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Abstract. Diffusion layers are crucial components of sym-
metric ciphers. These components, along with suitable
Sboxes, can make symmetric ciphers resistant against sta-
tistical attacks like linear and differential cryptanalysis.
Conventional MDS diffusion layers, which are defined as
matrices over finite fields, have been used in symmetric ci-
phers such as AES, Twofish and SNOW. In this paper, we
study linear, linearized and nonlinear MDS diffusion lay-
ers. We investigate linearized diffusion layers, which are a
generalization of conventional diffusion layers; these diffu-
sion layers are used in symmetric ciphers like SMS4, Loiss
and ZUC. We introduce some new families of linearized
MDS diffusion layers and as a consequence, we present
a method for construction of randomized linear diffusion
layers over a finite field. Nonlinear MDS diffusion layers
are introduced in Klimov’s thesis; we investigate nonlinear
MDS diffusion layers theoretically, and we present a new
family of nonlinear MDS diffusion layers. We show that
these nonlinear diffusion layers can be made randomized
with a low implementation cost. An important fact about
linearized and nonlinear diffusion layers is that they are
more resistant against algebraic attacks in comparison to
conventional diffusion layers. A special case of diffusion
layers are (0,1)-diffusion layers. This type of diffusion lay-
ers are used in symmetric ciphers like ARIA. We examine
(0,1)-diffusion layers and prove a theorem about them. At
last, we study linearized MDS diffusion layers of symmet-
ric ciphers Loiss, SMS4 and ZUC, from the mathematical
viewpoint.

Keywords. MDS, Linearized, Nonlinear, Diffusion Layer,
Linerar Branch Number, Differential Branch Number

1. Introduction

Diffusion layers are important components of symmetric ciphers. It
is well-known that these components, along with suitable Sboxes, can
make symmetric ciphers resistant against statistical attacks like linear
and differential cryptanalysis. Conventional MDS diffusion layers, which
are defined as matrices on finite fields, have been used in symmetric
ciphers such as AES[1], Twofish[2] and SNOW[3]. In this paper, we
study linear, linearized and nonlinear MDS diffusion layers; in fact, we
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examine block-wise MDS matrices over a finite commutative ring with
identity.

Linearized MDS diffusion layers are used in symmetric ciphers like
SMS4[4], Loiss[5] and ZUC[6]. We present some families of linearized
diffusion layers, wich can be seen as a generalization of conventional dif-
fusion layers. We prove that some types of conventional cyclic diffusion
layers, including the MDS matrix used in AES, are MDS for almost all
elements of the base finite field on which these diffusion layers are de-
fined, and baesd on this fact, we present a method for randomizing these
types of diffusion layers.

We also investigate nonlinear MDS diffusion layers. of MDS diffusion
layers are introduced in [7]. We construct a new family of nonlinear
MDS diffusion layers, based on a mathematical study; we show that
these nonlinear diffusion layers can be made randomized with a low
implementation cost. An important fact about linearized and nonlinear
diffusion layers is that they are more resistant against algebraic attacks
compared to conventional diffusion layers.

We study (0,1)-diffusion layers and prove that, in a (0,1)-diffusion
layer, if we replace 1 entries by a bit-wise nonsingular matrix, then the
resulting linearized matrix has the same differential and linear branch
numbers. These types of matrices, are used in symmetric ciphers like
ARIA[8]. At last, we study linearized MDS diffusion layers of symmetric
ciphers Loiss, SMS4 and ZUC, from the mathematical viewpoint.

In Section 2, we present preliminary notations and definitions. Section
3 is devoted to the proof of our main theorem about MDS diffusion
layers. In Section 4, we construct new linearized MDS diffusion layers.
Section 5 examines nonlinear MDS diffusion layers. Section 6 studies
(0,1)-diffusion layers. Section 7 is devoted to linearized MDS diffusion
layers of symmetric ciphers Loiss, SMS4 and ZUC and Section 8 is the
conclusion.

2. Notations and Definitions

We use these notations in this paper:
|A|: number of elements or cardinality of a finite set A,
Bn: set of all n× n binary matrices,
Mn(R): set of all n× n matrices with entries in a ring R,
A−1: the inverse of a matrix A,
AT : entry-wise transpose of a matrix A,
d(A): determinant of a matrix A in Bn,
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dR(A): determinant of a matrix A in Mn(R),
≡: natural isomorphism between algebraic structures and also equiva-
lence of vectors,
≫: right shift operator,
≪: left shift operator,
≫: right cyclic shift or rotation operation,
≪: left cyclic shift or rotation operation,
∧: bitwise AND operator,
⊕: XOR of two binary vectors or matrices,
0: any vector or matrix zero,
I: every identity matrix,
F2n : finite field with 2n elements,
Z2n : ring of integers modulo 2n,
Fn
2 : Cartesian product of n copies of F2,

Rn: Cartesian product of n copies of R.

Suppose that R is a finite commutative ring with identity and x ∈ Rn

is a column-wise vector with n = km; the weight of x with respect to m-
tuples is defined as the number of nonzero m-tuples of x. More precisely,
if

x = (xk−1, . . . , x1, x0)
T

≡ (xk−1,m−1, . . . , xk−1,0; . . . ;x1,m−1, . . . , x1,0;x0,m−1, . . . , x0,0)
T ,

then we have,

wm(x) = |{0 ≤ i < k|xi ̸= 0}|.

Let R be a finite commutative ring with identity, n be a natural
number, n = mk and A ∈ Mn(R). The matrix A can be represented as
a block-wise matrix

(2.1) A = [Ai,j ]k×k, Ai,j ∈ Mm(R), 1 ≤ i, j ≤ k.

Let M ∈ Mn(R) with n = mk. We define the branch number of M
with respect to m-tuples as

min
x∈Rn−{0}

{wm(x) + wm(Mx)}.

Regarding (2.1), the matrix A is called MDS with respect to m-tuples
iff its branch number with respect to m-tuples equals k+1. It’s not hard
to see that we can construct a (2k, |R|mk, k + 1)-code over Rm which is
MDS.
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Suppose that M ∈ Bn with n = mk. The linear branch number of M
with respect to m-bit words is defined as

min
x∈Fn

2 −{0}
{wm(x) + wm(MTx)},

and the differential branch number of M with respect to m-bit words
is defined as

min
x∈Fn

2 −{0}
{wm(x) + wm(Mx)}.

Let f : Fn
2 → Fn

2 with n = mk be a function. The linear branch
number of f with respect to m-bit words is defined as

min
α,β∈Fn

2 ,(α,β)̸=(0,0),P (α.x⊕β.f(x)=0) ̸= 1
2

{wm(α) + wm(β)},

and the differential branch number of f with respect to m-bit words
is defined as

min
x,y∈Fm

2 ,x ̸=y
{wm(x⊕ y) + wm(f(x)⊕ f(y))}.

A function f : Fn
2 → Fn

2 is called a linearized function iff for all
x, y ∈ Fn

2 we have,

f(x⊕ y) = f(x)⊕ f(y).

Regarding the notation (2.1), we note that the definition of linear and
differential branch numbers with respect to m-bit words, for a function f
from Fn

2 to itself, with n = mk, is a generalization of the corresponding
definitions in the case that f is a linearized function: in this case, f has
a corresponding matrix F in Bn and the linear and differential branch
numbers of f and F , with respect to m-bit words, are equal. Likewise,
the definition of branch number for a commutative ring R with identity,
in the case that R is the field F2t , and m = 1 or n = k, matches with
the defintion of differential branch number for a k × k matrix over F2t

or a matrix in Bkt. Moreover, the definition of branch number for a
commutative ring R with identity, in the case that R is the ring Z2t ,
n = mk and m > 1, equals to differential branch number of a nonlinear
(nonlinearized) function with respect to mt-bit words.

As stated before, regarding (2.1), we denote the entry-wise transpose
of the matrix A ∈ Mn(R) with n = mk by AT which can also be
represented as

AT = [Bi,j ]k×k, Bi,j = AT
j,i, 1 ≤ i, j ≤ k,
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and the block-wise transpose of A by

At = [Ci,j ]k×k, Ci,j = Aj,i, 1 ≤ i, j ≤ k,

and the transpose of A wich we call it in-block, by

Aτ = [Di,j ]k×k, Di,j = AT
i,j , 1 ≤ i, j ≤ k.

For any finite commutative ring R with identity, the block-wise de-
terminant of an n×n matrix A with n = mk in the ring Mk (Mm(R)) ,
regarding representation (2.1), is denoted by dB(A): in this definition,
we suppose that all k2 blocks of A are pairwise commutable.

For an n × n sparse (0,1)-matrix M = [mi,j ], we represent it by an
n-tuple of sets representing the index of 1 entries of M , begining from
the first row and from the index zero, from the right. For example, for
the matrix

M =


0 0 1 0
1 1 0 0
0 0 0 1
1 0 0 0

 ,

with the corresponding linearized function

f(x3, x2, x1, x0) = (x1, x3 ⊕ x2, x0, x3),

we have,

f(f(x3, x2, x1, x0)) = (x0, x1 ⊕ x2 ⊕ x3, x3, x1);

So,

M = ({1}, {2, 3}, {0}, {3}),
and consequently,

M2 = ({0}, {1, 2, 3}, {3}, {1}).

We use this notation and correspondence, in Section 4.

3. Main Theorem

In this section, we prove the main theorem of this paper. This the-
orem is proved in special cases, in several books and papers; e. g. [9,
Chap. 11] and [10,11]. For the proof of next theorem, we note that for
any nonsingular square matrix B over a finte commutative ring R with
identity, there exists a matrix B′ (called the adjugate of B) such that,

B′B = BB′ = dR(A)I.
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Theorem 3.1. Let R be a finite commutative ring with identity, n be
a natural number, n = mk and A ∈ Mn(R). Then, according to rep-
resentation (2.1), A is MDS with respect to m-tuples iff each block-wise
square submatrix of A is nonsingular as a matrix over R.

Proof. At first, we suppose that every square block-wise submatrix of
A is nonsingular. Now, suppose that A is not an MDS matrix; then,
the branch number of A is less than k + 1. So, there exist vectors
Y = (Y1, . . . , Yk) and X = (X1, . . . , Xk) with AX = Y , wm(X) = t
and wm(Y ) < k + 1 − t. Here, Xi’s and Yi’s, 1 ≤ i ≤ k, are m-tuples
with entries in R. Let nonzero indices of X be jr’s, 1 ≤ r ≤ t. Since
Y has at least t zeros, supposing that the indices of these zeros are ir’s,
1 ≤ r ≤ t, the square block-wise submatrix indexed by jr block-rows
and ir block-columns, 1 ≤ r ≤ t, is singular, which is a contradiction.

Now suppose that A is MDS; then for any natural number t and
any vector X with wm(X) = t, such that its nonzero indices are I =
{i1, . . . , it}, we have wm(AX) ≥ k + 1 − t. If Y = AX, then for any
J = {j1, . . . , jt}, the vector Y ′ derived from Y with nonzero m-tuples
with indices in J , is nonzero. Considering A′ as the block-wise square
submatrix with block-column indices in J and block-row indices in I,
the linear mapping (over R)

X → A′X,

has zero kernel. Thus, A′ is nonsingular and so dR(A
′) is invertible in

R. □

Corollary 3.2. Let R be a finite commutative ring with identity, n be a
natural number, n = mk and A ∈ Mn(R). Then, A is MDS with respect
to m-tuples iff AT is MDS with respect to m-tuples.

Corollary 3.3. Let n be a natural number, n = mk and A ∈ Bn.
Regarding (2.1), A is MDS with respect to m-bit words iff each block-
wise square submatrix of A is nonsingular as a matrix over F2.

Corollary 3.4. Let n be a natural number, n = mk and A ∈ Bn. Then
A is MDS with respect to m-bit words iff AT is MDS with respect to
m-bit words.



8 S. M. Dehnavi et al.

4. Construction of New Families of Linearized MDS Diffusion
Layers

In this section, we investigate linearized MDS diffusion layers and
construct some new families of block-wise 4×4 linearized MDS diffusion
layers.

Theorem 4.1. Let A,B ∈ Bm and

M =


A B I I
I A B I
I I A B
B I I A

 .

Then, invertibility of the following matrices in Bm is a necessary con-
dition for M to be MDS:

A⊕B, AB ⊕ I, A2 ⊕B, A⊕B2.

Proof. Using Corollary 3.3, all 36 two-by-two submatrices of M are non-
singular. We have verified all these submatrices for invertibility. We used
Schur’s lemma for computing the determinant of matrices. For example,
the submatrix (

A B
I A

)
is nonsingular iff A2 ⊕B is nonsingular. □

The proof of the following lemma can be found in [12].

Lemma 4.2. Let n be a natural number, R be a finite commutative
ring with identity, n = km and A ∈ Mn(R). Consider the block-wise
representation (2.1) of A. If the k2 blocks of A are pairwise commutable,
then we have,

dR(A) = dR(dB(A)).

Lemma 4.2 offers another systematic and efficient method to check (by
programming) whether a matrix is MDS or not, using Theorem 3.1. For
instance, by Lemma 4.2, we can easily verify that some of the matrices
wich are given in [13] are MDS.
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Theorem 4.3. Let m ≥ 2 and A, B, A = A ⊕ I and B = B ⊕ I are
nonsingular matrices in Bm such that AB = BA. Define M ∈ B4m as

M =


A B I I
I A B I
I I A B
B I I A

 .

Then, M is MDS iff all of the following matrices in Bm are nonsin-
gular:

AA2 ⊕ B2,

BB2 ⊕A2,

BA2 ⊕ B2,

AB2 ⊕A2,

AB ⊕ I,

A2 ⊕B = A2 ⊕ B,
A⊕B2 = A⊕ B2,

A⊕B = A⊕ B.

Proof. Since AB = BA, we can use Lemma 4.2. We should verify the
invertibility of all

4∑
i=1

(
4

i

)2

=

(
8

4

)
− 1 = 69

block-wise submatrices of M . There are 16 one-by-one submatrices
which are invertible by the assumptions of the theorem. By Theorem
4.1, the 36 two-by-two submatrices are invertible. We have verified all 16
three-by-three submatrices and the whole matrix, i.e. M . For instance,
using Lemma 4.1 and the indentity

(X ⊕ I)2 = X2 ⊕ I,

we have,

d

B I I
A B I
I A B

 = d

(
B(d

(
B I
A B

)
)⊕ I(d

(
A I
I B

)
)⊕ I(d

(
A B
I A

)
)

)
= d(B(B2⊕A)⊕I(AB⊕I)⊕I(A2⊕B)) = d(B3⊕A2⊕B⊕I) = d(BB2⊕A2).

□
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Corollary 4.4. Let m ≥ 2 and A and A ⊕ I are nonsingular matrices
in Bm. Define M ∈ B4m as

(4.1) M =


A A⊕ I I I
I A A⊕ I I
I I A A⊕ I

A⊕ I I I A

 .

Then, M is MDS iff A3 ⊕ I and A7 ⊕ I are nonsingular matrices in
Bm.

Proof. Using Theorem 4.3 and doing some matrix computations, the
theorem is proved. □

We have searched matrices of the form (4.1) by programming. The
followiong matrix in B8 satisfies the conditions of Corollary 4.4:

A =



0 1 1 1 1 0 1 0
0 0 1 1 1 1 1 1
1 1 1 1 1 1 0 0
1 1 0 1 0 1 1 1
1 1 0 1 1 1 1 0
0 0 0 0 1 1 0 1
0 0 0 1 1 1 1 1
0 1 0 1 1 0 0 1


.

Now, we show that some of the MDS matrices which are given in [13],
including the linear MDS diffusion layer of AES, are MDS for almost
all elements of the base finite field on which these diffusion layers are
defined.

Corollary 4.5. Let m ≥ 2 and α and β = α + 1 are nonzero elements
of F2m. Define M as

M =


α β 1 1
1 α β 1
1 1 α β
β 1 1 α

 .

Then, M is MDS iff α3 and α7 are not equal to 1.

Corollary 4.5 states that for almost all elements of F2m , the matrix
M is MDS. More precisely, the number of elements α in F2m which do
not make M MDS, is equal to

gcd(3, 2m − 1) + gcd(7, 2m − 1).
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For instance, in F28 , only 3 elements do not make M MDS. Using
Corollary 4.5, we can construct a randomized family of MDS diffusion
layers: we can save a table of the elements of F2m which do not make
M MDS, and based on a value depending on key, data, IV or state in
symmetric ciphers, we randomly choose an α which makes a random
MDS matrix.

Theorem 4.6. Let R be a finite commutative ring with identity and
A ∈ Mn(R) with n = km. Regarding block-wise representation (2.1) of
A, suppose that all the k2 blocks of A are pairwise commutable. If A
is MDS, then the entry-wise transpose, the block-wise transpose and the
in-block transpose of A are also MDS.

Proof. For the entry-wise transpose AT , we can use Corollary 3.2. For
the block-wise transpose At we can use Lemma 4.2, and at last for the
in-block transpose Aτ , we note that,

Aτ = (AT )t = (At)T .

□

Using the methods and concepts given in this section, the matter
of verification that a linear matrix is MDS or not, is simply done by
programming. For instance, all of the matrices in [14] can be easily
verified by our method. Of course, these matrices are for instance, of
the form

MA =


p1,1(A) p1,2(A) p1,3(A) p1,4(A)
p2,1(A) p2,2(A) p2,3(A) p2,4(A)
p3,1(A) p3,2(A) p3,3(A) p3,4(A)
p4,1(A) p4,2(A) p4,3(A) p4,4(A)

 ;

here, pi,j ’s , 1 ≤ i, j ≤ 4, are polynomials in A, and we know that each
two polynomial entries of the matrix MA are commutable. The case of
matrices with polynomial entries is also studied in [11].

Lemma 4.7. Suppose that A ∈ Bn and A5 = I. In this case, invertibility
of A ⊕ I is a sufficient condition for satisfication of the conditions of
Corollary 4.4.

Proof. Since A5 = I, A is invertible. Now,

A3 ⊕ I = A−2 ⊕ I = (A−1 ⊕ I)2,



12 S. M. Dehnavi et al.

and since A(A−1 ⊕ I) = A ⊕ I, so A3 ⊕ I is nonsingular. Also, we
have,

A7 ⊕ I = A2 ⊕ I = (A⊕ I)2;

thus, A7 ⊕ I is also nonsingular. □
Example. The function f : F 16

2 → F 16
2 with

f(x) = (x ≫ 4)⊕ ((x ≪ 4) ≫ 4) = (x ≫ 4)⊕ (x ∧ 4095)

satisfies the conditions of Lemma 4.7.

Proof. Suppose that A is the corresponding matrix of f . Using the
notations of Section 2, we have,

A =
(
{3}, {2}, {1}, {0}, {11, 15}, {10, 14}, {9, 13}, {8, 12}, {7, 11},

{6, 10}, {5, 9}, {4, 8}, {3, 7}, {2, 6}, {1, 5}, {0, 4}
)
.

So,

A2 =
(
{3, 7}, {2, 6}, {1, 5}, {0, 4}, {3, 11, 15}, {2, 10, 14}, {1, 9, 13},

{0, 8, 12}, {7, 15}, {6, 14}, {5, 13}, {4, 12}, {3, 11}, {2, 10}, {1, 9}, {0, 8}
)
.

Now, we have,

A4 =
(
{3, 7, 11, 15}, {2, 6, 10, 14}, {1, 5, 9, 13}, {0, 4, 8, 12}, {3, 7, 15},

{2, 6, 14}, {1, 5, 13}, {0, 4, 12}, {3, 15}, {2, 14}, {1, 13}, {0, 12}, {15},
{14}, {13}, {12}

)
.

It’s not hard to see that A5 = I. Now,

A⊕ I =
(
{3, 15}, {2, 14}, {1, 13}, {0, 12}, {15}, {14}, {13}, {12}, {11},

{10}, {9}, {8}, {7}, {6}, {5}, {4}
)
.

It can be easily verified that A ⊕ I is nonsiongular; therefore the
conditions of Lemma 4.7 are satisafied. □
Lemma 4.8. Let A ∈ Bn and A10 = I. In this case, invertibility of
A3 ⊕ I is a sufficient condition for satisfication of the conditions of
Corollary 4.4.

Proof. Since A10 = I, so A is invertible. Now we have,

A3 = (A⊕ I)(A2 ⊕A⊕ I);

thus, A⊕ I is nonsingular. Also we have,

A7 ⊕ I = A−3 ⊕ I,

and since A3(A−3 ⊕ I) = A3 ⊕ I, then A7 ⊕ I is nonsingular. □
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Example. The function f : F 16
2 → F 16

2 with

f(x) = (x ≫ 2)⊕ ((x ≪ 4) ≫ 4) = (x ≫ 2)⊕ (x ∧ 65535)

satisfies the conditions of Lemma 4.8.

Proof. Suppose that A is the corresponding matrix of f . Using the
notations of Section 2, we have,

A =
(
{1}, {0}, {15}, {14}, {11, 13}, {10, 12}, {9, 11}, {8, 10}, {7, 9}, {6, 8},

{5, 7}, {4, 6}, {3, 5}, {2, 4}, {1, 3}, {0, 2}
)
,

and

A2 =
(
{1, 3}, {0, 2}, {1}, {0}, {11, 13, 15}, {10, 12, 14}, {9, 13}, {8, 12},

{7, 11}, {6, 10}, {5, 9}, {4, 8}, {3, 7}, {2, 6}, {1, 5}, {0, 4}
)
.

It follows that,

A4 =
(
{1, 3, 5, 7}, {0, 2, 4, 6}, {1, 5}, {0, 4}, {3, 11, 13, 15}, {2, 10, 12, 14},

{1, 9, 13}, {0, 8, 12}, {7, 13, 15}, {6, 12, 14}, {5, 13}, {4, 12}, {3, 11}, {2, 10},
{1, 9}, {0, 8}

)
,

and,

A8 =
(
{1, 3, 5, 7, 9, 11, 15}, {0, 2, 4, 6, 8, 10, 14}, {1, 5, 9, 13}, {0, 4, 8, 12},

{3, 7, 13, 15}, {2, 6, 12, 14}, {1, 5, 13}, {0, 4, 12}, {3, 13, 15}, {2, 12, 14}, {1, 13},
{0, 12}, {13, 15}, {12, 14}, {13}, {12}

)
.

Thus A10 = I. On the other hand, it’s not hard to verify that

A3⊕I =
(
{1, 5, 15}, {0, 4, 14}, {1, 3, 13}, {0, 2, 12}, {1, 13, 15}, {0, 12, 14},

{11, 15}, {10, 14}, {9, 11, 13}, {8, 10, 12}, {7, 9, 11}, {6, 8, 10}, {5, 7, 9},
{4, 6, 8}, {3, 5, 7}, {2, 4, 6}

)
is an invertible matrix. So the conditions of Lemma 4.8 are satisfied.

□
We emphasize that linearized maps are linear as bit-wise maps; but

these maps are not necessarily linear as functions over finite fields with
dimensions greater than 1.

Example. In Theorem 3.1, put n = 1 and suppose that R is the ring
F2[z]
<z2>

. Since r = z + 1 is an invertible element in R, so the function

f : R → R,

f(x) = rx,



14 S. M. Dehnavi et al.

is MDS. Now, if we represent this map on the field F22 , defined by
the unique irreducible polynomial z2 + z + 1, we have,

f : F22 → F22 ,

f(x) = α2x2,

where α = z. Obvioulsly, f is a quadratic function over F22 , but f is
a linearized function:

f(x⊕ y) = α2(x⊕ y) = α2x2 ⊕ α2y2 = f(x)⊕ f(y).

5. Construction of Nonlinear MDS Diffusion Layers

In this section, we investigate nonlinear MDS diffusion layers. this
type of MDS diffusion layers are discussed in [7]. We present a new
family of nonlinear MDS diffusion layers. The proof of the following
Lemma is not hard.

Lemma 5.1. Let n and t be natural numbers and A = [αi,j ] ∈ Mn(Z2t).
Define A = [ai,j ] ∈ Bn as

ai,j =

{
0 αi,j is even,
1 αi,j is odd.

Then we have,

d(A) = dZ
2t
(A) mod 2.

Theorem 5.2. Let n and t be natural numbers, n = mk and A =
[ai,j ] ∈ Bn. Suppose that A is MDS with respect to m-bit words, regarding
representation (2.1). Let αi,j ∈ Z2t, 1 ≤ i, j ≤ n, be such that αi,j is
odd if ai,j = 1 and αi,j is even if ai,j = 0. Then the matrix A = [αi,j ],
defined on Mn(Z2t), is a (nonlinear) MDS diffusion layer with respect
to tm-bit words.

Proof. According to Theorem 3.1, it suffices to prove that every square
block-wise submatrix of A is nonsingular, or equivalently, the determi-
nant of every block-wise square submatrix of A is an odd number. Since
A is MDS, so every square block-wise submarix of A is nonsingular in F2;
so by Lemma 5.1, every square block-wise submatrix of A is nonsingular
in Z2t , and this ends the proof. □

As mentioned in Section2, we note that Theorem 5.2 states that A
has maximum differential branch number. Using [15, Theo. B.1.2], it is
proved that A has also maximum linear branch number.
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We note that, based on Theorem 5.2, we can construct a family of
randomized nonlinear diffusion layers. In fact, in this theorem, some
of αi,j ’s can be selected randomly based on key, IV, data or state in
symmetric ciphers; the only restriction is that the least significant bit of
αi,j ’s must be 0 or 1 according to ai,j ’s.

It also worth noting that nonlinear (and nonlinearized) diffusion lay-
ers are more resistant against algebraic attacks in comparison to con-
ventional diffusion layers, as we stated in Section 4: in fact, linearized
maps can be nonlinear over finite fields with dimensions greater that 1
and nonlinear maps, in general, can be nonlinear even on F2.

Example. In Theorem 3.1, put n = 1 and suppose that R is the ring
Z23 . Since 3 is an invertible element in R, so the function

f : R → R,

f(x) = 3x mod 23,

is MDS. Now, if we represent this map on F2, we have,

f : F 3
2 → F 3

2 ,

f(x2, x1, x0) = (x2 ⊕ x1 ⊕ x1x0, x1 ⊕ x0, x0).

Obvioulsly, f is a quadratic function over F2; or equivalently, the
(maximum) degree of f is 2.

Example. Consider A ∈ B4 as,

A =


1 0 1 1
0 1 0 1
1 0 1 0
1 1 0 1

 .

It’s not hard to see that A is MDS with respect to 2-bit words: i.e.
A has linear and differential branch numbers equal to 3 with respect to
2-bit words. By Theorem 5.2, the map

F :
(
F 16
2

)2 ≡ (Z28)
4 →

(
F 16
2

)2 ≡ (Z28)
4 ,

F (X1, X0) = (Y1, Y0),

with

X1 = (XH
1 , XL

1 ), X0 = (XH
0 , XL

0 ), Y1 = (Y H
1 , Y L

1 ), Y0 = (Y H
0 , Y L

0 ),

and,
Y H
1 = (151XH

1 +XH
0 +XL

0 ) mod 28,

Y L
1 = (XL

1 + 218XH
0 +XL

0 ) mod 28,

Y H
0 = (XH

1 +XH
0 + 102XL

0 ) mod 28,
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Y L
1 = (XH

1 + 73XL
1 +XL

0 , ) mod 28,

is a nonlinear MDS diffusion layer with respect to 16-bit words; of
course, F corresponds to the matrix

F =


151 0 1 1
0 1 218 1
1 0 1 102
1 73 0 1

 ,

which is defined over Z28 . Thus, F or F is a nonlinear (nonlinearized)
diffusion layer over 32-bit words or F 32

2 , which has linear and differential
branch numbers equal to 3, with respect to 16-bit words.

With the aid of Theorem 5.2, it’s possible to construct nonliear MDS
diffusion layers of large sizes. These diffusion layers are efficiently imple-
mented in modern processors, i.e. 32-bit or 64-bit processors; because,
in the implementation of this type of diffusion layers, we only need the
operations of addition and multiplication modulo a power of two, which
are amongst the basic instructions of modern processors.

6. (0,1)-Diffusion Layers

In some applications in symmetric cryptography, (0,1)-matrices are
used; for instanse, in [8], this type of diffusion layers is used. Another
example of these matrices are 4 × 4 almost MDS diffusion layers with
linear and differential branch numbers 4. For example, the matrix

M =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


is an almost MDS diffusion layer with linear and differential branch

numbers 4; in fact, the matrix M is equivalent to the matrix

M =


0 I I I
I 0 I I
I I 0 I
I I I 0

 .

Next theorem is somehow obvious.

Theorem 6.1. Suppose that M = [mi,j ], 1 ≤ i, j ≤ m, is a (0,1)-matrix
with (bit-wise) linear branch number l and differential branch number d
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and A ∈ Bn is a nonsingulr matrix. Then M = [Mi,j ], 1 ≤ i, j ≤ m,
with

Mi,j =

{
A mi,j = 1,
0 mi,j = 0,

is a linearized diffusion layer with linear branch number l and differ-
ential branch number d, with respect to n-bit words.

We know that the function

f : Fn
2 → Fn

2 ,

f(x) = x2,

defined on the field F2n , is a one-to-one linearized function. So for
each m, 1 ≤ m ≤ n, the function

fm : Fn
2 → Fn

2 ,

fm(x) = x2
m
,

is also a one-to-one linearized function. Now, as an example, using
Theorem 6.1, we can prove that the linearized diffusion layer, defined on
B4n, with the defining equations

Y1 = X2m

2 ⊕X2m

3 ⊕X2m

4 ,

Y2 = X2m

1 ⊕X2m

3 ⊕X2m

4 ,

Y3 = X2m

1 ⊕X2m

2 ⊕X2m

4 ,

Y4 = X2m

1 ⊕X2m

2 ⊕X2m

3 ,

which also can be seen as a function over n-bit words, has linear and
differential branch numbers equal to 4. Since for each x ∈ F2n we have
x2

n
= x, then the inverse of this diffusion layer can be represented as

Y1 = X2n−m

2 ⊕X2n−m

3 ⊕X2n−m

4 ,

Y2 = X2n−m

1 ⊕X2n−m

3 ⊕X2n−m

4 ,

Y3 = X2n−m

1 ⊕X2n−m

2 ⊕X2n−m

4 ,

Y4 = X2n−m

1 ⊕X2n−m

2 ⊕X2n−m

3 .

Let the corresponding matrix of the function fm(x) = x2
m

be Am.
Then, the corresponding matrix of the aforementioned diffusion layer is

M =


0 Am Am Am

Am 0 Am Am

Am Am 0 Am

Am Am Am 0

 ,
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or equivalently,

Y1 = Am(X2 ⊕X3 ⊕X4),

Y2 = Am(X1 ⊕X3 ⊕X4),

Y3 = Am(X1 ⊕X2 ⊕X4),

Y4 = Am(X1 ⊕X2 ⊕X3).

In fact, we can implement this diffusion layer with four additional
lookup tables: on the other hand, the new linearized diffusion layer
has better bitwise diffusion and is stronger from algebraic viewpoint.
Moreover, the new linearized diffusion layer has less fixed points, in
general. We also notice that, we can use the corresponding matrix of
the linearized function

f : Fn
2 → Fn

2 ,

f(x) = x ≫ t,

for an arbitrary t, 1 ≤ t < n, instead of Am, which has a fast imple-
mentation in modern processors.

7. Diffusion Layers of SMS4, Loiss and ZUC

In this section, we study MDS diffusion layers of symmetric ciphers
SMS4, Loiss and ZUC. For example, the following MDS diffusion layer
is used in [5,6].

(7.1) f(x) = x⊕ (x ≫ 2)⊕ (x ≫ 10)⊕ (x ≫ 18)⊕ (x ≫ 24).

It worth to note that in (7.1), we have x ∈ F 32
2 . Define

g : F 32
2 → F 8

2 ,

g(x0, x1, x2, x3) =

(x0⊕(x0 ≫ 2))⊕(x1⊕(x1 ≪ 6))⊕((x2 ≫ 2)⊕(x2 ≪ 6))⊕((x3 ≫ 2)⊕(x3 ≪ 6)).

In (7.1), we have x = (x0, x1, x2, x3) with xi ∈ F 8
2 , 0 ≤ i ≤ 3, and

f(x0, x1, x2, x3) = (y0, y1, y2, y3), where,

y0 = g(x0, x1, x2, x3),

y1 = g(x1, x2, x3, x0),

y2 = g(x2, x3, x0, x1),

y3 = g(x3, x0, x2, x2).

So, the corresponding matrix of this diffusion layer is
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A B C C
C A B C
C C A B
B C C A

 ,

with

A =



1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


,

and,

B =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0
0 1 0 0 0 0 0 1


,

and C = A⊕B.
We investigated all the diffusion layers of the form

f(x) = x⊕ (x ≫ a)⊕ (x ≫ b)⊕ (x ≫ c)⊕ (x ≫ d),

with 0 ≤ a, b, c, d ≤ 31, by programming. The only linearized MDS
diffusion layers of this form are,

f1(x) = x⊕ (x ≫ 2)⊕ (x ≫ 10)⊕ (x ≫ 18)⊕ (x ≫ 24),

f2(x) = x⊕ (x ≫ 6)⊕ (x ≫ 14)⊕ (x ≫ 22)⊕ (x ≫ 24),

f3(x) = x⊕ (x ≫ 8)⊕ (x ≫ 10)⊕ (x ≫ 18)⊕ (x ≫ 26),

f4(x) = x⊕ (x ≫ 8)⊕ (x ≫ 14)⊕ (x ≫ 22)⊕ (x ≫ 30).
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8. Conclusion

Diffusion layers are crucial components of symmetric ciphers. These
components, along with suitable Sboxes, can make symmetric ciphers
resistant against statistical attacks like linear and differential cryptanal-
ysis. Conventional MDS diffusion layers, which are defined as matrices
over finite fields, have been used in symmetric ciphers such as AES,
Twofish and SNOW.

In this paper, we studied MDS diffusion layers over a finite commu-
tative ring with identity. We investigated linearized diffusion layers,
which are a generalization of conventional diffusion layers. These diffu-
sion layers are used in symmetric ciphers like SMS4, Loiss and ZUC. We
introduced some new families of linearized MDS diffusion layers and we
presented a method for construction of randomized diffusion layers over
a finite field.

Nonlinear MDS diffusion layers are introduced in Klimov’s thesis. Af-
ter some theoretical discussions, we presented a new family of nonlinear
MDS diffusion layers and we showed that this family of nonlinear MDS
diffusion layers can be made randomized with a low implementation cost.
An important fact about linearized and nonlinear diffusion layers is that
they are more resistant against algebraic attacks than conventional dif-
fusion layers.

A special case of diffusion layers are (0,1)-diffusion layers; this type
of diffusion layers are used in symmetric ciphers like ARIA. We exam-
ined (0,1)-diffusion layers and proved a theorem about them. At last,
we studied linearized MDS diffusion layers of symmetric ciphers SMS4,
Loiss and ZUC.
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