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Abstract

We present the first provably-secure 3-party password-only authenticated key exchange (PAKE)
protocol that can run in only two communication rounds. Our protocol is generic in the sense
that it can be constructed from any 2-party PAKE protocol. The protocol is proven secure in a
variant of the widely accepted model of Bellare, Pointcheval and Rogaway (2000) without any
idealized assumptions on the cryptographic primitives used. We also investigate the security
of the 2-round 3-party PAKE protocol of Wang, Hu and Li (2010), and demonstrate that this
protocol cannot achieve implicit key authentication in the presence of an active adversary.

Keywords: Password-only authenticated key exchange (PAKE), Three-party key exchange,
Communication round, Dictionary attack, Implicit key authentication

1. Introduction

Protocols for password-only authenticated key exchange (PAKE) enable two or more parties
to generate a shared, cryptographically strong key (called a session key) from their easy-to-
remember passwords. PAKE protocols are increasingly popular, and perhaps due to the popu-
larity of passwords as explained by Herley and van Oorschot that ‘[d]espite countless attempts
to dislodge passwords [in the past 20 years], they are more widely used and firmly entrenched
than ever’ [1]. There has been an enormous amount of research effort expended in design and
analysis of PAKE protocols and yet there are still worthwhile contributions to be made even in
the simple scenario of two protocol participants (also known as clients) with an online trusted
server. In such a 3-party model, the server provides its registered clients with a centralized au-
thentication service, which allows each client to remember and manage only a single password.
Password guessing attacks (also known as dictionary attacks) present a more subtle threat in
the 3-party model (than a 2-party model) as a malicious client can attempt to mount such an
attack against another client – see [2, 3, 4, 5, 6].

It is generally regarded that the design of secure yet efficient key exchange protocols (includ-
ing PAKE protocols) is notoriously hard, and conducting security analysis for such protocols
is time-consuming and error-prone; see, e.g., [7, 8, 9]. The many flaws discovered in published
protocols have promoted the use of formal models and rigorous security proofs. In the provable
security paradigm for key exchange protocols, a deductive reasoning process is adopted whereby
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emphasis is placed on a proven reduction from the problem of breaking the protocol to another
problem believed to be (computationally) hard. A complete mathematical proof with respect
to cryptographic definitions provides a strong assurance that a protocol is behaving as desired.
It is by now standard practice for protocol designers to provide proofs of security for their pro-
tocols in widely accepted security models, in order to assure protocol implementers about the
security properties of protocols. The provable security paradigm for key exchange protocols was
made popular by Bellare and Rogaway [10] who provided the first formal definition for a model
of adversary capabilities with an associated definition of the indistinguishability-based security.
Bellare and Rogaway’s model has been further revised several times, and a recent revision is
the Real-Or-Random (ROR) model proposed by Abdalla, Fouque and Pointcheval [11, 12] for
3-party PAKE protocols.

A number of 3-party PAKE protocols have been proposed over the last decade [13, 14, 11,
15, 16, 12, 2, 17, 18, 19, 20, 3, 21, 22, 23, 24, 25, 5, 6]. Many of these protocols have never been
proven secure in any model [13, 17, 18, 19, 20, 3, 21] and/or have been found to be vulnerable
to some attack(s) [8, 2, 27, 18, 19, 28, 20, 3, 23, 29, 5, 6, 30, 31, 32, 33]. Some protocols
[11, 12, 15, 2, 23, 24] have been proven secure only in a restricted model, in which the adversary
is not allowed to corrupt protocol participants and thus no attacks by malicious clients can be
captured. We observe that

• the protocols of [15, 24] are the only 2-round 3-party PAKE protocols published with a
claimed security proof1. However, it was later found that both protocols are not secure
against an active adversary and their associated claims of provable security are invalid
(see [8, 34, 2, 33] and Section 3 of this paper);

• the protocols of [35, 36] were proven secure and require only two rounds, but these protocols
assume a “hyrid” 3-party setting where a server’s public key is required in addition to
passwords; and

• the recent protocol due to Tsai and Chang [31] can run in two rounds (without key
confirmation), but this protocol only works in a hyrid setting that requires both a cryp-
tographic key and a password pre-established between each client and the server (see
[37, 38, 39, 40, 41, 4, 42, 43, 26, 30, 44] for other protocols designed to work in a hybrid
setting).

Table 1 summarizes the security properties and known weaknesses of published 2-round 3-party
PAKE protocols with (claimed) proofs of security. To the best of our knowledge, there exists
no (provably) secure 3-party PAKE protocol running in only two rounds.

We regard our contributions of this paper to be two-fold:

1. We present the first 2-round 3-party PAKE protocol that is provably secure in a well-
defined communication model - see Section 4. The communication model in which we
work allows the adversary to corrupt protocol participants and therefore, captures not
only the notion of forward secrecy but also attacks by malicious clients. We make no
idealizing assumptions in our security proof. Similar to the protocols of [11, 12, 2, 19, 24],
our protocol is generic in the sense that it can be constructed from any 2-party PAKE
protocol. If the underlying 2-party protocol is round-optimal [45, 46, 47], then our 3-party
protocol runs in only two communication rounds.

1Although the two protocols presented by Lee and Hwang [23] can run in two rounds (without key confirma-
tion), they are insecure in the presence of a malicious client [32]; both protocols are susceptible to a man-in-the-
middle attack as well as an offline dictionary attack.
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Table 1: A summary of security results for existing 2-round 3-party PAKE protocols.

Protocol Major Communication Security
Weaknesses Model Proof

Vulnerable to an Based on
3PAKE [15] offline dictionary an invalid

attack [33] assumption [34]
Fails to achieve Invalidated

NWPAKE-2 [24] implicit key The adversary is by an active
authentication restricted from attack (see
(see Section 3) corrupting protocol Section 3)
Vulnerable to an participants Invalidated

S-IA-3PAKE, offline dictionary by a passive
S-EA-3PAKE [23] attack and a attack (see

man-in-the-middle Section 3.3
attack [32] of [32])

2. We also present a previously unpublished flaw in an existing 2-round 3-party PAKE proto-
col proposed by Wang, Hu and Li [24] - see Section 3.2. The Wang-Hu-Li protocol (named
NWPAKE-2) was claimed to be provably secure in a variant of the ROR model. We reveal
that the NWPAKE-2 protocol fails to achieve implicit key authentication in the presence
of an active adversary who is not even registered with the server, which invalidates the
“claimed” security proof.

The remainder of this paper is structured as follows: Section 2 describes a communication
model along with the associated security definition. In Section 3, we revisit the NWPAKE-2
protocol of Wang, Hu and Li [24] and reveal a previously unpublished flaw in the protocol. We
then present our proposed 2-round 3-party PAKE protocol and prove its security in Section 4.
The last section concludes the paper.

2. The communication model

We now describe a communication model adapted from the widely accepted indistinguishability-
based model of Bellare, Pointcheval and Rogaway [45]. This will be the model that is used to
prove the security of our proposed 3-party PAKE protocol.

Participants and long-term keys. Let S be a trusted authentication server, and C the set of all
clients registered with S. During registration, each client C ∈ C selects a password pwC from
dictionary D, and shares pwC with S via a secure/authenticated channel. The password pwC is
used as the long-term secret key between C and S. Any two clients C,C ′ ∈ C may run a 3-party
PAKE protocol P with S at any point in time to establish a session key. Let U = C ∪ {S}. A
user U ∈ U may execute the protocol multiple times (including concurrent executions) with the
same or different participants. Thus, at a given time, there could be many instances of a single
user. We use Πi

U to denote instance i of user U . We say that a client instance Πi
C accepts when

it successfully computes its session key skiC in an execution of the protocol.

Partnering. Intuitively, two instances are partners if they participate in a protocol execution
and establish a (shared) session key. Formally, partnering between instances is defined in terms
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of the notions of session identifiers and partner identifiers (see [48] on the role and the possible
construct of session and partner identifiers as a form of partnering mechanism that enables the
right session key to be identified in concurrent protocol executions). Session identifier (sid) is
a unique identifier of a protocol session and is usually defined as a function of the messages
transmitted in the session. Let sidiU denotes the sid of instance Πi

U . A partner identifier (pid)
is a sequence of identities of participants of a specific protocol session. Instances are given as
input a pid before they can run the protocol. pidiU denotes the pid given to instance Πi

U . In
a typical session, there will be three participants, namely two clients C and C ′ and the server
S. We say that two instances Πi

C and Πj
C′ are partners if all of the following conditions are

satisfied: (1) both Πi
C and Πj

C′ have accepted, (2) sidiC = sidjC′ , and (3) pidiC = pidjC′ .

Adversary capabilities. The probabilistic polynomial-time (ppt) adversary A is in complete
control of all communications between users, and it’s capabilities are modeled via a pre-defined
set of oracle queries as described below.

• Execute(Πi
C ,Π

j
C′ ,Πk

S): This query models passive attacks against the protocol. It prompts

an execution of the protocol between the instances Πi
C , Πj

C′ and Πk
S , and returns the

transcript of the protocol execution to A.

• Send(Πi
U ,m): This query sends message m to instance Πi

U , modelling active attacks
against the protocol. Upon receiving m, the instance Πi

U proceeds according to the proto-
col specification. The message output by Πi

U , if any, is returned to A. A query of the form
Send(Πi

C , start:(C,C
′, S)) prompts Πi

C to initiate the protocol with pidiC = (C,C ′, S).

• Reveal(Πi
C): This query captures the notion of known key security2, and if Πi

C has ac-
cepted, returns the session key skiC back to A. However, this session (key) will be rendered
unfresh (see Definition 1).

• Corrupt(U): This query returns U ’s password pwU to A. If U = S (i.e., the server is
corrupted), all clients’ passwords stored by the server are returned. This query captures
not only the notion of forward secrecy but also attacks by malicious clients.

• Test(Πi
C): This query is used to define the indistinguishability-based security of the pro-

tocol. If Πi
C has accepted, then depending on a randomly chosen bit b, A is given either

the real session key skiC (when b = 1) or a random key drawn from the session-key space
(when b = 0). A is allowed to ask as many Test queries as it wishes. All Test queries
are answered using the same value of the hidden bit b. Namely, the keys output by the
Test oracle are either all real or all random. But, we require that for each different set of
partners, A should access the Test oracle only once.

The number of queries asked by an adversary is referred to as the query complexity of
the adversary (Q), and is represented as an ordered sequence of five non-negative integers,
Q = (qexec, qsend, qreve, qcorr, qtest). These five non-negative integers are the numbers of queries
that the adversary asked respectively to the Execute, Send, Reveal, Corrupt, and Test oracles.

2It is often reasonable to assume that the adversary will be able to obtain session keys from any session
different from the one under attack.
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Security definition. We define the security of a 3-party PAKE protocol via the notion of fresh-
ness. Intuitively, a fresh instance is one that holds a session key which should not be known
to the adversary A, and an unfresh instance is one whose session key (or some information
about the key) can be known by trivial means. The formal definition of freshness is explained
in Definition 1.

Definition 1. An instance Πi
C is fresh if none of the following occurs: (1) A queries Reveal(Πi

C)

or Reveal(Πj
C′), where Π

j
C′ is the partner of Πi

C , and (2)A queries Corrupt(U), for some U ∈ pidiC ,

before Πi
C or its partner Πj

C′ accepts.

The security of a 3-party PAKE protocol P is defined in the context of the following exper-
iment:

Experiment Exp0:

Phase 1. A makes any oracle queries at will as many times as it wishes, except
that:

• A is not allowed to ask the Test(Πi
C) query if the instance Πi

C is unfresh.

• A is not allowed to ask the Reveal(Πi
C) query if it has already made a

Test query to Πi
C or Πj

C′ , where Πj
C′ is the partner of Πi

C .

Phase 2. Once A decides that Phase 1 is over, it outputs a bit b′ as a guess on
the hidden bit b chosen by the Test oracle. A is said to succeed if b = b′.

Let Succ0 be the event that A succeeds in the experiment Exp0. The advantage of A in breaking
the security of the authenticated key exchange protocol P is AdvakeP (A) = 2 · PrP,A[Succ0]− 1.

Definition 2. A 3-party PAKE protocol P is ake-secure if, for any ppt adversary A asking at
most qsend Send queries, AdvakeP (A) is only negligibly larger than c · qsend/|D|, where c is a very
small constant (usually around 2 or 4) when compared with |D|.

To quantify the security of protocol P in terms of the amount of resources expended by
adversaries, we let AdvakeP (t,Q) denote the maximum value of AdvakeP (A) over all ppt adversaries
A with time complexity at most t and query complexity at most Q.

3. Revisiting Wang, Hu and Li (2010)’s NWPAKE-2 protocol

Implicit key authentication is the fundamental security property that any given key exchange
protocol is expected to achieve. In this section, we show that the NWPAKE-2 protocol of Wang,
Hu and Li [24] does not achieve implicit key authentication.

3.1. Protocol description

Let A and B be two clients who wish to establish a session key, and pwA and pwB denote the
respective passwords of A and B shared with a trusted server S. The public parameters of the
NWPAKE-2 protocol include: (1) a cyclic group G of prime order q, and a generator g of G, (2)
a 2-party PAKE protocol 2PAKE, and (3) a pair of message authentication code (MAC) gener-
ation/verification algorithms (Mac,Ver), where Ver outputs a bit, with 1 meaning accept and
0 meaning reject. If the underlying 2-party protocol, 2PAKE, is round-optimal, NWPAKE-2
completes in 2 communication rounds as depicted in Fig. 1. The protocol description is as
follows:
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A S B

(pwA) (pwA, pwB) (pwB)

Round 1

x ∈R Z
∗

q , X = gx y ∈R Z
∗

q , Y = gy

Round 2

z ∈R Z
∗

q

X = Xz, Y = Y z

ρA = MackA
(X‖Y ‖B‖A)

ρB = MackB
(Y ‖X‖A‖B)

VerkA
(X‖Y ‖B‖A, ρA)

?
= 1 VerkB

(Y ‖X‖A‖B, ρB)
?
= 1

skA = Y
x

skB = X
y

2PAKE(pwA) −→ kA 2PAKE(pwB) −→ kB

X Y

〈Y , ρA〉 〈X, ρB〉

Fig. 1. Wang et al.’s 2-round 3-party PAKE protocol (NWPAKE-2) [24].

Step 1. A and S establish a secret key kA by running the 2-party protocol 2PAKE. Likewise,
B and S establish a secret key kB.

Step 2. A (resp. B) selects a random x ∈ Z∗
q (resp. y ∈ Z∗

q) and sends X = gx (resp. Y = gy)
to S.

Step 3. S chooses a random z ∈ Z∗
q , computes

X = Xz, Y = Y z,

ρA = MackA(X∥Y ∥B∥A), ρB = MackB (Y ∥X∥A∥B),

and sends ⟨Y , ρA⟩ and ⟨X, ρB⟩ to A and B, respectively.

Step 4. A and B abort if their received MAC is invalid. Otherwise, they will compute their
respective session keys, skA = Y

x
and skB = X

y
.

At the end of the protocol execution, A and B will compute the same session key skA = skB =
gxyz.

3.2. Violating implicit key authentication

We now assume that there exists an adversary C who is not registered with the server, and
demonstrate how C can easily violate the implicit key authentication property of NWPAKE-2.
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1. C chooses a random x′ ∈ Z∗
q , computes X ′ = gx

′
, and replaces X (sent by A to S) with

X ′.

2. Upon receipt of the “replaced” message, S will compute X as X = X ′z and therefore, B’s
session key skB will be set to gx

′yz.

3. C intercepts the message ⟨Y , ρA⟩ sent by S to A, and then computes skC = Y
x′

= gx
′yz =

skB. In other words, C is able to compute B’s session key even though C is not B’s
partner.

Note that NWPAKE-2 exhibits this security weakness no matter which protocol is used for the
instantiation of 2PAKE. Protocols proven secure in a model that allows Send queries should be
secure against the above mentioned attack. NWPAKE-2 was claimed to be provably secure in a
variant of Abdalla et al.’s ROR model [11, 12] where the adversary is allowed to query Execute,
Send, Reveal and Test oracles. This means that the claim of provable security for NWPAKE-2
is invalid3.

4. Our proposed protocol

This section presents our 2-round 3-party PAKE protocol, which we denote as 2R3PAKE
(“R” is for Round), and proves its security in the communication model described in Section 2.
The 2R3PAKE protocol is generic in the sense that it can be constructed from any secure 2-party
PAKE protocol. Our generic construction takes only one round of communication in addition to
the number of rounds required to perform the underlying 2-party protocol. Hence, applying our
construction to a round-optimal 2-party PAKE protocol immediately yields a 3-party PAKE
protocol running in two communication rounds.

4.1. Preliminaries

The security of 2R3PAKE is based on the decisional Diffie-Hellman assumption and the
security of a message authentication code scheme, a 2-party PAKE protocol, and a symmetric
encryption scheme.

Decisional Diffie-Hellman (DDH) assumption. Consider a cyclic group G having prime
order q. Informally stated, the DDH problem for G is to distinguish between two distributions
(gx, gy, gxy) and (gx, gy, gz), where g is a random generator of G and x, y, z are chosen at random
from Z∗

q . We say that the DDH assumption holds in G if it is computationally infeasible to solve
the DDH problem for G. More formally, we define the advantage of an algorithm D in solving the
DDH problem for G as AdvddhG (D) = |Pr[D(G, g, gx, gy, gxy) = 1] − Pr[D(G, g, gx, gy, gz) = 1]|.
We say that the DDH assumption holds in G if AdvddhG (D) is negligible for all ppt algorithms
D. AdvddhG (t) denotes the maximum value of AdvddhG (D) over all algorithms D running in time
at most t. A standard way of generating G where the DDH assumption is assumed to hold is
to choose two primes p, q such that p = rq + 1 for some small r ∈ N (e.g., r = 2) and let G be
the subgroup of order q in Z∗

p.

Message authentication codes. A message authentication code (MAC) scheme Σ is a triple
of efficient algorithms (Gen, Mac, Ver) where: (1) the key generation algorithm Gen takes as
input a security parameter 1ℓ and outputs a key k chosen uniformly at random from {0, 1}ℓ;
(2) the MAC generation algorithm Mac takes as input a key k and a message m, and outputs a

3Due to space limitation, Wang, Hu and Li [24] provide only a quick sketch of the security proof for their
NWPAKE-2 protocol.
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MAC (also known as a tag) σ; and (3) the MAC verification algorithm Ver takes as input a key
k, a message m, and a MAC σ, and outputs 1 if σ is valid for m under k or outputs 0 if σ is
invalid. Let Advsuf−cma

Σ (A) be the advantage of an adversary A in violating the strong existential

unforgeability of Σ under an adaptive chosen message attack. More precisely, Advsuf−cma
Σ (A) is

the probability that an adversary A, who mounts an adaptive chosen message attack against
Σ with oracle access to Mack(·) and Verk(·), outputs a message/tag pair (m,σ) such that: (1)
Verk(m,σ) = 1 and (2) σ was not previously output by the oracle Mack(·) as a MAC on the
message m. We say that the MAC scheme Σ is secure if Advsuf−cma

Σ (A) is negligible for every

ppt adversary A. Let Advsuf−cma
Σ (t, qmac, qver) denotes the maximum value of Advsuf−cma

Σ (A)
over all adversaries A running in time at most t and asking at most qmac and qver queries to
Mack(·) and Verk(·) respectively.

2-party PAKE protocols. 2R3PAKE takes as input a 2-party PAKE protocol 2PAKE. We
assume that the given 2-party protocol 2PAKE outputs session keys distributed in {0, 1}n,
where n = 2ℓ, and is ake-secure against an adversary who is given access to all the oracles:
Execute, Send, Reveal, Corrupt and Test. Let Advake2PAKE(A) be the advantage of an adversary A
in breaking the ake security of 2PAKE. We require that, for any ppt adversary A asking at
most qsend Send queries, Advake2PAKE(A) is only negligibly larger than qsend/|D|. Advake2PAKE(t,Q)
denotes the maximum value of Advake2PAKE(A) over all adversaries A with time complexity at
most t and query complexity at most Q.

Symmetric encryption schemes. A symmetric encryption scheme Ω is a triple of efficient
algorithms (Gen, Enc, Dec) where: (1) the key generation algorithm Gen takes as input a security
parameter 1ℓ and outputs a key k chosen uniformly at random from {0, 1}ℓ; (2) the encryption
algorithm Enc takes as input a key k and a plaintext message m, and outputs a ciphertext c;
and (3) the decryption algorithm Dec takes as input a key k and a ciphertext c, and outputs
a message m. We require that Deck(Enck(m)) = m holds for all k ∈ {0, 1}ℓ and all m ∈ M,
whereM is the plaintext space. For an eavesdropping adversary A against Ω and for a random
bit b ∈R {0, 1}, consider the following indistinguishability experiment:

Experiment Expind−seav
Ω (A, b)

k ← Gen(1ℓ)
(m0,m1)← A(Ω), where |m0| = |m1|
c← Enck(mb)
b′ ← A(c), where b′ ∈ {0, 1}
return b′

For simplicity, we assume, in this experiment, that the security parameter 1ℓ is implicit in the
description of Ω. Let Advind−seav

Ω (A) be the advantage of a single eavesdropper A in breaking
the indistinguishability of Ω, and let it be defined as

Advind−seav
Ω (A) = |Pr[Expind−seav

Ω (A, 0) = 1]− Pr[Expind−seav
Ω (A, 1) = 1]|.

We say that the symmetric encryption scheme Ω is secure (with respect to a single encryption)
if Advind−seav

Ω (A) is negligible for every ppt adversary A. We use Advind−seav
Ω (t) to denote the

maximum value of Advind−seav
Ω (A) over all adversaries A running in time at most t.

We now claim that if a symmetric encryption scheme is secure with respect to a single
encryption, then it is also secure with respect to multiple encryptions under different keys. For
an integer n ≥ 1, consider the indistinguishability experiment below:
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Experiment Expind−meav
Ω (A, b, n)

for i=1 to n
ki ← Gen(1ℓ)
(m0,i,m1,i)← A(Ω), where |m0,i| = |m1,i|
ci ← Encki(mb,i)
A(ci)

b′ ← A, where b′ ∈ {0, 1}
return b′

Then we define Advind−meav
Ω (A) and Advind−meav

Ω (t) respectively as

Advind−meav
Ω (A) = |Pr[Expind−meav

Ω (A, 0, n) = 1]− Pr[Expind−meav
Ω (A, 1, n) = 1]|

and
Advind−meav

Ω (t) = max
A
{Advind−meav

Ω (A)},

where the maximum is over all A running in time at most t.

Lemma 1. For any symmetric encryption scheme Ω,

Advind−meav
Ω (t) ≤ n · Advind−seav

Ω (t),

where n is as defined for experiment Expind−meav
Ω (A, b, n).

Proof. Let A be a multiple eavesdropper attacking the indistinguishability of Ω, with advan-
tage Advind−meav

Ω (A) and time complexity t. The proof proceeds with a standard hybrid argu-

ment [49]. Consider a sequence of n + 1 hybrid experiments Expind−meav
Ω,ξ (A, b, n), 0 ≤ ξ ≤ n,

where each Expind−meav
Ω,ξ (A, b, n) is different from Expind−meav

Ω (A, b, n) only in that each ci is
set as follows:

ci ←
{

Encki(m1,i) if i ≤ ξ
Encki(m0,i) otherwise.

The experiments Expind−meav
Ω,0 (A, b, n) and Expind−meav

Ω,n (A, b, n) at the extremes of the sequence

are identical to Expind−meav
Ω (A, 0, n) and Expind−meav

Ω (A, 1, n) respectively. As we move from

Expind−meav
Ω,ξ−1 (A, b, n) to Expind−meav

Ω,ξ (A, b, n) in the sequence, we change the ξ-th ciphertext
cξ from the encryption of m0,ξ to the encryption of m1,ξ. Since there are n such moves from
Expind−meav

Ω,0 (A, b, n) to Expind−meav
Ω,n (A, b, n), the inequality of the lemma follows immediately

if we prove that the difference between the probabilities that A outputs 1 in any two neigh-
boring experiments Expind−meav

Ω,ξ−1 (A, b, n) and Expind−meav
Ω,ξ (A, b, n) is at most Advind−seav

Ω (t). To
complete the proof, it suffices to show that for any 1 ≤ ξ ≤ n,

|Pr[Expind−meav
Ω,ξ−1 (A, b, n) = 1]− Pr[Expind−meav

Ω,ξ (A, b, n) = 1]| ≤ Advind−seav
Ω (t). (1)

Let ε = |Pr[Expind−meav
Ω,ξ−1 (A, b, n) = 1]−Pr[Expind−meav

Ω,ξ (A, b, n) = 1]|. We will prove Eq. (1) by
constructing, from A, a single eavesdropper Aξ who breaks the indistinguishability of Ω with
advantage ε and time complexity t.
Aξ begins by invoking adversary A, then proceeds to simulate the indistinguishability

experiment for A, and finally ends by outputting whatever bit A eventually outputs. In
the simulated experiment, Aξ generates the ciphertexts exactly as in the hybrid experiment
Expind−meav

Ω,ξ (A, b, n) except that it generates the ξ-th ciphertext cξ as follows:
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When A outputs the ξ-th plaintext-pair (m0,ξ,m1,ξ), Aξ outputs this as its own
plaintext-pair in experiment Expind−seav

Ω (Aξ, b), receives in return a ciphertext c,
and sets cξ = c.

It follows that:

• The probability that Aξ outputs 1 when the given ciphertext c is the encryption of m0,ξ

is equal to the probability that A outputs 1 in the experiment Expind−meav
Ω,ξ−1 (A, b, n).

• The probability that Aξ outputs 1 when the given ciphertext c is the encryption of m1,ξ

is equal to the probability that A outputs 1 in the experiment Expind−meav
Ω,ξ (A, b, n).

This means that:

Advind−seav
Ω (A) = |Pr[Expind−meav

Ω,ξ−1 (A, b, n) = 1]− Pr[Expind−meav
Ω,ξ (A, b, n) = 1]|.

Since Aξ has time complexity t, it follows that Advind−seav
Ω (A) ≤ Advind−seav

Ω (t) by definition.
This completes the proof of Eq. (1) and hence the proof of Lemma 1. �

4.2. The 2R3PAKE protocol

We assume that the following information has been pre-established and is known to all
parties in the network: (1) a cyclic group G of prime order q, and a generator g of G, (2) a
MAC scheme Σ = (Gen,Mac,Ver), (3) a 2-party PAKE protocol 2PAKE, and (4) a symmetric
encryption scheme Ω = (Gen,Enc,Dec). These public parameters can be determined by the
server and broadcast to all registered clients. Let A and B be two clients who wish to establish
a session key, and S be the trusted server with which A and B have registered their passwords
pwA and pwB respectively. The partner identifier assigned to (an instance of) A (resp. B)
is pidA (resp. pidB). Recall that pid is a sequence of identities of protocol participants; for
simplicity, we assume that pidA = pidB = (A,B, S). Our 2R3PAKE protocol is depicted in
Fig. 2 and its description is as follows:

Step 1. A (resp. B) selects a random x ∈ Z∗
q (resp. y ∈ Z∗

q), computes X = gx (resp. Y = gy),
and sends ⟨A, pidA, X⟩ (resp. ⟨B, pidB, Y ⟩) to S.

Step 2. A and S establish a 2ℓ-bit key kA by running the 2-party protocol 2PAKE. Likewise,
B and S establish a 2ℓ-bit key kB. Let kA = kencA ∥kmac

A and kB = kencB ∥kmac
B .

Step 3. A computes σA = Mackmac
A

(A∥pidA∥X) and sends ⟨A, σA⟩ to S. Similarly, B computes
σB = Mackmac

B
(B∥pidB∥Y ) and sends ⟨B, σB⟩ to S.

Step 4. S sets pidS = pidA, chooses a random z ∈ Z∗
q , and computes

X = Xz, Y = Y z,

αA = Enckenc
A

(Y ), αB = Enckenc
B

(X),

ρA = Mackmac
A

(S∥pidS∥αA∥αB), ρB = Mackmac
B

(S∥pidS∥αA∥αB).

S then sends ⟨S, αA, αB, ρA⟩ and ⟨S, αA, αB, ρB⟩ to A and B respectively.

Step 5. A sets the session identifier, sidA = αA∥αB, and verifies that Verkmac
A

(S∥ pidA∥sidA, ρA) =
1. If the verification fails, A aborts the protocol. Otherwise, A recovers Y as Y =
Deckenc

A
(αA) and computes the session key, skA = Y

x
. B proceeds correspondingly; it

aborts if Verkmac
B

(S∥pidB∥sidB, ρB) = 0, where sidB = αA∥αB, and otherwise, computes

X = Deckenc
B

(αB) and skB = X
y
.
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A S B

(pwA) (pwA, pwB) (pwB)

pidA = (A,B, S) pidB = (A,B, S)

Round 1

x ∈R Z
∗

q , X = gx y ∈R Z
∗

q , Y = gy

Round 2

σA = Mackmac

A
(A‖pidA‖X) pidS = pidA, z ∈R Z

∗

q σB = Mackmac

B
(B‖pidB‖Y )

X = Xz, Y = Y z

αA = Enckenc

A
(Y )

αB = Enckenc

B
(X)

ρA = Mackmac

A
(S‖pidS‖αA‖αB)

ρB = Mackmac

B
(S‖pidS‖αA‖αB)

sidA = αA‖αB Verkmac

A
(A‖pidS‖X, σA)

?
= 1 sidB = αA‖αB

Verkmac

A
(S‖pidA‖sidA, ρA)

?
= 1 Verkmac

B
(B‖pidS‖Y, σB)

?
= 1 Verkmac

B
(S‖pidB‖sidB, ρB)

?
= 1

Y = Deckenc

A
(αA) X = Deckenc

B
(αB)

skA = Y
x

skB = X
y

2PAKE(pwA) −→ kA = kencA ‖kmac
A 2PAKE(pwB) −→ kB = kencB ‖kmac

B

〈A, pidA, X〉 〈B, pidB, Y 〉

〈S, αA, αB, ρA〉 〈S, αA, αB, ρB〉

〈A, σA〉 〈B, σB〉

Fig. 2. Our proposed 2-round 3-party PAKE (2R3PAKE) protocol.

Step 6. S checks that Verkmac
A

(A∥pidS∥X,σA) = 1 and Verkmac
B

(B∥pidS∥Y, σB) = 1. If either
of these checks fails, S aborts the protocol.

Steps 1 & 2 constitute the first round of communication while Steps 3 & 4 constitute the
second communication round. It is trivial to note that in the presence of a passive adversary,
A and B will compute session keys of the same value gxyz. We do not require 2PAKE to
be instantiated with a protocol that provides either unilateral or mutual authentication, as
2R3PAKE already provides mutual authentication between the server and the clients (via the
MAC values exchanged in the second round). Hence, any 2-party protocol that provides implicit
key authentication, including one-round protocols, will be suitable candidates to instantiate
2PAKE.
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4.3. Security proof

Theorem 1. For any adversary with time complexity at most t and query complexity at most
Q = (qexec, qsend, qreve, qcorr, qtest), its advantage in breaking the ake security of 2R3PAKE is
bounded by:

Advake2R3PAKE(t,Q) ≤ 2 · Advake2PAKE(t
′, Q′)

+ 2 · qsend · Advsuf−cma
Σ (t′, 2, 2)

+ 2 · qsend · Advind−seav
Ω (t′)

+ 2 · AdvddhG (t′),

where Q′ = (2qexec, qsend, qsend, qcorr, 2qexec+ qsend) and t′ is the maximum time required to per-
form the experiment Exp0 involving an adversary who attacks 2R3PAKE with time complexity
t.

Proof. Let A be a ppt adversary who attacks the ake security of 2R3PAKE with time com-
plexity t and query complexity Q = (qexec, qsend, qreve, qcorr, qtest). We prove the theorem by
making a series of modifications to the experiment Exp0, bounding the difference in A’s success
probability between two consecutive (modified) experiments, and ending up with an experiment
in which A has a success probability of 1/2 (i.e., A has no advantage). By Succi, we denote the
event that A correctly guesses the hidden bit b in experiment Expi.

Before presenting the first modified experiment, we define the notion of a clean instance.

Definition 3. We say an instance Πi
U is unclean if A has queried Corrupt(U ′) for some U ′ ∈

pidiU . Otherwise, we say it is clean.

Experiment Exp1. We modify the experiment by replacing each different 2ℓ-bit key (estab-
lished by an execution of 2PAKE) with a random key drawn uniformly from {0, 1}2ℓ for all clean
instances. The difference in A’s success probability between Exp0 and Exp1 is bounded by:

Claim 1.
∣∣Pr2R3PAKE,A[Succ1]− Pr2R3PAKE,A[Succ0]

∣∣ ≤ Advake2PAKE(t
′, Q′).

Proof. We prove the claim by constructing an adversary A′ who attacks the ake security of
2PAKE with advantage equal to

∣∣Pr2R3PAKE,A[Succ1] − Pr2R3PAKE,A[Succ0]
∣∣. Let kiU denotes

the 2ℓ-bit key held by instance Πi
U .

A′ chooses a random bit b ∈ {0, 1} and invokes the adversary A. A′ then simulates the
oracles for A as follows:

Execute queries. When an Execute(Πi
A,Π

j
B,Π

k
S) query is asked, A′ first checks if A, B or S was

previously corrupted.

• If so, A′ answers the Execute query as in experiment Exp0.

• Otherwise, A′ answers the query using its own oracles. A′ first asks two queries
Execute(Πi

A,Π
k
S) and Execute(Πj

B,Π
k′
S ). Let T2PAKE and T′

2PAKE be two transcripts
returned in response to the Execute queries. Next, A′ makes the queries Test(Πi

A)

and Test(Πj
B), and receives in return two keys k

i
A and k

j
B (either real or random).

A′ then generates the rest of the protocol messages, using k
i
A and k

j
B as kiA and kjB,

respectively. Finally, A′ returns these messages together with T2PAKE and T′
2PAKE

after ordering them properly.
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Send queries. For each Send(Πi
U ,m) query, A′ checks if m is a message for initiating a new

session (of 2R3PAKE), or the Send query belongs to an execution of 2PAKE.

1. If both are untrue, A′ responds to the query as in experiment Exp0.

2. Otherwise, A′ answers it by making the same query to its own Send oracle. If the
query prompts Πi

U to accept, then A′ checks if Πi
U is clean.

(a) If so, A′ makes a Test(Πi
U ) query (unless the partner of Πi

U has already been
tested) and sets kiU to be the output of this Test query.

(b) Otherwise, A′ makes a Reveal(Πi
U ) query and sets kiU to be the output of this

Reveal query.

Reveal queries. A′ responds to the queries as per protocol specification.

Corrupt queries. A′ answers these queries using its own Corrupt oracle.

Test queries. A′ responds to these queries based on the ranomdly chosen bit b at the beginning
of the simulation. A′ will return the real session key if b = 1, and a random key chosen
uniformly at random from G if b = 0.

At some point in time, A will terminate and output its guess b′. When this happens, A′ outputs
1 if b = b′, and 0 otherwise.

From the simulation, it is clear that:

• The probability that A′ outputs 1 when its Test oracle returns real session keys is equal
to the probability that A correctly guesses the bit b in experiment Exp0.

• The probability that A′ outputs 1 when its Test oracle returns random keys is equal to
the probability that A correctly guesses the bit b in experiment Exp1.

That is, Advake2PAKE(A′) =
∣∣Pr2R3PAKE,A[Succ1]−Pr2R3PAKE,A[Succ0]

∣∣. Since A′ has at most time
complexity t′ and query complexity Q′ = (2qexec, qsend, qsend, qcorr, 2qexec + qsend), it follows, by
definition, that Advake2PAKE(A′) ≤ Advake2PAKE(t

′, Q′). This completes the proof of Claim 1. �

Experiment Exp2. This experiment is different from Exp1 only in that it is aborted and the
adversary does not succeed if the following event Forge occurs.

Forge: The event that the adversary A makes a Send query of the form Send(Πi
U , V ∥msg) for

uncorrupted U and V such that msg contains a MAC forgery.

Then we have:

Claim 2.
∣∣Pr2R3PAKE,A[Succ2]− Pr2R3PAKE,A[Succ1]

∣∣ ≤ qsend · Advsuf−cma
Σ (t′, 2, 2).

Proof. Assuming that the event Forge occurs, we construct an algorithm F who outputs, with
a non-negligible probability, a forgery against the MAC scheme Σ. The algorithm F is given
oracle access to Mack(·) and Verk(·). The goal of F is to produce a message/tag pair (m,σ)
such that: (1) Verk(m,σ) = 1 and (2) σ was not previously output by the Mack(·) oracle on
input m.

Let n be the number of all different MAC keys established via a Send query made by A.
Clearly, n ≤ qsend. F begins by choosing a random α ∈ {1, . . . , n}. Let kmac

α denote the αth key
among all the n MAC keys, and Sendα be a Send query that should be answered and/or verified
using kmac

α . F invokes A as a subroutine and handles the oracle calls of A as in experiment
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Exp1 except that: it answers all Sendα queries by accessing its MAC generation and verification
oracles. As a result, the αth MAC key kmac

α is never used during the simulation. If Forge occurs
against an instance who holds kmac

α , F halts and outputs the message/tag pair generated by A
as its forgery. Otherwise, F halts and outputs a failure indication.

If the guess α is correct, then the simulation is perfect and F achieves its goal. Namely,
Advsuf−cma

Σ (F) = Pr[Forge]/n. Since n ≤ qsend, we get Pr[Forge] ≤ qsend · Advsuf−cma
Σ (F). As F

has at most time complexity t′ and makes at most two queries to Mack(·) and Verk(·), it follows,
by definition, that Advsuf−cma

Σ (F) ≤ Advsuf−cma
Σ (t′, 2, 2). This completes the proof of Claim 2.

�

Experiment Exp3. We further modify the experiment so that Execute and Send oracles are
simulated as in “the Exp3 modification” described below.

The Exp3 modification

When A asks an Execute or Send query, the simulator answers it exactly as in
experiment Exp2 except that it modifies the way of generating the ephemeral
public values (denoted as X and Y in the protocol) as follows:

• The simulator chooses two random v1, v2 ∈ Z∗
q and computes V1 = gv1 and

V2 = gv2 .

• For each instance Πi
C , the simulator chooses a random r ∈ Z∗

q , computes

R =

{
V1

r if C appears first in pidiC
V2

r if C appears second in pidiC ,

and uses R as the ephemeral public value (i.e., as X or Y ) of Πi
C .

Since the view of A is identical between Exp2 and Exp3, it is straightforward to see that:

Claim 3. Pr2R3PAKE,A[Succ3] = Pr2R3PAKE,A[Succ2].

Experiment Exp4. In this experiment, each X and Y are computed as X = X and Y = Y
(instead of as X = Xz and Y = Y z) if they are expected to be encrypted with a key held by a
clean (server) instance. This is the only difference from Exp3.

Claim 4.
∣∣Pr2R3PAKE,A[Succ4]− Pr2R3PAKE,A[Succ3]

∣∣ ≤ qsend · Advind−seav
Ω (t′).

Proof. We prove the claim by constructing a multiple eavesdropper Ameav who attacks the
indistinguishability of Ω with advantage equal to

∣∣Pr2R3PAKE,A[Succ4]− Pr2R3PAKE,A[Succ3]
∣∣.

Ameav chooses a random bit b ∈ {0, 1} and invokes the adversary A. Ameav then handles
all the oracle queries of A as in experiment Exp3 except that it generates αA and αB for each
clean server instance as follows:

Ameav outputs (X,X = Xz) and (Y, Y = Y z) as its own (two) plaintext-pairs (in the
indistinguishability experiment Expind−meav

Ω ), receives in return two ciphertexts c1
and c2, and sets αA = c2 and αB = c1. (Note, here, that c1 and c2 are encryptions
of either X and Y or X and Y .)

When A outputs its guess b′, Ameav outputs 1 if b = b′, and 0 otherwise. It easily follows that:
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• The probability that Ameav outputs 1 when the first plaintexts are encrypted in experiment
Expind−meav

Ω is equal to the probability that A succeeds in experiment Exp4.

• The probability that Ameav outputs 1 when the second plaintexts are encrypted in exper-
iment Expind−meav

Ω is equal to the probability that A succeeds in experiment Exp3.

Therefore, Advind−meav
Ω (Ameav) =

∣∣Pr2R3PAKE,A[Succ4] − Pr2R3PAKE,A[Succ3]
∣∣. Since Ameav

eavesdrops at most qsend encryptions and has time complexity at most t′, Claim 4 follows
immediately from Lemma 1 of Section 4.1. �

Experiment Exp5. We nowmodify the way session keys are computed. For each clean instance
and its partner instance, the shared session key is chosen uniformly at random from G.

Claim 5.
∣∣Pr2R3PAKE,A[Succ5]− Pr2R3PAKE,A[Succ4]

∣∣ ≤ AdvddhG (t′).

Proof. We prove the claim by constructing an algorithm Addh that solves the DDH problem
in G with advantage equal to

∣∣Pr2R3PAKE,A[Succ5]− Pr2R3PAKE,A[Succ4]
∣∣.

On input a DDH-problem instance (W1 = gw1 ,W2 = gw2 ,W3) ∈ G3, Addh chooses a random
bit b ∈ {0, 1}, invokes the adversary A, and simulates the oracles on its own. Addh handles all
the queries of A as in experiment Exp4 except for the following:

• Addh uses W1 and W2 in place of V1 and V2 (see “the Exp3 modification”).

• For each clean instance Πi
C who sends X = W1

r and receives Y = W2
r′ , or vice versa,

Addh sets the session key skiC to be W rr′
3 .

Later, when A outputs its guess b′, Addh outputs 1 if b = b′, and 0 otherwise.
The simulation above clearly shows that:

• The probability that Addh outputs 1 on a true Diffie-Hellman triple is equal to the prob-
ability that A correctly guesses the bit b in experiment Exp4.

• The probability that Addh outputs 1 on a random triple is equal to the probability that
A correctly guesses the bit b in experiment Exp5.

Hence, AdvddhG (Addh) =
∣∣Pr2R3PAKE,A[Succ5] − Pr2R3PAKE,A[Succ4]

∣∣. From this and since

AdvddhG (Addh) ≤ AdvddhG (t′), we obtain the inequality of Claim 5. �

In experiment Exp5, the session keys of all fresh instances are chosen uniformly at random
from G and thus the adversary A obtains no information on the bit b chosen by the Test oracle.
Therefore, it follows that Pr[Succ5] = 1/2. This result combined with Claims 1–5 yields the
statement of Theorem 1. �

5. Concluding remarks

In this paper, we have proposed an efficient and secure 3-party password-only authenticated
key exchange protocol that requires only two communication rounds. We have rigorously proved
the security of the protocol in a widely accepted adversary model. Since our proof of security
requires no idealizing assumptions, our proposed protocol would be considered equivalent to
be provably secure in the standard model as long as the building blocks are also instantiated
with schemes proven secure in the standard model. For a more efficient implementation of our
proposed protocol, Steps 3 & 6 (see the protocol description in Section 4.2) can be omitted if
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security against undetectable online dictionary attacks is not required. This simplified protocol
would still be ake-secure in the sense of Definition 2 (i.e. Theorem 1 also holds for the simplified
protocol). We finally note that it seems impossible to design an ake-secure one-round key
exchange protocol in the password-only 3-party setting, although we are unable to prove this
statement formally.
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