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Abstract. Encrypt-Mix-Encrypt is a type of SPRP based construction,
where a masked plaintext is encrypted in ECB mode of, then a non-linear
mixing is performed and then again an encryption is performed in ECB
mode which is masked to produce the ciphertext. Using the property of
the binary field, the authors proved that the construction is not SPRP
secure if the mixing used is linear. In this paper, we observe that relaxing
the mixing operation to some specific efficient linear mixing provides the
PRP property of the construction. Moreover choosing a linear mixing
that gives the online property is not a difficult task. We can use this fact
to construct an efficient Online PRP using Encrypt-Mix-Encrypt type of
construction with the mix operation being a linear online mixing, making
the construction efficient and online. We also show that the construction
with linear mixing doesn’t provide SPRP security even if we perform
all the operations in a prime field instead of binary field. Thus, we fully
characterize EME with linear mixing.

Keywords: EME, PRP, OLPRP, Lmix, OLmix.

1 Introduction

EME [3] is a block-cipher mode of operation, that turns an n-bit block cipher into
a tweakable enciphering scheme that acts on strings of mn bits, where m ∈ [1..n].
The mode is parallelizable, but as serial-efficient as the non-parallelizable mode
CMC [7]. EME algorithm entails two layers of ECB encryption and a non-
linear mixing in between. EME is proved to provide SPRP [4] security in the
standard, provable security model assuming that the underling block cipher is
SPRP secure. The authors showed that, if the construction uses liner mix, instead
of non-linear mixing then an SPRP attack can be mounted using the properties
of an binary field.

1.1 Motivation and Our Contribution.

Motivation of this paper is to fully characterise EME with linear mixing (instead
of non-linear mixing). We know there exist attacks against the SPRP security
of EME with linear mixing but we don’t have any idea about the PRP [4]
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or OLPRP security of the construction. In this paper, we observe that some
specific efficient linear mixing (respectively Online linear mixing) still retains
the PRP (resp. OLPRP) property of the construction. In fact, we showed that,
the necessary as well as sufficient condition for EME with linear mixing to have
the PRP and OLPRP security, is to use a particular type of linear mixing : Lmix
and OLmix respectively. Moreover, we prove that any other linear mixing except
Lmix and OLmix, doesn’t provide the PRP and OLPRP security respectively.
Thus, we fully characterize EME with linear mixing. We can use this fact to
construct an efficient PRP (or OLPRP) using Encrypt-Mix-Encrypt type of
construction with linear (online) mixing. Moreover, we prove that EME with
any linear mixing doesn’t provide SPRP security, not just in the binary field (As
shown by the authors of EME) but also in any other field.

1.2 Application of our Result.

Modern cryptography community put a lot of efforts of designing different Au-
thenticated Encryptions. Lack of being standardized of this notion motivates to
make a call for CEASER standard of Authenticated Encryption [8, 9, 10]. For
that, various new authenticated encryption designs have been proposed recently.
We know that, for constructing an Authenticated Encryption, it is not necessary
to be a SPRP construction, rather a PRP construction (not length preserving)
with properly generated tag, is good enough to give an Authenticated Encryp-
tion.

So, using our result one can efficiently construct an authenticated Encryp-
tion using EME with Lmix and then properly generating the tag. For online
secure Authenticated Encryption, one can use EME with OLmix as the basis
of the construction. Such constructions are very efficient as it doesn’t use any
non-linear functions and the mode is parallelizable. Infact some of the existing
constructions like ELmE [2] and COPA [1] uses this kind of structure (EME
with Olmix) as the underlying structure to make the construction online, fully
pipelined implementable.

1.3 Outline of the paper

In this paper we have observed that if we use linear mixing with certain properties
in EME, then the privacy security of the construction still holds. After providing
basic preliminaries in section 2, we define two types of linear mixing - online
linear mixing and full linear mixing that can be used in the mixing part of EME.
Then in section 3, using the well known Interpolation technique and Patarin’s
H Coefficient [5] method, we prove that those two mixing provides PRP and
OLPRP security of EME respectively. Finally in section 4, we show the SPRP
attack against the generalized EME construction with linear mixing that works
for any fields. Finally we conclude along with some possible future works.
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2 Preliminaries

2.1 Security Measures

Given an adversary A (w.o.l.g. throughout the paper we assume a deterministic
adversary) and two functions f and g, we define the distinguishing advantage
of A distinguishing f from g. More formally,

Advfg (A) = Pr[Af = 1]− Pr[Ag = 1].

In this paper, we give a particularly strong definition of privacy, one assert-
ing indistinguishability from random strings. Consider an adversary A who has
access of one of two types of oracles: a “real” encryption oracle or an “ideal”
encryption oracle. A real encryption oracle, FK , takes as input M and returns
C = FK(M). Whereas an ideal encryption oracle $ returns a random string R
with ‖R‖ = ‖M‖, for every fresh message M . Given an adversary A and an
encryption scheme F , we define the prp-advantage of A by the distinguishing
advantage of A distinguishing F from $. More formally,

Advprp
F (A) := Adv$

F (A) = PrK [AFK = 1]− Pr$[A$ = 1].

Similarly, we define the olprp-advantage of A for which the the ideal on-
line encryption oracle $ol responses random string keeping the online prop-
erty. The online privacy advantage of an adversary A against F is defined as
Advolprp

F (A) := Adv$ol
F (A).

A more strong definition of security is given by the sprp notion which is sim-
ilar to the prp notion except that the adversary has the power of a accessing
decryption oracle as well. Formally,

Advsprp
F (A) = PrK [AFK ,F

−1
K = 1]− Pr$[A$,$−1

= 1].

2.2 View and A-realizable

We define view of a deterministic adversary A interacting with an oracle O by
a tuple τ(AO) := (Q1, R1, . . . , Qq, Rq) where Qi is the ith query and Ri is the
response by O. It is also called O-view. A tuple τ = (Q1, R1, . . . , Qq, Rq) is
called A-realizable if it makes query Qi after obtaining all previous responses
R1, . . . , Ri−1. As A is assumed to be deterministic, given R1, . . . , Rq, there is
an unique q-tuple Q1, . . . , Qq for which the combined tuple is A-realizable. Now
we describe the popular coefficient H-technique which can be used to bound
distinguish advantage. Suppose f and g are two oracles and V denotes all possible
A-realizable views while A interacts with f or g (they have same input and
output space).

Lemma 1 (Coefficient H Technique [5, 6]). If ∀v ∈ Vgood ⊆ V (as defined
above), Pr[τ(Ag) = v] ≥ (1− ε)Pr[τ(Af ) = v], then the distinguishing advantage
Advfg (A) of A is at most ε+ Pr[τ(Af ) 6∈ Vgood].
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Proof. Here we calculate the advantage of any adversary A distinguishing two
random online functions f and g.

Advfg (A) = Pr[Af = 1]− Pr[Ag = 1]

=
∑
v∈V

(Pr[τ(Af ) = v]− Pr[τ(Ag) = v])

=
∑

v∈V ⋂
Vgood

(Pr[τ(Af ) = v]− Pr[τ(Ag) = v])

+
∑

v∈V \Vgood
(Pr[τ(Af ) = v]− Pr[τ(Ag) = v])

= ε+ Pr[τ(Af ) /∈ Vgood]

ut

2.3 Consistent Collision Relations for a Linear Function

Assume, B = {0, 1}n. An `-tuple x ∈ B` is denoted by (x[1], x[2], . . ., x[`]).
We call ` := ‖x‖ block-length of x. For 0 ≤ a ≤ b < ` we denote x[a..b] :=
(x[a], x[a+ 1], . . . , x[b]), x[..b] = x[1..b].

Suppose X = X[1..r1] is a r1-tuple of variables of B and L : Br1 → Br2 is a
linear function. We denote Y = L(X) which is an r2-tuple of variables from B.
Let γ1 and γ2 are two equivalence relations defined on the sets respectively [1..r1]
and [1..r2]. Let Xγ1 denote the tuple of variables which satisfies the collision
relation γ1 by replacing identical variables by the variable which occurred with
minimum index. We say that (γ1, γ2) is consistent with L if Li(Xγ) ≡ Lj(Xγ1)
if and only if i and j are related in γ2. Clearly, given any γ1 and L there is
exactly one γ2 for which (γ1, γ2) is consistent with L. We write γ1 ⇒L γ2.

Example 1. If γ1 = {{1, 3}, {2}, {4, 6}, {5}} for r1 = 6, then we writeXγ1 = (X1,
X2, X1, X4, X5, X4). Let L map into three variables (i.e., r2 = 3 such that
L1 = X1 + X2 + X3 + X6, L2 = X4 + X5 + X6 and L3 = X2 + X4 then
L1(Xγ1) = L3(Xγ1) = X2 + X4 and L2(Xγ1) = X5 (we work it here in binary
field). So γ1 ⇒L γ2 where γ2 = {{1, 3}, {2}}.

Lemma 2. [Number of Solutions for Consistent relations] Let (γ1, γ2) be con-
sistent with L : Br1 → Br2 then

|{X : Coll(X) = γ1, Coll(L(X)) = γ2}| ≥ 2ns1 × (1− s2

2n+1
)

where s1 and s2 denote the number of equivalence classes of γ1 and γ2 respectively
and s = s1 + s2.

Proof. Let Y = L(X). Because of consistency, for all related i, j in γ2, Yi = Yj .
There may be additional equality which must be avoided. For all unrelated pair
(i, j) in γ2 we must choose X in a manner such that Yi 6= Yj and similarly for
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all unrelated pair (i, j) in γ1 we have Xi 6= Xj . Due to consistency, any one can
happen for at most 2n(s1−1) many X’s as Li(Xγ1) = Lj(Xγ1) gives a non-trivial
equation. So the result follows as we have at most

(
s
2

)
such equalities. ut

3 EMEmix : A General Form of EME with Linear Mixing

The construction EMEmix is a variant of EME, where linear mixing function mix
is used instead of non-linear mixing. Other than the mixing part, the construction
remains same as EME. For a message M of length is l, the construction is
described below. Here EK : F → F is a block cipher that maps a field element
to another. Here possible choices of F is GF (2n) or GF (pn) where p is a prime.
Although we don’t have any blockcipher with F = GF (pn) but we keep it for
theoretical importance.

M [1]

C[1]

L

L

MM [1]

X [1]

Y [1]

CC[1]

M [2]

C[2]

2L

2L

MM [1]

X [2]

Y [2]

CC[2]

M [l]

C[l]

2l−1L

2l−1L

MM [l]

X [l]

Y [l]

CC[l]

Linear Mixing Function mix

EK EK EK

EK EKEK

Fig. 3.1. (Encrypt-Mix-Encrypt Construction

• Layer-1 (Input Masking Layer): MM [j] = M [j] + 2j−1L, 1 ≤ j ≤ l.
• Layer-2 (1st Encrypt Layer) : X[j] = EK(MM [j]), 1 ≤ j ≤ l.
• Layer-3 (Linear Mix Layer) : Y = mix(X).
• Layer-4 (2nd Encrypt Layer) : CC[j] = EK(Y [j]), 1 ≤ j ≤ l.
• Layer-5 (Output Masking Layer) : C[j] = CC[j] + 2j−1L, 1 ≤ j ≤ l.

Now, the main focus is on the linear mix function mix. The linear function mix
is obtained via a matrix multiplication as given below :
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Y = mix(X) =
(
B
)
.
(
X
)


Y [1]
·
·

Y [l]

 =


b11 b12 · · · b1l
b21 b22 · · · b2l
· · · · · ·
bl1 bl2 · · · bll



X[1]
·
·

X[l]


where B is an (l×l) invertible matrix. The invertibility property is required to en-
sure that the decryption is possible. The inverse matrix of B is denoted by A(l×l)

We are typically interested in two types of mixing functions - Online linear
mixing function OLmix and full linear mixing function Lmix, described below :

1. Lmix: It is the mix function for which B is a full matrix i.e. all the entries of
matrix B is non-zero.

2. OLmix: It is the mix function where B is a lower triangular matrix with all
it’s lower triangular entries nonzero.

In the following sections, we’ll show that the necessary and sufficient condition
for an EMEmix to obtain full security is to have Lmix as the mix function and
OLmix to obtain the online security.

4 Security of EMELmix and EMEOLmix

The main two results that we have proved in this paper is given below.

Theorem 1. The distinguishing advantage of an adversary D, distinguishing
EMEOLmix (EME with linear mix property 2) encryption and decryption from $,
which is capable of making at most q distinct queries, is bounded by,

Advolprp
EMEOLmix

(D) ≤ 5s2

2n

where s is the no. of distinct non-prefixed blocked queried.

Theorem 2. The distinguishing advantage of an adversary D, distinguishing
EMELmix (EME with linear mix property 1) encryption from $, which is capable
of making at most q distinct queries, is bounded by,

Advprp
EMELmix

(D) ≤ 5σ2

2n

where σ is total length of all the q queries, made by the adversary.

Proof. We prove theorem 1 by applying proposition 1 and 3 in Patarin’s H-
coefficient technique and theorem 2 by using proposition 2 and 4 in Patarin’s
H-Coefficient technique. ut
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Proof Idea. Here we give the proof idea of theorem 1. The basic idea is as
follows : We first define good online views, where two ciphertext blocks are equal
iff their corresponding messages upto that block is identical. We’ll show that in
case of ideal online cipher, generating such a good online view has very high
probability. We call L is Valid, if the value of L ensures the collision relation of
M and MM and collision relation of C and CC are same. We prove that, with
very high probability L is valid. As permutations preserve collision relations, a
valid L ensures that the collision relation of M and X are same and collision
relation of C and Y are same. Then, using consistent collision relations for linear
functions, we show that with very high probability, the collision relation of Y
and OLmix(X) is same. Thus for a fixed valid L, the conditional interpolation
probability is very high for the construction.

Now, applying the two results : High probability of obtaining a good online
view and high interpolation probability of EMEOLmix for good online views, in
Patarin’s H-Coefficient technique, we have the Online PRP security of EMEOLmix.

We use exactly similar idea for the theorem 2.

4.1 Notation Setup and Definitions

Let A be an adversary which makes q queries Mi and obtains responses Ci,
1 ≤ i ≤ q. We denote ‖Mi‖ = ‖Ci‖ = li. Let σ =

∑q
i=1 li. The first part

follows directly from the coefficient H technique (see Lemma 1 and following
Propositions 1 and 2. For this, we first need to define a set of good views Vgood
which would be applied in the proposition. We denote (M1, . . . ,Mq) by τin. We
assume that all Mi’s are distinct.

Definition 1 (Good Online Views). A ciphertext tuple τout = (C1, . . . , Cq)
(also the complete view τ = (τin, τout)) is called good online view (belongs to
τgood) w.r.t. τin if (τin, τout) is an online view (i.e., it must be realized by an
online cipher, see section 2) and the following condition hold:

Ci[j] = Ci′ [j] ⇒ Mi[..j] = Mi′ [..j]

The condition says that we can have collision of ciphertext blocks in a position
only if they are ciphertexts of two messages with same prefixes up to that block.

Definition 2 (Good Views). A ciphertext tuple τout = (C1, . . . , Cq) (also the
complete view τ = (τin, τout)) is called good view (belongs to τgood) w.r.t. τin if
(τin, τout) is a view and the following condition hold:

Ci[j] 6= Ci′ [j]

The condition says that we don’t have any collision in ciphertext blocks.

Collision Relation. Consider the following relations, defined on a good view
τ . Let γ1 and γ2 are collision relations defined on the set {(i, j) : i ≤ q, j ≤ li}.
A pair ((i, j), (i′, j′)) is related in γ1 if j = j′ and Mi[j] = Mi′ [j]. On the other
hand, the pair ((i, j), (i′, j′)) is related in γ2 if j = j′ and Ci[j] = Ci′ [j]. All
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other pairs are unrelated. Let the no. of equivalence class of γi be si, i = 1, 2.
Note that s2 = s, the number of prefixes of Mi containing at least one message
block.

Lemma 3. The collision relations defined as above is consistent with OLmix and
Lmix.

Proof. Let Y = (Y1 := OLmix(X1), . . . , Yq := OLmix(Xq)). Since the view is
good online, Ci[j] = Ci′ [j] can happen if Mi[..j] = Mi′ [..j]. In this case, clearly,
Yi[j] = Yi′ [j]. Now for any other pair ((i, j), (i′, j′)), it is easy to see that OLmix
function leads to a non-trivial equation OLmixj(X

γ1
i ) = OLmixj′(X

γ1
i′ ) i.e.

j∑
k=1

bjkXi[k] =

j′∑
k=1

bj′kXi′ [k]

.
Similarly, it is easy to see that, for Lmix, any pair ((i, j), (i′, j′)), Lmix function

leads to a non-trivial equation Lmixj(X
γ1
i ) = Lmixj′(X

γ1
i′ ). Hence the consistency

holds. ut

4.2 High Probability of obtaining Good and Good Online Views

Proposition 1 (Obtaining a Good Online View has high probability).

Pr[τ(A$ol) /∈ Vgood,ol] ≤
s22
2n
.

Proof. According to the definition, an online view is not a good view if ∃i, j, i′, j′
with Ci[j] = Ci′ [j

′], where Mi[..j] 6= Mi′ [..j
′]. Suppose i < i′ or i = i′, j < j′.

Then Ci[j] is computed by Mi[..j] before the computation of Ci′ [j
′]. As Mi[..j] 6=

Mi′ [..j
′], the outcome of Ci′ [j

′] is random and fresh from Ci[j]. So, the probabil-
ity that Ci[j] takes the previously computed fixed value Ci[j] is 1

2n . As at most(
s2
2

)
pairs are there, the probability that τ(A$ol) /∈ Vgood is at most

s22
2n .

Proposition 2 (Obtaining a Good View has high probability).

Pr[τ(A$) /∈ Vgood] ≤
σ2

2n
.

Proof. According to the definition, a view is not a good view if ∃(i, j) 6= (i′, j′)
with Ci[j] = Ci′ [j

′]. Suppose i < i′ or i = i′, j < j′. Then Ci[j] is computed by
Mi[..j] before the computation of Ci′ [j

′]. As Mi[..j] 6= Mi′ [..j
′], the outcome of

Ci′ [j
′] is random and fresh from Ci[j]. So, the probability that Ci[j] takes the

previously computed fixed value Ci[j] is 1
2n . As at most

(
σ
2

)
pairs are there, the

probability that τ(A$) /∈ Vgood is at most σ2

2n . ut
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4.3 High Interpolation Probabilty of EMELmix and EMEOLmix

In this section, we prove that the interpolation probability is high for ELEOLmix.

Proposition 3 (High interpolation probability of EMEOLmix).

∀τ ∈ Vgood,ol,

Pr[τ(AEMEΠ,LOLmix) = τ ] ≥ (1− 4s22
2n )× Pr[τ(A$ol) = τ ].

Note that Pr[τ(A$ol) = τ ] = 2−ns where s denotes the number of non-empty pre-
fixes of Mi, 1 ≤ i ≤ q as for every different prefixes, $ol assigns an independent
and uniform ciphertext blocks.

Proof. As adversary is deterministic, we restrict to those good views which can
be obtained by A. Hence the probability Pr[τ(AEME) = τ ] is same as

Pr[EMEΠ,LOLmix(Mi) = Ci, 1 ≤ i ≤ q].

Before computing interpolation probability we denote all intermediate variables
while computing EMEL,πOLmix(Mi) = Ci. Let for all i and j whenever defined

1. MMi[j] = L · 2j−1 +Mi[j]
2. Π(MMi[j]) = Xi[j],
3. OLmix(Xi) = Yi
4. CCi[j] = L · 2j−1 + Ci[j]

Note that CC has been defined through ciphertext and L instead of applying Π
on Y blocks. Let MM = (MM1, . . . ,MMq) and similarly we define X,Y and
CC. So, we have mix(X) = Y with the extended definition of mix which applies
mix function for each Xi. We call L valid if it computes (MM,CC) for which
only equality among the blocks occurs in SSi[j] = SSi′ [j] where Si[j] = Si′ [j].

One can easily show that L is valid with probability at least (1− 2s22
2n ) :

Lemma 4. Pr[L is valid] ≥ (1− ε1) where ε1 =
2s22
2n .

Proof. Consider the bad cases when L is not valid :

Case 1: MMi[j] = MMi′ [j
′] which implies L = (Mi[j]+Mi′ [j

′])

2j−1+2j′−1 which occurs

with probabilty
(s12 )
2n .

Case 2: MMi[j] = CCi′ [j
′] which implies L = (Mi[j]+Ci′ [j

′])

2j−1+2j′−1 which occurs with

probabilty s1.s2
2n .

Case 3: CCi[j] = MMi′ [j
′] which implies L = (Ci[j]+Ci′ [j

′])

2j−1+2j′−1 which occurs with

probabilty
(s22 )
2n .

Using the union bound, we have L is not valid with probability at most
2s22
2n .

Hence follows the result. ut
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Now, since the two collision relations γ1 and γ2 defined earlier, are consistent
with the Online linear mix function, OLmix (Proved in Lemma 2) we have the
following corollary from Lemma 1 :

Corollary 1. #{X : coll(X) = γ1, coll(Y ) = γ2} ≥ 2ns1(1− 2s22
2n )

Now, for a fixed valid L, the conditional interpolation probability is∑
X

#π : π(MM) = X,π(CC) = Y

#π
≥ (1− 2s22

2n
)× 2−ns2 .

So by multiplying the probability for validness of L the proof of the proposition
completes.

Remark 1. Note that, if we define L from EK then we need to revise the proof
of the Proposition 3. The revision is mainly by defining more internal bad events
that some of the Π inputs is 0 (the inputs are used to generate L value). As this
adds notational complexity and does not increase the order of advantage (except
the constant factor will increase) we skip it for clarity throughout the paper.

Proposition 4 (High interpolation probability of EMELmix).

∀τ ∈ Vgood,

Pr[τ(AEMEΠ,LLmix ) = τ ] ≥ (1− 4σ2

2n )× Pr[τ(A$) = τ ].

Proof. According to the definition of good view, s2 = σ. Assuming that, the
proof is identical to the previous one.

4.4 Neccsity of Lmix (or OLmix) to obtain PRP (or OLPRP)
Security of EMEmix

Suppose, the mix function used is not Lmix. Hence at least one entries of B
matrix is zero. Let bij be the entry. Now we have the following equation for Y [i]

Y [i] =
∑
k 6=j

bikX[k]

Since Y [i] is indepentdent of X[j], hence any two messages M1 and M2 (of same
length) whose all blocks are same except the jth block (all other blocks are same)
would yield C1[i] = C2[i] - which breaks the full security of the construction.
This shows the necessity of Lmix to obtain PRP Security of the construction.

Similarly, the necessity of OLmix can be shown inorder to obtain OLPRP Secu-
rity of the construction. Suppose, the mix function used is not OLmix. Hence at
least one lower triangle entries of B matrix is zero. Assume bij = 0, where j ≤ i.
Now we have the following equation for Y [i]

Y [i] =
∑
k 6=j
j≤i

bikX[k]
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Since Y [i] is indepentdent of X[j], hence any two messages M1 and M2 (of same
length) whose all blocks are same except the jth block (all other blocks are
same) would yield C1[i] = C2[i] although M1[..i] 6= M2[..i] as they differ in the
jth block. Hence it breaks the online security.

5 SPRP Attack against EMEmix for any underlying field

In this section, we show an SPRP attack against this construction. First, we
revisit the attack that authors proposed in the paper [3] to prove that the con-
struction with linear mix doesn’t provide SPRP security. We give an adversary
A that attacks the mode, distinguishing it from a Pseudo random permutation
and its inverse using only 4 queries.

Revisiting SPRP Attack against EMEmix for binary field :

1. A queries two messagesM1 = (M1[1],M1[2],M1[3]) andM2 = (M2[1],M1[2],M1[3]).
Let C1 = (C1[1], C1[2], C1[3]) and C2 = (C2[1], C2[2], C2[3]) are the re-
sponses, respectively .

2. Now,A queries two ciphertexts C3 = (C1[1], C2[2], C2[3]) and C4 = (C2[1], C1[2], C1[3]).
Let M3 = (M3[1],M3[2],M3[3]) and M4 = (M4[1],M4[2],M4[3]) are the re-
spective responses.

3. If M3[1] 6= M4[1] and ∀j ≥ 1, M3[j] = M4[j]; then A returns 1 (meaning the
real). Else A returns 0 (i.e. the random).

Logic behind the Attack. The main observation is that, ∀i : Y3[i]+Y4[i] = Y1[i]+
Y2[i] and as the underlying field is binary, hence addition of two elements is zero
imply that the elements are same. The authors use this two property to mount
the attack. The proof is given below :
∀j = 1, 2, 3 we have,

X3[j] +X4[j] = (aj1Y3[1] + aj2Y3[2] + aj3Y3[3]) + (aj1Y4[1] + aj2Y4[2] + aj3Y4[3])

= aj1(Y3[1] + Y4[1]) + aj1(Y3[2] + Y4[2]) + aj1(Y3[3] + Y4[3])

= aj1(Y2[1] + Y1[1]) + aj1(Y1[2] + Y2[2]) + aj1(Y1[3] + Y2[3])

= (aj1Y1[1] + aj2Y1[2] + aj3Y1[3]) + (aj1Y2[1] + aj2Y2[2] + aj3Y2[3])

= X2[j] +X1[j]

Note that, in this attack, the authors uses the property of a binary field that
the addition of two elements is zero implies both the values are same. Now, the
question raise is what about the security of ELEmix when the underlying field
is not binary. In the following two subsections, we prove that, ELEmix doesn’t
provide SPRP even in non-binary fields.
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5.1 SPRP Attack against EMEOLmix

Here we show an SPRP attack against the EME construction that uses OLmix
linear mixing.

1. A queries four messagesM1 = (M1[1],M1[2],M1[3]) andM2 = (M1[1],M2[2],M1[3]).
Let C1 = (C1[1], C1[2], C1[3]) and C2 = (C1[1], C2[2], C2[3]) are the re-
sponses, respectively .

2. Now,A queries two ciphertexts C3 = (C3[1], C1[2], C1[3]) and C4 = (C3[1], C2[2], C2[3]).
Let M3 = (M3[1],M3[2],M3[3]) and M4 = (M4[1],M4[2],M4[3]) are the re-
spective responses.

3. If M3[3] = M4[3]; then A returns 1 (meaning the real). Else A returns 0 (i.e.
the random).

Main idea why the attack works. The main idea of the attack is that the
value M3[3] is calculated using C1[2] and C1[3] both of whose values are de-
pendent on the value M1[2]. So, the value of M3[3] should have an influence of
the value M3[3] but the effects of M1[2] via C1[2] and C1[3] cancels each other
out implying the value of M1[2] has no effect in calculating M3[3]. Using this
observation, we mount the attack. The formal proof is as follows :

X3[3] = a31Y2[1] + a32Y1[2] + a33Y1[3]

= a31Y2[1] + a32(b21X1[1] + b22X1[2])

+a33(b31X1[1] + b32X1[2] + b33X1[3])

= a31Y2[1] + (a32b21 + a33b31)X1[1] + (a32b22 + a33b32)X1[2]

+a33b33X1[3]

= a31Y2[1] + (a32b21 + a33b31)X1[1] + (a32b22 + a33b32)X2[2]

+a33b33X1[3] (As a32b22 + a33b32 = 0)

= a31Y2[1] + a32Y2[2] + a33Y1[3]

= X4[3]

5.2 SPRP Attack against EMELmix.

The SPRP attack against the EME construction that uses Lmix as the linear
mixing, is as follows :

1. A queries four messagesM1 = (M1[1],M1[2],M1[3]),M2 = (M2[1],M1[2],M1[3]),
M3 = (M1[1],M3[2],M1[3]) and M4 = (M2[1],M3[2],M1[3]). Let C1 =
(C1[1], C1[2], C1[3]), C2 = (C2[1], C2[2], C2[3]),C3 = (C3[1], C3[2], C3[3]) and
C4 = (C4[1], C4[2], C4[3]) are the responses, respectively .

2. Now,A queries two ciphertexts C5 = (C2[1], C1[2], C1[3]) and C6 = (C4[1], C3[2], C3[3]).
Let M5 = (M5[1],M5[2],M5[3]) and M6 = (M6[1],M6[2],M6[3]) are the re-
spective responses.
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3. If M5[3] = M6[3]; then A returns 1 (meaning the real). Else A returns 0 (i.e.
the random).

Main Idea behind the attack. The main idea of the attack is similar to the
previous attack. Here, we observe that the value M5[3] is calculated using the
values C2[1], C1[2] and C1[3] each of which are dependent on the value M1[2]. So,
the value of M5[3] should have an influence of the value M1[2] but the combined
effects of M1[2] via C2[1], C1[2] and C1[3] cancels each other out implying the
value of M1[2] has no effect in calculating M5[3]. Using this observation, we
mount the attack. The formal proof is as follows :

X5[3] = a31Y2[1] + a32Y1[2] + a33Y1[3]

= a31(b11X2[1] + b12X1[2] + b13X1[3]) + a32(b21X1[1] + b22X1[2] + b23X1[3])

+a33(b31X1[1] + b32X1[2] + b33X1[3])

= a31b11X2[1] + (a32b21 + a33b31)X1[1] + (a31b12 + a32b22 + a33b32)X1[2] +

(a31b13 + a32b23 + a33b33)X1[3]

= a31b11X2[1] + (a32b21 + a33b31)X1[1] + (a31b12 + a32b22 + a33b32)X3[2] +

(a31b13 + a32b23 + a33b33)X1[3] (As a31b12 + a32b22 + a33b32 = 0 )

= a31(b11X2[1] + b12X3[2] + b13X1[3]) + a32(b21X1[1] + b22X3[2] + b23X1[3])

+a33(b31X1[1] + b32X3[2] + b33X1[3])

= a31Y4[1] + a32Y3[2] + a33Y3[3]

= X6[3]

6 Conclusion

In this paper, we characterized EME with linear mixing. In particular, we showed
that, the necessary as well as sufficient condition for EME with linear mixing to
have the PRP and OLPRP security, is to use Lmix and OLmix respectively, as the
linear mixing. We also proved that EME with linear mixing doesn’t provide the
SPRP security even if the construction is extended to some non-binary fields.
Thus our result is a guideline that, one can have an efficient PRP or OLPRP
construction using EME with efficient linear mix having Lmix or OLmix property
respectively and for SPRP security based on EME construction the mixing has
to be non-linear.
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