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Abstract

One of the most important applications of cryptography is the establishment of secure
communication channels between two entities (e.g. a client and a server), and the protocol
most widely used for this purpose is TLS.

A key goal of research in cryptography is to provide security proofs for cryptographic
protocols. This task is particularly difficult if the considered protocol has not been designed
with provable security in mind, as is the case for TLS.

Results on provable security differ with respect to (1) the assumptions made and (2) the
statement that is proved to follow from the assumptions. It is important that the proved
statement is of a form that allows for both comparisons of protocol performance, and for
direct use in the proof of a higher-level protocol. Security statements should thus be exact
(as opposed to asymptotic), giving precise upper bounds for the security level guaranteed
by a protocol. Furthermore, a key to analyzing and designing cryptographic protocols is
a modularization in which the role of each cryptographic primitive (e.g. encryption) or
mechanism (e.g. nonce exchange) is made explicit, and the security of its application is
proved in isolation, once and for all. The constructive cryptography framework provides a
sound instantiation of this approach. A modular step constructs a specific resource from
certain (assumed) resources, and the overall protocol is the composition of several such
construction steps. The security proof for the overall protocol follows directly from the
composition theorem as well as the individual (reasonably simple) security proofs for the
modules. Moreover, the actual security statement for the overall protocol is of a standardized
form, in terms of a resource, which makes it straight-forward to use the protocol in a higher-
level context, with the overall security proof again following from the composition theorem.

In this paper, we provide such a constructive treatment of TLS. We provide a decon-
struction of TLS into modular steps and a security proof for each step which, compared to
previous work, results in the above mentioned advantages. For the key-exchange step in
particular, we analyze the RSA-based and both Diffie-Hellman-based variants (with static
and ephemeral server key) under a non-randomizability assumption for RSA-PKCS and the
Gap Diffie-Hellman assumption, respectively; in all cases we make use of random oracles.
In general, since the design of TLS is not modular, the constructive decomposition is less
fine-grained than one might wish to have and than it is for a modular design. This paper
therefore also suggests new insights into the intrinsic problems incurred by a non-modular
protocol design such as that of TLS.

∗Part of the work done while at Aarhus University supported by the Danish Council for Independent Research
via DFF Starting Grant 10-081612.
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1 Introduction

Initially developed by Netscape as the Secure Socket Layer (SSL) protocol [Hic95], the SSL/TLS
protocol family aims to provide end-to-end security for bilateral communication over the In-
ternet. The original protocol suffered from several vulnerabilities; this led to the development
of a number of subsequent protocol versions, each one fixing flaws discovered in the previous
version. The most recent protocol version is known as Transport Layer Security (TLS) ver-
sion 1.2 [DR08]. While the initial protocol was developed for protecting HTTP connections
between a browser and a web server, many current Internet protocols including, e.g., SMTP or
IMAP for transmitting e-mails and LDAP for accessing directories, have been extended to al-
low for securing the transmission with TLS. Because of its practical importance, the security of
SSL/TLS has attracted a lot of attention in the literature, see e.g. [WS96, Pau99, Kra01, CK02,
JK02, Bar04, HSD+05, MSW08, MT10, PRS11, AP12, BFCZ12, FHM+12, GIJ+12, JKSS12,
ABP+13, AP13, BFK+13a, BFS+13, GKS13, KSS13, KPW13], in chronological order.

1.1 Overview and Previous Work

The TLS protocol consists of two parts, the handshake—essentially a key-exchange protocol that
can be used with either unilateral or mutual authentication—and the record protocol—which
protects the transmission of application data using the key obtained during the handshake. The
TLS handshake offers several alternative key-exchange methods based on different cryptographic
primitives. In each session, the actual method is chosen depending on the implementation, the
available public keys, and the configuration. There are three standard methods: based on RSA
encryption, on a static certified Diffie-Hellman key, or on signatures and an (ephemeral) Diffie-
Hellman exchange, respectively. The typical setting is to only authenticate the server to the
client, but client authentication is also possible if the client has a certified public key.

While a sequence of results about the record protocol [Kra01, MT10, PRS11] provides a
comprehensive treatment thereof, the handshake protocol is not as well-understood. The reason
is that the protocol was not designed with provable security in mind (see details in Section 1.2);
it is inherently non-modular and uses cryptographic primitives in non-standard ways, which
severely complicates security proofs. One particular observation with respect to non-modularity
appearing in many analyses is that the final messages of the handshake already use the keys
that are agreed upon; a fact that prohibits an analysis of the full handshake in common security
models (e.g., [BR93, CK01, CK02]). Beyond that, because of the non-standard use of schemes
and primitives, papers that analyze (parts of) TLS must generally choose between analyzing
a modified version of the protocol, analyzing the original protocol in idealized models (such as
the random oracle model), or using tailor-made computational assumptions.

Proving modified protocols was an early approach towards obtaining an intuition of the
security of the TLS handshake. For example, [MSW08, JK02] drop the final message of the
handshake. A more extreme approach is taken by Gajek et al. [GMP+08], who modify sev-
eral details to achieve security in the UC framework [Can01]. (As pointed out by Küsters
et al. [KT11] this additionally requires the insertion of session identifiers into the protocol.
Küsters et al. also give a case study and describe how one could model TLS more faithfully in
the IITM [KT11] model.) However, extending the security proof of a modified protocol to that
of the real protocol is usually hard; for SSL/TLS, it is nearly impossible.

Recent game-based analyses of TLS made important steps towards assessing the security of
the true protocol. Jager et al. [JKSS12] treated the security of a specific configuration for the
key-exchange step, i.e. TLS-DHE. In their (game-based) analysis, Jager et al. consider both the
TLS handshake and the record protocol to be executed together. By treating the last message of
the handshake as the first message of the record protocol, they circumvent the problems related
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to using one of the extracted keys for encryption during the key-exchange protocol. They showed
that the TLS handshake and the record protocol together achieve the tailor-made (game-based)
security notion “authenticated and confidential channel establishment”, under a specific, new
security assumption. A (slightly) more modular analysis is given by Brzuska et al. [BFS+13],
who view the TLS handshake and record protocol as a composition of a key agreement protocol
and a scheme for achieving secure communication. They weaken the usual key-exchange security
definitions and show explicitly that, under a specific notion of composition, the two parts can
be proved secure together, in a meaningful way. Thus, this approach enables a security proof
with some degree of modularity.

The recent work of Krawczyk, Paterson, and Wee [KPW13] extends the analysis of TLS-
DHE [JKSS12] to other handshake configurations, like TLS-DH and TLS-RSA, and it is to our
knowledge the most comprehensive analysis of TLS to date. Their approach is based on modeling
the TLS handshake by means of a Key Encapsulation Mechanism (KEM). They also describe
how to instantiate the KEM to capture each configuration. Subsequently, they show that, if
the KEM attains a security notion known as Constrained CCA security (CCCA), the combined
protocol consisting of KEM and record layer attains the ACCE security notion introduced by
Jager et al. [JKSS12].

Other approaches have been taken to analyzing the security of TLS. For example, the
symbolic model approach of [Pau99, HSD+05, BFCZ12]. Recently, [BFK+13a] moved away
from symbolic models and gave a meaningful formal statement about a standard compliant
implementation of TLS called miTLS. They describe the cryptographic idealizations of the
cryptographic modules of TLS which are indistinguishable by typed adversaries. This allows
for a type-based and cryptographically faithful verification of miTLS.

Previous results in constructive cryptography. Some related schemes have already been
analyzed following the constructive cryptography paradigm [MR11, Mau11]. Maurer and Tack-
mann [MT10] used this approach to analyze the TLS record protocol as a construction of a
secure channel from a shared key and insecure communication channels. Recently, Maurer,
Tackmann, and Coretti [MTC13] described a unilateral key-exchange protocol in this model;
the goal of their protocol is similar to the goal of certain configurations of TLS (without client
authentication); their protocol is considerably simpler and secure under weaker assumptions,
but does not allow to adaptively choose cipher suites.

1.2 Contributions of this Paper

In this paper, we define and prove the security of TLS following the constructive cryptography
paradigm of Maurer and Renner [MR11]. We show that TLS/SSL with unilateral authentica-
tion constructs a unilaterally secure communication channel from an insecure communication
network such as the Internet, a public-key infrastructure, and a public random oracle (an ide-
alization of a hash function).

We de-compose the TLS protocol into a sequence of sub-protocols that each achieve a
smaller construction step. Each step is then achieved by one or more cryptographic schemes
(like key-exchange mechanisms, key confirmation, symmetric encryption, and MAC), or by
security mechanisms (like nonces). The goal of each scheme or mechanism is to construct an
ideal resource, which then serves as an assumed resource in the next step. The composition of all
steps yields the complete TLS protocol, and the composition theorem guarantees the soundness
of this approach.

This method of analyzing the TLS protocol has two main advantages:

1. The composition theorem (cf. [MR11, MT10, KMO+13]) guarantees that the TLS protocol
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can be used, given the assumed resources, whenever an application or higher-level protocol
requires the type of secure channel described in our definitions.

2. As each step is proven in isolation and the steps are combined generically by the compo-
sition theorem,

(a) the analysis of each individual step becomes simpler, because it can be performed
independently of the other steps;

(b) if an alternative security analysis of one step is given, then one can immediately use
this proof without adapting the proofs of the remaining primitives. In particular,
by adapting the techniques of [JKSS12, KPW13] to prove the key-exchange steps
without a random oracle, we can immediately obtain a standard-model analysis of
the complete protocol without re-proving the remaining steps;

(c) further optional sub-protocols, like other symmetric ciphers or elliptic curve methods,
are integrated into our analysis by proving simply that they construct a specific step.
The security of the full protocol will then follow generically.

Unfortunately, TLS tries hard to resist this modularization, and it also uses many techniques
heuristically: the cryptographic keys intended to protect the payload are also used for the
confirmation (here called “finished”) messages, the pseudo-random function is keyed with a
non-uniform key, and various protocol messages are unnecessarily included in the confirmation
messages, to name a few. These unfortunate design choices complicate our analysis: sometimes
abstractions cannot be introduced at the intuitively appealing levels, often “auxiliary” data
must be passed through multiple protocol layers, and as the potential interference of different
protocol sessions is resolved only at a late stage, many protocol steps must be analyzed in a
complicated “multi-session” scenario.

Furthermore, it appears impossible to perform a reasonably modular analysis for the RSA-
PKCS variant of the handshake under the OW-PCA assumption [JK02], even in the random
oracle model. This is evidence that the not very modular proof of [KPW13] for CCCA security
of the TLS key extraction mechanism is hard to avoid unless one is willing to make additional
assumptions. Building on a recent result by [BFK+13b], we show that a reasonably weak non-
randomizability assumption that they call NR-PCA is sufficient for a more modular constructive
proof. We describe these problems in more detail in Section 3.3.3.

Although various of the above mentioned obstacles could have been bypassed by modifying
the scheme, we kept our analysis close to the realistic TLS protocol. The result is a more
complicated analysis; however, the artifices are immanent to the protocol, not to our technique.

In total, we analyze the three main methods for the establishment of the master secret in
the handshake, namely TLS-DH, TLS-DHE, and TLS-RSA, as well the two main methods for
protecting the payload messages in the record layer protocol, namely the Authenticate-then-
Encrypt combinations using a stream cipher resp. a block cipher in CBC-mode, and a MAC.
By the composition theorem, we obtain the security of all possible combinations. We use the
GapDH assumption for the Diffie-Hellman based cipher suites, the NR-PCA assumption for
RSA PKCS#7, pseudo-randomness for the stream and block ciphers, and strong unforgeability
for the MAC. Moreover, we require the hash function used in the handshake to be collision-
resistant, and our proofs of the handshake protocols are based on the random oracle assumption.

1.3 Outline

We now describe, at a high level, the cryptographic mechanisms used in TLS and the con-
structive steps they achieve. We start with a simplified description of the protocol in Figure 1,
where the notation 〈m〉κ denotes the encryption of a message m, possibly together with other
messages, under the key κ.
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Client Server

ηC ←$ N
ηC

−−−−→
ηS ,cert ,keS
←−−−− ηS ←$ N,

choose keS
choose keC , compute pmk,
set msk← PRF(pmk, ηC |ηS),
obtain keys (κC , κS)← PRF(msk, . . . ),
set ξC ← PRF(msk, 1|ηC | . . . |keC)

keC ,〈ξC〉κC
−−−−→

〈ξS〉κS
←−−−−

compute pmk,
set msk← PRF(pmk, ηC |ηS),
obtain keys (κC , κS)← PRF(msk, . . . ),
set ξS ← PRF(msk, 2|ηC | . . . |〈ξC〉κC )

Authenticate-then-Encrypt payload ←−−→ Authenticate-then-Encrypt payload

Figure 1: The TLS handshake as a message exchange

Decomposition into sub-protocols. At a high level, our analysis proceeds by repeatedly
“scraping off” a part of the protocol, starting at the beginning; at each step, we consider the
remainder of the protocol as the “payload” of the part we analyze. This permits us to then
use the composition theorem to conclude the security of the entire protocol. We proceed in the
following steps.

1. Nonce generation. Each client chooses a nonce ηC ←$ N for a distribtion N on the set of
nonces.

Since TLS is often used in a unilateral mode where a client has no distinguished name, the
client nonce can be seen as a “disposable name” that is (with high probability) unique to that
client—the purpose of this nonce is to separate protocol sessions of different clients.

This guarantee is formalized as a resource NAME, which provides a unique name to each
client.

2. Nonce exchange. The client transmits the nonce ηC (which it obtained from the resource NAME).
The server chooses a nonce ηS ←$ N and sends it to the client.

The server uses the client nonce to identify the client—note that we focus on the unilateral
case where the client is not authenticated. The server nonce is not crucial in our analysis, but
to guarantee in the key derivation step (for which we make a random oracle assumption) that
the data in each session is unique, we assume uniqueness of the server nonce, losing a collision
term. However, if one analyzes the key derivation in more detail and not in the random oracle
model, the entropy contained in the server nonce may be a valuable input for extraction.

This guarantee is formalized as a resource SNET that outputs nonces (potentially chosen
adversarially) and associates them with the (fully) insecure communication channels giving no
guarantee of consistency.

3. Unilateral key exchange. The server chooses a key-exchange message keS according to the
chosen cipher suite (the message may be empty or a Diffie-Hellman element), and sends its
certificate cert and keS to the client. The client also chooses a key-exchange message keC
accordingly and sends it to the server. Both compute the pre-master key pmk according to the
chosen scheme, and compute the master secret key msk (at this step, we use a random oracle).

The core key-exchange protocol results in a pre-master secret, but the employed mechanisms
are too weak to achieve a meaningful security guarantee for this step alone. Obtaining the
master secret key msk by querying the random oracle “de-correlates” the keys obtained in
different sessions and also normalizes their distribution.
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The complete step constructs a resource MSK that outputs uniform random keys (the msk)
to the client and the server; the keys may, however, be different in case the adversary interfered.

4. Key expansion and generating confirmations. Both client and server compute keys κC and κS
and “finished” messages ξC and ξS via a pseudo-random function PRF keyed with msk. The
two finished messages are then encrypted, in a concatenation of all the messages in the protocol,
and sent.

Since the transmission of ξC and ξS in the protocol is protected by Authenticate-then-
Encrypt with the same keys as the payload messages, a modularization at the intuitively ap-
pealing point after performing the confirmation is impossible. Only after this protocol step can
we fully separate different “sessions,” as the computation of ξC and ξS still requires data which
is correlated between different sessions (e.g., the server certificate).

The behavior of this resource is similar to that of MSK with a different key space, but the

resource can now be described as the parallel composition of one (single-session) resource
KSP,∗
= =•

per client.

5. Channel setup and payload transmission. The channel setup consists of sending and verifying
the messages ξC and ξS protected with Authenticate-then-Encrypt with keys κC and κS , respec-
tively. If the verification succeeds, the client and server exchange payload messages protected
by Authenticate-then-Encrypt.

The resulting resource
∗

�� ��• is, for each client, one channel to the server which (at the
decision of the adversary) allows for either fully secure client-server communication, or for
server-adversary communication. The client notices which case occurs, the server does not.

Constructions achieved by the sub-protocols. We sketch the decomposition in Figure 2.
The resources NET (the network), PKI (the PKI), and RO (the random oracle) used by the
protocol are depicted on the right hand side, and the “converters” that each capture one part
of the protocol are drawn as boxes. The first type of converter rnd generates a random nonce.
The sub-protocol consisting of one such converter per client constructs the resource NAME that
outputs a unique nonce to each client (modulo a collision term, which becomes explicit in the
security statement).

The second converter hec uses as resources NAME and the network NET, exchanges nonces
with the server via NET, and also transmits “payload” messages from higher-level protocols.
Together with the server’s converter hes, this constructs the “network with nonces,” denoted as
SNET. The construction statement can be written as

NAME
hec,hes
=⇒ SNET.

The third converter is then alternatively one of dhc (for static DH), dhec (for ephemeral
DH), and rsac (for RSA-PKCS) depending on the cipher suite used in the handshake. All these
use the resources PKI and RO, as well as the resource SNET constructed by rnd and (hec, hes),
and construct, together with the server’s counterpart, a “master secret key” resource later called
“MSK”.

The statements for the following layers are (here for the static DH scheme)

[SNET,PKI,RO]
dhc,dhsG

=⇒ MSK, MSK
expc,exps

=⇒
⊗
C∈C

s
KSP,∗
= =•

{(C,S/ηC)

,

and
KSP,∗
= =• atec,ates

=⇒ ∗
�� ��• .

7



In the above statements,
KSP,∗
= =• is a resource which is specified with respect to a single client and

the server, and the product together with the brackets signifies that there is an independent such
resource corresponding to each client. (More details about the notation are in Section 2.) The
sub-protocol (expc, exps) expands the secret key and computes the confirmation messages ξC and

ξS , constructing the resource
KSP,∗
= =• . Finally, the sub-protocol (atec, ates) uses the confirmation

messages and also protects payload messages obtained from higher-level protocols, constructing

the unilaterally secure channel denoted as
∗

�� ��•.

ηC ←$ N

rnd

send ηC
get ηS

hec

get cert ,keS ,
verify cert ,
compute keC ,
send keC ,
compute pmk,
compute msk

dhc/dhec

compute
ξC , ξS ,
κC , κS

expc

get ξS ,
check ξC ,
send ξC ,
transmit
payload

atec

NET

PKI

RO

ηCηC , ηSηC , ηS ,msk

cert ,keS ,keC

ξC , κC

ξS , κS

(verify, cert) →
← 0/1

pmk|master secret|ηC |ηS →
← msk

ηC , payload →
← ηS , payload

keC , . . . →
← cert , . . .← payload →

ξC , . . . →
← ξS , . . .

Figure 2: The TLS handshake in terms of client converters

In Figure 2 it becomes apparent that the messages that are intended to be sent over the
network and are generated by a higher-level converter are passed through all lower-level con-
verters. Thus, all resources that we specify in the course of the analysis will also have to allow,
in addition to their main task, for the insecure transmission of messages. The reason for this
is that in the TLS protocol, “TLS fragments” (the messages in TLS are called fragments) are
sent over a TCP connection and processed in the order of their arrival. This feature intro-
duces (time-)dependencies between the resources; thus, they cannot be written as a parallel
composition of independent resources.

Our results on TLS can be summarized in the following theorem.

Theorem 1 (informal). Let C be a set of clients. The TLS protocol constructs, for each client

C ∈ C, one unilaterally secure channel
∗

�� ��• from NET, PKI, and RO, for the static Diffie-
Hellman, the ephemeral Diffie-Hellman, and the RSA mode. In more detail:

1. The (static) DH-based protocol achieves the construction under the following assump-
tions: the GapDH assumption holds in the respective group, SHA-256 is collision-resistant,
HMAC is a PRF, and the symmetric encryption and MAC schemes are secure.

2. The (ephemeral) DH-based protocol achieves the construction under the following assump-
tions: the GapDH assumption holds in the respective group, the signature scheme used
by the server is unforgeable, SHA-256 is collision-resistant, HMAC is a PRF, and the
symmetric encryption and MAC schemes are secure.

3. The RSA-based protocol achieves the construction under the following assumptions: RSA-
PKCS#7 achieves the NR-PCA notion, SHA-256 is collision-resistant, HMAC is a PRF,
and the symmetric encryption and MAC schemes are secure.

A summary of the steps we take and the relevant security loss at each step is given in Fig-
ure 11 in the appendix. Note that we only include the details related to the security requirement
in the definition of construction, not to the availability requirement.
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2 Preliminaries and Notation

2.1 Notation

For a number n ∈ N, we use the notation [n] := {1, . . . , n}. Also, for a distribution X over a
set X , we write X ←$ X to denote that the random variable X is sampled from distribution X,
and we write X ←$ X to express that X is sampled uniformly at random from the set X .

2.2 Constructive Cryptography

The foundational idea of constructive cryptography [MR11, Mau11] is to specify both the as-
sumptions1 and the guarantees of protocols explicitly as resources, and to consider a protocol
as a construction of a (desired) resource from assumed resources. A resource is a shared func-
tionality accessed by several parties; in this work we consider different types of communication
channels and shared keys. The assumed resources formalize the setting in which a protocol is
used (such as a certain type of communication channel) and constructed resources describe the
functionality achieved by using the protocol on the assumed resources (such as a shared key or
a communication channel with stronger guarantees). A protocol in this setting is described as
a tuple of so-called converters; one per (honest) party.

2.3 Abstract Systems

Resources and converters are modeled as systems. At the highest level of abstraction (following
the hierarchy in [MR11]), systems are objects with interfaces by which they connect to (inter-
faces of) other systems; each interface is labeled with an element of some label set and connects
to only a single other interface. Multiple interfaces can be merged into a single interface; the
original interfaces are referred to as sub-interfaces of the composite interface. (Sub-interfaces
have labels relative to the composite interface; to refer to a sub-interface S of some interface
I, we write I/S.) This concept of abstract systems captures the topological structures that
result when multiple systems are connected in this manner. It does not, however, model the
behavior of systems, i.e., how the systems interact via their interfaces; statements about specific
protocols are statements at this next (lower) abstraction level. In this work, we describe all
systems in terms of (probabilistic) discrete systems.

Resources and converters. Resources in this work are systems with interfaces labeled by
elements of some label set L. A converter is a two-interface system which is directed in that
it has an inside and an outside interface. As a notational convention, we generally use upper-
case, bold-face letters (e.g., R, S), symbols (e.g., •− →), or upper-case sans-serif fonts to
denote resources, and lower-case Greek letters (e.g., α, β) or sans-serif fonts (e.g., enc, dec) for
converters. We denote by ΦL (or simply Φ if L is clear from the context) the set of all resources
with interface labels in L, and by Σ the set of all converters. We use two special converters, an
“identity” converter id and a “blocking” converter ⊥ that has an inactive outside interface.

System composition. The topology of a composite system is described using a term algebra,
where each expression starts from one resource on the right-hand side and is subsequently
extended with further terms on the left-hand side. An expression is interpreted in the way that
all interfaces of the system it describes can be connected to interfaces of systems which are
appended on the left. For instance, for a single resource R ∈ Φ, all its interfaces are accessible.

1The term “assumption” often refers to two different concepts: setup assumptions such as a network or a PKI,
and computational assumptions such as the hardness of certain problems. Here, we refer to setup assumptions.
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For I ∈ L, a resource R ∈ Φ, and a converter α ∈ Σ, the expression αIR denotes the composite
system obtained by connecting the inside interface of α to the I-interface of R; the outside
interface of α becomes the I-interface of the composite system. The system αIR is again a
resource. For two resources R and S, [R,S] denotes the parallel composition of R and S.
For each I ∈ L, the I-interfaces of R and S are merged and become the sub-interfaces of the
I-interface of [R,S]. A converter α that connects to the I-interface of [R,S] has two inside
sub-interfaces, where the first connects to R and the second connects to S (i.e., sub-interfaces
are ordered). Finally, we denote by id a special converter that forwards all messages from the
inside to the outside interface and vice versa, hence idIR ≡ R.

We introduce special notation for families of resources or converters: If we compose a family
of resources (Ri)i∈{1,...,n} (resp. converters (αi)i∈{1,...,n}) in parallel, we write this as a product
such as

⊗n
i=1 Rn (resp.

⊗n
i=1 αi). If we attach a family of converters α1, . . . , αn to interfaces

I1, . . . , In of a resource R, we write
∏n
i=1 αi

IiR.
Each setting is described by a cryptographic algebra with a certain label set L.

Definition 2. A cryptographic algebra for a label set L is a pair 〈Φ,Σ〉 consisting of a set of
resources Φ and a set of converters Σ, together with families of parallel composition operations
[·] : Φ∗ → Φ and [·] : Σ∗ → Σ, as well as connecting operations ·i· : Σ× Φ→ Φ. The algebra is
composition-order independent if

1. for all C1, C2 ∈ Σ, R ∈ Φ, and i, j ∈ L with i 6= j,

Ci1(C
j
2R) = Cj2(Ci1R), and

2. for all C1, . . . , Cm ∈ Σ, R1, . . . , Rm ∈ Φ, and i ∈ L,

[CJ ]i[RJ ] =
[
Ci1R1, . . . , C

i
mRm

]
.

Distinguishers. A distinguisher D is a special type of system that connects to all interfaces
of a resource U and outputs a single bit at the end of its interaction with U. In the term algebra,
this appears as the expression DU, which defines a binary random variable. The distinguishing
advantage of a distinguisher D on two systems U and V is defined as

∆D (U,V) := |Pr(DU = 1)− Pr(DV = 1)|.

The advantage of a class D of distinguishers is defined as ∆D (U,V) := supD∈D∆D (U,V). The
distinguishing advantage measures how much the distribution of the output of D differs when
it is connected to either U or V. Intuitively, if no distinguisher (of a certain class) differentiates
between U and V, they can be used interchangeably in any environment of that class (otherwise
that specific environment could serve as a distinguisher).

Note that the distinguishing advantage is a pseudo-metric. In particular, it satisfies the
triangle inequality, i.e., ∆D (U,W) ≤ ∆D (U,V) + ∆D (V,W) for all resources U, V, and W
and distinguishers D. There is an equivalence relation on the set of resources (which is defined
on the level of discrete systems), denoted by U ≡ V, which means that ∆D (U,V) = 0 for all
distinguishers D.

Games. Games that capture properties such as unforgeability are two-interface systems that
at their left interface connect to some adversary or solver A and at the right interface output
a single bit (usually denoted W ). The performance of A in a game G is denoted as

ΓA(G) := PrAG(W = 1).
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Reductions. When relating (the hardness of) two problems such as distinguishing systems
or winning a game, it is convenient to use a special type of system C that translates one setting
into the other. Formally, C is a converter that has an inside and an outside interface. When it
is connected to a system S, which is denoted by CS, the inside interface of C connects to the
merged interfaces of S and the outside interface of C becomes the interface of the composed
system. C is called a reduction system (or simply reduction).

To reduce distinguishing two systems S,T to distinguishing two systems U,V, one describes
a reduction C such that CS ≡ U and CT ≡ V. Then, for all distinguishers D, we have
∆D (U,V) = ∆D (CS,CT) = ∆DC (S,T). The last equality follows from the fact that C can
also be thought of as being part of the distinguisher.

2.4 The Notion of Construction

The construction notion (cf. [Mau11]) requires two conditions: availability and security. For
the former, the behavior of the real resource (with the converters) must be indistinguishable to
the behavior of the ideal resource, if the “blocking” converter ⊥ is attached at the adversarial
interface (always denoted by the special label E) of both resources. For the latter requirement,
we demand the existence of a simulator which essentially emulates the behavior at the E-
interface of the real resource, while being connected to the corresponding interface of the ideal
resource. More formally:

Definition 3. Let ΦL and Σ be as above. A protocol πL′ = (π`)`∈L′ constructs resource S ∈ Φ
from resource R ∈ Φ within ε and with respect to distinguisher class D, if ∆D

(
(πL′)

L′πS
S⊥ER,⊥ES

)
≤ ε (availability)

∃σ ∈ Σ : ∆D
(

(πL′)
L′πS

SR, σES
)
≤ ε (security),

where (πL′)
L′ means attaching each π` to interface `.

In the descriptions of the resources, we use a special “cheating bit” b ∈ {0, 1} at the E-
interface and describe their behavior in the case there is no attacker present (b = 0, this is
input by ⊥), and in case that there is an attacker present (b = 1, usually set by the simulator).

Settings and interface sets considered in this work. The most important scenario we
consider in this work comprises multiple clients, one server, and one (explicit, external) ad-
versary. Some resources are easier described as the parallel composition of resources for fewer
parties and some protocol steps can be proven in such a simpler setting in isolation, i.e., with
respect to only one client, one server, and the adversary.

The simplified setting involving only two honest parties and one attacker is called the
{A,B,E}-setting and is used to analyze protocols and schemes like symmetric encryption or
MACs, cf. [MT10]. The (honest) parties’ interfaces are named A and B, and there is an explicit
adversarial interface E. Resources are in the set Φ{A,B,E}, and protocols are pairs of converters
π = (π1, π2) for A and B, respectively.

Unilateral key-exchange protocols are used in a setting with multiple clients, one server, and
an explicit adversary. We consider a set C of clients, a server S, and an adversary E. Hence,
we consider a label set L = C ∪ {E,S}, resources are in the set ΦL, and a protocol consists of
a family (πC)C∈C of client converters and a server converter πS .

Constructions in the {A,B,E}-setting can be “lifted” to settings with more interfaces. Such
a lifting is described by an injective function τ : {A,B,E} → L, where we generally assume
τ(E) = E. Resources R ∈ Φ{A,B,E} are embedded into ΦL by providing the A and B-interfaces
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as τ(A) and τ(B)-interfaces and inactive interfaces for all I ∈ L\ τ({A,B,E}). We denote this

resource by JRK(τ(A),τ(B),τ(E)) (we usually only write JRK(τ(A),τ(B))). A protocol π = (π1, π2)
consisting of a pair of converters π1 for A and π2 for B becomes πL = (πI)I∈L with πτ(A) = π1,
πτ(B) = π2, and πI = id for all I /∈ τ({A,B,E}). Security statements transfer from the
{A,B,E}-setting to the L-setting since any distinguisher in the L-setting can be translated
into a distinguisher for the {A,B,E}-setting by simply emulating the inactive interfaces. (In
particular this is a mapping in the above described sense.)

2.5 Discrete Systems

The statements in this paper are statements about discrete systems, i.e., systems that com-
municate by receiving and sending messages. We formalize these systems as random sys-
tems [Mau02, Mau13], i.e., families of conditional probability distributions.

Definition 4. Let X and Y be sets. An (X ,Y)-random system F is an infinite sequence of
conditional probability distritbutions pF

Yi|XiY i−1 : Y × X i × Y i−1 → [0, 1] for i ≥ 1.

Random systems can be equivalently described by a sequence of conditional probability
distributions pF

Y i|Xi for i ≥ 1 that satisfy a compatibility condition, i.e., for any two i′ < i′′ the

distributions are consistent for the first i′ values.
A game as described in Section 2.3 is an (X ,Y)-system which interacts with its environment

by taking inputs X1, X2, . . . (considered as moves of the adversary) and answering with outputs
Y1, Y2, . . . . In addition, after every input it also outputs a bit indicating whether the game has
been won. This bit is monotone in the sense that it is initially set to 0 and that, once it has
turned to 1 (the game is won), it can not turn back to 0 (even if the game were continued).
This motivates the following definition, which captures the notion of game-winning.

Definition 5. For a (X ,Y × {0, 1})-system F the binary component Ai of the output (Yi, Ai)
is called a monotone binary output (MBO) if Ai = 1 implies Aj = 1 for j ≥ i. Such a system F
with MBO is also called a (discrete) game.

Any system F together with a monotone event sequence (MES) A = (A1, A2, . . . ) defined
on F (within any random experimant, see [Mau02]) can be seen as the game by extending
the output of F by an additional component which turns from 0 to 1 exactly when the MES
becomes false. We write FA to denote the system with the additional MBO. Conversely, for
a (X ,Y × {0, 1})-system F (with MBO) we write F− to denote the (X ,Y) system where the
binary component of the output is discarded.

The adversary (or game winner) and the game are connected via their interfaces; i.e., the
adversary specifies the inputs Xi and obtains the outputs Yi of the game. To formulate “tradi-
tional” game-based definitions in this language, the game, often denoted as G with additional
super- and subscripts, allows the adversary A to issue “oracle queries” via that interface. We
usually denote the special monotone output bit as W . For a game G and an adversary A, we
define the game-winning probability after q steps (queries) as

ΓA
q (G) := PAG(Wq = 1).

For an adversary A that halts after (at most) q steps, we write ΓA(G) := ΓA
q (G).

Two systems with MBOs can be equivalent as games, which captures only that they behave
equivalently as long as the game is not won.

Definition 6. Two (X ,Y × {0, 1})-systems with MBO, S and T, are equivalent as games,

denoted S
g
≡ T, if, for i ≥ 1,

pSY i,Ai=0|Xi = pTY i,Ai=0|Xi .
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2.6 Insecure Communication Channels and TLS Fragments

The TLS protocol transmits its data via a TCP connection which transmits a byte stream. At
the lowest level, the TLS record protocol then partitions this byte stream into fragments, each
fragment corresponding to one message sent in the TLS protocol. Technically, each fragment
consists of four fields:

1. the content type of the transmitted message, which signals whether the message is a
change cipher spec request, an alert, a handshake message, or application data,

2. the protocol version,
3. the length of the following payload, and
4. the payload message itself.

For simplicity, we model the communication channels that we assume as channels that transmit
TLS fragments, ignoring the part of the protocol that converts the fragments into the TCP
byte stream and vice versa. The plaintext contained in a TLS plaintext fragment is of length at
most 214 = 16384 bits, and a TLS ciphertext fragment is of length at most 214 + 2048 = 18432
bits (plus 5 bytes of header). We generally write {0, 1}≤` :=

⋃
0≤i≤`{0, 1}i.

3 Constructing the Master Secret

3.1 The Assumed Resources

The resources we assume for the TLS protocol are: an insecure network (obtained by using the
TCP/IP protocol in the Internet), a public-key infrastructure which we view as allowing the
server to send one message (its public key) authentically to all clients, and a random-oracle
resource, outputting consistent random values for user (and adversary) input.

The “Internet” network resource. The insecure network is described as a parallel compo-
sition of insecure channels. There are two such channels between each potential client and the
server (one in each direction). Technically, the TLS protocol is run via a TCP connection which
transmits byte streams; TLS partitions such a byte stream into TLS fragments that correspond
to the messages sent by higher protocol layers. These fragments are the lowest layer that we
consider in our analysis; for us, an insecure communication channel is one that transmits a
sequence of TLS fragments.

Insecure channel −�

0. Obtain input b ∈ {0, 1} at the E-interface.
1. (Repeatedly) Upon input a message m ∈ {0, 1}≤18432 at the A-interface:

• if b = 0, then output m at the B-interface;
• if b = 1, then output m at the E-interface.

2. (Repeatedly) Upon input a message m ∈ {0, 1}≤18432 at the E-interface, if b = 1,
then output m at the B-interface.

As TLS builds on TCP, we can envision the insecure channels to be identified by the clients’
TCP sockets, i.e., an address in the set ATCP = {0, 1}32 × {0, 1}16. Consequently, the entire
network resource, which we denote by NET, is defined as the parallel composition of resources⊗

C∈ATCP
J[−�,� −]K(C,S/C).
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The Public-Key Infrastructure. For the case of unilateral authentication (i.e., only the
server has a certificate and the clients are not authenticated), we describe a “simple” resource
that allows the server to authenticate its public key toward all clients. This task is, in a real
protocol, achieved by using certificates obtained from some certification authority.

The resource PKI provides one “client” interface for each C ∈ C, as well as a “server”
interface S, and an “eavesdropper” interface E. The resource is parametrized by a distribution
F over functions f : {0, 1}∗ → {0, 1}∗ that depends on the scheme used to construct the resource,
which might be, as in the case of TLS, X.509. For more details on X.509 see Appendix A.1.

Public-Key Infrastructure Resource PKIF
Choose a function f ← F.

• On input a message (register, x) at the S-interface with x ∈ {0, 1}∗, output s = f(x)
at the S-interface. Additionally output (x, s) at the E-interface.
• On input (verify, x, s) at some interface C ∈ C:

– If x was input at the S interface and the response was s, then output 1.
– Otherwise, output 0.

Related papers following the constructive cryptography paradigm, such as [CMT13, MTC13],
model the capability of authentically transmitting a single message such as a public key to
other parties as an authenticated single-message channel. This simpler formalization is gener-
ally preferable because it abstracts from the scheme with which the authentication is achieved;
however, in the case of TLS the certificates issued by the certification authority (i.e., the bit
strings) are actually used within higher levels of the protocol, in particular, the certificates are
included in the computation of the “finished” message.

Uniqueness of certificates. The description of the certification resource PKIF described
above formalizes that the encoding of certificates is unique: the verification is successful if and
only if exactly the same pair (x, s) has occurred previously. This assumption is justified because
the X.509 certificates are transmitted in TLS via DER encoding, which guarantees that every
data structure has a unique representation.

The random oracle. The random oracle is a resource that can be queried at all interfaces
with strings x ∈ {0, 1}∗, and for each new string, it responds with a uniform output of length k.
If some input was queried (at any interface) before, then the random oracle answers consistently.

Random Oracle ROk
On input a string x ∈ {0, 1}∗ at some interface:

• if x was queried before at some (potentially other) interface, respond with the same
value as in that query;
• otherwise, draw a uniformly random y ∈ {0, 1}k and respond with y.

3.2 Session Naming

In the setting of unilateral key exchange, clients do not a priori possess any information that
differentiates them from other clients. To prevent protocol sessions from interfering with each
other, however, it is necessary to cryptographically bind some unique information to each ses-
sion. In the TLS protocol, the client’s nonce can serve this purpose. In fact, this nonce can be
seen as a “unique name”, as it is—with high probability—unique for honest clients.
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3.2.1 Choosing Unique Nonces

Unique names are formalized as a resource that provides to each honest party a unique value. A
unique name in this sense is a weak assumption, as there is no authenticity requirement. For a
set N of names and a set C ⊆ ATCP such that |N | ≥ |C|, the resource NAME parametrized by an
injective function ρ : C → ρ(C) ⊆ N assigns to each client C ∈ C a unique name η = ρ(C) ∈ N .

Unique name resource NAMEρ for ρ : C → N

At each interface C ∈ C, output ρ(C).

Choosing a nonce at random from some distribution N over the set N also implements this
resource; thus, the resource is constructed without any setup assumptions. In more detail, let
rnd be the converter that chooses a nonce η←$ N at random and outputs η at the outside
interface. The client nonces in TLS consist of a 28 byte random string to which the date and
time are prepended, so N = {0, 1}256. As the nonce contains 224 bits of randomness, any pair
of two clients chooses the same nonce with probability at most

(|C|
2

)
2−224, where |C| is the total

number of client sessions (see [MTC13, Lemma 7]). In the following, we use the symbol N to
denote the distribution used in TLS.

3.2.2 Separating Network Sessions

The client’s nonce ηC is sent to the server which uses it to identify that particular client’s
session. While the nonces used by honest clients as obtained from the NAME resource are
unique, the server does not prevent the adversary from starting many sessions with the same
nonce. Hence, we index the sessions by pairs sid = (ηC , e) ∈ N × N. Furthermore, the server
also chooses a nonce ηsid ←$ N for this session and sends it to the client. This nonce exchange
protocol constructs, from the resources NAMEρ for some injective mapping ρ : C → N and NET,
a resource denoted by SNET.

The resource SNET, wich is described in Figure 3, has interfaces labeled C ∈ C for the
clients, a server’s interface S which has one sub-interface for each pair (η, e), where η ∈ N is the
client’s nonce and e ∈ [n] is a counter indicating how many sessions have been initiated with
nonce η, and an adversary’s interface called E. To simplify further construction steps, we rule
out collisions for server nonces in the SNET resource below, in sessions that are associated to
the same client nonce (i.e., sid = (ηC , e) and sid ′ = (ηC , e

′)). The reason is that by making the
pairs of clients and server nonces unique, we guarantee that any two sessions obtain their keys
by querying different parts of the random oracle. Technically, our SNET resource will check,
when generating a server nonce for a particular client nonce, whether the same server nonce has
already been generated for that client nonce. Note that the server nonce has the same structure
as the client nonce, thus the security loss is analogous.

The resource SNETN,ρ,n is constructed (from NAMEρ and NET) by the protocol (hec, hesn)
described as follows, where the server’s converter hesn is parametrized by the maximum number
of sessions it accepts per client nonce.

Client converter hec: (Each such converter connects to an interface C ∈ C ⊆ ATCP which has
three sub-interfaces: one each for sending messages to, and respectively receiving messages
from the server, and a third sub-interface for obtaining the nonce.) Get a nonce ηC ∈ N
from the resource NAMEρ and send it via the sending sub-interface. Upon receiving η̃ at
the receiving sub-interface, output (ηC , η̃) at the outside interface. Afterward, forward all
messages (between the sending and receiving sub-interfaces).

Server converter hesn: Initially set eη = 1 for each η ∈ N .
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Augmented Network Resource SNETN,ρ,n

The resource is parametrized by a nonce distribution N, an injective function ρ : C → N ,
and n ∈ N.
Obtain at the E-interface an input b ∈ {0, 1}. If b = 0, then for each C ∈ C choose a nonce
ηsid ←$ N with sid = (ρ(C), 1), output (ρ(C), ηsid ) at interface C and ηsid at interface sid ,
and provide bidirectional channels between those two interfaces.
Otherwise, if b = 1, then initialize eη = 0 for all η ∈ N and

• Upon input (ack, η̃) at interface E, if eη̃ ≤ n, then for sid = (η̃, eη̃) choose a nonce
ηsid uniformly at random from N \ {ηsid1 , . . . , ηsideη̃−1} (where side = (η̃, e)), out-

put ηsid at the E/sid - and the S/sid -interfaces, and increase eη̃. Then, forward all
communication between the interfaces S/sid and E/sid .

• Upon input (deliver, C, η̃) with C ∈ C, output (ηC , η̃) at the interface C. Then,
forward all communication between the interfaces C and E/C.

Figure 3: The network resource that additionally outputs nonces.

• Upon receiving a nonce η̃C at an inside C-sub-interface for some C ∈ ATCP, if
eη̃C ≤ n, then choose a nonce ηsid ←$ N, send ηsid via the C-sub-interface at the
inside. Output ηsid at outside ˜sid -sub-interface with ˜sid = (η̃C , eη̃C ), and increment
eη̃C by 1.
• Afterward, forward all messages between the outside sub-interfaces associated to ˜sid

and the inside C-sub-interfaces.

We prove the following (security) statement.

Lemma 7. Let C ⊆ ATCP and let ρ : C → N be an injective mapping. The protocol (hec, hesn)
constructs the resource SNETN,ρ,n from the resources NET and NAMEρ. More concretely,∏

C∈C
hecChesn

S⊥E [NET,NAMEρ] ≡ ⊥ESNETN,ρ,n,

and there exists a simulator σ such that, for all distinguishers D,

∆D

(∏
C∈C

hecChesn
S [NET,NAMEρ] , σ

E SNETN,ρ,n

)
≤
(
n

2

)
· 2−224.

Proof.

Availability. Apart from outputting nonces at the server’s side, there is one main difference
between the real resource, [NET,NAMEρ], and the ideal resource, SNETN,ρ,n: the server sessions
in SNETN,ρ,n are denoted by tuples (η, e), where η is the client nonce and e ∈ [n] is the index of
the session between the server and that particular client; by contrast, the server sessions in NET
are denoted as TCP addresses. Since η is unique (by the properties of NET), this difference is
strictly nominal, and the server’s converter hesn takes care of it.

Security. We prove the security statement in two steps. In the first step we modify the
ideal resource SNETN,ρ,n and define a resource H which behaves exactly like SNETN,ρ,n except
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that it does not check for collisions in server nonce values. We first argue that SNETN,ρ,n

and H behave identically, up to a difference of
(
n
2

)
· 2−224. Indeed, the two resources behave

differently only when, for some nonce η̃, the resource H outputs a duplicate nonce ηsid = ηsid ′

for sid = (η̃, e) 6= (η̃, e′) = sid ′. A collision in two of at most n sessions occurs with probability(
n
2

)
· 2−224.
Let R :=

∏
C∈C hec

Chesn
S⊥E [NET,NAMEρ]. In the second step, we show R and S′ := σEH

are equivalent, for the following σ described below. (Note that intuitively S′ (and indeed the
ideal resource SNETN,ρ,n) has no security properties with respect to the message transmission,
e.g. integrity or confidentiality. Indeed, SNETN,ρ,n describes a network that exchanges nonces
correctly between clients and servers, with the additional property that no two sessions share
the same nonces.) The simulator σ behaves as follows:

• Initialization. Set eη = 1 for all η ∈ N . For each C ∈ C, simulate ρ(C) as being

transmitted on J−�K(C,S/C).

• Delivery of client’s nonce. On input a nonce η̃ at the outside sub-interface correspond-
ing to a channel J−�K(C,S/C), if eη̃ ≤ n, then input (ack, η̃) at the inside interface, set
sid = (η̃, eη̃), and increase eη̃. Obtain a nonce at the inside interface, call it ηsid , and out-

put ηsid at the outside interface as transmitted via J� −K(C,S/C). All messages obtained

via the inside sid -sub-interface are output as transmitted via J� −K(C,S/C), all messages

input at the outside sub-interface corresponding to channel J−�K(C,S/C) are input at the
inside sid -sub-interface.

• Delivery of the server’s nonce. On input the first message (a nonce η̃) at the outside

sub-interface corresponding to a channel J� −K(C,S/C), input (deliver, C, η̃) at the inside
interface. All messages obtained via the inside C-sub-interface are output as transmit-
ted via J−�K(C,S/C), all messages input at the outside sub-interface corresponding to

channel J� −K(C,S/C) are input at the inside C-sub-interface.

We argue that the simulation is perfect. Firstly, the simulator correctly instantiates the
sessions between clients and server. Indeed, in both cases, consistent server sub-interfaces are
used because the counters eηC are updated whenever a nonce ηC is delivered to the server.

The equivalence then follows from two observations:

• On input the first message, a nonce η̃, at the E-interface of some channel J−�K(C,S/C),
both the real and the ideal systems will respond with a nonce ηsid ←$ N for sid = (η̃, eη̃),
and also in both cases the output at the interface S/sid is (ηC , ηsid ). Afterward, the
communication between the interfaces S/sid and the E-interfaces of the channels corre-
sponding to C ′ is forwarded in both cases.
• On input the first message, a nonce η̃, at the E-interface of some channel J� −K(C,S/C),

both the real and the ideal systems output η̃ at the C-interface. Afterward, the commu-
nication between the interface C and the E-interfaces of the channels corresponding to C
is forwarded in both cases.

This concludes the proof.

3.3 The Master Secret Key Resource

The next step, following the structure of our outline, is constructing the master secret key.
In more detail, we construct (from SNET, PKI, and RO) a resource denoted as MSKN,ρ,AUX ,n.
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Intuitively, this resource represents the result of the core of the handshake itself, as the parties
output the master key for the session, from which other keys are derived.

The resource MSKN,ρ,AUX ,n modeling the TLS master secret key (described in Figure 4) has
interfaces C ∈ C ⊆ ATCP for the clients, an interface S for the server with sub-interfaces labeled
sid = (η, e) ∈ N × [n], and an “adversarial” interface E, and is parametrized by the maximum
number n of sessions per client nonce. For the set C ⊆ ATCP, consider an injective function
ρ : C → N , which also parametrizes the resource. The resource is further parametrized by a
distribution AUX for the auxiliary information—this is important for specifying the behavior
of the resource in the availability case. More generally, this can be a family of distributions
to formalize that the auxiliary information in different sessions has some correlated random
information.

Master Secret Key Resource MSKN,ρ,AUX ,n

Accept at the E-interface an input b ∈ {0, 1}. If b = 0, then, for each C ∈ C, choose a
key κC ←$ {0, 1}384, a nonce ηsid ←$ N (with sid = (ρ(C), 1)), and auxiliary information
auxC ←$ AUX , and output (κC , ρ(C), ηsid , auxC) at interface C and (κC , ηsid , auxC) at the

interface S/sid . Then, behave as the parallel composition
⊗

C∈C J[−�,� −]K(C,S/ρ(C))

with the cheating bits b ∈ {0, 1} of all channels set to b = 0.
Otherwise, if b = 1, then: Initialize eη = 1 for all η ∈ ρ(C).

• For each η ∈ N , upon input (ack, η) at the E-interface, if eη ≤ n, then choose ηsid
uniformly at random from N \ {ηsid0 , . . . , ηsideη̃−1} for sid = (η, eη), output ηsid at

the E-interface and increase eη.

• Upon input (allow, C, aux , η̃) at the E-interface with aux ∈ {0, 1}∗, and η̃ ∈ N ,
output at the C-interface (κC , ρ(C), η̃, aux ) with a uniformly random κC ∈ K.

Afterward, if at the C-interface a message m ∈ {0, 1}≤18432 is input, output m at the
E-interface. Also, allow at the E-interface to inject messages m′ ∈ {0, 1}≤18432, to
be output at the C-interface.

• Upon input (deliver, η, e, aux ) at the E-interface: if e < eη and, for C = ρ−1(η),
(allow, C, ∗, ηsid ) was input at the E-interface before (i.e., with the correct server’s
nonce for sid = (η, e)), then output at the sid -sub-interface of the S-interface
(κC , ηsid , aux ).

• Upon input (inject, η, e, aux , κ) at the E-interface, if e < eη, then output at the
sid = (η, eη)-sub-interface of the S-interface (κ, ηsid , aux ).

After either a (deliver, η, e, ∗) or a (inject, η, e, ∗, ∗), if at the S/sid -sub-interface (with
sid = (η, e)) a message m ∈ {0, 1}≤18432 is input, output m at the E-interface. Also, allow
at the E-interface to inject messages m′ ∈ {0, 1}≤18432 to be output at the S/sid -sub-
interface.

Figure 4: The master secret key resource.

In TLS, the resource MSKN,ρ,AUX ,n is constructed in one of three ways: by relying on RSA
encryption, by means of a Diffie-Hellman key-exchange protocol with a static server key, and
by means of an Ephemeral Diffie-Hellman key exchange, with an ephemeral server key. Next,
we assess the security in constructing the master secret key resource using TLS-DH, TLS-DHE,
and TLS-RSA.
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3.3.1 Diffie-Hellman with a Static Server Key

The DH-based protocol consists of two types of converters, one converter dhc attached to each
client interface and one converter dhsG attached to the server interface. The protocol is run in
a DH-group G of prime order p, generated by some element g which is chosen when the server
certificate is generated, according to some distribution which we denote G. The client converter,
dhc, behaves as follows:

1. Obtain the pair (ηC , ηsid ) of nonces from SNETN,ρ,n.
2. Obtain value cert via SNETN,ρ,n, parse cert as ((G, pkS), s).2 Here we slightly abuse

syntax and write G to mean a description of the group G, including the generator g.3

3. Verify the server’s certificate by querying (verify, cert) at PKIF (if that fails, abort).
4. Choose a secret u ∈ {1, . . . , |G|} and send epkC = gu via SNETN,ρ,n.
5. Query pkuS |master secret|ηC |ηsid at RO384, receive κ.
6. Output (κ, ηC , ηsid , (epkC , cert)).

The server converter, dhsG , behaves as follows:

0. Sample a group G←$ G and generate a DH key pair (pkS , skS) = (gv, v). Register the
public key pkS at PKIF via (register, (G, pkS)), obtaining the value cert = ((G, pkS), s).

For each of the sessions described by a pair (ηC , e):
1. Upon receiving the nonce ηsid at the inside interface, respond with the certificate cert .
2. Upon receiving ˜epkC ∈ G, query ˜epk

v
C |master secret|ηC |ηsid at RO384, receiving κ̃.

3. Output (κ̃, ηsid , ( ˜epkC , cert)) at the outer (ηC , e)-sub-interface.

We prove the following result. The distribution AUX associated with the resource MSKN,ρ,AUX ,n

produces two values. The first varies for each session and is an element g̃ ∈ G (namely the public
key epkC , where G is sampled according to G). The second one is fixed for all sessions and is
distributed like the certificate cert .

Lemma 8. If the GapDH assumption holds with respect to the distribution G, then the protocol
(dhc, dhsG) constructs from [RO384, SNETN,ρ,n,PKIF] the resource MSKN,ρ,AUX ,n. More formally,∏

C∈C
dhcCdhsG

S⊥E [RO384, SNETN,ρ,n,PKIF] ≡ ⊥EMSKN,ρ,AUX ,n, (1)

and there is a simulator σ and a reduction C such that for all distinguishers D, it holds that:

∆D

(∏
C∈C

dhcCdhsG
S [RO384,SNETN,ρ,n,PKIF], σEMSKN,ρ,AUX ,n

)
≤ ΓDC(GGapDH

G ) . (2)

It might appear surprising that we obtain a tight reduction in equation (2), given that the
security statement applies to a setting with multiple parallel sessions. The reason is that we can
exploit the random self-reducibility of the GapDH problem to “inject” the GGapDH

G -challenge
into every session without changing the overall distribution.

Proof.

2In the specifications of TLS 1.2, if the public key is not extractable from certificates, for client and/or server,
a special message can be sent, which includes the public key. Here we restrict to the standard case.

3In particular, the X.509 certificate explicitly encodes the prime order p of the Galois field, the prime sub-order
q of the group, and the group generator g, of order q [HFPS99].
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Availability. For availability, the cheating bit in the ideal MSKN,ρ,AUX ,n resource is set as
b = 0, thus the resource outputs the random values as specified and provides channels between
the clients’ and the server’s interfaces that deliver all messages faithfully.

In the real resource, the nonces are exchanged in SNETN,ρ,n, where again the cheating bits
are set to b = 0. The certificate is correctly generated for the server’s public key pkS , and the
client’s ephemeral public key epkC is transmitted correctly. For the output, first note that the
key κ, which is output by RO384 in the real resource and is picked uniformly at random in the
ideal resource, have identical distributions—this is guaranteed by the RO384 resource. At the
server’s sub-interfaces, the consistent keys is delivered (guaranteed by the bit b being set to 0).

Finally, the auxiliary output aux is defined as (epkC , cert) and has the correct distribution
in both cases. Furthermore, once the initial exchanges are done, both resources behave like
insecure bidirectional channels in both directions. This verifies condition (1).

Security. The simulator σ does the following:

• Initially, set eη = 1 for all η ∈ N and define an (initially empty) map R : {0, 1}∗ →
{0, 1}384. Choose a function f ← F and a group G←$ G, generate the server’s DH key
pair (sk = v, pk = gv) for group G, compute s = f(G, pk) and output cert = ((G, pk), s)
at the outside interface to simulate the effect of an input (register, pk) to PKIF.

• Delivery of the client nonce. Upon input of the type (ack, ηC) at the outside interface,
issue (ack, ηC) at the inside interface4 and receive the generated ηsid for sid = (ηC , eηC ).
Output ηsid at the outside interface as coming from SNET, together with the certificate
cert , and increase eηC .

• Delivery of the server nonce. Upon input (deliver, C, η̃) at the outside interface and after
cert is delivered to C via SNET,5 generate u, epkC = gu, and input (allow, C, aux , η̃) at
the inside interface (where aux = (cert , epkC)). Simulate sending the DH element epkC
from C via SNETN,ρ,n, and register (η̃, epkC).

• Delivery of DH element. If some group element ˜epkC ∈ G is input at the outside sub-
interface sid = (η, e) with e ≥ eη, then:

– If ˜epkC corresponds to a recorded pair (ηsid , ˜epkC) then issue (deliver, η, e, aux ) at
the inside interface, with aux = (cert , epkC);

– Otherwise, input (inject, η, e, aux , κ) at the inside interface, with aux = (cert , ˜epkC),
and with the value κ computed as follows: if ˜epk

v
C |master secret|η|ηsid is defined in

R, then use R( ˜epk
v
C |master secret|η|ηsid ); otherwise define it as a freshly sampled

value R( ˜epk
v
C |master secret|η|ηsid )←$ {0, 1}384 and use that.

• Simulation of random oracle. Whenever the adversary E or either of the honest parties are
supposed to query the RO384 resource, return a random element R(x)←$ {0, 1}384, unless
the same input was queried before (in that case, return the value that was previously
returned).

4For the analysis, note that in the ideal resource the keys output at the client, server, and E interfaces are
all independent of the input nonces; thus, it is not important whether the adversary has forwarded an honestly
generated ηC or injected a different η̃C .

5Note that we simplify the certificate verification step in our analysis, confining ourselves to simply outputting
a bit, indicating validity/non-validity. In TLS, this is done in a more thorough manner, and several alert messages
are generated, depending on where the verification failed.
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Denote R :=
∏
C∈C dhc

CdhsG
S [RO384,SNETN,ρ,n,PKIF] and let S := σEMSKN,ρ,AUX ,n. We

first analyze the behavior of R and S in the initial queries.

• The exchange of the server’s nonces in the real and the ideal resource (the former using
SNET for it) is identical, the output at the E-interface having exactly the same distribu-
tions.
• The value cert has the same distribution in both cases.
• Injecting a value ˜epkC in a session between client C and the interface sid = (η, e), such

that the client C has already sent epkC 6= ˜epkC and computed its output, does not cause
discrepancies. In particular, as the keys are injected by the simulator and the random
oracle is simulated consistently, the simulation in this case is perfect, irrespective of any
queries the adversary makes to the random oracle.

Intuitively, the discrepancy between the two resources appears when the distinguisher ex-
pects a different output from the random oracle resource RO384 (in the real world) than the
output generated by the simulator (in the ideal world). This occurs (only) in sessions where
the key κ output by the client or server is obtained from RO384 via a query that is also asked
at RO384 by the adversary, whereas in the ideal world, the output at the client’s or server’s
interface is picked uniformly at random by MSKN,ρ,AUX ,n and the simulator cannot simulate
queries to RO384 consistently.

In the following, we show a reduction such that if such an event happens for some session,
this reduction outputs a solution to the GGapDH

G game (see Appendix C.2)—in particular, the

distinguisher must be able to find the input value ˜epk
v
C by only knowing epkC = gu and gv.

To simulate the environment for the distinguisher, the reduction will make “DDH-queries” at
GGapDH
G , which enables it to simulate the random oracle consistently.

We describe a reduction C that obtains (G, g, g1, g2) at the inside interface and starts sim-
ulating the setup using the group description (G, g) and g1 as the server’s public key (thus for
the simulated instance it holds that gv = g1), and otherwise behaves similar to S. To simulate
a group element sent by the client Ci, C chooses a value ri ∈ [|G|] uniformly at random and
simulates sending g̃i := g2 · gri .

As the reduction does not know the server’s secret, i.e. v, it has to make DDH-queries at
GGapDH
G to answer random oracle queries consistently. In more detail, the simulation of queries

goes as follows. For administrative purposes, the reduction keeps track of what the distinguisher
knows about the random oracle by updating two lists, initially empty. One list, which we denote
as HH records queries of the form (x, η, ηsid , y) (the value y is the output to honest parties to
input of the form x|master secret|η|ηsid ). The second list is denotedHM and records malicious
deliveries of ˜epkC values by the distinguisher to the simulated server; the entries are of the form
( ˜epkC , η, ηsid , y), where y is the output returned by the reductions when simulating RO384 for
the maliciously injected input ˜epkC . The queries are answered by the reduction as follows:

• Whenever the random oracle is queried on input (x, η, ηsid ), first check if there exists an
entry (x, η, ηsid , y) ∈ HH and if so, output y; else check if DDH(g1, g2, x · g−ri1 ) = 1 for

some i ∈ {1, . . . , |C|} and if so, output x · g−ri1 as solution to GGapDH
G . Else check for all

entries ( ˜epkC , η, ηsid , y) ∈ HM and return y if DDH( ˜epkC , g1, x) = 1. Otherwise, respond
with a random y and update the list HH ← HH ∪ {(x, η, ηsid , y)}.
• When the adversary delivers some group element ˜epkC to the server session sid , the reduc-

tion needs to simulate a random oracle query on input ( ˜epk
v
C , η, ηsid ), where v = logg g1.

As the reduction does not know v, it first checks if there is an entry ( ˜epkC , η, ηsid , y) ∈ HM ;
if such an entry exists, the reduction returns y; else, it checks if there exists an input of
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the form (x, η, ηsid , y) ∈ HH such that DDH( ˜epkC , g1, x) = 1 and if such a value exists, it
returns it and updates HM ← HM ∪ {( ˜epkC , η, ηsid , y)}. If no such value exists then the
reduction returns a random value y, and also updates HM ← HM ∪ {( ˜epkC , η, ηsid , y)}.

We define MBOs E i = (Ei1, E
i
2, . . . ) on the systems R, S, and C

(
GGapDH
G

)−
as follows:

Eq becomes 1 if after q queries there has been a query (pmk|master secret|ηC |ηsid ) at the
random oracle, such that C = Ci, sid = (ηC , j) for some j ∈ [n], and pmk is the DH element
corresponding g1 and g̃i. We then set E =

∨n
i=1 E i. Note that for g1 = gu, g2 = gv (so

g̃i = gv+ri) and pmk = gu(v+r1) = guv · guri = guv · gri1 , the reduction C always obtains the
correct guv = pmk · g−r11 .

Now it holds that RE
g
≡ SE

g
≡ CE

(
GGapDH
G

)−
, in particular all clients’ group elements

are uniformly distributed by their definition in dhc, σ, and C. Using Lemma 19 together
with the fact that C wins the game GGapDH

G whenever the output E is provoked, formally

ΓDC(GGapDH
G ) = ΓD(CGGapDH

G ) ≥ ΓD

(
CE
(
GGapDH
G

)−)
, concludes the proof.

3.3.2 Diffie-Hellman with an Ephemeral Server Key

The construction of the master secret key resource using the ephemeral Diffie-Hellman mode
can be proven in two constructive steps. First, we use the signature scheme to construct a
network / −• from SNET and PKI; this network allows the server to send one message in each
session in an authenticated way. Second, we complete the analysis of the TLS-DHE mode by
using the resource / −• to transmit the group parameters and the server’s ephemeral public key.

The authenticated transmission resource. The resource / −• has (client) interfaces C ∈
C ⊆ ATCP, a (server) interface S with sub-interfaces (η, e) ∈ N × N with e ∈ N, and an
(eavesdropper) interface E with sub-interfaces ATCP ∪ (N × N), and is parametrized by an
injection ρ : C → N , a distribution F over functions f : {0, 1}∗ → {0, 1}∗, and a signature
scheme SIG = (gen, sign, vrf ) as defined in Appendix B.1. The resource is described in detail
in Figure 5.

The following protocol constructs / −•N,ρ,F,SIG,n from SNETN,ρ,n and PKIF: The client’s
converter vrf is based on the signature scheme SIG and behaves as follows:

1. Obtain the pair (ηC , ηsid ) ∈ N 2 from SNETN,ρ,n.
2. Obtain the first message cert from SNETN,ρ,n. Query (verify, cert) at PKIF; abort if the

verification fails or if cert is not a well-formed certificate cert = (vk , f(vk)).
3. Obtain the second message m′ from SNETN,ρ,n and parse m′ as (m, s) (abort if that is

impossible). If vrf (ηC |ηsid |m, s; vk) = 1, then output (cert , ηC , ηsid ,m, s) at the outside
interface. (Otherwise abort.)

4. Forward all further messages between the inside and the outside interface.

The server’s converter sgn provides at the outside “sessions” for all sid = (ηC , e) ∈ N × [n] and
behaves as follows:

0. Compute (sk , vk)← gen. Input vk at PKIF, obtaining a response s, and set cert = (vk , s).
Output cert at the outside interface (as auxiliary information).

For each session sid = (ηC , e)—i.e., the inputs/outputs at SNETN,ρ,n are at the corresponding
inside sub-interface sid , and the inputs/outputs at the outside interface are at sub-interface
sid—do:
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The Authenticated Transmission / −•N,ρ,F,SIG,n
Initially, generate a key pair (sk , vk)← gen. Accept at the E-interface an input b ∈ {0, 1}.
If b = 0, then:

• Initially, choose f ← F. Output aux = (vk , f(vk)) at interface S. For each η ∈ ρ(C)
and sid = (η, 1), sample ηsid ←$ N and output ηsid at interface S/sid .
• Upon input the first message m at interface S/sid with sid = (η, 1) with η ∈ ρ(C),

generate a signature s← sign(η|ηsid |m; sk), output s at interface S/sid , and output
(aux , η, ηsid ,m, s) at interface C = ρ−1(η). (For inputs at interfaces S/(η, e) with
e > 1 or η 6∈ ρ(C), no output is generated.)
• All further messages m′ input at interface S/sid with sid = (ρ(C), 1) for some C ∈ C

are output at interface C, and all messages m′′ input at C are output at interface
S/sid with sid = (ρ(C), 1).

Otherwise, initialize eη = 1 for all η ∈ N and a buffer B = ∅. Output vk at the E-interface.

• Initially, obtain aux ∈ {0, 1}∗ at the E-interface. (This is supposed to contain the
certificate.) Output aux at the S-interface.
• Upon input (ack, η) for η ∈ N at the E-interface, if eη ≤ n then draw ηsid uniformly

at random from N \ {ηsid1 , . . . , ηsideη̃−1} with sid i = (η, i), increase eη, and output

ηsid at interfaces S/sid and E/sid .
• Upon input the first message m at interface S/sid (with sid = (η, e) and e < eη,

otherwise ignore the input), generate a signature s ← sign(η|ηsid |m; sk), record
(η|ηsid |m, s) in B, output s at interface S/sid , and (m, s) at interface E/sid .
Afterward, if at interface S/sid a message m ∈ {0, 1}≤18432 is input, output m at
interface E/sid . Also, allow at interface E/sid to inject messages m′ ∈ {0, 1}≤18432
to be output at interface S/sid .
• Upon input (deliver, C, η̃, m̃) at the E-interface (once for each C ∈ C), if there is a

record (η|η̃|m̃, s̃) ∈ B such that η = ρ(C), output (aux , η, η̃, m̃, s̃) at interface C.
Afterward, if at the C-interface a message m ∈ {0, 1}≤18432 is input, output m at the
interface E/C. Also, allow at interface E/C to inject messages m′ ∈ {0, 1}≤18432 to
be output at the C-interface.

Figure 5: The network allowing the server to transmit, to each client, one message authentically.

1. Receiving a nonce ηsid from SNETN,ρ,n, output ηsid at the outside and send cert via
SNETN,ρ,n.

2. Obtaining a message m at the outside, compute s ← sign(ηC |ηsid |m; sk) and send (m, s)
via SNETN,ρ,n. Output s at the outside.

3. Forward messages between inside and outside.

Lemma 9. The protocol (vrf, sgn) for a particular signature scheme SIG = (gen, sign, vrf )
constructs / −•N,ρ,F,SIG,n from SNETN,ρ,n and PKIF, if the signature scheme SIG is unforgeable.
More formally, ∏

C∈C
vrfCsgnS⊥E [SNETN,ρ,n,PKIF] ≡ ⊥E / −•N,ρ,F,SIG,n (3)
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and there is a simulator σ and a reduction C such that for all distinguishers D,

∆D

(∏
C∈C

vrfCsgnS [SNETN,ρ,n,PKIF], σE / −•N,ρ,F,SIG,n

)
≤ ΓDC(Guf-cma). (4)

Proof. We first verify condition (3). The keys (sk , vk) and the function f have the same
distribution in the real and the ideal case,6 the same holds for the auxiliary information
aux = (vk , f(vk)) output at interface S. Each interface S/sid with sid = (ηC , 1) and ρ(C) = ηC
outputs a random nonce ηsid also in both cases. On input the first message m at inter-
face S/sid , the same interface outputs a (valid) signature s for m, and the client’s interface
C outputs (aux , ηC , ηsid ,m, s) (since all messages can be parsed correctly, the verification of
the server’s certificate at PKIF succeeds, and the verification of the signature s succeeds by the
correctness of SIG). Afterward, messages input at interface C are output at interface S/sid
and vice versa—in the real case these are simply transmitted via SNETN,ρ,n.

For proving condition (4), we consider the following simulator σ:

• Initially, σ obtains the public key vk at the inside interface, chooses a function f ← F,
and computes cert = (vk , f(vk)). Also, σ internally initializes eη = 1 for all η ∈ N , and
inputs cert as auxiliary information at the inside interface, and as output of PKIF at the
outside interface.
• Upon input (ack, η) for a nonce η ∈ N at the outside interface, set sid = (η, eη). If
eη ≤ n, then input (ack, η) at the inside interface. Obtain the nonce ηsid at the inside
interface, output ηsid as response of SNETN,ρ,n at the outside interface, and increase eη.
Also, output cert at the outside interface as being transmitted via SNETN,ρ,n in session
sid .
• Upon input (deliver, C, η̃) at the outside sub-interface corresponding to SNETN,ρ,n, if

this is the first such query for C, record the nonce as ηsid := η̃ for sid = (ρ(η), ∗).
• When obtaining an output (m, s) at the inside sub-interface sid with sid = (η, e), output

(m, s) as being transmitted on SNETN,ρ,n as the second message via the corresponding
sub-interface. Mark sid as “active”.
• When receiving at the outside sub-interface corresponding to SNETN,ρ,n the first message
m̃1 to a client C, record C as “failed” if m̃1 6= cert .
• When receiving at the outside sub-interface corresponding to SNETN,ρ,n the second mes-

sage m̃2 = (m′, s′) to a client C, if C is not marked as “failed” and, with sid = (ηC , ∗),
vrf (ηC |ηsid |m′, s′; vk) = 1, then input (deliver, C, ηsid ,m

′) at the inside interface7 and
mark C as “active”.
• Communication is forwarded: for clients C ∈ C marked as “active,” messages m ∈ M

obtained at sub-interface C at the inside are output at the outside as being sent by C
via SNETN,ρ,n, and messages m′ ∈ M obtained at the outside as input to SNETN,ρ,n

directed to C are input at sub-interface C at the inside. The analogous behavior applies
to the (server-bound) “active” sub-interfaces described by sid = (η, e).

Moreover, we use the reduction C that connects with the inside interface to the game Guf-cma

and provides at the outside interface an emulation of R :=
∏
C∈C vrf

CsgnS [SNETN,ρ,n,PKIF],
using the key pair (sk , vk) obtained from Guf-cma. Roughly, C emulates R, but computes

6In the composed scheme, we let F be the distribution that one gets by generating a key pair according to the
signature scheme used by the assumed public-key infrastructure, and then for a parameter x ∈ {0, 1}∗ the result
of f is the pair (x, s) with s← sign(x; sk).

7This has an effect only if the corresponding message has been sent by the server before; if the signature is
forged, the real and ideal systems behave differently.
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the certificate cert = (vk , f(vk)) using the verification key vk obtained from Guf-cma, and the
signatures s ← sign(ηC |ηsid |m; sk) in the converter sgn using signing queries to Guf-cma. A
“forgery” in the emulated execution can then be used to win the game Guf-cma (for the exact
definition of forgery see the MBO below; the forgery for Guf-cma is achieved by concatenating
the corresponding nonces and the message).

We define the following MBO E on the systems R, S := σE / −•N,ρ,F,SIG,n, and CGuf-cma

as the following “no forgery”-event: it becomes 1 once there is an input (m̃, s̃) at the E/sid -
interface with sid = (ηC , e) such that vrf (ηC |ηsid |m̃, s̃; vk) = 1—such that ηsid was generated as
a response in the S-session sid—unless there was an output (m̃, s̃′) at some interface E/sid ′ with
sid ′ = (η, e′) and ηsid ′ = ηsid before. Then, proving “game equivalence” and using Lemma 19
allows to conclude (4).

The equivalence can be seen as follows (we use the counter variables eη in the same way
they are defined in the systems, i.e., counting the number of sessions that have been initiated
with nonce η):

• Initially, all systems output the certificate cert = (vk , f(vk)), with vk and f chosen ac-
cording to the same distributions, as auxiliary information at the S-interface, and as an
output corresponding to PKIF at the E-interface.
• Upon input (ack, η) at the outside E-interface corresponding to SNETN,ρ,n, the system R

outputs a nonce ηsid at the E-interface of SNETN,ρ,n and the S/sid for sid = (η, eη), as
well as cert being sent via SNETN,ρ,n from the server-session sid to the client C (see the
description of sgn). In S, the nonce is generated according to the same distribution and
output at the same interfaces; the message cert is simulated correctly.
• Upon input (deliver, C, η̃) at the outside E-interface corresponding to SNETN,ρ,n, there

is no immediate output (neither for R nor for S).
• Upon delivering the first message m̃1 via SNETN,ρ,n to a client C, if m̃1 6= cert then, in R,

vrf aborts since either m̃1 is not a well-formed certificate or the verification at PKIF fails.
In S, σ marks C as “failed” in the same cases. There is no output, neither in R nor in S.
• Upon the first input m at the outside S/sid -interface with sid = (η, e), system R generates

a signature s for ηC |ηsid |m using the key sk (within sgn), outputs s at the same sub-
interface and the pair (m, s) at the E-interface of SNETN,ρ,n. Within S, the signature is
computed analogously by / −•N,ρ,F,SIG,n, also output at S/sid , and the message/signature
pair is output at the E-interface via σ.
• Upon delivering the second message m̃2 via SNETN,ρ,n to a client C, if m̃2 can be parsed

as a pair (m, s) such that, with sid = (ηC , ∗), vrf (ηC |ηsid |m, s; vk) = 1, then in R
(cert , ηC , ηsid ,m, s) is output at the C-interface (and nothing if vrf aborted earlier or
because the verification failed). By the definition of E , this means that there was an
output (m, s′) at some interface E/sid ′ with sid ′ = (ηC , e), ηC = ρ(C), and ηsid ′ = ηsid
(where ηsid was input via (deliver, C, ηsid )).
In S, the simulator σ also checks whether the message m̃2 can be parsed correctly, the
client has not “failed,” and the signature verifies for the message extended by prepending
the nonces ηC and ηsid with sid = (ηC , ∗), where the latter nonce was delivered to C as
the server’s nonce before. The MBO assures that there exists a corresponding record in
the buffer B, which means that the output of R and S is consistent if no forgery occurs,
i.e., the systems are equivalent as games.
• After a certain session (either C ∈ C or sid at S) has been initialized, messages input there

are output at the corresponding sub-interface of the E-interface and vice versa. This is
consistent in both R and S.

As the same arguments (with the exception that the signatures are obtained from Guf-cma but
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have the same distribution) hold for the distribution in the case CGuf-cma, and each violation
of E can be used to win Guf-cma, this concludes the proof.

Constructing the key. The subsequent construction step is then achieved by the protocol
(dhec, dhesG), in which the server chooses for each session a (potentially fresh) Diffie-Hellman
group and element, which are sent as an authenticated message via / −•. We denote the
distribution over groups that the server uses by G; the only restriction implied by the TLS
standard is that the group specified as Z×p , where p is represented by at most 65535 bits [DR08,
page 51].8 We write dhesG wherever we want to make the distribution G used by the server
converter explicit.

The distribution AUX in this case consists of two parts. The first part is the same for
all sessions and consists of the certificate (i.e., depends on F and SIG of / −•N,ρ,F,SIG,n). The
distribution is described by (sk , vk) ← gen, f ←$ F, and then cert = (vk , f(vk)). The second
part is chosen independently for each session by doing the same process as in the protocol:
choose a prime p ∈ N and a generator g ∈ Z×p according to the distribution G, and choose two
group elements g1, g2←$ Z×p uniformly at random.
The client’s converter dhec obtains (aux , ηC , ηsid ,m, s) at the inside interface, and then:

• Parse the message as p|g|g′ = m (abort it impossible).
• Choose u←$ {1, . . . , q} (with q = |Z×p |) and input gu at the inside interface.
• Query g′u|master secret|ηC |ηsid at RO384, in order to obtain a key κ ∈ {0, 1}384. Output

(κ, ηC , ηsid , aux |m|s|gu).
• Forward the following communication between the inside and the outside interfaces.

The server’s converter dhesG connects to the S-interface of / −•N,ρ,F,SIG,n. Both the inside and
outside interfaces have sub-interfaces sid = (ηC , e) ∈ N × [n]. The converter behaves as follows:

• Initially, receive aux on the inside interface.
• Upon obtaining a nonce ηsid at sub-interface sid = (ηC , e), choose a modulus p ∈ N

and a generator g ∈ Z×p according to the distribution G. Also, choose an exponent
v←$ {1, . . . , |Z×p |}. Send m = p|g|gv via the inside sub-interface sid . Obtain the signature
s at the inside interface in return.
• Upon receiving a group element g̃ in an (active) session sid = (ηC , e) at the inside interface,

query g̃v|master secret|ηC |ηsid at RO384, call the result κ. Output (κ, ηsid , aux |m|s|g̃)
at the outside sub-interface sid .
• Forward the following communication between the corresponding sub-interfaces sid of the

inside and the outside interface.

The described protocol indeed constructs the master secret key resource from the net-
work / −• and the random oracle RO384 under the assumption that the GapDH assumption
holds with respect to the distribution G.

Lemma 10. The protocol (dhec, dhesG) constructs from RO384 and / −•N,ρ,F,SIG,n the resource
MSKN,ρ,AUX ,n, under the GapDH assumption for G. More formally, with the above-described
converters dhec and dhesG,∏

C∈C
dhecCdhesG

S⊥E [ / −•N,ρ,F,SIG,n,RO384] ≡ ⊥EMSKN,ρ,AUX ,n, (5)

8We assume that the server picks a safe prime of appropriate size.
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and there is a simulator σ and a reduction C such that for all distinguishers D

∆D

(∏
C∈C

dhecCdhesG
S [ / −•N,ρ,F,SIG,n,RO384], σ

EMSKN,ρ,AUX ,n

)
≤ n · |C| · ΓDC

(
GGapDH
G

)
.

(6)

Proof. We first argue that equation (5) holds. The “ideal” system ⊥EMSKN,ρ,AUX ,n chooses,
for each session sid = (ηC , 1) with ρ(C) = ηC , a nonce ηsid , a key κC and auxiliary infor-
mation auxC , and outputs (κC , ηsid , auxC), and afterward forwards communication between C
and S/sid .

The distribution in the case
∏
C∈C dhec

CdhesG
S⊥E [ / −•N,ρ,F,SIG,n,RO384] is as follows. The

key κC for each client C is a uniformly random 384-bit string (the random oracle RO384 is queried
at distinct places as ηC is distinct by the assumption on ρ), the nonces ηsid for sid = (ηC , 1) are
distributed according to N, and the auxiliary information auxC has exactly the same distribution
as well. Moreover, after at both interfaces C and S/sid the above information is output, the
resource behaves as a bidirectional channel between those interfaces. This verifies equation (5).

The simulator basically needs to take care of the / −•N,ρ,F,SIG,n’s E-interface (beginning
with choosing some good aux ), and then needs to simulate the DH exchange, i.e., the group
and elements generated by the server as well as the element generated by the client. The
simulator σ behaves as follows:

• Throughout, σ keeps counters eη for each η ∈ N in the usual way (i.e., increase eη whenever
the nonce η is delivered to the server). Also, σ keeps a map R : {0, 1}∗ → {0, 1}384 which
is initially empty.
• Initially, obtain a string cert ∈ {0, 1}∗ at the outside interface (this is needed for the

auxiliary information).
• Upon input (ack, η) at the outside, input (ack, η) at the inside and obtain as response
ηsid for sid = (η, eη). Output ηsid at the outside interface. Also, choose a modulus
psid ∈ N and a generator gsid ∈ Z×psid according to G, as well as a value v←$ {1, . . . , qsid}
for qsid = |Z×psid |, compute g̃sid = gvsid and s ← sign(η|ηsid |psid |gsid |g̃sid ; sk), and output
(psid |gsid |g̃sid , s) at the outside sub-interface sid .
• Upon input (deliver, C, η̃, m̃) at the outside, if (ack, ηC) was input before, and there is a

session sid = (ηC , e) with η̃ = ηsid and m̃ = psid |gsid |g̃sid , then input (allow, C, aux , ηsid )
with aux = cert |psid |gsid |g̃sid |ḡsid where ḡsid = gu for a uniformly random u ∈ {1, . . . , qsid}.
Simulate ḡsid as the first message transmitted from C to sid . (If any check fails, output
nothing—note that we simplify the protocol and do not handle error messages.)
• If a group element g′sid is delivered (i.e., input at the outside interface) to some instance

sid (and g′sid is a valid group element in the group with modulus psid ):

– if g′sid = ḡsid , then input (deliver, ηC , e, aux ) and aux = cert |psid |gsid |g̃sid |ḡsid (with
sid = (ηC , e)) at the inside interface;

– otherwise, for x = g′sid
v|master secret|ηC |ηsid , if R(x) is undefined, initialize it as

R(x)←$ {0, 1}384 and input (inject, ηC , e, aux , R(x)) at the inside interface with
sid = (ηC , e) and aux = cert |psid |gsid |g̃sid |g′sid .

• Simulate the random oracle, that is, on input x intended for RO384 at the E-interface, if
R(x) is not defined then set R(x)←$ {0, 1}384. Return R(x).
• Deliver messages faithfully for the sessions where the setup is complete, i.e., for clients
C ∈ C after a successful—i.e., one that was simulated before—(deliver, C, η̃, m̃) query,
and for server sessions sid = (η, e) after delivering a valid group element (valid with
respect to the group used in that session) in response to the authenticated message via

/ −•N,ρ,F,SIG,n.
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We first observe that the two systems R =
∏
C∈C dhec

CdhesG
S [ / −•N,ρ,F,SIG,n,RO384] and

S = σEMSKN,ρ,AUX ,n are equivalent with respect to how they treat nonces; in particular, the
responses to (ack, η) are determined by choosing fresh parameters in both cases. The same
argument holds for the queries in which messages are forwarded in the sessions that completed
the setup.

For the queries (deliver, C, η,m), for delivering group elements to a session sid of the
server, and for querying the random oracle RO384, the difference between R and S is that in R,
all “keys” output at either C ∈ C or S/(ηC , e) for ηC ∈ N and e ∈ [n] are chosen consistently
with the random oracle queries, whereas in S they are not (in cases where both group elements
have been simulated).

We then describe reduction systems Ci,j for i ∈ [|C|] and j ∈ [n], which obtain at the inside
interface a modulus p, a generator g, and two group elements ga, gb. We assume that there is
some (e.g., lexicographic) ordering on the set C, i.e., the elements are C1, . . . , C|C|. All systems
Ci,j manage internally a map R : {0, 1}∗ → {0, 1}384 which is initially empty and is managed
as a “random oracle with lazy evaluation”, i.e., whenever a look-up R(x) for x ∈ {0, 1}∗ in R
fails, the system will choose a fresh random value y ∈ {0, 1}384, store R(x) = y, and use y as the
result. The system Ci,j then behaves as follows (we stress that every query can be associated
with a (client’s) nonce η ∈ N , either because the nonce is given explicitly, or because the query
belongs to a session that is described by a nonce and a counter):

• for queries (at the S- and E-interfaces) that are related to nonces η ∈ N \ ρ(C), the
system Ci,j can easily reproduce the behavior of the real or ideal systems (their behavior
is equivalent for those queries);
• For queries that are related to a client C` resp. the nonce η` = ρ(C`) with ` 6= i, or

alternatively to (server) sessions (ρ(Ci), e) with e 6= j, emulate the entire sessions. Choose
the key output at C` and the corresponding sub-interface of the server (if there is a
consistent session, corresponding to the use of deliver in MSKN,ρ,AUX ,n) by computing
as in the protocol and then evaluating R.
• For the jth (ack, ρ(Ci))-query, emulate the server’s response using the parameters (i.e.,

the modulus p, the generator g, and the first group element ga) obtained at the inside
interface.
• For the query (deliver, Ci, η̃, m̃) at the sub-interface corresponding to / −•N,ρ,F,SIG,n:

– if η̃ = ηsid for sid = (ρ(Ci), j), and if the message would be admitted by / −•N,ρ,F,SIG,n,
then emulate the second group element gb obtained at the inside interface as a mes-
sage from Ci to sid . Choose κCi ∈R {0, 1}384 and emulate it at interface Ci.

– if η̃ = ηsid for sid = (ρ(Ci), e) and e 6= j, and if the message would be admitted by

/ −•N,ρ,F,SIG,n, then emulate a uniformly chosen element of the group described in
m̃; choose the key κCi using the map R evaluated on g̃|master secret|ρ(Ci)|ηsid ,
where g̃ is the DH key that can be computed because Ci,j chose all parameters.

• Upon delivery of the first client’s message in session sid = (ρ(Ci), j), if the message
completes a consistent session with Ci, then emulate the output κCi at the sid -interface.
Otherwise, compute the server’s output according to the protocol.
• Queries x ∈ {0, 1}∗ to RO384 are answered by evaluating y = R(x) as described above and

answering with y. If x = g̃|master secret|ρ(Ci)|ηsid , where g̃ is a valid group element
with respect to the group Zp, use the queries at the inside interface to determine whether
gab = g̃ and, in case of success, input g̃ as solution at the inside interface and halt.

In the following, we use C∗,∗ wherever the indices i, j of Ci,j are irrelevant. Consider now the

following MBOs E i,j = (Ei,j1 , Ei,j2 , . . . ) for each pair (i, j) with i ∈ [|C|] and j ∈ [n], such that
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Ei,jq is defined over the random systems C∗,∗

(
GGapDH
G

)−
(and R, S):9 The MBO becomes 1

if after q queries there has been a query (pmk|master secret|ηC |ηsid ) at the random oracle,
such that C = Ci, sid = (ηC , j) and pmk is the DH element corresponding to session (i, j),
i.e., the DH element with respect to the server’s group element sent in session (ηC , j) and the
group element sent by Ci (given they are in the same group). Then define the MBO E via
Eq :=

∨
i,j E

i,j
q .

By definition of Ci,j and E , one can verify that RE
g
≡ CEi,j

(
GGapDH
G

)− g
≡ SE for all pairs

(i, j) ∈ [|C|]× [n]. Also, provoking the MBO E i,j in Ci,j

(
GGapDH
G

)−
implies that the reduction

Ci,j is successful in winning GGapDH
G , so

ΓDCi,j (GGapDH
G ) = ΓD(Ci,jG

GapDH
G ) ≥ ΓD

(
CE

i,j

i,j

(
GGapDH
G

)−)
and ∑

i,j

ΓD

(
CE

i,j

i,j

(
GGapDH
G

)−)
≥ ΓD

(
CE∗,∗

(
GGapDH
G

)−)
by Lemma 20. The statement then follows using Lemma 19 and using the reduction C that
chooses any one of the Ci,j with i ∈ [|C|] and j ∈ [n] uniformly at random.

3.3.3 The RSA-PKCS Scheme

The RSA-PKCS-based protocol consists of the following two converters, which are based on the
RSA algorithms RSA = (gen, enc, dec) as specified in PKCS#7 [Kal98] (see also Appendix A.2).
The client’s converter rsac behaves as follows:

1. Obtain the pair (ηC , ηsid ) of nonces from SNETN,ρ,n.
2. Obtain a message cert = (pk , s) (supposed to be the server’s certificate) via SNETN,ρ,n.
3. Verify the server’s certificate by querying (verify, cert) at PKIF (if that fails, abort).
4. Choose a secret pmk ∈ {0, 1}384 as follows: concatenate the two-byte protocol version

identifier with a 46-byte uniformly random string, encrypt with the server’s public key pk
obtained from cert (resulting in a ciphertext c = enc(pmk; pk)), and send c via SNETN,ρ,n.

5. Query pmk|master secret|ηC |ηsid at RO384, call the result κ.
6. Output (κ, ηC , ηsid , (cert , c)) at the outside interface.
7. Forward all further communication between the outside interface and SNETN,ρ,n.

The server’s converter rsas behaves as follows:

0. Generate an RSA key pair (pk , sk) = gen and register the public key pk at PKIF via
(register, pk), obtaining a value s, define cert = (pk , s).

For each of the sessions described by a pair sid = (ηC , e) ∈ N × [n]:
1. Upon receiving a nonce ηsid at sub-interface sid = (ηC , e), respond with the certificate cert .
2. Upon receiving a ciphertext c, decrypt ˜pmk = dec(c; sk). If ˜pmk = ⊥ or if the first two

bytes of ˜pmk do not match the two-byte protocol version identifier, choose a fresh value
for ˜pmk as in Step 4. of rsac.

3. Query ˜pmk|master secret|ηC |ηsid at RO384 and call the result κ̃.

9The term
(
GGapDH
G

)−
refers to the game GGapDH

G without its Monotone Binary Output (MBO), see the last

paragraph of the proof.
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4. Output (κ̃, ηsid , (cert , c)) at the (sid -sub-interface of the) outside interface.
5. Forward all further communication between the (sid -sub-interface of the) outside interface

and (the sid -sub-interface of) SNETN,ρ,n.

We show that the described protocol is secure under the NR-PCA assumption for PKCS#7,
i.e., it constructs the resource MSKN,ρ,AUX ,n. Here, the distribution AUX in this case consists
of two parts. The first part is the same for all sessions and consists of the certificate (i.e.,
depends on F of PKIF). The distribution is described by (sk , pk) ← gen, f ←$ F, and then
cert = (pk , f(pk)). The second part is chosen independently for each session by doing the same
process as in the protocol: choose pmk ∈ {0, 1}384 (as it is done in Step 4. of rsac) and compute
c = enc(pmk; pk).

Lemma 11. The protocol (rsac, rsas) constructs from [RO384, SNETN,ρ,n,PKIF] the master secret
key resource MSKN,ρ,AUX ,n, under the NR-PCA assumption for RSA = (gen, enc, dec).

More formally,∏
C∈C

rsacCrsasS⊥E [RO384,SNETN,ρ,n,PKIF] ≡ ⊥EMSKN,ρ,AUX ,n, (7)

and there is a simulator σ and reductions Cq, for q ∈ N, such that for all distinguishers D,

∆D
q

(∏
C∈C

rsacCrsasS [RO384, SNETN,ρ,n,PKIF], σEMSKN,ρ,AUX ,n

)
≤ n · |C| ·ΓDCq

q (Gnr-pca)+
q

2368
.

(8)

Before proceeding with the formal proof, let us discuss some intuition. In the proofs of
Lemma 8 and Lemma 10, it is apparent when the pre-master secret value embedded in the
challenge to the reduction is delivered to the server. However, as we argue below, this is not
necessarily the case for TLS-RSA if one assumes like [JK02, KPW13] that RSA is OW-PCA.
Recall that in the RSA mode, the client chooses a random pre-master secret and encrypts it
under the server’s certified public key. Now, the argument would be that if the distinguisher
can distinguish between the MSKN,ρ,AUX ,n resource and the construction based on the RSA
encryption, then it can break the OW-PCA encryption (essentially it knows the pre-master
secret). The reduction to OW-PCA uses a “testing” PCA(·, ·) oracle, such that PCA(m, c)
outputs 1 iff. dec(c; sk) = m; in our case, this should permit the reduction to properly simulate
the random oracle.

In the case of RSA, there is a subtle problem which does not appear in the DH case. In
particular, whereas DH elements are not re-randomizable, if the OW-PCA encryption scheme is
re-randomizable, the distinguisher between two subsequent hybrids can inject a re-randomized
ciphertext which cannot be simulated accurately by the reduction. Recall that in the DHE
case, the hybrids were indexed by sessions, such that the input from the GapDH game was
inserted into a different session each time. If the distinguisher receives a challenge ciphertext
from the OW-PCA reduction, then re-randomizes it and sends it to the server in the “correct
session,” then the behavior of the two resources will differ, since for one of them the key output
of the client and server will coincide, whereas for the other, it will differ (recall that since the
randomized ciphertext will decrypt to the same plaintext as the challenge ciphertext, the pre-
master secret input into the random oracle is the same). For this reason, similar to [BFK+13b],
Lemma 11 above relies on the assumption that RSA-PKCS is not re-randomizable.10

10An alternative approach would be to be less modular and consider the entire protocol as a single unit, since
only the finished messages authenticate the exact ciphertext transmitted during the session. This is essentially
the path taken by Krawczyk et al. [KPW13].
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Proof. We first argue that the availability condition holds. The “ideal” system ⊥EMSKN,ρ,AUX ,n

chooses for each session sid = (ρ(C), 1) a nonce ηsid , a key κC and auxiliary information auxC ,
and outputs (κC , ρ(C), ηsid , auxC) at the C interface and (κC , ηsid , auxC) at the interface S/sid ;
afterwards the communication is forwarded between C and S/sid .

The distribution in the case
∏
C∈C rsac

CrsasS [RO384, SNETN,ρ,n,PKIF] is as follows. The
key κC for each client C is a uniformly random 384-bit string (the random oracle RO384 is
queried at distinct places as ηC = ρ(C) is distinct by the assumption on ρ), the nonces ηsid are
chosen according to the distribution N, and the auxiliary information auxC has exactly the same
distribution as well. Moreover, after at both interfaces C and S/(ηC , 1) the above information
is output, the resource behaves as a bidirectional channel between those interfaces. This verifies
equation (7).

In order to prove equation (8), consider the following simulator σ = σ(ρ) (parametrized by
the bijection ρ of MSKN,ρ,AUX ,n):

• Initially, σ sets eη = 1 for all η ∈ N and defines an (initially empty) map R : {0, 1}∗ →
{0, 1}384.

• Choose a function f ← F, sample (pk , sk)← gen, compute s = f(pk) and output cert =
(pk , s) at the outside interface to simulate the answer of an input (register, pk) to PKIF.

• Upon input (ack, η) for a nonce η ∈ N at the outside interface, set sid = (η, eη). If eη ≤ n,
then issue (ack, η) at the inside interface. Obtain the nonce ηsid at the inside interface
and output ηsid as response of SNETN,ρ,n at the outside interface; increment eη. Also,
output cert at the outside interface as being transmitted via SNETN,ρ,n from sid .

• Upon input (deliver, C, η̃) and after cert has been delivered via SNETN,ρ,n at the outside
interface, issue (allow, C, aux , η̃) at the inside interface. The auxiliary information aux
consists of aux = (cert , c) where the ciphertext c is computed by encrypting a value pmk
(as in Step 4. of rsac) using public key pk . Output c at the outside interface as being
transmitted via SNETN,ρ,n from C and register (C, η̃, pmk).

• When obtaining a ciphertext c̃ at the outside sub-interface sid , with sid = (η, e), compute
˜pmk = dec(c̃; sk). If dec(c̃; sk) = ⊥ or if the first two bytes of ˜pmk do not match the

two-byte protocol version identifier, then choose ˜pmk uniformly at random instead. Then:

– If η ∈ ρ(C) and with C = ρ−1(η), in case ˜pmk corresponds to a previously recorded
triple (C, ηsid , ˜pmk), input (deliver, η, e, aux ) at the inside interface, with aux being
(cert , c̃).

– Otherwise, input (inject, η, e, aux , κ) at the inside interface, with aux = cert |c̃ with
the ciphertext c̃ just injected. The value κ is defined asR( ˜pmk|master secret|η|ηsid ).
(If ˜pmk|master secret|η|ηsid has not been queried to the random oracle before, de-
fine it as R( ˜pmk|master secret|η|ηsid )←$ {0, 1}384.)

• Simulate the random oracle, that is, on input x intended for RO384 at the E-interface, if
R(x) is not defined then set R(x)←$ {0, 1}384. Return R(x).

Define R :=
∏
C∈C rsac

CrsasS [RO384,SNETN,ρ,n,PKIF] and S := σEMSKN,ρ,AUX ,n. We start
by noting that the behavior of the two systems R and S is identical for the initial queries:

• The value cert has the same distribution in both resources.

• The responses to (ack, ηC) are determined by choosing fresh parameters in both cases.

31



• The distribution corresponding to messages forwarded in the sessions that completed the
setup is also the same in the two systems.

For the queries (deliver, C, η̃), for delivering a ciphertext to a session sid of the server, and
for querying the random oracle RO384, the difference between R and S is that in R all “keys”
output at either C ∈ C or S/(η, e) for η ∈ N and e ∈ [n] are chosen consistently with the random
oracle queries, whereas in S they are not (in cases where the ciphertext has been simulated).
The intuition behind the proof is that a distinguisher telling apart the two systems would have
to query the random oracle at such a point; however, as we argue below, the latter is not very
likely to happen as otherwise such a distinguisher can be used to break the NR-PCA assumption
for RSA = (gen, enc, dec) (see Appendix C.1). Recall that in this game the challenger produces
a ciphertext c∗ corresponding to the encryption of a random message m∗ using public key pk ,
and the goal of the adversary is to produce a re-randomized ciphertext c′ 6= c∗ decrypting to
m∗, with the help of a PCA(·, ·) oracle (where PCA(m, c) outputs 1 iff dec(c; sk) = m).11

We now prove equation (8). We describe a series of reductions Ci,j,q with i ∈ [|C|], j ∈ [n],
and q ∈ N, where the indices pinpoint a session run for a nonce η corresponding to a client
C ∈ C and a corresponding nonce ηsid generated for session sid = (η, e), where 1 ≤ e ≤ eη ≤ n.
We assume some (e.g. lexicographic) order � over the set of clients, and write Ci to denote the
i-th client with respect to this order. The reduction Ci,j,q uses the public key pk and injects
the challenge c∗ received from Gnr-pca, relies on the PCA queries it can make at Gnr-pca, and it
works as follows:

• Let (pk , c∗) be the input received from the inside interface with Gnr-pca.

• For all the sessions between a client C 6= Ci and for the sessions of Ci with server interfaces
(η, e) such that e 6= j, Ci,j,q uses pk to encrypt a pmk and generates the clients’ keys as in
the real resource.

• In the session between client Ci and the server session (η, j), the session is emulated using
c∗. In this case the output at the client and server interface is independent of the queries
made to RO384.

The simulation of the random oracle queries and server master secret keys goes into more
details as follows. Each of the reductions will keep two (initially empty) lists HP and HC .
List HP contains entries of the form (pmk, ηC , ηsid , y) while HC contains entries of the form
(c, η′C , η

′
sid , y

′). HP corresponds to random oracle queries, while HC corresponds to master
secret keys output at the server. The two lists need to be kept consistent, in the sense that if
for two entries ηC = η′C , ηsid = η′sid , and PCA(pmk, c) = 1 then y = y′. Hence:

• Whenever the random oracle is queried on input pmk|master secret|ηC |ηsid at RO384,
first look for an entry (pmk, ηC , ηsid , y) in HP ; return the corresponding value y in case
such entry is found. Check for the entry (c̃, ηC , ηsid , y) inHC , and return the corresponding
y if PCA(pmk, c̃) = 1.

Otherwise, check if PCA(pmk, c∗) = 1:

– If this is the case, run c′ ← enc(pmk; pk) with different randomness until c′ 6= c∗

and output c′ as the re-randomized ciphertext in Gnr-pca; note that, according to
PKCS#7, the above re-sampling requires to encrypt the plaintext with a different
random pad P ′ and two trials are sufficient.

11Note that in TLS the message space is of the formM = version number×{0, 1}368. The NR-PCA assumption
over this space is implied by the one on {0, 1}386, but one would loose an additional term 1

216
in the reduction.
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– Else, respond with a random y and update the list HP accordingly.

• When some ciphertext c̃ is delivered to a server’s session sid = (η, e), search for an entry
(c̃, η, ηsid , y) in HC . Otherwise, check whether there is an entry ( ˜pmk, η, ηsid , y) in HP such
that PCA( ˜pmk, c̃) = 1. Return the corresponding value y in case either of these entries is
found; else, respond with a random y and update the list HC accordingly.

• If after q queries no ciphertext c′ has been returned to Gnr-pca, check whether HC contains
an entry (c, ηC , ηsid , ∗) such that C = Ci, sid = (ηC , j) and return c to Gnr-pca.

As for DHE, we use C∗,∗,q wherever the indices i, j of Ci,j,q are irrelevant and we consider

a monotone binary output (MBO) E i,j = (Ei,j1 , Ei,j2 , . . . ) for each pair (i, j) with i ∈ [|C|] and

j ∈ [n]. Here, Ei,jq is defined over the random systems C∗,∗,q′ (G
nr-pca)− (and R, S):12 The

MBO becomes 1 if after q queries there has been a query (pmk|master secret|ηC |ηsid ) at the
random oracle, such that C = Ci, sid = (ηC , j) and dec(c∗, sk) = pmk or a ciphertext c has been
delivered in session sid = (ηC , j) with C = Ci such that dec(c∗, sk) = dec(c; sk).13

We also define three MBOs F = (F1, F2, . . . ), F ′ = (F ′1, F
′
2, . . . ), and F ′′ = (F ′′1 , F

′′
2 , . . . )

which we need to “unify” slightly different distributions of outputs with respect to injections
of invalid ciphertexts. A ciphertext is invalid if it decrypts to ⊥ or if the first two bytes
of its plaintext do not match the two-byte protocol version identifier. In both R and S, if
an invalid ciphertext is injected in a session with nonces ηC and ηsid , a random pre-master
secret pmk∗ is chosen and the random oracle (either RO384 or R) is evaluated on the value
pmk∗|master secret|ηC |ηsid . Note that if the pre-master secret pmk∗ collides with a value that
was queried in combination with the same nonces ηC and ηsid before (either because it was
computed by the client or because it was queried directly at RO384 by the attacker), the output
of the random oracle, and hence at the server’s interface, would of course be consistent with
the previously obtained value. If the value pmk∗ has not been used before, the response of the
random oracle and hence the key output at the server’s interface are uniformly random and
independent of all previous values. The reduction C∗,∗,∗, however, cannot distinguish invalid
ciphertexts from ciphertexts decrypting to a pre-master secret that has not been used before (the
PCA query to Gnr-pca returns the same value on both), and hence always outputs a uniformly
random key.

The pre-master secret pmk∗ has 368 bits of entropy. Thus, after r different pre-master secrets
have been queried at the random oracle with the same nonces, the probability for the freshly
chosen pmk∗ to collide with a previously used value is r · 2−368. With the remaining probability
1 − r · 2−368, the query to the random oracle is fresh and the output distribution is uniform
(i.e., every value has probability 2−384). In case of C∗,∗,∗, an invalid ciphertext always leads to
a uniformly random output. As a result, an output of R or S on such a “dangerous” query
with respect to an invalid ciphertext is slightly more likely to collide with previous outputs.

We rectify the above difference in probabilities by defining the three monotone binary out-
puts F , F ′, and F ′′ (for R, S, and C∗,∗,∗, respectively) as follows.

• The MBO F for R becomes 1 once in a session with nonces ηC and ηsid , an invalid
ciphertext c̃ was input and lead to a query pmk∗|master secret|ηC |ηsid (where pmk∗ was
chosen uniformly at random) to RO384, and the same query was also asked at RO384 either
by rsac or via the E-interface.
• The MBO F ′ for S becomes 1 once in a session with nonces ηC and ηsid , an invalid

ciphertext c̃ was input and lead to a an evaluation on pmk∗|master secret|ηC |ηsid (where

12Note that q′ ranges over 1, 2, . . . independently of q as the MESs are defined for all reductions.
13Note that the event is well defined since for the RSA-PKCS scheme sk is uniquely defined by pk .
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pmk∗ was chosen uniformly at random) of R within σ, and the simulator σ computed an
RSA ciphertext from C = ρ−1(ηC) (if defined) with the same pre-master secret pmk∗ or R
was also evaluated on the same value because of a query at the outside interface.

The above two MBO F (resp. F ′) guarantee that, given that the MBO remains 0 during
a dangerous query, the output distribution is uniform. Using the value r defined above, this
means that, for every possible key κ, the probability of the MBO remaining 0 and the key κ
appearing is (1− r · 2−368) · 2−384. What remains to be done is defining an MBO F ′′ on C∗,∗,∗
that leads to the same output distribution for such queries. But as the distribution in that case
is uniform anyways, all that remains to be done is computing the probability for the MBO to be
provoked during a “dangerous” query (see below), and provoking the MBO with the respective
probability (independently of the value output by C∗,∗,∗. The probability is computed in more
detail as follows:

• if the query is the first query pmk′|master secret|η|η̃ for this value of pmk′ to RO384,
where the first two bytes of pmk′ match the two-byte protocol version identifier and an
invalid ciphertext was sent to session sid = (η, e) with nonce ηsid = η̃ before, then F ′′′
becomes 1 with probability 2−368;
• if the query is sending an invalid ciphertext c in session (η, e), then the probability is

computed by first counting the number r of distinct queries to RO384 and (potentially)
the output at the corresponding client ρ−1(η) that collide in terms of generated keys; then
F becomes 1 with probability r · 2−368.

Then define the MBOs E via Eq :=
∨
i,j E

i,j
q ∨ Fq, E ′ via E′q :=

∨
i,j E

i,j
q ∨ F ′q, and E ′′ via

E′′q :=
∨
i,j E

i,j
q ∨ F ′′q .

By the definition of Ci,j,q, E , E ′, and E ′′, one can verify that RE
g
≡ CE

′′
i,j,q (Gnr-pca)−

g
≡ SE

′

for all pairs (i, j, q) ∈ [|C|]× [n]× N. Also, provoking the MBO Ei,jq in Ci,j,q (Gnr-pca)− implies
that the reduction Ci,j is successful in winning Gnr-pca, so

Γ
DCi,j,q
q (Gnr-pca) = ΓD

q (Ci,j,qG
nr-pca) ≥ ΓD

q

(
CE

i,j

i,j,q (Gnr-pca)−
)

and
∑

i,j ΓD
q

(
CE

i,j

i,j,q (Gnr-pca)−
)

+ ΓD
q (CF

′′
i,j,q (Gnr-pca)−) ≥ ΓD

q

(
CE
′′
∗,∗,q (Gnr-pca)−

)
by Lemma 20.

The statement then follows using Lemma 19 and using the reduction Cq that chooses any one
of the Ci,j,q with i ∈ [|C|] and j ∈ [n] uniformly at random. The probability of provoking F ,
F ′, resp. F ′′ can be upper bounded by q · 2−368.

4 Expanding the Key

The master secret key is not used in the encryption and MAC schemes directly. The next
protocol step, which we describe as a protocol (expc, exps), uses a HMAC-based PRF to generate
sufficient key material (depending on the actual cipher suite) for two encryption and two MAC
keys (one key per purpose and direction). Furthermore, the converters also generate the so-
called “finished” messages which are used by the client and the server to confirm the computed
keys.

More formally, starting from the resource MSKN,ρ,AUX ,n, we expand the key using a pseudo-

random function (PRF); our goal is to construct the ideal resource
⊗

C∈CJ
KSP,∗
= =•cphs,nK(C,S/ρ(C)).

An advantage of this description is that it is the parallel composition of multiple “single-client”

resources
KSP,∗
= =•cphs,n, which means all following protocol steps can be proven in a setting where

there is only a single client, and then composed using the generic composition theorem.
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The (extended) key space actually depends on the cipher suites in use. In this work,
we do not specifically focus on any of the cipher suites, but rather define a function cphs :
{CAuth, SAuth,CEnc, SEnc,CIV, SIV} → Z, which outputs the length of each of the follow-
ing keys: client write MAC key (κC,a), server write MAC key (κS,a), client write key (κC,e),
server write key (κS,e), client write IV (κC,IV ), server write IV (κS,IV ). Note that the last two
keys are often not generated, since they are only used for implicit nonce techniques, see [DR08].
Usually, the key length for each of the first four keys is 32 bytes, i.e. 256 bits. By convention,
if κC,IV , κS,IV are not generated, we write that cphs(κC,IV ) = cphs(κS,IV ) = 0. The set of all
possible keys (parsed as a concatenation of all the aforementioned keys, in the given order)
is denoted K. The derived keys for each sessions are, in this sequence, client write MAC key,
server write MAC key, client write key, server write key, client write IV, server write IV, and
the two “finished” messages which are of length 96 bits each.

KSP,∗
= =•cphs,n

Initially, accept at the E-interface an input b ∈ {0, 1}, and set be = 0 for e ∈ [n].
If b = 0, then output at both interfaces C and S/1 the same uniform random keys
κC,a, κS,a, κC,e, κS,e, κC,IV , κS,IV (with length indicated by cphs) and uniform ξC , ξS ∈
{0, 1}96, and provide bidirectional channels between those two interfaces.
Otherwise, if b = 1, then

• Upon input of the type (allow, e) with e ∈ [n] at the E-interface, if be = 0, draw uni-
formly random keys κC,a, κC,e, κS,a, κS,e, κC,IV , κS,IV ∈ K of the lengths indicated by
cphs, plus uniformly random strings ξC , ξS ∈ {0, 1}96. Output the tuple at interface C
and set be = 1 (this ensures that the keys are only chosen once).

On subsequent input (deliver), output the same tuple at interface S/e. Then, relay
all communication between the interfaces C and E/C, and S/e and E/e.

• Upon input (inject, e, κ̃C,a, κ̃S,a, κ̃C,e, κ̃S,e, κ̃C,IV , κ̃S,IV , ξ̃C , ξ̃S) with e ∈ [n], if be = 0
then output the tuple at interface S/e and set be = 1. Then, relay all communication
between the interfaces S/e and E/e.

In TLS the session keys are obtained via a PRF based on HMAC, taking as input the master
secret value obtained in a previous step. Afterward, the client and server each generates a final
message by again querying the PRF keyed with the master secret value, on input the hash of a
concatenation of messages (basically the transcript of the session). This hash function, denoted
H , is required to be collision resistant. For the purpose of our analysis, we will assume that
the key material and the finished messages are derived by means of a pseudo-random function
PRF = (genPRF, evalPRF), with output length equal to max(|cphs(·)|, 96). For a more detailed
discussion how this is achieved in TLS, we refer the reader to Appendix A.3.

The client converter, expc, behaves as follows:

1. Obtain the values (κ, ηC , ηsid ,m) from MSKN,ρ,AUX ,n, where m is a concatenation of mes-
sages.

2. Generate keys (κC,a, κC,e, κS,a, κS,e, κC,IV , κS,IV )← evalPRF(κ, key expansion|ηC |ηsid ).
3. Generate messages (ξC , δC) ← evalPRF(κ, client finished|H (ηC |ηsid |m|γ)) and (ξS ,
δS) ← evalPRF(κ, server finished|H (ηC |ηsid |m|cξC |γ)).14 In the above computation,
the constant γ stands for the “ChangeCipherSpec” message, whereas the value cξC is
computed as a function of ξC in a way that depends, as do the lengths of the computed

14The “extra” bits δC and δS are discarded.

35



keys, on the adopted cipher suite (this corresponds to the encryption of the finished mes-
sage, computed in the record layer protocol).

4. Output (κC,a, κC,e, κS,a, κS,e, κC,IV , κS,IV ) and (ξC , ξS).

The server converter, exps behaves as follows. For each of the sessions described by a pair
sid = (ηC , e) ∈ N × [n]:

1. Obtain the values (κ, ηsid ,m) from MSKN,ρ,AUX ,n, where m is a concatenation of messages.
2. Generate keys κC,a, κC,e, κS,a, κS,e, κC,IV , κS,IV ← evalPRF(κ, key expansion|ηC |ηsid ).
3. Generate “finished” messages (ξC , δC) ← evalPRF(κ, client finished|H (ηC |ηsid |m|γ))

and (ξS , δS)← evalPRF(κ, server finished|H (ηC |ηsid |m|cξC |γ)).
4. Output (κC,a, κC,e, κS,a, κS,e, κC,IV , κS,IV ) and (ξC , ξS).

We aim for the statment that the protocol (expc, exps) constructs from MSKN,ρ,AUX ,n the

resource
⊗

C∈CJ
KSP,∗
= =•cphs,nK(C,S/ρ(C)), i.e., the parallel composition of one copy of

KSP,∗
= =•cphs,n

for each client C ∈ C. This, however, is not directly true because in case
∏
C∈C expc

CexpsS

MSKN,ρ,AUX ,n one can generate output at the server’s sub-interface for client nonces η /∈ ρ(C),
whereas with

⊗
C∈CJ

KSP,∗
= =•cphs,nK(C,S/ρ(C)) one cannot. We rectify this by introducing a “resid-

ual” resource R̃cphs,n that is inactive in case b = 0 and behaves like
KSP,∗
= =•cphs,n at the S- and

E-interfaces in case b = 1 (R̃cphs,n does not have a C-interface). We then consider the system
JR̃cphs,nK(S/η), i.e. the system where the S-interface is renamed as η-interface.

We show the following result, where we describe the pseudo-random function PRF by a
converter prf and denote the system outputting a single 384-bit random string by U384 and the
uniform random function (with the same output length as PRF ) by F.

Lemma 12. The protocol (expc, exps) constructs from the MSKN,ρ,AUX ,n-resource the ideal re-

source
[⊗

C∈CJ
KSP,∗
= =•cphs,nK(C,S/ρ(C)),

⊗
η∈N\ρ(C)JR̃cphs,nK(S/η)

]
, under the assumption that the

hash function H is collision-resistant and the output of the pseudo-random function PRF is
indistinguishable from a random function. More formally, there are reductions C and C′ such
that for all distinguishers D,

∆D

∏
C∈C

expcCexpsS⊥EMSKN,ρ,AUX ,n,⊥E
[⊗
C∈C

J
KSP,∗
= =•cphs,nK(C,S/ρ(C)),

⊗
η∈N\ρ(C)

JR̃cphs,nK(S/η)
]

≤ ΓDC(GCR) + |C| ·∆DC′ (prf U384,F) ,

(9)

and there is a simulator σ and reductions C′′ and C′′′ such that for all distinguishers D,

∆D

∏
C∈C

expcCexpsSMSKN,ρ,AUX ,n, σ
E
[⊗
C∈C

J
KSP,∗
= =•cphs,nK(C,S/ρ(C)),

⊗
η∈N\ρ(C)

JR̃cphs,nK(S/η)
]

≤ ΓDC′′(GCR) + |C| ·∆DC′′′ (prf U384,F) .

(10)

Proof. We first argue that condition (9) holds. Let R⊥ :=
∏
C∈C expc

CexpsS⊥EMSKN,ρ,AUX ,n

and S⊥ := ⊥E
[⊗

C∈CJ
KSP,∗
= =•cphs,nK(C,S/ρ(C)),

⊗
η∈N\ρ(C)JR̃cphs,nK(S/η)

]
. We notice that the main

difference between the real and ideal system (when the cheating bit is set to b = 0), is that the
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latter chooses the keys and the finished messages (ξC , ξS) to be output at C and S/1 uniformly
at random, whereas the former computes such values via the PRF.

We introduce a first hybrid systems H⊥, to deal with possible collisions in the hash function
H . The system H⊥ is defined exactly as R⊥, with one difference: Whenever there exists two dis-
tinct tuples (ηC , ηsid ,m, cξC ) and (η′C , η

′
sid ,m

′, c′ξ′C
) such that either (ηC , ηsid , γ) and (η′C , η

′
sid , γ)

or (ηC , ηsid ,m, cξC , γ) and (η′C , η
′
sid ,m

′, c′ξ′C
, γ) are a collision for H , then the corresponding out-

put of the hash function is re-sampled uniformly until a completely fresh (i.e., not previously
used) value is found. We argue that a distinguisher between the two systems R and H⊥ can
be used to build a reduction C breaking collision resistance of H . The reduction C connects
with the inside interface to the game GCR and provides at the outside interface an emulation of
R⊥, using a description of the hash function obtained from GCR. A “collision” in the emulated
execution can then be used to win the game GCR (for the exact definition of collision see the
MBO below).

We define the monotone binary output (MBO) E on the systems R, H⊥, and CGCR as
the following “collision” event: it becomes 1 once there are two distinct tuples (ηC , ηsid ,m, cξC )
and (η′C , η

′
sid ,m

′, c′ξ′C
) such that either (ηC , ηsid , γ) and (η′C , η

′
sid , γ) or (ηC , ηsid ,m, cξC , γ) and

(η′C , η
′
sid ,m

′, c′ξ′C
, γ) are a collision for H . Clearly the random systems R and H⊥ are equiva-

lent conditioned on the MBO not being 1. Thus invoking Lemma 19 allows to conclude that
∆D (R,H⊥) ≤ ΓDC(GCR).

Next, we argue that a distinguisher between H⊥ and S⊥ can be used together with a
reduction C′ to distinguish the pseudo-random function PRF from a truly random function.
The reduction is actually a series of reductions C′i for i ∈ [|C|], where the index pinpoints one
client C ∈ C. We assume some (e.g. lexicographic) order � over the set of clients, and write
Ci to denote the i-th client with respect to this order. The reduction C′i makes 3 queries to
connected system and works as follows:

• For all the sessions between a client C � Ci, behave as in H⊥.

• For all the sessions between a client C ≺ Ci, behave as in S⊥.

• In the session between Ci and sid = (η, 1), forward x1 = key expansion|η|ηsid , x2 =
client finished|H (η|ηsid |m|γ) and x3 = server finished|H (η|ηsid |m|cx2 |γ) to the
connected system; note that the value cx2 can be computed as a function of x2 by only
knowing the cipher suite in use. Emulate the session using the corresponding values y1,
y2 and y3, received from the inside interface. (In case a collision is found, similar to the
MBO defined in H⊥, re-sample the output of the hash function uniformly.)

We note that if C′i is connected to F, then the values y1, y2 and y3 are uniform, whereas if C′i
is connected to prf U384, then they are computed as evalPRF(κ, x) for x ∈ {x1, x2, x3} and a
uniformly random key κ. Also, for all 0 ≤ i ≤ |C|, C′i prf U384 ≡ C′i+1F. Furthermore, as
C′0 = H⊥ prf U384 and C′|C|F = S⊥, the above argument concludes the proof of condition (9),
where C′ chooses any one of the C′i uniformly at random.

To prove equation (10), consider the following simulator σ:

• Initially, σ sets eη = 1 for all η ∈ N . (The counters are kept consistent, i.e. they are
increased whenever the simulator receives at the outside interface an (ack, ∗) or (inject, ∗)
command.)

• Upon input (ack, η) at the outside interface, if eη ≤ n, then choose ηsid for sid = (η, eη)
and output ηsid at the outside interface as being transmitted via MSKN,ρ,AUX ,n.
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• Upon input (allow, C, aux , η̃) at the outside interface, for C ∈ C, issue (allow, e) at the C-

sub-interface of
⊗

C∈CJ
KSP,∗
= =•cphs,nK(C,S/ρ(C)). Afterward, forward communication between

the outside and the inside C sub-interfaces.

• Upon input (deliver, η, e, aux ), if η ∈ ρ(C), e < eη and (allow, ρ−1(η), ∗, ηsid ) was input
at the outside interface before, issue (deliver) at the ρ−1(η)-sub-interface of the system⊗

C∈CJ
KSP,∗
= =•cphs,nK(C,S/ρ(C)).

• Upon input (inject, η, e, aux , κ) at the outside interface, define sid = (η, e) and compute

(κ̃C,a, κ̃S,a, κ̃C,e, κ̃S,e, κ̃C,IV , κ̃S,IV )← evalPRF(κ, key expansion|η|ηsid )

ξ̃C ← evalPRF(κ, client finished|H (η|ηsid |aux |γ))

ξ̃S ← evalPRF(κ, server finished|H (η|ηsid |aux |cξ̃C |γ)).

Then issue (inject, e, κ̃C,a, κ̃S,a, κ̃C,e, κ̃S,e, κ̃C,IV , κ̃S,IV , ξ̃C , ξ̃S) at the inside ρ−1(η)-sub-

interface of
⊗

C∈CJ
KSP,∗
= =•cphs,nK(C,S/ρ(C)).

• After either a (deliver, η, e, ∗) or an (inject, η, e, ∗, ∗), forward communication between
the outside and inside sid = (ρ(η), e) sub-interfaces.

For the sake of brevity, we use the notation R :=
∏
C∈C expc

CexpsSMSKN,ρ,AUX ,n as well as S :=

σE
[⊗

C∈CJ
KSP,∗
= =•cphs,nK(C,S/ρ(C)),

⊗
η∈N\ρ(C)JR̃cphs,nK(S/η)

]
. We notice that the only difference

between R and S is within (allow, ∗) commands, as in the former the key material and the pair
of values (ξC , ξS) are computed via the PRF and the hash function, whereas in the latter they
are sampled uniformly. Similar to the availability proof, we consider a hybrid system H where
we re-sample outputs of H corresponding to distinct inputs generating a collision (until a “fresh”
value is found). Then one can describe a reduction C′′ that, together with a distinguisher telling
apart R and H, breaks the collision resistance of H . The description of the reduction is similar
to the one considered in the availability case, and is therefore omitted.

Finally, we argue that a distinguisher between H and S can be used to build a reduction C′′′

breaking the pseudo-randomness of the PRF. We remark that there is a single key κC associated
with client C, and the key at some interface S/(ρ(C), e) is either the same key κC or it is an
injected key. It follows that the the description of the reduction goes along the same lines to
the one considered for the availability proof. Put together, the above arguments conclude the
proof of equation (10).

5 Constructing a Unilaterally Secure Channel

We describe the goal of the TLS record layer as constructing, from a unilateral key and inse-
cure communication channels, a bidirectional unilaterally secure communication channel. TLS
specifies several alternative cipher suites that are supposed to achieve this constructive step.
The most widely used ones are based on an Authenticate-then-Encrypt combination of a MAC
scheme and a symmetric encryption scheme, but [DR08] also specifies the possibility of using a
monolithic authenticated encryption scheme. In this section, we prove the Authenticate-then-
Encrypt modes based on [MT10], leaving the other cipher suites for future work.

As discussed in Section 1 and in previous work, the “finished” message of the TLS protocol
cannot be regarded as part of the handshake if one wants to prove a strong security notion
for the key. (The reason is that the actual key is used to protect the finished messages, which
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allows to verify whether an obtained key is correct.) Hence, as [JKSS12], we prove the record
layer protocol including the finished messages and with the assumption of only a unilaterally
authenticated key. The resource we want to construct by the record protocol is the “unilateral”

channel
∗

�� ��•n described below.

∗
�� ��•n

Initially, accept at the E-interface an input b ∈ {0, 1}.
If b = 0, then behave as a (secure multi-message) channel between interfaces C and S/1.
Otherwise, if b = 1, then:

• Upon the first input (allow, e) with e ∈ [n] at the E-interface (if e was not used
before), provide a secure multiple-use (i.e., keep a buffer of undelivered messages)
channel between C and S/e. In particular:

– On input a message m ∈ {0, 1}≤16384 at the C-interface, output |m| at inter-
face E.

– On input (deliver, client) at the E-interface, deliver the next message at S/e.
– On input a message m′ ∈ {0, 1}≤16384 at the S/e-interface, output |m′| at inter-

face E.
– On input (deliver, server) at the E-interface, deliver the next message at C.

• After input (conquer, e) with e ∈ [n] at the E-interface (if e was not used before),
forward messages in {0, 1}≤16384 bidirectionally between the S/e- and E/e-interfaces.

Generally, the record layer protocol is a pair of converters which both obtain at the re-

spective inside interfaces keys and finished messages (as given by the
KSP,∗
= =•-resource). The

client’s converter first sends the ξC-message (authenticated and encrypted), and then obtains,
decrypts, and checks the ξS-message. If the check succeeds, payload messages are processed and
transmitted. The server’s converter first waits for the (encrypted) ξC-message, decrypts, and
checks. If successful, the converter sends ξS authenticated and encrypted, and later processes
and transmits payload messages. More precisely, the two converters are described as follows.

The client’s converter behaves as follows.

1. Obtain at the inside interface keys κC,a, κC,e, κS,a, κS,e, κC,IV , κS,IV and “finished” mes-
sages ξC , ξS . Use the scheme(s) specified in the cipher suite with the keys κC,a and κC,e,
respectively, to process the message ξC , and send the obtained ciphertext via the inside
interface.

2. Upon receiving a (ciphertext) message at the inside interface, process the message with
the keys κS,e and κS,a, respectively. Compare the plaintext to ξS . If any one of the above
steps fails, abort.

3. Messages obtained at the outside interface are processed with the scheme(s) specified by
the respective cipher suite using the keys κC,a and κC,e and sent via the inside interface.
Further ciphertexts obtained at the inside interface are also processed with κS,e and κS,a,
the plaintexts are output at the outside interface. If any (MAC) verification fails, abort.

The server’s converter behaves as follows:

1. Obtain at the inside interface keys κC,a, κC,e, κS,a, κS,e, κC,IV , κS,IV and “finished” mes-
sages ξC , ξS .

2. Upon receiving a message at the inside interface, process the message according to the
specified cipher suite with the keys κC,e and κC,a. Compare the plaintext to ξC . If any
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one of the above steps fails, abort. Use the scheme(s) of the specified cipher suite with
the keys κS,a and κS,e to process the message ξS , and send the obtained ciphertext via
the inside interface.

3. Messages obtained at the outside interface are processed with the scheme(s) (using the
keys κS,a and κS,e) and sent via the inside interface. Further ciphertexts obtained at the
inside interface are processed (with κC,e and κC,a), the plaintexts are output at the outside
interface. If any (MAC) verification fails, abort.

5.1 Cipher Suites Based on Stream Ciphers

The TLS standard [DR08] describes the record layer protocol based on stream ciphers in Sec-
tion 6.2.3.1, the standard cipher suites using this type of encryption scheme are based on the
cipher RC4. We prove the security following [MT10, Corollary 1] based on the assumption that
RC4 produces a stream of pseudo-random bits.15 In more detail, we formalize the assumption on
RC4 by requiring that the distinguishing advantage between rc4 U128 (i.e., the stream generated
by RC4 when initialized with a uniformly random 128-bit key) and U∗ (a stream of uniformly
random bits16) is small. The scheme is formalized as the pair (atec, ates) of converters.

Lemma 13. The protocol (atec, ates) constructs from
KSP,∗
= =• the channel

∗
�� ��•n, under the

assumptions that RC4 is pseudo-random and HMAC is strongly unforgeable. More formally,

atecCatesS⊥E
KSP,∗
= =• ≡ ⊥E ∗

�� ��•n, (11)

and there are a simulator σ and reductions C, C′ such that for each distinguisher D,

∆D

(
atecCatesS

KSP,∗
= =•, σE ∗

�� ��•n
)
≤ 2 ·∆DC (rc4 U128,U

∗) + 2 · ΓDC′
(
Gsuf-cma

)
. (12)

Proof sketch. Equation (11) follows because the resource
KSP,∗
= =• outputs the same keys and

“finished” messages at interfaces C and S, so the verification of these messages succeeds as atec
and ates compute the same key streams and MACs.

To prove the condition in equation (12), we describe a simulator σ that initially sets the bit
b = 1 at the inside interface. The simulator initializes bits be = 0 for each e ∈ [n]. Then:

• Upon input (allow, e) at the outside interface, if e ∈ [n] and be = 0, then set be = 1 and
ē = e. Simulate the transmission of the client’s finished message (a uniform random string
of length 256 bits—96 bits “finished” message and 160 bits MAC) as the first message c1
from C to S/e.
• Once both (deliver) has been input at the outside interface and the first message c̃1 is

delivered to S in session ē, if c1 = c̃1 then simulate a finished message from the server to
the client, again by choosing a 256-bit string c2 uniformly at random.
In the following, upon input the ith message length `i corresponding to a server message in
session ē at the inside interface, output a uniformly random string of length `i+160. Also,
whenever a message is delivered (via the outer interface) to the server session ē, check
whether exactly the same messages were simulated as being sent by the client before. In
this case, input (ack, C) at the inside interface, otherwise halt the server session ē (i.e.,
stop processing messages for this server session, and, in real implementations, send an
alert; however, for our treatment we omit alerts from the protocol description.).

15As demonstrated in [ABP+13], the assumption that RC4 is pseudo-random is dangerous. The proof extends
to other stream ciphers.

16Formally, U∗ and rc4 allow to obtain the stream by querying for one bit at a time.
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• Once the first message c̃2 is delivered to C, if c2 = c̃2 then record the client as active.
In the following, upon input the ith message length `i corresponding to a client message at
the inside interface, output a uniformly random string of length `i + 160. Also, as above,
whenever a message is delivered to the client, if exactly the same sequence of message was
simulated as being sent by the server’s session ē before, then input (ack, S) at the inside
interface, otherwise halt the client (i.e., stop processing messages for the client—note that
we simplify the protocol and do not handle error messages).
• Upon input (inject, e, κ̄C,a, κ̄C,e, κ̄S,a, κ̄S,e, κ̄C,IV , κ̄S,IV , ξ̄C , ξ̄S) at the E-interface with
e ∈ [n] and be = 0, set be = 1 and record the values. When the first message is delivered
to the session e, check whether the message is a correctly MAC’ed and encrypted version
(with κ̄C,a and κ̄C,e) of ξ̄C (if not, abort the server session e). Respond with a correctly
MAC’ed and encrypted version (with κ̄S,a and κ̄S,e) of ξS .
Subsequently, MAC and encrypt messages sent in the server session e with the keys κ̄S,a
and κ̄S,e. For messages given at the outside interface for this session, decrypt with κ̄C,e
and verify the MAC with κC,a. In case of success, inject the resulting message via the
inside interface, otherwise halt the server session e.

First, we note that the simulation of all sessions except for ē is perfect, as the simulator
makes exactly the same computations as the protocol.

To prove the security statement, we use a hybrid system H1 similarly to σE
∗

�� ��•n with
the difference that the key stream is generated by RC4 with a uniformly random key instead of

uniformly at random. The reduction system C simulates all sessions similarly to σE
∗

�� ��•n, but
in session ē it uses the key stream from the connected system (with probability 1

2 it does so for
the client while using a fully random stream for the server, with the remaining probability it uses
the given stream for the client and generates the server’s stream using RC4). This means that

∆D

(
atecCatesS

KSP,∗
= =• ,H1

)
≤ 2 ·∆DC (rc4 U128,U

∗). Then, we use [MT10, Corollary 1] twice,

once for each direction, to obtain the statement ∆D
(
H1, σ

E ∗
�� ��•n

)
≤ 2 · ΓDC′

(
Gsuf-cma

)
and apply the triangular inequality to conclude.

5.2 Cipher Suites Based on CBC Encryption

The TLS standard [DR08] describes the record layer protocol based on CBC encryption in
Section 6.2.3.2, the standard cipher suites using this encryption mode are based on either 3DES
or AES. We prove the security following [MT10, Corollary 2], based on the assumption that the
used block cipher is a (super17) PRP. In more detail, we formalize the assumptions on the block
ciphers by requiring that the distinguishing advantage between bc Uk (i.e., the block cipher bc
with block length ` which might e.g. be 3DES or AES initialized with a uniformly random key
of appropriate length) and P` (a uniformly random permutation) is small, even allowing both
forward and backward queries.

In the following lemma, we use the converters atec′ and ates′ that implement the Authenticate-
then-Encrypt composition of a CBC-mode with block cipher bc and a strongly unforgeable MAC.
As we base the proof on [MT10, Corollary 2], it only applies to the case where the padding used
by TLS is unique in the sense that it is the shortest possible such padding (and no length-hiding
techniques are used).

Lemma 14. The protocol (atec′, ates′) constructs from
KSP,∗
= =• the channel

∗
�� ��•n, under the

17In the reduction, it is necessary to make inverse queries to the permutation. This is unclear in [MT10].
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assumptions that bc is a (super) PRP and HMAC is strongly unforgeable. More formally,

atec′
C
ates′

S⊥E
KSP,∗
= =• ≡ ⊥E ∗

�� ��•n, (13)

and there are a simulator σ and reductions C, C′ such that for each distinguisher D,

∆D

(
atec′

C
ates′

S KSP,∗
= =•, σE ∗

�� ��•n
)
≤ 2 ·∆DC (bc Uk,P`)+2 ·ΓDC′

(
Gsuf-cma

)
+

(ql)2

2`−1
, (14)

where q is the number of messages sent and l is the length (in blocks) of the longest message.

Proof sketch. The availability condition follows as in Lemma 13.
To prove the condition in equation (14), we describe a simulator σ that initially sets the bit

b = 1 at the inside interface. The simulator initializes bits be = 0 for each e ∈ [n]. Then:

• Upon input (allow, e) at the outside interface, if e ∈ [n] and be = 0, then set be = 1 and
ē = e. Simulate the transmission of the client’s finished message (a uniform random string
of length ` ·

⌈
256
`

⌉
bits—96 bits “finished” message and 160 bits MAC, padded to the next

block size) as the first message c1 from C to S/e.
• Once both (deliver) has been input at the outside interface and the first message c̃1 is

delivered to S in session ē, if c1 = c̃1 then simulate a finished message from the server to
the client, again by choosing a bit string c2 of appropriate length uniformly at random.
In the following, upon input the ith message length `i corresponding to a server message

in session ē at the inside interface, output a uniformly random string of length ` ·
⌈
`i+160

`

⌉
.

Whenever a message is delivered (via the outer interface) to the server session ē, behave
as the simulator in Lemma 13.
• Once the first message c̃2 is delivered to C, if c2 = c̃2 then record the client as active.

In the following, upon input the ith message length `i corresponding to a client message

at the inside interface, output a uniformly random string of length ` ·
⌈
`i+160

`

⌉
. Also, as

above, whenever a message is delivered to the client, behave as the simulator in Lemma 13.
• Upon input (inject, e, κ̄C,a, κ̄C,e, κ̄S,a, κ̄S,e, κ̄C,IV , κ̄S,IV , ξ̄C , ξ̄S) at the E-interface with
e ∈ [n] and be = 0, set be = 1 and record the values. When the first message is delivered
to the session e, check whether the message is a correctly MAC’ed, padded, and encrypted
version (with κ̄C,a and κ̄C,e) of ξ̄C (if not, abort the server session e). Respond with a
correctly MAC’ed, padded, and encrypted version (with κ̄S,a and κ̄S,e) of ξS .
Subsequently, MAC, pad, and encrypt messages sent in the server session e with the
keys κ̄S,a and κ̄S,e. For messages given at the outside interface for this session, decrypt
with κ̄C,e and verify the padding and the MAC with κC,a. In case of success, inject the
resulting message via the inside interface, otherwise halt the server session e.

First, we note that the simulation of all sessions except for ē is perfect, as the simulator
makes exactly the same computations as the protocol.

To prove the security statement, we use a hybrid system H1 similarly to σE
∗

�� ��•n with
the difference that the CBC scheme is computed using a uniformly random permutation P`

(instead of bc). The reduction system C simulates all sessions similarly to σE
∗

�� ��•n, but
in session ē it uses the connected system (with probability 1

2 it does so for the client while
using a fully random permutation for the server, with the remaining probability it uses the
given permutation for the server and generates the server’s stream using bc). This means that

∆D

(
atec′Cates′S

KSP,∗
= =• ,H1

)
≤ 2 ·∆DC (bc Uk,P`). Then, we use [MT10, Corollary 2] twice,

once for each direction, to obtain the statement ∆D
(
H1, σ

E ∗
�� ��•n

)
≤ 2 · ΓDC′

(
Gsuf-cma

)
+

(ql)2

2`−1 and apply the triangular inequality to conclude.
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6 Reconstructing TLS

In this section we argue that the composition of the converters we presented in Sections 3.3.2,
4, and 5 forms in fact the TLS protocol, and then give the full security statements for each of
the cipher suites.

Note that in our deconstruction of TLS, we use an intermediate converter that does not
appear in the TLS-DH and TLS-RSA versions, namely constructing the authenticated network
resource / −•N,ρ,F,SIG,n. As the difference between the TLS-DH/TLS-RSA and the TLS-DHE
protocols only appears in the construction of the master secret resource (in our de-construction,
obtaining the master key resource MSKN,ρ,AUX ,n from the nonce-exchange resource SNETN,ρ,n),
we only consider the TLS-DHE variant, noting that the same considerations hold for the TLS-
DH/TLS-RSA versions.

In fact, we describe TLS as a composition of a client TLS-DHE converter (denoted as
tlsdhec) and one server TLS-DHE converter. The client TLS-DHE converter tlsdhec represents
the composition of all the converters mounted at the client interfaces of our respective resources,
i.e., tlsdhec = atec ◦ expc ◦ dhec ◦ vrf ◦ hec. We explicitly outline the resulting tlsdhec converter
next:

1. hec: Obtain a (random) nonce ηC ∈ N (at the inside interface) and send it to the server
via the inside interface. Upon receiving nonce η̃ at the inside interface, output (ηC , η̃) at
the outside interface.

2. vrf: Upon receiving message cert at the inside interface corresponding to SNETN,ρ,n, query
(verify, cert) at the inside sub-interface corresponding to PKIF; abort if the verification
fails or if cert is not a well-formed certificate cert = (vk , f(vk)). Upon obtaining a sec-
ond message m′ from SNETN,ρ,n, parse m′ as (m, s) (abort if that is impossible). If
vrf (ηC |ηsid |m, s; vk) = 1, then output (cert , ηC , ηsid ,m, s) at the outside interface. (Oth-
erwise abort.)

3. dhec: Parse message m (obtained at the inside interface) as p|g|g′ = m (abort it im-
possible). Choose u←$ {1, . . . , q} (with q = |Z×p |) and input gu at the inside interface.
Query g′u|master secret|ηC |ηsid at RO384, in order to obtain a key κ ∈ {0, 1}384. Output
(κ, ηC , ηsid , aux |m|s|gu).

4. expc: Use the value κ to generate keys

(κC,a, κC,e, κS,a, κS,e, κC,IV , κS,IV )← evalPRF(κ, key expansion|ηC |ηsid ).

Using the concatenation of the previously transmitted messages m := cert |p|g|g′|s, com-
pute the “finished” messages (ξC , δC) ← evalPRF(κ, client finished|H (ηC |ηsid |m|γ))
and (ξS , δS) ← evalPRF(κ, server finished|H (ηC |ηsid |m|cξC |γ)). In the above compu-
tation, the constant γ stands for the “ChangeCipherSpec” message, whereas the value
cξC is computed as a function of ξC depending on the adopted cipher suite (in partic-
ular, ξC needs to be included in the hash of the message sent by the server). Output
(κC,a, κC,e, κS,a, κS,e, κC,IV , κS,IV ) and (ξC , ξS).

5. atec: Use the record layer scheme(s) specified by the cipher suite with the keys κC,a and
κC,e obtained at the inside interface, respectively, to process the message ξC (obtained
with the keys), and to computed and send the obtained ciphertext via the inside interface.
Upon receiving a message at the inside interface, process it using the keys κS,e and κS,a.
Compare the plaintext to ξS . If any one of the above steps fails, abort. From this point
on, messages obtained at the outside interface are processed with the specified scheme(s)
using keys κC,a and κC,e and sent via the inside interface. Further ciphertexts obtained
at the inside interface are processed with the keys κS,e and κS,a, the plaintexts are output
at the outside interface. If any (MAC) verification fails, abort.
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Note that the composite converter corresponds exactly to the client’s protocol in TLS, with
the specification that, in the expansion step, the client first computes ξS as the PRF, under the
key κ of the hash of all the past messages, including ξC . We note that our description of the
protocol omits several constants that appear in the original protocol.

The server converter tlsdhes connects to the S-interface, and is composed of all the converters
connected to the S-interface, i.e., tlsdhes = ates ◦ exps ◦ dhesG ◦ sgn ◦ hes. We explicitly outline
the resulting tlsdhes converter below:

1. hes: Upon receiving a nonce η̃C at the inside C-sub-interface for some C ∈ ATCP, choose
a nonce ηsid ←$ N, send ηsid via the inside C-sub-interface. Output ηsid at outside sub-
interface ˜sid .

2. sgn: Initially compute (sk , vk)← gen. Input vk at the inside sub-interface corresponding
to PKIF, obtaining a response s, and set cert = (vk , s). Output cert at the outside
interface (as auxiliary information). Subsequently, for each inside sub-interface sid = (η, e)
outputting a nonce output ηsid , output ηsid at the respective outside sub-interface and send
cert via SNETN,ρ,n (in the respective session). Obtaining a message m at the outside (sub-
interface for session sid), compute s← sign(ηC |ηsid |m, sk) and send (m, s) in session sid .
Output s at the respective outside sub-interface.

3. dhesG : Upon obtaining a nonce ηsid at the inside sub-interface sid = (ηC , e), choose a
modulus p ∈ N and a generator g ∈ Z×p according to the distribution G. Also, choose
an exponent v←$ {1, . . . , |Z×p |}. Input the value m = p|g|gv at the respective inside sub-
interface (obtaining a signature s in response). Upon receiving a group element g̃ at the
respective inside sub-interface, query g̃v|master secret|ηC |ηsid at RO384, call the result
κ. Output (κ, ηsid , aux |m|s|g̃) at the respective outside sub-interface.

4. exps: Obtaining (κ, ηsid , aux |m|s|g̃) at the inside sub-interface of session sid = (ηC , e), gen-
erate keys κC,a, κC,e, κS,a, κS,e, κC,IV , κS,IV ← evalPRF(κ, key expansion|ηC |ηsid ). De-
note m := cert |p|g|g′|s. Generate messages (ξC , δC) ← evalPRF(κ, client finished|
H (ηC |ηsid |m|γ)) and (ξS , δS) ← evalPRF(κ, server finished|H (ηC |ηsid |m|cξC |γ)). Out-
put (κC,a, κC,e, κS,a, κS,e, κC,IV , κS,IV ) and (ξC , ξS) at the outside sub-interface sid .

5. ates: There is one such converter for each nonce η ∈ N , which connects at the respective
sub-interface. Upon receiving a message at the inside interface, process the message
with the scheme(s) specified by the cipher suite using the keys κC,e and κC,a. Compare
the plaintext to ξC . If any one of the above steps fails, abort. Use again the specified
schemes, now using the keys κS,a and κS,e, to process the message ξS , and send the
obtained ciphertext via the inside interface. Messages obtained at the outside interface
are processed with the specified scheme(s) using the keys κS,a and κS,e and sent via the
inside interface. Further ciphertexts obtained at the inside interface are processed using
κC,e and κC,a, the plaintexts are output at the outside interface. If any (MAC) verification
fails, abort.

Note once more that this amounts to the server protocol in TLS-DHE. In the following
section we give the full security statements for all versions TLS-DH, TLS-DHE, and TLS-RSA.

6.1 Full Security Statements

Summarizing the bounds obtained in the previous sections, the full security statements for TLS-
DH, TLS-DHE, and TLS-RSA are as follows. We write the theorems for the cipher suites based
on the stream cipher RC4 only, but the analogous theorems for the CBC-based cipher suites
are obtained in the same way.
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Similarly to Section 4, need to introduce a “residual” resource R̂n that is inactive in case

b = 0 and behaves like
∗

�� ��•n at the S- and E-interfaces in case b = 1 (R̂n does not have a
C-interface). We then consider, for each nonce η /∈ ρ(C), the system JR̂nK(S/η), i.e. the system
where the S-interface becomes the η-sub-interface of the S-interface. For brevity, we define

R̂
ρ(C)
n :=

⊗
η∈N\ρ(C)JR̂nK(S/η).

We start by showing the complete security statement for a cipher suite based on TLS-DH
and a stream cipher, here RC4.

Theorem 15 (TLS-DH). Let C ⊆ ATCP be a set of clients. The TLS-DH protocol constructs,

for each client C ∈ C, one unilaterally secure channel
∗

�� ��•n from NET, PKI, and RO384.
Concretely, there exist reductions C and C′ such that:

∆D

(∏
C∈C

tlsdhcCtlsdhsG,n
S⊥E [NET,PKI,RO384] ,⊥E

[⊗
C∈C

J
∗

�� ��•nK(C,S/ρ(C)), R̂ρ(C)
n

])

≤
(
|C|
2

)
· 2−224 + ΓDC(GCR) + |C| ·∆DC′ (prf U384,F) ,

and there are a simulator σ and reductions C, C′, C′′, C′′′, and C(iv) such that for each
distinguisher D,

∆D

(∏
C∈C

tlsdhcCtlsdhsG,n
S [NET,PKI,RO384] , σ

E
[⊗
C∈C

J
∗

�� ��•nK(C,S/ρ(C)), R̂ρ(C)
n

])

≤
((n

2

)
+

(
|C|
2

))
· 2−224 + ΓDC(GGapDH

G ) + ΓDC′(GCR) + |C| ·∆DC′′ (prf U384,F)

+ |C|
(

2 ·∆DC′′′ (rc4 U128,U
∗) + 2 · ΓDC(iv)

(
Gsuf-cma

))
.

Proof. For the availability condition, we lose a term
(|C|
2

)
2−224 in the construction of the resource

NAMEρ from scratch (see Section 3.2.1), and another term ΓDC(GCR)+|C|·∆DC′ (prf U384,F) in

the construction of
[⊗

C∈CJ
KSP,∗
= =•cphs,nK(C,S/ρ(C)),

⊗
η∈N\ρ(C)JR̃cphs,nK(S/η)

]
via (expc, exps) (see

Lemma 12). The converters ates connected to the interfaces corresponding to η ∈ N \ ρ(C) do
not obtain keys and hence remain inactive.

For the security condition, we again lose a term
(|C|
2

)
2−224 when constructing the resource

NAMEρ from scratch. We also lose: a term
(
n
2

)
2−224 in the construction of SNETN,ρ,n from

the resources NET and NAMEρ (see Lemma 7); a term ΓDC(GGapDH
G ) in the construction

of the resource MSKN,ρ,AUX ,n from the resource [RO384,SNETN,ρ,n,PKIF] (see Lemma 8); a
term ΓDC′(GCR) + |C| · ∆DC′′ (prf U384,F) in constructing the parallel composition of keys[⊗

C∈CJ
KSP,∗
= =•cphs,nK(C,S/ρ(C)),

⊗
η∈N\ρ(C)JR̃cphs,nK(S/η)

]
via (expc, exps) (see Lemma 12); finally,

noting that we lose a term 2 · ∆DC′′′ (rc4 U128,U
∗) + 2 · ΓDC(iv) (

Gsuf-cma
)

for each obtained
channel between a client and server. The |C|-many such channels are obtained by parallel
composition.

We obtain the following analogous statement for a cipher suite based on TLS-DHE together
with a stream cipher.

Theorem 16 (TLS-DHE). Let C ⊆ ATCP be a set of clients. The TLS-DHE protocol constructs,

for each client C ∈ C, one unilaterally secure channel
∗

�� ��•n from NET, PKI, and RO384.
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Concretely, there exist reductions C and C′ such that:

∆D

(∏
C∈C

tlsdhecCtlsdhesG,n
S⊥E [NET,PKI,RO384] ,⊥E

[⊗
C∈C

J
∗

�� ��•nK(C,S/ρ(C)), R̂ρ(C)
n

])

≤
(
|C|
2

)
· 2−224 + ΓDC(GCR) + |C| ·∆DC′ (prf U384,F) ,

and there are a simulator σ and reductions C, C′, C′′, C′′′, C(iv), and C(v) such that for each
distinguisher D,

∆D

(∏
C∈C

tlsdhecCtlsdhesG,n
S [NET,PKI,RO384] , σ

E
[⊗
C∈C

J
∗

�� ��•nK(C,S/ρ(C)), R̂ρ(C)
n

])

≤ 2 ·
((n

2

)
+

(
|C|
2

))
· 2−224 + ΓDC(Guf-cma) + n · |C| · ΓDC′(GGapDH

G )

+ ΓDC′′(GCR) + |C| ·∆DC′′′ (prf U384,F)

+ |C| ·
(

2 ·∆DC(iv)
(rc4 U128,U

∗) + 2 · ΓDC(v)
(
Gsuf-cma

))
.

Proof. The proof of the availability condition follows exactly the same scheme as above. A
similar argument holds for the security condition, with the exception that we lose a term
ΓDC(Guf-cma) while constructing the resource / −•N,ρ,F,SIG,n from the resources SNETN,ρ,n and

PKIF (see Lemma 9), and then a term n · |C| · ΓDC(GGapDH
G ) in constructing the resource

MSKN,ρ,AUX ,n from the resources RO384 and / −•N,ρ,F,SIG,n (see Lemma 10). The remainder
of the proof is as above.

The analogous result also holds with respect to a cipher suite based on TLS-RSA together
with a stream cipher. Note that the entire security statement is implicitly parametrized by
gen, the RSA key generation algorithm, which is specialized for the considered key length. In
particular, this affects the converters rsas and tlsrsas as well as the game Gnr-pca.

Theorem 17 (TLS-RSA). Let C ⊆ ATCP be a set of clients. The TLS-RSA protocol constructs,

for each client C ∈ C, one unilaterally secure channel
∗

�� ��•n from NET, PKI, and RO384.
Concretely, there exist reductions C and C′ such that:

∆D

(∏
C∈C

tlsrsacCtlsrsasn
S⊥E [NET,PKI,RO384] ,⊥E

[⊗
C∈C

J
∗

�� ��•nK(C,S/ρ(C)), R̂ρ(C)
n

])

≤
(
|C|
2

)
· 2−224 + ΓDC(GCR) + |C| ·∆DC′ (prf U384,F) ,

and there are a simulator σ and reductions Cq, for q ∈ N, C′, C′′, C′′′, and C(iv) such that for
each distinguisher D,

∆D

(∏
C∈C

tlsrsacCtlsrsasn
S [NET,PKI,RO384] , σ

E
[⊗
C∈C

J
∗

�� ��•nK(C,S/ρ(C)), R̂ρ(C)
n

])

≤
((n

2

)
+

(
|C|
2

))
·2−224 +n · |C| ·ΓDCq

q (Gnr-pca) +
q

2368
+ ΓDC′(GCR) + |C| ·∆DC′′ (prf U384,F)

+ |C|
(

2 ·∆DC′′′ (rc4 U128,U
∗) + 2 · ΓDC(iv)

(
Gsuf-cma

))
.
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Proof. The proof of the availability condition follows the same scheme as for DH. A similar ar-
gument holds for the security condition, except that we use the bounds for RSA for constructing
the resource MSKN,ρ,AUX ,n (see Lemma 11).

7 Conclusion

We described a modular decomposition and proof of the three main unilateral key-exchange
modes of TLS. While the purpose of most security mechanisms used in the protocol seemed
clear, actually performing the decomposition, i.e. finding suitable boundaries for “cutting” the
protocol and specifying the assumed and provided guarantees at each layer proved tedious
and sometimes impossible. Several design choices complicated the analysis considerably, they
also contradict the idea of a modular protocol design. Beyond the well-known issue of using
the encryption and MAC keys in the confirmation message, non-modularity appears in pass-
ing lower-level protocol details to higher-level protocols, in using “CPA-secure” key-exchange
mechanisms without authentication (see [MTC13] for a different approach), and generally in
the late and implicit “authentication” of information via the “finished” messages.
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A More Details on TLS

A.1 X.509 Certificates

In TLS, the server’s public key is always certified; optionally, the client may also be required
to certify his public key. The certificates used by TLS are X.509 v3 certificates [HPFS02],
in practice a chain of certificates starting form the user and ending at a valid certification
authority. In practice, each X509 v3 certificate consists of a sequence of three required fields:
the TBSCertificate, the AlgorithmIdentifier, and the BIT STRING fields (the latter being
a signature). We give more details about the concrete certificate structure below.

In this paper, we abstract the certification process to (user access to) a resource PKIF, which
takes as input the values that need to be certified, and outputs a certificate, i.e. a bit-string
which can be verified. The resource will choose a function f ∈ F and output a certificate of
the form (x, f(x)), where x is the input that needs to be certified. The function f can be
seen as an abstraction of the precise signature generation algorithm. Note that in the X509
certificates the values that are certified are encoded in DER encoding, in particular ensuring
that the encoding yields a unique value. The encoding consists of a type, the length of the
payload, and the payload itself, i.e. the input. We note that this encoding is implicitly assumed
in our PKI resource, i.e. the input value x is assumed to correspond to a single certificate.
Furthermore, the tbsCertificate field contains a unique identifier which bounds each input
to a single certificate (per resource), which means, the certificate authority can check whether
it has issued the certificate or not.

Finally, we note that in our assessment, we simplify the output of the verification of a
certificate to a single bit, i.e. the certificate is valid or invalid. This is a simplification since in
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fact the output usually yields more information than this: there is a difference between e.g. a
valid, but revoked certificate, a certificate which has expired, and an invalid certificate.

We proceed to describe the concrete structure of the X.509 v3 certificates. There are three
main fields: TBSCertificate, AlgorithmIdentifier, and BIT STRING. The field TBSCertificate

consists of:

• Version. The version of the certificate, i.e. 1, 2, or 3. If the version is 1, the value is
omitted. Already in version 2, the certificates had a unique identifier.
• Serial number. This is a unique serial number, which is a positive integer, 160 bits long.
• Signature. This field contains the signing algorithm, which must be the same as the one

specified in the AlgorithmIdentifier field; it may also contain additional parameters.
• Issuer. The name of the issuing identity, specified as a sequence of attributes such as

country, organization, state or province name, common name, serial number, etc.
• Validity. A sequence of two dates, a start and an end date for the validity.
• Subject. This field contains the (unique per each issuing CA) identifier of the owner of

the public key to be certified.
• Subject public key info. This sub-field contains the public key and the algorithm with

which the key should be used (e.g. RSA or Diffie-Hellman).
• Unique identifiers. These are the subject and issuer unique identifiers, which allow the

certification to handle repetitions of either the subject or the issuer fields.
• Extensions. The certificates generated in version 3 feature this field, which consists of a

sequence of one or more certificate extensions. Examples of such extensions are: subject
key identifier (which allows to identify certificates containing a certain public key), key
usage (which restricts the use of the key for particular purposes, such as digital signatures,
key agreement, etc.), subject alternative name (enabling additional identities to be bound
to the subject of the certificate), etc.

The AlgorithmIdentifier value contains the algorithm used to generate the signature.
The third field, BIT STRING is the signature over the DER encoding of the TBSCertificate

field.

A.2 RSA PKCS#7

A public-key encryption (PKE) scheme with message spaceM is typically described as three al-
gorithms PKE = (gen, enc, dec). The key-generation algorithm gen outputs a key pair (pk , sk),
the (probabilistic) encryption algorithm enc takes a message m ∈ M and a public key pk and
outputs a ciphertext c = enc(m; pk), and the decryption algorithm takes a ciphertext c and
a secret key sk and outputs a plaintext m = dec(c; sk). It is possible that the output of the
decryption algorithm is the special symbol ⊥; this indicates that the ciphertext c is invalid.

Below, we describe the RSA algorithms following the standard PKCS#7 [Kal98]. Let λ0 =
Θ(λ), λ1 = Θ(λ) with λ0 ≤ λ1 − 88. It is also assumed that λ1 is a multiple of 8. Strictly
speaking, PKCS#7 does not specify a key-generation algorithm gen, but assumes that some
RSA key pair is already available. Hence, all our security statements with respect to RSA-based
cipher suites are implicitly parametrized by the actual algorithm gen that was used to generate
the server’s key pair. Consider the following triple of algorithms RSA = (gen, enc, dec).

• gen(λ): Upon input the security parameter λ, output (pk , sk) := ((M, e), d) such that
ed ≡ 1 (mod φ(M)) and the modulus M has λ1 bits.

• enc(m; pk): Upon input a λ0-bit message m, pick a random padding P ∈ {0, 1}λ1−λ0−24
(such that none of the bytes of P equal ’00’ in hexadecimal notation), define x :=
00||02||P ||00||m, and output c = xe (mod M).
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• dec(c; sk): Upon input c, attempt to parse cd (mod M) as a sequence of bytes of the form
00||02||P ||00||m such that P contains no zero bytes and m has exactly λ0 bits. If the
attempt is successful output m; otherwise output a special symbol ⊥.

When used within TLS, λ0 is fixed to 384 (yielding a pre-master secret of 48 bytes), while λ1
is typically 1024 or 2048.

OW-PCA and NR-PCA. The RSA-PKCS-based version of the TLS protocol uses the above
defined PKE scheme. Earlier works analyzing the security of TLS-RSA relied on the assumption
that RSA-PKCS satisfies a special property called One-Wayness under Plaintext Checking At-
tacks (OW-PCA). This notion is reviewed in Appendix C.1. Not much is known on the validity
of this assumption for RSA PKCS#7. The only relevant paper trying to justify it is [JK02], via
a reduction to an RSA-like assumption (a.k.a. partial-domain RSA with decision oracle).18

Similar to [BFK+13b], our security proof for RSA-TLS relies on a stronger assumption called
Non-Randomizability under Plaintext Checking Attacks. As in the case of OW-PCA not much
is known on the validity of this assumption for RSA PKCS#7. See also Appendix C.1 for a
discussion.

A.3 Key Expansion

The key expansion procedure used in TLS relies on a pseudo-random function (based on HMAC).
This PRF with the SHA-256 hash function is used for all cipher suites defined in TLS 1.2 (see
Section 4). To expand the key, the following function is defined taking as input a secret, a seed,
and an identifying label (and produces an output of arbitrary length):

Phash(secret, seed) = HMAChash(secret,A(1) + seed) + HMAChash(secret,A(2) + seed)

+ HMAChash(secret,A(3) + seed) + · · ·

where + indicates concatenation. The function A(·) is defined as: A(0) = seed and A(i) =
HMAChash(secret,A(i− 1)). Note that Phash can be iterated as many times as necessary to produce
the required quantity of data.

B Further Notation and Preliminaries

This section contains further definitions which have been deferred from the main body of the
paper. The following Lemma, copied from [Mau13], states that if two games are equivalent, the
probability of winning is the same.

Lemma 18 (Mau13, Lemma 1). If S
g
≡ T, then for any system D and any q,

ΓD
q (S) = ΓD

q (T).

More importantly, the following lemma states that if two systems are equivalent as games,
then the distinguishing advantage is upper bounded by the probability of winning the games.
This lemma, which originates from [Mau02], is instrumental for many of our proofs.

Lemma 19 (Mau13, Lemma 2). Let A be a MBO. If SA
g
≡ TA, then, for any distinguisher D

and any q,
∆D
q (S,T) ≤ ΓD

q (SA).

18It is not clear whether the result of [JK02] applies to RSA PKCS#7 with typical parameters as used in TLS.
However we remark that, since its introduction, no weaknesses on the assumption have been reported either.
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The following lemma is also needed by some of our proofs. The intuitive interpretation is
as follows: For a tuple of games G1, . . . ,Gn which have individually defined MBOs but are
equivalent as games with respect to the disjunction of their MBOs, the sum of advantages of
winning the individual games is at least as large as the advantage for provoking the disjunction.

Lemma 20. Let G1, . . . ,Gn be a family of random systems (i.e., each Gi is described by a
family of pGi

Y q |Xq for q ≥ 1) and A1, . . . ,An be a family of monotone binary outputs defined on

these systems such that Aiq is independent of Yq. For i = 1, . . . , n, we write each monotone
output as Ai = (Ai1, A

i
2, . . . ). Define A =

∨n
i=1Ai, with A = (A1, A2, . . . ) and Aq =

∨n
i=1A

i
q

(i.e., Aq becomes 1 as soon as there exists a monotone output Ai whose qth component is 1).

Assume that GAi
g
≡ GAj for all 1 ≤ i, j ≤ n. Then, for all adversaries A,

n∑
i=1

ΓA
q (GAii ) ≥ ΓA

q (GAii∗ ),

for any 1 ≤ i∗ ≤ n.

Proof. We define the monotone binary outputs Ã1, . . . , Ãn as

Ãiq = Ãiq−1 ∨

Aiq ∧ ¬
∨
j 6=i

Ajq−1

 ,

i.e., Ãi formalizes that Ai is (among) the first MBOs to become 1. Indeed, Ãiq = 1 if either:

(1) the MBO Ãi had already turned 1, i.e., Ãiq−1 = 1; (2) the qth value Aiq is 1, but no previous

value Ajq−1 of any other MBO Aj is 1. Still, A becomes 1 as soon as any one of the outputs Aiq
becomes 1 for some i, q. If this output becomes 1, there must be at least one Ãiq that became 1

first. Thus, A becomes 1 if and only if at least one Ãiq becomes 1, yielding A =
∨n
i=1 Ãi. Let now

1 ≤ i∗ ≤ n. It holds that:
∑n

i=1 ΓA
q (GÃii∗ ) ≥ ΓA

q (GAi∗), since A is triggered if and only if it was

triggered first in one of the Ãi outputs. On the other hand, we also have ΓÃiq (Gi) = ΓÃiq (Gj)

since provoking Ã implies provoking A while Gi and Gj are still behaving equivalently (since,
if Ã was not triggered before, this means that A does not hold). Hence, we obtain

n∑
i=1

ΓA
q (GAii ) ≥

n∑
i=1

ΓA
q (GÃii ) =

n∑
i=1

ΓA
q (GÃii∗ ) ≥ ΓA(GAi∗),

which concludes the proof.

B.1 Signature Schemes

A signature scheme is a triple of algorithms SIG = (gen, sign, vrf ). The key-generation algo-
rithm gen takes no input19 and outputs a pair (sk , vk) of a signature key sk and a verification
key vk . The signing algorithm sign takes as input a signature key sk and a message m ∈ M
of some message space M, and outputs a signature s = sign(sk ,m). The (often deterministic)
verification algorithm vrf takes as input a verification key vk , a message m, and a signature s,
and outputs a decision bit. A signature scheme is correct if for any key pair (sk , vk) generated
by gen and for all m ∈M, vrf (vk ,m, sign(sk ,m)) = 1.

The common security requirement for a signature scheme SIG = (gen, sign, vrf ) is called
unforgeability and is formalized in Section C.4.

using the following game GSIG :

19For an asymptotic treatment, the algorithm takes as input the security parameter.
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1. Generate a key pair (sk , vk) = gen() and output vk to the adversary.
2. (Repeatedly) Given a message m ∈M from the adversary, compute s = sign(sk ,m), store
m in an internal buffer B, and return s to the adversary.

3. Upon input a pair (m′, s′) with m′ /∈ B and vrf (vk ,m′, s′) = 1, output that the game is
won.

For ε ∈ [0, 1], a signature scheme is ε-secure with respect to a class D of adversaries if
ΓA(GSIG) ≤ ε for all A ∈ D.

C Game-based Definitions

This Appendix collects the relevant game-based definitions that are used in our analysis of TLS.
Game-based definitions specify a property of a cryptographic scheme based on an interaction

between two (hypothetical) entities: the game (or challenger) and the adversary. During the
interaction, the adversary may issue “oracle queries” to the challenger, the responses of which
model what information may be leaked to the adversary. The adversary’s goal is specified by the
game, and could be, e.g., forging a message or distinguishing encryptions of different messages.
If this game cannot be won by any (efficient) adversary, then the scheme is secure against the
considered type of attack. The formal definition of a game is given in Definition 5.

Bit guessing games Some games in the literature are bit-guessing games. These games
can often be described by a pair of systems G0 and G1, with the interpretation that in the
beginning of the game, a bit B ∈ {0, 1} is chosen uniformly at random. The adversary will
then be given access to GB, and the goal is to guess the bit B. The adversary can win such
a game with probability 1

2 trivially by simply guessing the hidden bit. Hence, we measure the
adversary’s success in terms of his advantage, that is, the (absolute) difference between A’s
probability of winning G and the success probability for these “trivial” strategies, formally
ΦA(G) = 2 ·

∣∣ΓA(G)− 1
2

∣∣. Note also that ΦA(G) = ∆A(G0,G1).

C.1 OW-PCA & NR-PCA

We review the notion of one-wayness against plaintext checking attacks [JK02]. Let PKE =
(gen, enc, dec) be a public key encryption scheme with message space M.

Consider the game of Figure 6.

Init() ChGen() PCA(m, c) GameOutput(m′)

(pk , sk)← gen() if Chal 6= ∅ if (m = ⊥) ∨ (Chal = ∅) if Chal = ∅
Chal ← ∅ return ⊥ return ⊥ return ⊥
W ← 0 else else if m = dec(c; sk) else
return pk m∗ ←M return 1 return Output = (m′ = m∗)
end. Chal← enc(m∗; pk) else end.

return Chal return 0
end. end.

Figure 6: The OW-PCA security game, Gow-pca

Definition 21. We say that PKE = (gen, enc, dec) is ε-OW-PCA with respect to a class D of
adversaries if for every A ∈ D it holds that ΓA(Gow-pca) ≤ ε.

Definition 21 intuitively says that it is hard to “invert” a ciphertext, even given access
to a plaintext checking oracle (i.e., an oracle allowing to check if a guess for the plaintext
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corresponding to some ciphertext is correct). As discussed in Section 3.3.3, our proof for TLS-
RSA also relies on the assumption that it is hard to re-randomize a ciphertext, even given access
to a plaintext checking oracle. The latter notion, also known as non-randomizability against
plaintext checking attacks (NR-PCA), was recently introduced in [BFK+13b]; the corresponding
game is depicted in Figure 7.

Init() ChGen() PCA(m, c) GameOutput(c′)

(pk , sk)← gen() if Chal 6= ∅ if (m = ⊥) ∨ (Chal = ∅) if Chal = ∅
Chal ← ∅ return ⊥ return ⊥ return ⊥
W ← 0 else else if m = dec(c; sk) else
return pk m∗ ←M return 1 return Output = (c′ 6= c ∧ dec(c′; sk) = m∗)
end. Chal← enc(m∗; pk) else end.

return Chal return 0
end. end.

Figure 7: The NR-PCA security game, Gnr-pca

Definition 22. We say that PKE = (gen, enc, dec) is ε-NR-PCA with respect to a class D of
adversaries if for every A ∈ D it holds that ΓA(Gnr-pca) ≤ ε.

Note that NR-PCA implies OW-PCA whenever the encryption algorithm is randomized, be-
cause if we can invert the challenge ciphertext we can also re-randomize it. The other direction
might not be true, as there might be easier ways to re-randomize a ciphertext than by invert-
ing it. [BFK+13b] conjectured that the NR-PCA assumption follows from the common-input
extractability assumption of [BPB12] and OW-PCA.

In TLS the message space is of the form M = version number × {0, 1}368. Note that
decryption may result in a message that is outside of the message space and that such invalid
plaintexts can still be checked using the PCA oracle.

C.2 Gap Diffie-Hellman

For some security statements, we use the gap Diffie-Hellman assumption, originally proposed by
Okamoto and Pointcheval [OP01], which essentially states that it is hard to compute gxy given
(g, gx, gy), even given access to a DDH verification oracle (·, ·, ·). We formalize this problem
parametrized by a distribution G over groups of finite order |G| = q, together with a (publicly-
known) generator g. The game is specified in Figure 8.

Init(G) DDH(ga, gb, C) GameOutput(Z)

draw (G, g)←$ G
draw x, y←$ {1, . . . , |G|}
return (G, g, gx, gy)
set W ← 0
end.

return (gab = C)
end.

W ← (Z = gxy)
end.

Figure 8: The GapDH security game, GGapDH
G

Definition 23. A group distribution G satisfies the Gap Diffie-Hellman assumption with respect
to the class D of adversaries and with error ε if for all A ∈ D : ΓA(GGapDH

G ) ≤ ε.

55



C.3 Collision Resistance

For the key expansion step in Section 4, the client and server use a hash function H . In order
to prevent the adversary from changing some of the protocol messages without modifying the
finished messages ξC , ξS , this hash function needs to be collision resistant.

GameOutput(x, x′)

W ← (x = x′)
end.

Figure 9: The collision resistance game, GCR

Definition 24. A hash function H is collision-resistant for a class D of adversaries, if for all
A ∈ D it holds: ΓA(GCR) ≤ ε.

C.4 Unforgeability under Chosen-Message Attacks

The security condition for a signature scheme as defined in Section B.1 is a tuple of algo-
rithms SIG = (gen, sign, vrf ). The standard security requirement for a signature scheme is
unforgeability under chosen-message attacks (UF-CMA) and formalizes that no attacker may
be able to forge a signature, even if he is given access to a “signature oracle” that returns
signatures for arbitrary messages. (Of course, signatures returned by the oracle are not eligible
for winning the game.)

Init() Sign(m) Forge(m, s)

(sk , vk)← gen()
B ← ∅
W ← 0
return vk
end.

s← sign(m; sk)
B ← B ∪ {m}
return s
end.

if (m /∈ B) ∧ vrf (m, s; vk)
W ← 1

end.

Figure 10: The unforgeability game for the scheme SIG, Guf-cma.

Definition 25. A signature scheme is existentially unforgeable under chosen message attacks
for a class D of adversaries, if for all A ∈ D it holds: ΓA(Guf-cma) ≤ ε.
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Resource Description Constructed from Sub-protocol Security Loss

Basic Resources:

−� one-way, insecure chan-
nel; can read, change,
and inject messages at
E-interface.

assumed resource 0

PKIF Public-Key Infrastruc-
ture; provides certifica-
tion of PKs.

assumed resource 0

RO384 Random Oracle; out-
puts consistent random-
ness.

assumed resource 0

NET the insecure point-to-
point network; parallel
composition of − �
and � − channels; be-
have as for − � at E-
interface.

assumed resource,
J[−�,� −]K(C,S/C)

for C ∈ ATCP

0

NAMEρ unique name resource;
associates each client in-
terface C ∈ C with a
unique nonce η, as ρ in-
dicates.

rnd
(|C|
2

)
· 2−224

Intermediate TLS Resources

SNETN,ρ,n insecure network with
nonce exchange; asso-
ciates each client inter-
face C ∈ C with a
unique nonce η, as ρ in-
dicates.

NAMEρ,NET hec, hes
(
n
2

)
· 2−224

/ −•N,ρ,F,SIG,n authenticated transmis-
sion network; network
with one-sided authen-
tication of the group pa-
rameters used in TLS-
DHE.

SNETN,ρ,n,PKIF vrf, sgn ΓDC(Guf-cma)

master secret resource;
allows parties to obtain
the master secret. For
each session, MS can
either be injected or
honestly generated.

TLS-DH:
RO384,SNETN,ρ,n,PKIF

dhc, dhsG . ΓDC(GGapDH
G )

MSKN,ρ,AUX ,n

TLS-DHE:
RO384, / −•N,ρ,F,SIG,n

dhec, dhesG n|C| · ΓDC(GGapDH
G ) +

ΓDC′(Guf-cma)

TLS-RSA:
RO384,SNETN,ρ,n,PKIF

rsac, rsas n|C| ·ΓDCq
q (Gnr-pca)+ q

2368

Final TLS Resources:
KSP,∗
= =• unilaterally authenti-

cated key; can inject
keys or allow them to
be honestly distributed.

MSKN,ρ,AUX ,n expc, exps |C| · ΓDC(GPRF) +
ΓDC′(GCR)

∗
�� ��• Unilaterally secure

2-party communication.
For each session,
adversary can either
interfere or not.

KSP,∗
= =• stream cipher 2·∆DC (rc4 U128,U

∗)+2·
ΓDC′

(
Gsuf-cma

)
CBC 2 · ∆DC (bc Uk,P`) + 2 ·

ΓDC′
(
Gsuf-cma

)
+ (ql)2

2`−1

Figure 11: The resources used in this work
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