y?)| = |p(y?|y)−1/2| = |κ(k?, k)−1/2| and
if y 6= y′ (whence y = y? or y′ = y?), one finds |p(y?|y)−p(y?|y′)| = |2κ(k?, k)−1|.
Plugging these expressions into Eq. (21) and Eq. (22) gives Eq. (33).

Remark 3. Using these simple closed-form expressions it is straightforward to
recover in the equiprobable case that KSA and iKSA are sound (Proposition 3):
Since κ(k?) = 0, the confusion condition Eq. (32) is equivalent to |κ(k?, k)−1/2| <
1/2 = |κ(k?, k?)− 1/2| for any k 6= k?. From Eq. (33), this in turn is equivalent
to Eq. (28) or Eq. (29).

Even though KSA and iKSA become equivalent if one insists on having
equiprobable bits (in Y), shows the next proposition states that KSA and iKSA
are not strictly equivalent in general.

Proposition 5. For binary Y (k)’s, KSA and iKSA are not equivalent unless the
Y (k)’s are equiprobable (i.e. the secrecy condition holds).

Proof. If y 6= y′ belong to Y one has p(y?) = p(y)p(y?|y) + p(y′)p(y?|y′) where
p(y)+p(y′) = 1. It follows that p(y?) lies between p(y?|y) and p(y?|y′). Therefore,∣∣p(y?|y)− p(y?|y′)

∣∣ =
∣∣p(y?|y)− p(y?)

∣∣+
∣∣p(y?)− p(y?|y′)∣∣ and∑

y 6=y′
p(y)p(y′)

∣∣p(y?|y)− p(y?|y′)
∣∣ = 2

∑
y

p(y)(1− p(y))
∣∣p(y?|y)− p(y?)

∣∣ (34)

so that
iKSA = c

∑
y

p(y)(1− p(y))
∣∣p(y?|y)− p(y?)

∣∣. (35)

The equivalence between KSA (Eq. (21)) and iKSA (Eq. (35)) holds only if p(y)
and p(y)(1− p(y)) are proportional, which is equivalent to the requirement that
p(y) is constant, i.e., the Y (k)’s are equiprobable.



Fig. 3: Noise factor plotted as a function of σ2.

3.6 Discussion about the Closed-Forms of DPA and (i)KSA

Note that the equality of the term related to the confusion coefficient in the
closed-form expression of DPA and (i)KSA was not obvious before, since DPA
distinguishes on a proportional scale whereas (i)KSA relies on a nominal scale
as illustrated in [27]. It can be interpreted as follows: DPA and (i)KSA exploit
equivalently the Sbox to discriminate between the correct and the incorrect key
guesses.

Figure 3 illustrates the noise factor c of (i)KSA and the noise factor d of DPA
as a function of σ2 where SNR = 1

σ2 . One can see that both factors c and d tend
to zero as the noise increases (SNR decreases). However, as c (resp. d) is simply
a multiplicative coefficient that applies both to the distinguishers value for the
correct and the incorrect key guesses, we can conclude that DPA (resp. (i)KSA)
distinguishes hypotheses on the key identically, irrespective of the SNR.

4 Confusion Coefficient versus Cryptanalytical Metrics

Now we explicitly assume that the sensitive variable Y depends on an S-box
through an equation of the form Y (k) = S(T ⊕k), where S is a Fn2 → F2 Boolean
function3, and F2 = {0, 1} is the two-element Galois field.

4.1 Relationship between κ(k?, k) and Differential Metrics

Lemma 4. The confusion coefficient κ(k?, k) can be written in terms of the
Boolean function S by the following well-known quantity in Boolean functions:

1
2 − κ(k?, k) = 1

2n+1

∑
y∈Fn

2

(−1)S(y)⊕S(y⊕(k?⊕k)) ∈ [− 1
2 ,

1
2 ]. (36)

3 This Boolean function S is typically one component of a substitution box with
n output bits. Of course, an attacker could predict the n bits altogether. Still, a
mono-bit model has the interest that it reduces the epistemic noise, meaning that an
assumption on more than one bit certainly deviates from the actual leakage.



Proof. Using the customary interpretation of Booleans b ∈ F2 as integers: b =
1
2 (1− (−1)b) ∈ Z, one has

κ(k?, k) = P{Y (k) 6= Y (k?)} = E{Y (k)⊕ Y (k?)}

= 1
2n
∑
y∈Fn

2

S(y ⊕ k?)⊕ S(y ⊕ k)

= 1
2n
∑
y

1
2

(
1− (−1)S(y⊕k?)⊕S(y⊕k)

)
= 1

2 −
1

2n+1

∑
y

(−1)S(y)⊕S(y⊕(k?⊕k)) .

Sboxes are characterized in cryptanalysis by two metrics called linear and
differential uniformity [5,8].

Definition 5 (Linear and differential uniformity). Let S : Fn2 → Fm2 be an
Sbox. The linear (ΛS) and differential (∆S) uniformities of S are defined as:

ΛS = max
a∈Fn

2 , k∈Fm
2
∗

∣∣#{x ∈ Fn2/(a · x)⊕ (k · S(x)) = 0} − 2n−1∣∣ , (37)

∆S = max
a∈Fm

2 , k∈Fn
2
∗

#{x ∈ Fn2/S(x)⊕ S(x⊕ k) = a} . (38)

The smaller ΛS and ∆S , the better the Sbox from a cryptanalytical point of
view, respectively against linear [12] and differential [1] cryptanalysis. Note that,
in our case m = 1 since we restrict ourselves to one-bit of the Sbox output.

Remark 4. Note that linear uniformity is related to nonlinearity, a well-known
notion in the field of vectorial Boolean functions [4]. The nonlinearity of a
Boolean function S is defined as nl(S) = 2n−1 − 1

2 maxa∈Fn
2

∣∣∣(̂−1)S(a)
∣∣∣, where

f̂(a) =
∑
z f(x)(−1)a·z is the Fourier transform of f . Again using the customary

interpretation of Booleans as integers, ΛS = 1
2 maxa∈Fn

2

∣∣∣∑x∈Fn
2
(−1)a·x⊕S(x)

∣∣∣ =
2n−1 − nl(S). Obviously, the smaller ΛS , the greater the nonlinearity.

Note that from Eq. (38) one has 2n−1 ≤ ∆S ≤ 2n and therefore 0 ≤ 2−n∆S−
1
2 ≤

1
2 . Also recall that the confusion coefficient κ(k?, k) reaches its minimal

value κ(k?, k?) = 0 for k = k?, and reaches its maximal value κ(k?, k) = 1 if and
only if there exists a key k 6= k? such that for all x ∈ Fn2 , S(x⊕ k) = S(x⊕ k?).
We have the following relationship between ∆S and κ(k?, k):

Proposition 6 (Relationship between the differential uniformity and
the confusion coefficient). When considering a Boolean function S : Fn2 → Fm2
with m = 1, then

2−n∆S −
1
2 = max

k 6=k?

∣∣∣∣κ(k?, k)− 1
2

∣∣∣∣ . (39)



Proof. From Lemma 4,

#{x ∈ Fn2/S(x)⊕S(x⊕k⊕k?) = 1} =
∑
y∈Fn

2
S(y⊕k?)⊕S(y⊕k) = 2nκ(k?, k)

and similarly #{x ∈ Fn2/S(x)⊕ S(x⊕ k ⊕ k?) = 0} = 2n − 2nκ(k?, k). It follows
from Eq. (38) that

∆S = max
a∈F2, k∈Fn

2
∗

#{x ∈ Fn2/S(x)⊕ S(x⊕ k) = a}

= max
{

maxk∈Fn
2
∗ #{x ∈ Fn2/S(x)⊕ S(x⊕ k) = 0},

maxk∈Fn
2
∗ #{x ∈ Fn2/S(x)⊕ S(x⊕ k) = 1}

}
= max

{
maxk∈Fn

2
∗ 2n −#{x ∈ Fn2/S(x)⊕ S(x⊕ k) = 1},

maxk∈Fn
2
∗ #{x ∈ Fn2/S(x)⊕ S(x⊕ k) = 1}

}
= max

{
max
k 6=k?

2n(1− κ(k?, k)),max
k 6=k?

2nκ(k?, k)
}

= 2n
(

1
2 + max

{
max
k 6=k?

1
2 − κ(k?, k),max

k 6=k?
κ(k?, k)− 1

2

})
= 2n

(
1
2 + max

k 6=k?

∣∣∣∣κ(k?, k)− 1
2

∣∣∣∣) , (40)

which proves the proposition.

Therefore, minimizing ∆S amounts in minimizing the distance between
κ(k?, k) for k 6= k? and the factor 1

2 .

Remark 5. There is no direct link between the linear uniformity (Eq. (37)) and
the confusion coefficient κ(k?, k).

4.2 Relationship to Closed-Form Expressions

We now relate Eq. (40) to the derived closed-form expression of (i)KSA (see
Eq. (33)) and DPA (see Eq. (8)). Let D(k?) be the distinguishing value of the
correct key and D(k) be the distinguishing value of any incorrect key hypotheses.
We consider two metrics, an extensive and a relative one, which provide us with
a theoretical evaluation of the distinguishing power of a distinguisher.

Definition 6 (Distinguishing margin). The distinguishing margin DM(D)
is the minimal distance between the distinguisher for the correct key and all
incorrect keys. Formally,

DM(D) = D(k?)−max
k 6=k?

D(k). (41)

The following definition introduces a normalizing denominator:
Definition 7 (Relative distinguishing margin [25]). The relative distin-
guishing margin RDM(D) is defined as

RDM(D) =
D(k?)−max

k 6=k?
D(k)√

Var{D(K)}
= min
k 6=k?

D(k?)− D(k)√
Var{D(K)}

, (42)



where K is the uniformly distributed random variable modeling the choice of the
key k.

Remark 6. As the noise appears as a multiplicative factor c or d in the closed-
form expressions of (i)KSA and DPA, it is eliminated in the relative distinguishing
margin. This explains the results of Whitnall et al. in [25] where the relative
distinguishing margin of DPA is constant. For KSA we cannot directly compare
the results, as in [25] a multi-bit model was used. However, the relative margin of
KSA is almost independent on the noise (one can observe only a small variation),
which motivates for extension of our analysis to the multi-bit case.

Proposition 7 (Distinguishing margin of (i)KSA and DPA under the se-
crecy condition). The distance to the nearest rival can be computed exactly as

DM(D) = λ ·
(

1
2 −max

k 6=k?

∣∣κ(k?, k)− 1
2
∣∣) = λ · (1− 2−n∆S). (43)

Proof. Under the secrecy condition, KSA(k) = 2iKSA(k) = c ·
∣∣κ(k?, k)− 1

2
∣∣ (see

Eq. (33)) and DPA(k) = d ·
∣∣κ(k?, k)− 1

2
∣∣ (see Eq. (8)). Plugging this into Eq. (41)

with λ being either c or d, and noting that κ(k?, k?) = 0 gives

D(k?)−max
k 6=k?

D(k) = λ ·
(

1
2 −max

k 6=k?

∣∣κ(k?, k)− 1
2
∣∣), (44)

which yields the required result from Eq. (40).

Proposition 7 shows that if one chooses an S-box that is resistant to differ-
ential cryptanalysis (small ∆S) the side-channel resistance is weak (high DM).
Conversely, if the distinguishing margin is minimized, the differential uniformity is
maximized. Therefore, there is a trade-off between the security against differential
cryptanalyses and side-channel attacks. Note that, contrary to a common belief4,
the easiness to attack an S-box is not directly linked to its non-linearity, but
rather to its resistance against differential cryptanalysis.

Links between cryptanalytic and side-channel metrics were already noted in
the literature. However, previously published links (e.g., [8,15,3]) were inequalities
because the goal was to highlight tendencies, whereas our result of Proposition 7
is an equality: the metrics are explicitly and exactly tied.

4.3 Practical Evaluation

We consider in this section three different F28 → F28 bijective S-boxes. They can
be expressed as affine transforms of power functions [2]:

1. A “bad” Sbox[·], termed S1, of equation y 7→ a� y ⊕ b,
4 More precisely, as will be made clear in the next Section 4.3, the key hypotheses that
are the hardest to distinguish are those using a linear S-box. Indeed, they maximize
both ΛS (i.e. have nl(S) = 0) and ∆S , which could wrongly indicate that the linearity
is the relevant criteria.



Fig. 4: Confusion coefficients for S1, S101 and S254

2. An “average” Sbox[·], termed S101, of equation y 7→ a� y101 ⊕ b,
3. A “good” Sbox[·], termed S254, of equation y 7→ a� y254 ⊕ b.

In these expressions, the operations ⊕ and � are respectively the inner addition
and multiplication of the Galois field F28 of 256 elements. The last Sbox is the
one used in the AES, i.e. SubBytes, as y254 = y−1 in F28 , by Fermat’s little
theorem. In all three cases, the 8× 8 Boolean matrix a and the 8-bit constant
vector b are also those defined in the AES specification [14]; more precisely, we
identify F28 to F8

2 when talking about matrices and vectors.
The values of the differential uniformity and the (relative) distinguishing

margin are given in Tab. 1, where DM is computed without additional noise
(σ2 = 0). Figure 4 displays the confusion coefficients κ(k?, k) for each S-box.

It is obvious from the table and from the figure that when using S1 (i)KSA
and DPA are not able to reveal the key, which can be explained as follows: As
S1 is linear, both ΛS1 and ∆S1 are maximal (i.e. attain their upper bounds,
respectively ΛS1 = 2n−1 and ∆S1 = 2n). Thus, for all key guesses k = k? ⊕ δk,
S1 satisfies

S1(T ⊕ k) = S1(T ⊕ k? ⊕ δk) = S1(T ⊕ k?)⊕ S1(δk)

=
{
S1(T ⊕ k?) or
S1(T ⊕ k?) = 1− S1(T ⊕ k?) .

So, either Y (k) = Y (k?) or Y (k) = 1 − Y (k?), depending on S1(δk). In either
case, the confusion condition (see Condition 2) is violated, because there exists an
injective correspondence ξ (either the identity or the 1’s complement) such that
Y (k?) = ξ(Y (k)) with probability one. Note that, equivalently, Lemma 1 does
not apply, since κ(k?, k) ∈ {0, 1}. Hence, (i)KSA and DPA cannot distinguish k
from k?.

Moreover, one can see that the confusion coefficients for S254 are close to
1/2, whereas the coefficients for S101 are widely spread. Thus, (i)KSA and DPA
are more efficient when using S254 instead of S101. The same effect can be seen
again in Tab. 1 when looking at the (relative) distinguishing margin. In contrast,
the resistance against differential attack is less efficient (see the first column).
Figure 5 displays the distinguishing margin for several values of σ2. One can



Table 1: Properties of the studied
S-boxes (where σ2 = 0 for DM).
S-box ∆S DM RDM

(i)KSA/DPA

S1 256 0/0 0
S101 184 0.28/0.56 2.58
S254 144 0.44/0.88 9.82

Fig. 5: Distinguishing margin for the studied
S-boxes.

Fig. 6: Empirical success rate for S101 and S254 and σ2 = 1 for (i)KSA.

observe that the influence due to the type of S-boxes is still observable even if
the noise is very large. Note that, one cannot directly compare the values of the
DM of (i)KSA and DPA as it not a relative metric.

Furthermore, we conduct practical experiments using simulations and the
estimated (i)KSA as defined in [10] with uniformly distributed T over 100 exper-
iments. Figure 6 shows the empirical success rate when the leakage arises due
to the Hamming weight of either S101 or S254, where Y (k) = [S101/256(T ⊕ k)]4.
We additionally highlighted the standard deviation of the success rate by error
bars as defined in [10]. As already depicted by the confusion coefficients the side
channel resistance is higher for S101 than for S254.

5 Conclusions and Perspectives

This paper provides a detailed theoretical analysis of KS distinguishers including
soundness in case of binary sensitive variables. We showed that the closed-form



expressions of KSA and iKSA are equivalent and can be expressed as a product
with regard to the noise and the confusion coefficient. We show that this also
holds for DPA and that even though DPA relies on a proportional scale whereas
(i)KSA distinguishes nominally their closed-form only differ in the noise factor,
but not in the factor regarding the confusion coefficient. These results underline
the importance of theoretical studies of distinguishers as their closed-form can
be directly utilized for comparisons.

Moreover, the confusion coefficient is directly related to properties of the
S-box, which we further link to a differential cryptanalytic metric. In particular,
we highlight that the more an S-box is resistant against side channel attacks
the lesser it is secured against cryptanalytic attacks and vice versa. We have
noted that the resistance against side-channel attacks is not directly linked to
the non-linearity of the S-box as commonly believed. In our practical evaluation,
we investigated three S-boxes with different power exponents 1, 101 and 254.
Interestingly, the S-box of power 1 is resistant against one-bit attacks relying on
the confusion coefficient (e.g. KS or DPA), whereas the S-box of power 254 (that
is used in AES) is less resistant to side-channel attacks.

For future work we aim to extend our analysis to the multi-bit case and
to apply the presented theoretical study as a framework to other side-channel
distinguishers. Additionally, the relationship between differential cryptanalytic
attacks and side-channel attacks is an interesting field for future work.
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