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Abstract—In this paper a novel, low latency family of adders
and modular adders has been proposed. This family efficiently
combines the ideas of high-radix carry-save addition and the par-
allel prefix networks. It also takes advantage of fast carry chains
of modern FPGAs. The implementation results reveal that these
hybrid adders have great potential for efficient implementation
of modular addition of long integers used in various public key
cryptography schemes.

Index Terms—high-radix carry-save adder, FPGA, parallel
prefix network, Kogge-Stone, Brent-Kung, ripple carry adder

I. INTRODUCTION

Adders are one of the most important digital circuits.
They are used extensively in various branches of science and
engineering, such as digital signal processing [1], computer
graphics [2], [3], and cryptography [4], [5]. Addition can also
serve as a basic building block of some higher level arithmetic
operations: modular addition, multiplication, modular reduc-
tion, modular multiplication, Montgomery multiplication, etc.

Numerous hardware architectures of adders have been pro-
posed, investigated and optimized for various applications and
implementation platforms [6], [7], [8], [9], [10], [11], [12] and
[13]. Of particular interest to us is the application of adders
in public key cryptography, and their implementation using
modern families of FPGAs.

Public key cryptography, which emerged in mid-1970s,
covers several families of cryptographic algorithms, in which
communicating parties do not need to share a common key
before exchanging confidential and authenticated messages
with each other. Examples of public key algorithms include
RSA [14], Diffie-Hellman [15], DSA, Elliptic Curve Cryp-
tosystems [16], [17], Pairing Based Cryptosystems [18], etc.
These transformations are typically used for digital signatures,
key agreement, key exchange, identity-based encryption, and
many other applications.

The common feature of these algorithms is that they operate
on long operands in the range between 160 and 15,424 bits.
For such long operands, even relatively simple operations, such
as addition and modular addition become very challenging
to implement efficiently, especially in FPGAs. In order to
perform these operations efficiently, we need to employ all
relevant embedded (hardwired) resources of modern FPGAs,
as well as to adapt the best hardware architectures of adders
proposed earlier for ASICs.

In this paper, we describe and analyze several novel hard-
ware architectures for addition and modular addition, taking
advantage of fast carry chains of modern FPGAs, and highly
applicable for operations on very long operands in the range
of one thousand bits and beyond.

II. BACKGROUND AND PREVIOUS WORK

In the following discussion, we will assume that the long-
operand adders of interest to us do not contain the carry in
input. This assumption is justified by the fact that these adders
have already long operands, and therefore are not intended to
be connected in series.

A. Fast Carry Chains of Modern FPGAs
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Fig. 1. Fast Carry Chains in a) Xilinx FPGAs, b) Altera FPGAs

Modern FPGAs from all major vendors contain hardwired
support for fast addition. These special hardwired components,
referred to as fast carry chains, are shown in Fig. 1. In case
of Xilinx FPGAs (Fig. 1a), each hardwired stage of an adder
includes a 2-to-1 multiplexer (used to calculate a carry out
bit) and an XOR gate (used to calculate a sum bit). The full
stage, implementing a function of a Full Adder (FA), must
also incorporate a corresponding look-up table (LUT), which
implements an XOR of two corresponding bits of operands A
and B (denoted as ai, bi). In case of Altera FPGAs (Fig. 1b),
the entire Full Adder (FA) is implemented using hardwired
logic. In both cases, neighboring stages can be connected in
series, and the hardwired portion of the circuit is optimized
for the minimum delay from carry in to carry out.

B. Parallel Prefix Network Adders

Some of the fastest known two-operand adders, designed
originally for ASIC technology, are called Parallel Prefix
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Fig. 2. a) Traditional Parallel Prefix Network adder; + represents an arithmetic addition; b) Proposed novel high-radix Parallel Prefix Network adder; +
represents an arithmetic addition; c) Kogge-Stone Parallel Prefix Network for N=8 inputs; + represents logic OR; d) Brent-Kung Parallel Prefix Network for
N=8 inputs; + represents logic OR.

Network (PPN) adders. These adders have low latency and
a very regular structure, suitable for pipelining. The general
structure of a Parallel Prefix Network adder is shown in
Fig. 2a. In the top layer, the generate and propagate signals,
gi and pi, are calculated in parallel, separately for each bit. In
the middle layer, a Parallel Prefix Network is used to calculate
the generate-propagate pairs, g[0, i] and p[0, i], for each block
of bits starting from position 0 and ending at position i. Since
carry in to the entire circuit is equal to zero, the generate
signal g[0, i] is equivalent to the projected carry at position
i+1. As a result, the generate outputs from PPN correspond to
projected carries at positions from 1 to N. In the bottom layer,
these projected carries are XOR-ed with the corresponding
propagate bits in order to calculate the final sum bits ri.

The Parallel Prefix Network is always built of basic blocks,
called carry operators, shown in Fig. 2c,d. These networks can
have different structures, depending on the exact optimiza-
tion criteria. Two most commonly used PPNs are shown in
Fig. 2c,d for the case of N=8. The Kogge-Stone PPN (Fig. 2c)
is optimized for minimum latency [19], and the Brent-Kung
PPN (Fig. 2d) for the minimum product of latency times area
[20].

Parellel Prefix Network adders are quite fast in FPGAs, but
cannot take advantage of fast carry chains present in modern
FPGAs. As a result, these adders must be implemented entirely

using look-up tables (LUTs), which negatively affects their
latency and resource utilization.

C. High-Radix Carry-Save Representation

Carry-save adders have been introduced originally as a
means of performing fast multi-operand addition [21]. They
can be also used for an efficient implementation of a sequence
of consecutive additions of long numbers. In such implementa-
tion, the conversion to the non-redundant representation needs
to happen only once, at the very end of the entire sequence of
carry-save additions. This technique has been used to develop
one of the fastest reported Montgomery multipliers for long
operands in excess of 1024 bits [22]. However, this method
is not applicable for the cases where additions are interleaved
with other operations. On top of that, this kind of addition does
not take advantage of fast carry chains of modern FPGAs.

In the high-radix carry-save representation, each word of
an output of a long-operand addition is represented using a
w-bit sum word and a single-bit carry. The high-radix carry-
save addition can be implemented using a top layer of the
circuit shown in Fig. 2b. Although by itself not sufficient to
implement a generic fast adder, this idea can be combined
with the concept of Parallel Prefix Networks, as described in
Section III.

A high-radix carry-save representation has been investigated



in [23] from the point of view of its application to modular
multiplication of large operands using FPGAs, but it has not
been earlier explored in the context of long operand addition
and modular addition using fast carry chains of modern
FPGAs.

III. ARCHITECTURE OF A NOVEL LONG-OPERAND ADDER
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Fig. 4. Modular adder performing operation R=A+B mod P. Notation: n -
number of bits of P.

A novel high-radix Parallel Prefix Network adder, taking
advantage of fast carry chains of modern FPGAs, is shown
in Fig. 2b. This adder is quite similar to the traditional PPN
adders with the following exceptions. Arguments A and B are
processed in words, instead of bits. Each word has a width of
w bits. The GP (generate-propagate) units of a traditional PPN
adder are replaced by the GPS (generate-propagate-sum) units.
Each of these units takes the corresponding words of operands
A and B, denoted as ai and bi, and produces three outputs: the
generate signal for a block of w bits - gi, propagate signal for
the same block of w bits - pi, and the sum - si. The generate
and the sum signals can be obtained using a simple w-bit
adder. In this adder, the generate signal is equivalent to carry
out. The propagate signal for a block of w bits represents the
situation when the carry in propagates through the given block.
This situation happens only if all bits of the sum are equal to
one. Checking this condition is equivalent to checking whether
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Fig. 5. Test circuit for benchmarking adders and modular adders. Notation:
SIPO - Serial In Parallel Out unit, PISO - Parallel In Serial Out unit.

TABLE I
PARAMETERS EXPLORATION FOR THE 1024-BIT ADDITION

adder (w, N ) latency area latency · area
Altera Cyclone IV (ep4cgx110df31c7)

[ns] [LE] [ns · LE ·103]
HR-KS (8,128) 11.81 7577 89.5
HR-KS (16,64) 11.91 6931 82.6
HR-KS (32,32) 13.44 6880 92.5
HR-KS (64,16) 16.50 6890 113.7
HR-KS (128,8) 23.58 6929 163.4
HR-BK (8,128) 17.84 6855 122.3
HR-BK (16,64) 16.37 6614 108.3
HR-BK (32,32) 15.36 6800 104.5
HR-BK (64,16) 17.54 6865 120.4
HR-BK (128,8) 24.20 6907 167.1

Altera Stratix III (ep3sl150f1152c2)
[ns] [ALUT] [ns · ALUT ·103]

HR-KS (8,128) 5.91 3393 20.1
HR-KS (16,64) 6.23 2701 16.8
HR-KS (32,32) 6.92 2416 16.7
HR-KS (64,16) 7.81 2386 18.6
HR-KS (128,8) 11.04 2172 24.0
HR-BK (8,128) 5.69 2711 15.4
HR-BK (16,64) 5.86 2535 14.8
HR-BK (32,32) 6.58 2390 15.7
HR-BK (64,16) 8.05 2322 18.7
HR-BK (128,8) 11.18 2157 24.1

Xilinx Spartan 6 (xc6slx150fgg900-3)
[ns] [LUT] [ns · LUT ·103]

HR-KS (8,128) 6.43 3763 24.2
HR-KS (16,64) 8.05 3454 27.8
HR-KS (32,32) 8.15 3123 25.5
HR-KS (64,16) 7.42 3052 22.6
HR-KS (128,8) 8.13 3099 25.2
HR-BK (8,128) 7.10 5155 36.6
HR-BK (16,64) 7.34 3361 24.7
HR-BK (32,32) 7.19 2970 21.3
HR-BK (64,16) 7.68 3027 23.2
HR-BK (128,8) 8.13 3099 25.2

Xilinx Virtex 5 (xc5vlx155tff1738-3)
[ns] [LUT] [ns · LUT ·103]

HR-KS (8,128) 5.32 4019 21.4
HR-KS (16,64) 4.99 3577 17.8
HR-KS (32,32) 5.69 3327 18.9
HR-KS (64,16) 5.79 3248 18.8
HR-KS (128,8) 6.77 3206 21.7
HR-BK (8,128) 5.44 3663 19.9
HR-BK (16,64) 5.40 3501 18.9
HR-BK (32,32) 5.68 3336 19.0
HR-BK (64,16) 5.69 3255 18.5
HR-BK (128,8) 6.77 3206 21.7

the sum minus a sequence of w ones is greater or equal to zero
(i.e., the result of this subtraction stays within a range for
unsigned numbers). Equivalently, we may also check whether
adding one to the sum produces carry out. Both calculations
can be very efficiently performed using fast carry chains of
Xilinx FPGAs, as shown in Fig. 3a.

Similarly, in the third layer of the adder, in the sum units, S,
the propagate signals of the traditional adder pi are replaced
by the w-bit sum signals si. The carry signals produced by
these adders are discarded, as they have been already taken
into account.

The Parallel Prefix Network changes its size from n inputs
to N = n/w inputs, which substantially reduces the area of
the circuit. This PPN may be of the Kogge-Stone [19] type
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Fig. 3. Components of the proposed adder and modular adder, implemented using fast carry chains of Xilinx FPGAs: a) GPS (generate-propagate-sum) and
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TABLE II
PARAMETERS EXPLORATION FOR THE 1024-BIT MODULAR ADDITION

adder (w, N ) latency area latency · area
Altera Cyclone IV (ep4cgx110df31c7)

[ns] [LE] [ns · LE ·103]
HR-KS (8,128) 23.28 12525 291.6
HR-KS (16,64) 23.22 10741 249.4
HR-KS (32,32) 25.50 10963 279.5
HR-KS (64,16) 29.35 11046 324.2
HR-KS (128,8) 39.81 11058 440.2
HR-BK (8,128) 31.57 10751 339.4
HR-BK (16,64) 29.15 10199 297.3
HR-BK (32,32) 28.10 10718 301.2
HR-BK (64,16) 29.90 10970 328.1
HR-BK (128,8) 39.68 11083 439.8

Altera Stratix III (ep3sl150f1152c2)
[ns] [ALUT] [ns · ALUT ·103]

HR-KS (8,128) 11.72 6734 78.9
HR-KS (16,64) 12.41 5352 66.4
HR-KS (32,32) 13.57 4810 65.3
HR-KS (64,16) 14.89 4704 70.1
HR-KS (128,8) 19.02 4335 82.4
HR-BK (8,128) 11.54 5568 64.2
HR-BK (16,64) 12.08 4838 58.5
HR-BK (32,32) 13.84 4612 63.8
HR-BK (64,16) 15.29 4579 70.0
HR-BK (128,8) 19.04 4307 82.0

Xilinx Spartan 6 (xc6slx150fgg900-3)
[ns] [LUT] [ns · LUT ·103]

HR-KS (8,128) 13.42 7758 104.1
HR-KS (16,64) 12.88 6659 85.8
HR-KS (32,32) 13.12 6068 79.6
HR-KS (64,16) 17.85 6027 107.6
HR-KS (128,8) 15.34 5912 90.7
HR-BK (8,128) 13.00 7012 91.2
HR-BK (16,64) 14.18 7039 99.8
HR-BK (32,32) 13.22 6118 80.9
HR-BK (64,16) 18.75 6013 112.7
HR-BK (128,8) 15.34 5912 90.7

Xilinx Virtex 5 (xc5vlx155tff1738-3)
[ns] [LUT] [ns · LUT ·103]

HR-KS (8,128) 11.75 7349 86.3
HR-KS (16,64) 9.33 6667 62.2
HR-KS (32,32) 9.59 5991 57.4
HR-KS (64,16) 9.62 5657 54.4
HR-KS (128,8) 10.59 5501 58.2
HR-BK (8,128) 9.88 6502 64.2
HR-BK (16,64) 9.22 6322 58.3
HR-BK (32,32) 9.65 6070 58.6
HR-BK (64,16) 9.78 5771 56.4
HR-BK (128,8) 10.59 5501 58.2

(Fig. 2c) or of the Brent-Kung type [20] (Fig. 2d), depending
on our optimization target (latency vs. latency · area). In the
following discussion, we will denote our high-radix PPN adder
based on the Kogge-Stone PPN by HR-KS, and our adder
based on the Brent-Kung PPN by HR-BK.

The critical path of our adder includes
1) the delay of the GPS unit (from a0, b0 to p in Fig. 3a),
2) the delay of the Parallel Prefix Network (from gi, pi to

pci in Figs. 2c,d), and
3) the delay of the Sum unit, S (from pc to r3 in Fig. 3a)

In general, with the increase in the word size w, the contribu-
tions of 1 and 3 increase, while the contribution of 2 decreases.

The selection of the optimal word size - w, for a given size
of operands, seems to be a very FPGA device dependent factor
for the following reasons:

• the optimal word size depends on the delay of a fast carry
chain in a given FPGA device,

• the PPN delay is related to the internal structure of the
basic FPGA logic cells, LUTs.

IV. ARCHITECTURE OF A NOVEL LONG-OPERAND
MODULAR ADDER

Any adder can be quite easily extended to a modular adder
by using the following concept demonstrated for instance in
[24]. In order to calculate a final result of the n-bit modular
addition (R = A+B (mod P )), two intermediate values have
to be computed: A + B and A + B − P . The equation (1)
demonstrates how to select the final result from the above
intermediate values.

R =

{
A+B − P, if A+B ≥ 2n ∨A+B − P ≥ 0

A+B, otherwise
(1)

This concept is illustrated in Fig. 4.
Both additions in Fig. 4 can be implemented using any type

of a non-redundant adder: ripple carry, Kogge-Stone, Brent-
Kung, and many others.

The biggest advantage of the utilization of our novel adder
is that the two pure additions required for the modular addition



TABLE III
IMPLEMENTATION RESULTS FOR THE 1024-BIT ADDITION

adder (w, N ) latency area latency · area ∆ latency ∆ area ∆ latency ·
area

[ns] [LE/ALUT/LUT] [ns · LE/ALUT/LUT ·103] [%] [%] [%]
Altera Cyclone IV (ep4cgx110df31c7)

Kogge-Stone 10.79 21799 235.2 - - -
Brent-Kung 15.11 7315 110.5 - - -
HR-KS (16,64) 11.91 6931 82.6 +10.4 -68.2 -64.9
HR-BK (32,32) 15.36 6800 104.5 +42.4 -68.8 -55.6

Altera Stratix III (ep3sl150f1152c2)
Kogge-Stone 5.70 14418 82.1 - - -
Brent-Kung 5.82 3063 17.8 - - -
HR-KS (32,32) 6.92 2416 16.7 +21.4 -83.2 -79.7
HR-BK (16,64) 5.86 2535 14.8 +2.8 -82.4 -81.9

Xilinx Spartan 6 (xc6slx150fgg900-3)
Kogge-Stone 17.84 12405 221.3 - - -
Brent-Kung 7.48 7757 58.0 - - -
HR-KS (64,16) 7.42 3052 22.6 -0.7 -60.7 -60.9
HR-BK (32,32) 7.19 2970 21.3 -3.9 -61.7 -63.2

Xilinx Virtex 5 (xc5vlx155tff1738-3)
Kogge-Stone 5.58 12832 71.6 - - -
Brent-Kung 4.97 6021 29.9 - - -
HR-KS (16,64) 4.99 3577 17.8 +0.4 -40.6 -40.4
HR-BK (64,16) 5.69 3255 18.5 +14.5 -45.9 -38.1

TABLE IV
IMPLEMENTATION RESULTS FOR THE 1024-BIT MODULAR ADDITION

adder (w, N ) latency area latency · area ∆ latency ∆ area ∆ latency ·
area

[ns] [LE/ALUT/LUT] [ns · LE/ALUT/LUT ·103] [%] [%] [%]
Altera Cyclone IV (ep4cgx110df31c7)

Kogge-Stone 25.77 36974 952.9 - - -
Brent-Kung 25.41 12331 313.3 - - -
HR-KS (16,64) 23.22 10741 249.4 -8.6 -12.9 -20.4
HR-BK (16,64) 29.15 10199 297.3 +14.8 -17.3 -5.1

Altera Stratix III (ep3sl150f1152c2)
Kogge-Stone 12.63 28540 360.4 - - -
Brent-Kung 12.21 7576 92.5 - - -
HR-KS (32,32) 13.57 4810 65.3 +11.2 -36.5 -29.4
HR-BK (16,64) 12.08 4838 58.5 -1.0 -36.1 -36.8

Xilinx Spartan 6 (xc6slx150fgg900-3)
Kogge-Stone 35.68 24802 884.9 - - -
Brent-Kung 28.64 12086 346.2 - - -
HR-KS (32,32) 13.12 6068 79.6 -54.2 -49.8 -77.0
HR-BK (32,32) 13.22 6118 80.9 -53.8 -49.4 -76.6

Xilinx Virtex 5 (xc5vlx155tff1738-3)
Kogge-Stone 17.68 31042 548.8 - - -
Brent-Kung 15.79 10431 164.7 - - -
HR-KS (64,16) 9.62 5657 54.4 -39.1 -45.8 -67.0
HR-BK (64,16) 9.78 5771 56.4 -38.1 -44.7 -65.7
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can be overlapped in time, i.e., the second addition can start
a long time before the first addition is completed.

An optimized modular adder based on our basic adder
described in Section III is shown in Fig. 6. This adder consists
of two layers of the GPS units, two PPNs, a layer of MUXes,
and a layer of sum units. The GPS units from the top layer
operate exactly the same as those in the basic adder. The GPS
units from the layer below are slightly different. They take as
inputs: the sum signal from the GPS immediately above, the
carry out (generate) signal from the less significant GPS above,
and the two’s complement of the modulus P , IP = 2n − P .
Taking into account that compared to the pure GPS, these
units have one more input, carry in, we denote them by GPSc
(generate-propagate-sum with carry). The internal structure of
GPSc implemented using internal resources of Xilinx FPGAs
is shown in Fig. 3a.

In our modular adder shown in Fig. 6, the critical path
includes the delay of two GPS units, the delay of a single
PPN, and the delays of an OR gate, 2-to-1 MUX, and an w-
bit adder. As a results, the delay of one of the two PPNs does
not influence the critical path.

V. TESTING METHODOLOGY

Taking into account the limited number of pins in modern
FPGAs, we have used a test circuit shown in Fig. 5 for our
verification and benchmarking runs. In this diagram, SIPO
stands for the Serial In Parallel Out unit, and PISO for the
Parallel In Serial Out unit.

The combinational adder is surrounded by SIPOs at the
inputs and a regular register at the output. The goal of our tests
is to determine the latency characteristics of all investigated
adders for different argument sizes.

All adders were implemented on two high performance
FPGA devices: 65nm Altera Stratix III and Xilinx Virtex
5, and two low-cost devices: 65nm Altera Cyclone III and
45nm Xilinx Spartan 6. All architectures have been modeled
in VHDL-93, synthesized, placed and routed using Xilinx ISE
13.1 and Altera Quartus II 11.1, for Xilinx and Altera FPGAs,
respectively.

Maximum clock frequencies have been determined using
static timing analysis tools provided as a part of the respective
software packages (quartus sta for Altera and trace for
Xilinx).

The generation of a large number of results was facili-
tated by an open source benchmarking environment, called
ATHENa (Automated Tool for Hardware EvaluatioN), devel-
oped at George Mason University [25].

VI. RESULTS AND THEIR ANALYSIS

The parameter exploration for the 1024-bit addition is
shown in Table I. From the point of view of the latency, the
best word size, w, is equal to 16 for both investigated Altera
families (Cyclone III and Stratix III), 16 for Xilinx Spartan 6,
and 32 for Xilinx Virtex 5.

The parameter exploration for the 1024-bit modular addition
is shown in Table II. From the point of view of the latency,
the best word size, w, is equal to 16 for the Altera families.
For Xilinx FPGAs, the optimum value of w is either 16 or
32, depending on the design of PPN (Kogge-Stone or Brent-
Kung), and the optimization criteria, such as optimization for
latency or the product latency times area.

In the Tables III and IV, we present a comparison among
the implementation results of two proposed designs, HR-KS
and HR-BK, and two fast traditional adders: Kogge-Stone and



Brent-Kung. ∆ represents a change compared to the faster of
the two traditional adders. These tables summarize the results
collected after the Place-and-Route and Fitter, for addition
and modular addition, respectively. All the aforementioned
designs are compared in terms of latency, the area utilization,
and the latency times area product, using four cutting edge
FPGA devices.

Comparison of basic adders
Both classical designs are very difficult to beat in terms of

latency across all the selected FPGA devices. At the same time,
our designs substantially outperform the traditional adders in
terms of the area and the product of latency times area. For
the area, the gain is between 2% for Stratix III and 45% for
Xilinx Virtex 5. For the product latency times area, the gain
is between -13.5% and 52%. Based on Table III, we can also
observe that in terms of latency, there is no clear winner.

Comparison of modular adders
For modular addition, our designs substantially outperform

all traditional designs in terms of all three performance mea-
sures. For the latency, the gain (measured against the best of
the two traditional designs) is between 15% for Stratix III and
60% for Spartan 6. For the area, the gain is between 25%
for Cyclone III and 60% for Xilinx Virtex 5. For the product
latency times area, the gain is between 45% for Stratix III and
81% for Spartan 6.

VII. GENERALIZATION FOR ADDITION/SUBTRACTION
AND MODULAR ADDITION/SUBTRACTION

Our basic adder can be easily extended to adder/subtractor
by conditionally one’s complementing the operand B and
adding one at the least significant position. The latter of these
two operations can be accomplished by replacing GPS by
GPSc at position 0 (in Fig. 2b), and setting the carry input
of this GPSc to 1.

Our generic modular adder (shown in Fig. 4) can be easily
extended to adder/subtractor by using approach shown in
Fig. 7. The middle diagram in this figure represents modu-
lar subtraction, R = A − B (mod P ). This subtraction is
described by equation (2).

R =

{
A−B + P, if A−B < 0

A−B, otherwise
(2)

The left diagram (for modular addition) and the middle
diagram (for modular subtraction) can be combined together
into the right diagram for modular addition/subtraction. The
select signal SUB is used to choose between these two
operations.

In the optimized block diagram of the high-radix PPN
modular adder from Fig. 6) the following changes would need
to be made:

1) B = bN−1..b0 should be multiplexed with the one’s
complement of B (using the select signal SUB)

2) IP = 2n−P = ipN−1..ip0 should be multiplexed with
P (using the select signal SUB)

3) the top GPS unit at position 0 should be replaced by
GPSc, and its c input connected to SUB

4) the select signal sel should be calculated using the
modified logic shown in Fig. 7 with cout#1 replaced
by fpcN and cout#2 replaced by spcN .

VIII. PROPOSED NEW DEDICATED RESOURCES OF
MODERN FPGAS

Our basic high-radix Parallel Prefix Network adder, shown
in Fig. 2b, can be implemented almost entirely using the
hardwired fast carry chains of modern FPGAs, demonstrated
schematically in Fig. 1. The only part of this adder which
cannot be implemented using such resources is a Parallel
Prefix Network.

As a result, it seems natural to consider an extension of
modern FPGAs with hardwired PPNs. The optimal sizes of
PPNs required by our 1024-bit adders are 32 and 64 bits (see
optimum values of N in Tables III and IV).

These PPNs could be used for the implementation of
traditional fast adders shown in Figs. 2a,c,d, as well as our
new adders proposed in this paper shown in Figs. 2b, 6, and
Fig. 7.

In order to allow further speed-up by parallel execution
of multiple additions at the same time, these PPN should be
equipped with pipeline registers, which can be either activated
or bypassed (similarly to registers present in DSP units of
modern FPGAs).

By an appropriate choice of the word size w and the number
of pipeline stages, even very long-operand adders could benefit
from the fixed-size PPNs, taking limited resources of modern
FPGAs. These hardwired PPNs could be also used to substan-
tially speed up arithmetic operations performed on standard-
size operands (such as 32 and 64 bits) used in multiple
scientific and engineering applications, such as digital signal
processing, computer graphics, communications, etc.

IX. CONCLUSIONS

In this paper, we have presented a novel, low latency family
of high-radix Parallel Prefix Network adder, taking advantage
of fast carry chains of modern FPGAs. Two different designs
based on the Kogge-Stone and Brent-Kung PPNs were de-
veloped, implemented, investigated and eventually compared
with their well known predecessors.

For the operand size of n=1024 bits, the optimal choice of
the word size w appeared to be either 16 or 32, depending on
the FPGA family and the underlying PPN network.

Our basic adders have been shown to match the traditional
adders in terms of latency, and to outperform them in terms
of area by a factor between 2% and 45%, and in terms of the
product of latency times area by a factor between 13% and
52%.

For our modular adders, the gains are much more substan-
tial. These adders outperform the traditional PPN adders in
terms of all performance measures. In particular, the gain in
terms of latency is between 15% and 60%, in terms of area
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between 25% and 60%, and in terms of the product of latency
time area between 45% and 81%.

The presented adders and modular adders can be also very
easily extended to the combined adders/subtractors.

For the future work we are going to investigate the applica-
tion of the aforementioned adders to efficient implementation
of the high level applications, such as coprocessors supporting
computations of cryptographic schemes based on the elliptic
curve and pairing based cryptography over primes fields.
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TABLE V
SELECTED BEST IMPLEMENTATION RESULTS FOR THE 1024-BIT MODULAR ADDITION, SUBTRACTION AND ADDITION/SUBTRACTION UNIT

adder (w, N ) latency area latency · area ∆ latency ∆ area ∆ latency ·
area

[ns] [LE/ALUT/LUT] [ns · LE/ALUT/LUT ·103] [%] [%] [%]
Altera Cyclone IV (ep4cgx110df31c7)

HR-KS (16, 64)
Adder 23.22 10741 249.4 - - -
Subtractor 23.04 10750 247.7 -0.8 +0.1 -0.7
Add/Sub 25.47 11881 302.6 +9.7 +10.6 +21.3

HR-BK (16, 64)
Adder 29.15 10199 297.3 - - -
Subtractor 31.55 10118 319.2 +8.2 -0.8 +7.3
Add/Sub 30.53 11205 342.1 +4.7 +9.9 +15.1

Altera Stratix III (ep3sl150f1152c2)

HR-KS (32, 32)
Adder 13.57 4810 65.3 - - -
Subtractor 14.10 4814 67.9 +3.9 +0.1 +4.0
Add/Sub 14.20 4810 68.3 +4.6 +0.0 +4.6

HR-KS (16, 64)
Adder 12.08 4838 58.5 - - -
Subtractor 11.65 5069 59.0 -3.6 +4.8 +1.0
Add/Sub 13.02 4830 62.9 +7.7 -0.2 +7.6

Xilinx Spartan 6 (xc6slx150fgg900-3)

HR-KS (32, 32)
Adder 13.12 6068 79.6 - - -
Subtractor 14.12 5882 83.1 +7.6 -3.1 +4.3
Add/Sub 16.57 6135 101.7 +26.3 +1.1 +27.7

HR-BK (32, 32)
Adder 13.22 6118 80.9 - - -
Subtractor 14.79 5807 85.9 +11.9 -5.1 +6.2
Add/Sub 18.22 6988 127.3 +37.8 +14.2 +57.4

Xilinx Virtex 5 (xc5vlx155tff1738-3)

HR-KS (64, 16)
Adder 9.62 5657 54.4 - - -
Subtractor 9.70 6335 61.4 +0.9 +12.0 +12.9
Add/Sub 9.51 6509 61.9 -1.2 +15.1 +13.7

HR-BK (64, 16)
Adder 9.78 5771 56.4 - - -
Subtractor 9.60 5829 55.9 -1.9 +1.0 -0.9
Add/Sub 9.66 5757 55.6 -1.2 -0.2 -1.5

APPENDIX


