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Abstract. Triple encryption is a cascade of three block cipher eval-
uations with independent keys, in order to enlarge its key size. This
design is proven secure up to approximately 2κ+min{κ/2,n/2} queries
(by Bellare and Rogaway, EUROCRYPT 2006, and Gaži and Maurer,
ASIACRYPT 2009), where κ denotes the key size and n the block
length of the underlying block cipher. On the other hand, the best
known attack requires about 2κ+n/2 queries (by Lucks, FSE 1998, and
Gaži, CRYPTO 2013). These bounds are non-tight for κ ≤ n.

In this work, we close this gap. By strengthening the best known at-
tack as well as tightening the security bound, we prove that triple
encryption is tightly secure up to 2κ+min{κ,n/2} queries. Additionally,
we prove that the same tight security bound holds for quadruple en-
cryption (which consists of four sequentially evaluated block ciphers),
and derive improved security and attack bounds for cascades consisting
of five or more rounds. This work particularly solves the longstanding
open problem of proving tight security of the well-known Triple-DES
construction.

Keywords. Cascade encryption; Indistinguishability; Tight; Triple-
DES.

1 Introduction

From 1977 to the late 1990s, the Data Encryption Standard DES : {0, 1}56 ×
{0, 1}64 → {0, 1}64 [14] was the dominant algorithm for encryption. During
its lifetime DES managed to withstand a wide range of attacks, such as the
differential cryptanalysis of Biham and Shamir [4–6], the linear cryptanalysis
of Matsui [25, 26], and others [8, 22], but in the end it was the simple brute
force attack DES fell victim to: due to advances in computer technology, keys
of 56 bits had become too small to guarantee security. Already since the in-
troduction of DES, concerns about the short key size existed and research had
been done to “artificially” extend the key of DES. This approach is called key
length extension, and we can identify two popular approaches in this direc-
tion: cascade encryption (such as the Triple-DES construction [2, 15, 20, 31])
and XOR-cascade encryption (DESX being the most prominent example). In
this work, we will focus on cascade encryption (the state of the art on XOR-
cascading is discussed at the end of this section).
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Fig. 1: Cascade encryption Er, for r ≥ 1.

Cascade Encryption

Let E : {0, 1}κ × {0, 1}n → {0, 1}n be a block cipher with a κ-bit key and an
n-bit state. Informally, the idea of cascade encryption is to evaluate r block
cipher calls sequentially, for r ≥ 1, with usually different keys. It is well-known
that a cascade of length two only offers a marginal security increase over E,
due to the meet-in-the-middle attack of Diffie and Hellman [10] (although it
is shown that in a different model a security increase can be achieved [1]). As
such, the shortest length of a “meaningful” cascade is three. Triple encryption
E3 : {0, 1}3κ × {0, 1}n → {0, 1}n takes as input a key (k1, k2, k3) ∈ {0, 1}3κ
and maps an n-bit message m to

E3k1,k2,k3(m) = Ek3 ◦ Ek2 ◦ Ek1(m) . (1)

This function has gained popularity and found widespread usage as the Triple-
DES construction [2,15,20,31],1 and even despite the presence of better block
ciphers such as AES [7], Triple-DES still remains popular, particularly due
to its short block size of 64 bits. For instance, Triple-DES is used in ATMs,
the EMV standard [12], TLS 1.0 [9], and in Microsoft Outlook 2007. In gen-
eral, the triple data encryption algorithm finds over 1600 by NIST validated
implementations worldwide [32].

Assuming ideality of the underlying block cipher E (we discuss the state of
the art for different security models later in the intro), Bellare and Rogaway [3]
proved that triple encryption is secure up to 2κ+min{κ/2,n/2}. This bound was
later confirmed by Gaži and Maurer [17] who spotted a couple of bugs in the
proof. On the other hand, Lucks [24] presented an attack on Triple-DES in
approximately 290 queries, an attack which got generalized by Gaži [16] to an
attack on triple encryption in approximately 2κ+n/2 queries.

Generalizing triple encryption, cascade encryption is a construction Er :
{0, 1}rκ × {0, 1}n → {0, 1}n that consists of evaluating r block cipher calls
sequentially, for r ≥ 1:

Erk1,...,kr (m) = Ekr ◦ · · · ◦ Ek1(m) . (2)

The function Er is depicted in Figure 1. Throughout, we denote r′ = dr/2e.

Gaži and Maurer [17] proved that Er is secure up to at least 2
κ+min

{
(r′−1)

r′ κ,n/2
}

queries, approaching 2κ+min{κ,n/2} for increasing r. Recently, Lee [23] proved

security up to 2κ+min{κ,n}− 16
r (n2 +2) queries for r a multiple of 4. This bound

1 For compatibility reasons, Triple-DES is originally defined as Ek3 ◦E
−1
k2
◦Ek1(m),

where E is the block cipher DES. All findings in this work, however, apply to both
cases.
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Table 1: Security lower and upper bounds for cascaded encryption (in log2).
Here, r′ = dr/2e. All results in bold are derived in this work.

Er security attack tight

r = 1, 2 κ κ [10] 3

r = 3, 4
κ+ min{κ/2, n/2} [3, 17] κ+ n/2 [16,24] 7

κ+ min{κ, n/2} κ+ min{κ, n/2} 3

r ≥ 5?
κ+ min

{
(r′−1)
r′ κ, n/2

}
[17] κ+ r′−1

r′ n [16] 7

κ+ min{κ, n/2} κ+ r′−1
r′ min{r′κ, n} 7

? Starting from r ≥ 16 and depending on the choice of κ, n, a better security
bound applies: Lee [23] proved that if r is a multiple of 4, Er is secure up to

2κ+min{κ,n}− 16
r

(n
2
+2) queries.

implies that the security approaches 2κ+min{κ,n} for increasing size of the cas-
cade, but it only improves over [17] for relatively large values of r. On the other
hand, Gaži [16] generalized the attack of Lucks to arbitrarily-sized cascades,

leading to a security upper bound of 2κ+
r′−1
r′ n. These results are summarized

in Table 1.

Our Contributions

For triple and quadruple encryption (for which the current security bounds are
the same), the known bounds are only tight for κ ≥ n and a gap remains for
κ ≤ n. Remarkably, as DES has a key length of 56 bits and a message space
of 64 bits, this means there is a non-trivial gap in the security bounds for the
famous Triple-DES construction. The primary goal of this work is to close this
gap. The first question to investigate is which of the bounds is “the tight one:”
the security bound 2κ+min{κ/2,n/2} or the attack bound 2κ+n/2? As it turns
out, both of them can be improved.

Improving Best Known Attacks. Consider the following pathological ex-
ample. Let κ = 0, hence Ek is one and the same permutation π for all k,
and E3k1,k2,k3 = π ◦ π ◦ π(m). On the one hand, E3 is trivially distinguishable
from a random permutation, but on the other hand the best known attack
claims the distinguisher needs to make at most 2n/2 queries. This demonstrate
the presence of an attack independent of the block length n. In Section 3, we
generalize and formalize this attack and find that Er, for r ≥ 1, can be distin-
guished from an ideal permutation in 2r

′κ queries. Together with the attacks
of Lucks [24] and Gaži [16], this result implies that an attack on Er can be

mounted in at most 2κ+
r′−1
r′ min{r′κ,n} queries, where we recall r′ = dr/2e. For

r = 3, 4, these bounds read κ+ min{κ, n/2}. The attack can be considered as
an extension of the meet-in-the-middle attack [10]. It borrows some ideas from

Dinur et al. [11], who derive an attack with complexity about 2(r−
√
2r)κ, but

it is in an entirely different model and thus incomparable.
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Tightening Security Bounds. For r = 3, 4, the newly obtained attack
bound does not yet meet the security bound 2κ+min{κ/2,n/2} from [3, 17]. As
second contribution, we strengthen this security bound to achieve sharp se-
curity for r = 3 and r = 4. This security result is presented in Section 4.
Informally and at a very high level, the improvement we make is as follows.

It turns out that one isolated lemma in [3, 17] responsible for the current
gap (Lemma 4 in both works). This lemma bounds the number of evaluations
Ek′′ ◦Ek′ ◦Ek(m) for arbitrary m, k, k′, k′′ a distinguisher finds when making q
queries to its ideal cipher E. While both [3,17] bound this number of 3-paths
by first fixing the first and last block cipher evaluation, and then smartly
bounding the number of middle evaluations, we follow a different approach:
we start from the middle, making a distinction between forward and inverse
queries, and compute the number of 3-paths accordingly. (The formal argument
is more delicate.)

Discussion. The freshly obtained security lower bound 2κ+min{κ,n/2} for E3
naturally carries over to Er for r ≥ 3, and this particularly implies also tight
security for quadruple encryption. These findings are included in Table 1. Our
bound improves over the previously known bounds of [3, 17, 23] for relatively
small numbers of r. Particularly, Gaži and Maurer [17] claimed that Er will
achieve asymptotic security up to 2κ+min{κ,n/2} for increasing r. Our proof
shows that this bound is already achieved for r = 3. For r ≥ 16 and specific
values of κ, n, the bound of Lee [23] is still better. A further discussion of the
results is given in the conclusions in Section 5.

Other models

In line with the works of [3,16,17,23], the focus of this work is on the security
of cascade encryption in the ideal model, where the underlying block cipher E
is considered perfect. In this setting, the distinguisher can make block cipher
queries and queries to the construction, Er or a random permutation P.

Cascade encryption has also been analyzed in different settings, beyond
the ideal cipher model. For instance, Even and Goldreich [13] demonstrate
that cascade encryption is at least as strong as the strongest of the underly-
ing ciphers, and Massey and Maurer [27] prove that, in a generalized attack
model, the cascading is at least as strong as the first one. Interesting results
on amplified security in the information-theoretic model via composition are
by Gaži, Maurer, Pietrzak, and Renner [18,28,29], and Vaudenay [35]. Maurer
and Tessaro [30, 34] consider security of cascades based on the PRP security
of the underlying cipher. In a computational setting, Dinur et al. [11] general-
ized [10,33] to derive a time memory tradeoff for cascade encryption.

These works, however, employ different models than ours, and hence the
results are incomparable. Nevertheless, in [11], Dinur et al. report in their
CRYPTO 2012 best paper award winning paper: “the exact security of double
and triple encryption are well understood and we cannot push their analysis
any further.” In this work, we prove that this is not entirely accurate for the
security in the ideal cipher model.
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Further Related Work

Related to the plain cascading discussed in this paper is the idea of XOR-
cascade encryption. For r ≥ 1, XOR-cascader XEr :

(
{0, 1}rκ × {0, 1}(r+1)n

)
×

{0, 1}n → {0, 1}n takes as input keys k = (k1, . . . , kr) ∈ {0, 1}rκ and z =
(z0, . . . , zr) ∈ {0, 1}(r+1)n and maps an n-bit message m to

XErk,z(m) = ⊕zr ◦ Ekr ◦ · · · ◦ Ek1 ◦ ⊕z0(m) ,

where ⊕y(x) = x⊕y. For r = 1, XOR-cascading boils down to the DESX con-
struction (accredited to Rivest), which has been proven secure up to 2κ/2+n/2

queries by Kilian and Rogaway [21]. An extension of DESX, with some refine-
ments, has been analyzed by Gaži and Tessaro [19], proving tight security up
to 2κ+n/2 queries. For general even r ≥ 2, Lee [23] proved XEr secure up to

2κ+n−
8
r (
n
2 +2), a bound approaching the optimal 2κ+n for increasing r. Gaži [16]

subsequently improved these results: he proved that XEr achieves security up

to 2κ+
r−1
r n queries for r = 3, 4 and up to 2κ+

r′−1
r′ n queries for r ≥ 5. Next,

Gaži also describes a distinguishing attack on XEr in 2κ+
r−1
r n queries.

2 Security Model

For an integer n ∈ N, {0, 1}n denotes the set of bit strings of length n. If X is

a set, we denote by x
$←− X the uniformly random drawing of x from X . For

x, y ∈ N, xy denotes the falling factorial power x(x− 1) · · · (x− y + 1).

Block Ciphers. For integral κ, n ≥ 1, a block cipher E : {0, 1}κ × {0, 1}n →
{0, 1}n is a mapping such that for every key k ∈ {0, 1}κ, Ek(·) = E(k, ·) is
a permutation on {0, 1}n. We denote by Block(κ, n) the set of all such block
ciphers, and by Perm(n) the set of all n-bit permutations.

Cascade Encryption. Let k, n, r ≥ 1 be integral, E ∈ Block(κ, n), and con-
sider Er : {0, 1}rκ×{0, 1}n → {0, 1}n based on E (see eqn. (2)). We consider a
distinguisher that tries to tell apart Er from a perfectly random permutation

P $←− Perm(n). We consider the ideal cipher model, where we assume that E is
randomly drawn from Block(κ, n), and give the distinguisher query access to
both E and its inverse E−1. Formally, the advantage of a distinguisher D in
attacking Er is defined as

Advsprp
Er (D) = Pr

(
P $←− Perm(n), E

$←− Block(κ, n) : D±P,±E = 1
)
−

Pr
(
k

$←− {0, 1}rκ, E $←− Block(κ, n) : D±E
r
k ,±E = 1

)
.

For q ∈ N, we define by Advsprp
Er (q) the maximum advantage over all distin-

guishers making at most q queries to its oracles (the outer permutation Erk or
P, and the block cipher E).
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3 Improved Distinguishing Attack on Er

In [24], Lucks presented an attack on triple-DES in approximately 290 queries.
Gaži [16] generalized this result to Er in the ideal cipher model, for any r ≥ 1.
Paraphrased,

Lemma 1 (Gaži [16]). Let κ, n, r ≥ 1 be integral. Put r′ = dr/2e. Then, for
any 0 < τ < 22n/r−1,

Advsprp
Er (2τ2

r′−1
r′ n + r2κ+

r′−1
r′ n) ≥ 1− 2/τ − 2rκ−τ(n−1) .

Here, D makes 2τ2
r′−1
r′ n queries to its oracle Er/P and r2κ+

r′−1
r′ n queries to

E.

Intuitively, this result means that Er can be successfully attacked in approx-

imately 2κ+
r′−1
r′ n queries. In the following proposition, we extend this result,

describing a simple attack that works in approximately 2r
′κ queries, hence

being faster if κ < n/r′.

Proposition 1. Let κ, n, r ≥ 1 be integral. Put r′ = dr/2e. Then, for any
0 < τ < 2n−1/r,

Advsprp
Er (τ + 2τ2r

′κ) ≥ 1− 2rκ−τ(n−1) .

Here, D makes τ queries to its oracle Er/P and 2τ2r
′κ queries to E.

Proof. We describe a distinguisher D that tries all keys via the meet-in-the-
middle attack. Intuitively, it chooses τ messages m1, . . . ,mτ and their cor-
responding ciphertexts c1, . . . , cτ . Then, for each of these message/ciphertext
pairs (mi, ci), it evaluates the first dr/2e block ciphers for all possible keys
starting from mi, and the last br/2c block ciphers in inverse direction starting
from ci. One possible key k = (k1, . . . , kr) must “stand out;” if not, D likely
converses with the ideal world. Formally, D operates as follows:

1: fix distinct m1, . . . ,mτ ∈ {0, 1}n
2: for i = 1, . . . , τ do
3: ci ← Erk(m)
4: for all k∗L = (k∗1 , . . . , k

∗
dr/2e) ∈ {0, 1}

dr/2eκ do

5: ai,k∗L ← Ek∗dr/2e ◦ · · · ◦ Ek∗1 (mi)

6: for all k∗R = (k∗dr/2e+1, . . . , k
∗
r ) ∈ {0, 1}br/2cκ do

7: bi,k∗R ← E−1k∗dr/2e+1
◦ · · · ◦ E−1k∗r (ci)

8: // identifying correct key:

9: for all (k∗L, k
∗
R) ∈ {0, 1}dr/2eκ × {0, 1}br/2cκ do

10: if ai,k∗L = bi,k∗R for all i = 1, . . . , τ then
11: return 1
12: return 0

Clearly, if D is in the real world (Erk , E), then for (k∗L, k
∗
R) = k we have ai,k∗L =

bi,k∗R for all i = 1, . . . , τ . We consider the probability D returns 1 when in

the random world (P, E). Using that E is evaluated at most rτ < 2n−1 times
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for every key, ai,k∗L = bi,k∗R holds for all i with probability at most (2/2n)τ .
Summing over all possible choices of (k∗L, k

∗
R), we observe that D returns 1

with probability at most 2rκ−τ(n−1). This completes the proof. ut

Proposition 1 and Lemma 1 together imply that the security of Er is at most

up to 2κ+
r′−1
r′ min{r′κ,n} queries. Particularly, E3 and E4 can be attacked in

approximately 2κ+min{κ,n/2} queries.

4 Improved Security Bound on Er

The main result of this section is to prove that E3 is secure up to approximately
2κ+min{κ,n/2}.

Theorem 1. Let κ, n ≥ 1 be integral. Then,

Advsprp
E3 (q) ≤ 12

α2κq

(2κ)3
+ 4

( q

2κ+n/2

)2/3
+

3

2κ
,

where α = max{2eq/2n, κ+ n}.

Theorem 1 can be interpreted as saying that a distinguisher must make at
least approximately min{22κ, 2κ+n/2} queries in order to distinguish E3 from
P. As E4 cannot be less secure than E3 up to a negligible term (cf. [17]), the
bound carries over. Concretely this means that also E4 is tightly secure up to
this bound. For r ≥ 5, the Theorem 1 similarly improves over the previous
bounds on Er.

In order to prove Theorem 1, we can rely on the previous results from
Bellare and Rogaway [3] and its generalization from Gaži and Maurer [17],
and we only need to improve one rather isolated lemma (Lemma 4 in both
works). In Section 4.1 we formally state and prove our lemma, and compare it
with [3,17]. Then, in Section 4.2, we prove Theorem 1. This proof is in essence
based on the proofs of [3, 17], but then using the new result from Section 4.1.

4.1 Improved Lemma: Finding a Chain

Consider the following definition, derived from [17]:

Definition 1. Let P be a given permutation. Let D be a distinguisher with
query access to E. Let r ≥ 1 be integral, and let k = (k1, . . . , kr) be a key.
We say that D finds an i-disconnected chain for k, where i ∈ {1, . . . , r}, if for
some m ∈ {0, 1}n it makes all necessary queries to E for the evaluation of

Ekr−i ◦ · · · ◦ Ek1 ◦ P−1 ◦ Ekr ◦ · · · ◦ Ekr−i+1(m) .

We say that D evaluates k if this happens for some i.

In [17] (the derivation of [3] is fairly the same), Gaži and Maurer proved that D
evaluates secret key k = (k1, . . . , kr) with probability at most 2rαbr/2c q

dr/2e

(2κ)r ,

where α = max{2e2κ−n, 2n + κbr/2c}. In this paper, we improve this bound
for r = 3: informally, we demonstrate that this happens with a significantly
smaller probability, therewith allowing to achieve tight security for E3 and E4.
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We note that the trick we employ is specific to r = 3: if we generalize this
approach to r ≥ 5 we get the same bound (up to factor r). In other words,
it appears to be a non-straightforward problem to improve this bound further
for r ≥ 5.

Lemma 2. Let k = (k1, k2, k3)
$←− {0, 1}3κ distinct. Consider D, making at

most q queries to ideal cipher E. Then,

Pr
(
DE evaluates k

)
≤ 12

α2κq

(2κ)3
,

where α = max{2eq/2n, κ+ n}.

Proof. Our goal is to bound the event that D finds an i-disconnected chain
for k, where i ∈ {1, 2, 3}. Let Chi,3(E) denote the expected number of i-
disconnected chains D finds (for arbitrary keys, hence not necessarily just

(k1, k2, k3)) when making q queries to the ideal cipher E. Denote by x
k−→ y

the event that the distinguisher queried x← Ek(y) or y ← E−1(x).
Following [3, 17],

Pr
(
DO1 evaluates k

)
≤
∑3
i=1 Chi,3(E)

(2κ)3
.

As P is considered to be a given permutation, the cases are the same for all
i, and we focus on Ch3,3(E). Technically, we bound the expected number of
solutions to

m
k′1−→ a

k′2−→ b
k′3−→ c , for m, a, b, c, k′1, k

′
2, k
′
3 arbitrary.

So far, the analysis mainly follows [3,17]. Our improvement lies in the compu-

tation of Ch3,3(E). In more detail, write
−→
Ch3,3(E) to be the expected number

of chains where the middle block cipher call is a forward query, and
←−
Ch3,3(E)

the expected number of chains where the middle block cipher call is an inverse
query. Clearly

Ch3,3(E) =
−→
Ch3,3(E) +

←−
Ch3,3(E) ,

and we bound these expected values separately. We focus on
−→
Ch3,3(E). Define

−→w(E) = max
b
|{(k, a) | b← Ek(a), forward query}| .

Now, fix any query b
k′3−→ c (q choices). There are at most −→w(E) choices for the

second query, fixing k′2 and a. Starting from a, there are at most 2κ possible

queries m
k′1−→ a. Hence

−→
Ch3,3(E) ≤ −→w(E)2κq.

Claim. Let α ≥ 2eq/2n, then Pr (−→w(E) ≥ α) ≤ 2n−α.

Proof (Proof of claim). Fix any b ∈ {0, 1}n. Then,

Pr
(∣∣{(k, a) | b← Ek(a), forward query}

∣∣ ≥ α) ≤ (q
α

)(
1

2n

)α
≤
( eq

α2n

)α
,
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where we use that collisions should occur for different keys, hence the term 1
2n .

Now, given α ≥ 2eq/2n, this value is bounded by 2−α. The proof is completed
by summing over all choices of b. ut

This claim gives us, where we use that −→w(E) ≤ 2κ:

−→
Ch3,3(E) ≤ E

(−→
Ch3,3(E)

∣∣∣−→w(E) < α
)

+ E
(−→
Ch3,3(E)

∣∣∣−→w(E) ≥ α
)

2n−α

≤ α2κq + 22κq2n−α ≤ α2κq + 2κq ,

using α ≥ κ + n. Naturally, α ≥ 1 and henceforth we find
−→
Ch3,3(E) ≤ 2α2κq.

The analysis for
←−
ChE3,3 is the same. This completes the proof. ut

4.2 Proof of Theorem 1

The proof of Theorem 1 is very similar to the proofs of [3, 17]. Gaži and
Maurer [17] generalized the result of Bellare and Rogaway [3], and pointed out
a few small flaws in the proof. Additionally, the proof of [17] is more compact,
and we use this proof as starting point. For ease of presentation, we will employ
our own terminology, and stick to r = 3.

Let E
$←− Block(κ, n) and P $←− Perm(n). Write O1 as (±P,±E). For simplicity,

we assume O1 randomly samples 3 distinct keys k = (k1, k2, k3) from {0, 1}κ in
advance (these will not be used). Next, write O2 as the real world (±E3k ,±E)

where k = (k1, k2, k3)
$←− ({0, 1}κ)3 is selected in advance. Let D be any

distinguisher making q queries. Our goal is to bound

Advsprp
E3 (D) =

∣∣Pr
(
DO1 = 1

)
−Pr

(
DO2 = 1

)∣∣ .
Let O3 be O2 with the difference that the keys k = (k1, k2, k3) are distinct.
As these two worlds can only be distinguished in case of a key collision, which
happens with probability at most

(
3
2

)
/2κ = 3/2κ, we find:

Advsprp
E3 (D) ≤

∣∣Pr
(
DO1 = 1

)
−Pr

(
DO3 = 1

)∣∣+
3

2κ
.

Next, let O4 be the world O1 with the difference that for k3, Ek3 is defined to
satisfy the equation P = Ek3 ◦Ek2 ◦Ek1 (for all other key inputs, E operates
as is).

Note that in O3, the oracles Ek1 , Ek2 , Ek3 , E3k are all random permutations
with the sole restriction that E3k = Ek3 ◦ Ek2 ◦ Ek1 , and similarly for O4 with
the role of E3k replaced by P. As such, Pr

(
DO3 = 1

)
= Pr

(
DO4 = 1

)
, and we

obtain:

Advsprp
E3 (D) ≤

∣∣Pr
(
DO1 = 1

)
−Pr

(
DO4 = 1

)∣∣+
3

2κ
.

We simplify the analysis, giving D free access to the permutation P, which
means that only its queries to E count.
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Say that a query to E is relevant if it is made for one of the keys k1, k2, k3.
Let τ > 0 be a threshold, and denote by relevant(τ) the event that D makes
more than τ relevant queries. Define the following event lucky, where

lucky := (D sets relevant(τ)) ∨ (D evaluates k) .

Then, via the fundamental lemma of game-playing [3], or its counterpart in
random systems [17],

Advsprp
E3 (D) ≤

∣∣Pr
(
DO1 = 1 | ¬lucky

)
−Pr

(
DO4 = 1 | ¬lucky

)∣∣ +

Pr
(
DO1 lucky

)
+

3

2κ
,

(3)

for which additionally,

Pr
(
DO1 lucky

)
≤ Pr

(
DO1 sets relevant(τ)

)
+ Pr

(
DO1 evaluates k

)
.

In Lemma 2 it is proven that

Pr
(
DO1 evaluates k

)
≤ 12

α2κq

(2κ)3
,

where α = max{2eq/2n, κ+n}. For a bound on Pr
(
DO1 sets relevant(τ)

)
, note

that any query is relevant with probability 3
2κ . Hence, the expected number of

relevant queries is at most 3q
2κ . By Markov’s inequality, we obtain

Pr
(
DO1 sets relevant(τ)

)
≤ 3q

τ2κ
. (4)

For the remaining term of eqn. (3), Gaži and Maurer proved that (the proof
is technically more demanding, and is therefore not duplicated):

∣∣Pr
(
DO1 = 1 | ¬lucky

)
−Pr

(
DO4 = 1 | ¬lucky

)∣∣ ≤ τ2

2n
. (5)

This proof holds for any τ , and we select it to minimize the sum of the terms,
balancing between eqn. (4) and eqn. (5). The minimum is achieved for τ =
(3q2n−κ−1)1/3, for which

min
τ

τ2

2n
+

3q

τ2κ
=

(
3q

2κ+n/2−1/2

)2/3

+

(
3q

2κ+n/2+1

)2/3

≤ 4
( q

2κ+n/2

)2/3
.

This completes the proof of Theorem 1.

5 Conclusions

Recent security analysis has rendered a better understanding of cascaded en-
cryption [3,16,17,19,23], but the best known security bounds for the classical
triple and quadruple encryption have always been non-tight. As main contribu-
tion of this work, we close this gap, proving that both schemes are tightly secure
up to approximately 2κ+min{κ,n/2} queries. Our results particularly prove tight
security of the well-known and still widely employed triple-DES construction.
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Also for longer cascades, Er with r ≥ 5, our results render improved at-
tacks and improved bounds, with the remark that for r ≥ 16 and for specific
choices of κ, n a better bound by Lee [23] applies. These bounds, however, still
leave a gap (see Table 1) and it remains an important open problem to prove
tight security for r ≥ 5. It is possible to apply the techniques of Lemma 2 to
larger cascades, but this will only minimally decrease the gap between the best
known security and the best known attack. For instance, for r = 5 a similar
approach would give a dominating term α3q2/(2κ)5, and this will not readily
allow proving tight security. Additionally, an improvement of this type only
affects the first term in min{·, ·} in the security bound. Yet, this is still insuf-
ficient: also the gap in the second term of min{·, ·} needs to be tightened, and
for this a structurally different approach seems to be needed. In this aspect,
we note that Lee [23] proved that the security of Er approaches 2κ+min{κ,n}

for increasing r.

Acknowledgments. This work has been funded in part by the Research
Council K.U.Leuven: GOA TENSE. Bart Mennink was supported by a Ph.D.
Fellowship from the Institute for the Promotion of Innovation through Science
and Technology in Flanders (IWT-Vlaanderen).

References

1. Aiello, W., Bellare, M., Di Crescenzo, G., Venkatesan, R.: Security amplifica-
tion by composition: The case of doubly-iterated, ideal ciphers. In: Advances in
Cryptology - CRYPTO ’98. Lecture Notes in Computer Science, vol. 1462, pp.
390–407. Springer, Heidelberg (1998)

2. ANSI X9.52: Triple Data Encryption Algorithm Modes of Operation (with-
drawn) (1998)

3. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for
code-based game-playing proofs. In: Advances in Cryptology - EUROCRYPT
2006. Lecture Notes in Computer Science, vol. 4004, pp. 409–426. Springer, Hei-
delberg (2006)

4. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. In:
Advances in Cryptology - CRYPTO ’90. Lecture Notes in Computer Science,
vol. 537, pp. 2–21. Springer, Heidelberg (1991)

5. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems.
Journal of Cryptology 4(1), 3–72 (1991)

6. Biham, E., Shamir, A.: Differential cryptanalysis of the full 16-round DES. In:
Advances in Cryptology - CRYPTO ’92. Lecture Notes in Computer Science,
vol. 740, pp. 487–496. Springer, Heidelberg (1993)

7. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryp-
tion Standard. Springer (2002)

8. Davies, D.W., Murphy, S.: Pairs and triplets of DES S-Boxes. Journal of Cryp-
tology 8(1), 1–25 (1995)

9. Dierks, T., Allen, C.: The TLS protocol. Request for Comments (RFC) 2246
(January 1999), http://tools.ietf.org/html/rfc2246

10. Diffie, W., Hellman, M.: Exhaustive cryptanalysis of the NBS data encryption
standard. Computer 10(6), 74–84 (1977)

11. Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: Efficient dissection of compos-
ite problems, with applications to cryptanalysis, knapsacks, and combinatorial
search problems. In: Advances in Cryptology - CRYPTO 2012. Lecture Notes in
Computer Science, vol. 7417, pp. 719–740. Springer, Heidelberg (2012)

11

http://tools.ietf.org/html/rfc2246


12. EMVCo: EMV Integrated Circuit Card Specifications for Payment Systems.
Book 2: Security and Key Management, version 4.2 (2008)

13. Even, S., Goldreich, O.: On the power of cascade ciphers. ACM Trans. Comput.
Syst. 3(2), 108–116 (1985)

14. FIPS 46: Data Encryption Standard. National Institute of Standards and Tech-
nology (1977)

15. FIPS 46-3: Data Encryption Standard. National Institute of Standards and Tech-
nology (withdrawn) (1999)

16. Gaži, P.: Plain versus randomized cascading-based key-length extension for block
ciphers. In: Advances in Cryptology - CRYPTO (I) 2013. Lecture Notes in Com-
puter Science, vol. 8042, pp. 551–570. Springer, Heidelberg (2013)
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